summaryrefslogtreecommitdiff
path: root/target/linux/generic/files/crypto/ocf/ep80579/icp_sym.c
blob: e1c71484a642133c51e1f747416d58f38c6992dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
/***************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or 
 *   redistributing this file, you may do so under either license.
 * 
 *   GPL LICENSE SUMMARY
 * 
 *   Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved.
 * 
 *   This program is free software; you can redistribute it and/or modify 
 *   it under the terms of version 2 of the GNU General Public License as
 *   published by the Free Software Foundation.
 * 
 *   This program is distributed in the hope that it will be useful, but 
 *   WITHOUT ANY WARRANTY; without even the implied warranty of 
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
 *   General Public License for more details.
 * 
 *   You should have received a copy of the GNU General Public License 
 *   along with this program; if not, write to the Free Software 
 *   Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *   The full GNU General Public License is included in this distribution 
 *   in the file called LICENSE.GPL.
 * 
 *   Contact Information:
 *   Intel Corporation
 * 
 *   BSD LICENSE 
 * 
 *   Copyright(c) 2007,2008,2009 Intel Corporation. All rights reserved.
 *   All rights reserved.
 * 
 *   Redistribution and use in source and binary forms, with or without 
 *   modification, are permitted provided that the following conditions 
 *   are met:
 * 
 *     * Redistributions of source code must retain the above copyright 
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright 
 *       notice, this list of conditions and the following disclaimer in 
 *       the documentation and/or other materials provided with the 
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its 
 *       contributors may be used to endorse or promote products derived 
 *       from this software without specific prior written permission.
 * 
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 * 
 *  version: Security.L.1.0.2-229
 *
 ***************************************************************************/
/*
 * An OCF module that uses the API for Intel® QuickAssist Technology to do the
 * cryptography.
 *
 * This driver requires the ICP Access Library that is available from Intel in
 * order to operate.
 */

#include "icp_ocf.h"

/*This is the call back function for all symmetric cryptographic processes.
  Its main functionality is to free driver crypto operation structure and to 
  call back to OCF*/
static void
icp_ocfDrvSymCallBack(void *callbackTag,
		      CpaStatus status,
		      const CpaCySymOp operationType,
		      void *pOpData,
		      CpaBufferList * pDstBuffer, CpaBoolean verifyResult);

/*This function is used to extract crypto processing information from the OCF
  inputs, so as that it may be passed onto LAC*/
static int
icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData,
			   struct cryptodesc *crp_desc);

/*This function checks whether the crp_desc argument pertains to a digest or a
  cipher operation*/
static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc);

/*This function copies all the passed in session context information and stores
  it in a LAC context structure*/
static int
icp_ocfDrvAlgorithmSetup(struct cryptoini *cri,
			 CpaCySymSessionSetupData * lacSessCtx);

/*This function is used to free an OCF->OCF_DRV session object*/
static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData);

/*max IOV buffs supported in a UIO structure*/
#define NUM_IOV_SUPPORTED		(1)

/* Name        : icp_ocfDrvSymCallBack
 *
 * Description : When this function returns it signifies that the LAC
 * component has completed the relevant symmetric operation. 
 *
 * Notes : The callbackTag is a pointer to an icp_drvOpData. This memory
 * object was passed to LAC for the cryptographic processing and contains all
 * the relevant information for cleaning up buffer handles etc. so that the
 * OCF EP80579 Driver portion of this crypto operation can be fully completed.
 */
static void
icp_ocfDrvSymCallBack(void *callbackTag,
		      CpaStatus status,
		      const CpaCySymOp operationType,
		      void *pOpData,
		      CpaBufferList * pDstBuffer, CpaBoolean verifyResult)
{
	struct cryptop *crp = NULL;
	struct icp_drvOpData *temp_drvOpData =
	    (struct icp_drvOpData *)callbackTag;
	uint64_t *tempBasePtr = NULL;
	uint32_t tempLen = 0;

	if (NULL == temp_drvOpData) {
		DPRINTK("%s(): The callback from the LAC component"
			" has failed due to Null userOpaque data"
			"(status == %d).\n", __FUNCTION__, status);
		DPRINTK("%s(): Unable to call OCF back! \n", __FUNCTION__);
		return;
	}

	crp = temp_drvOpData->crp;
	crp->crp_etype = ICP_OCF_DRV_NO_CRYPTO_PROCESS_ERROR;

	if (NULL == pOpData) {
		DPRINTK("%s(): The callback from the LAC component"
			" has failed due to Null Symmetric Op data"
			"(status == %d).\n", __FUNCTION__, status);
		crp->crp_etype = ECANCELED;
		crypto_done(crp);
		return;
	}

	if (NULL == pDstBuffer) {
		DPRINTK("%s(): The callback from the LAC component"
			" has failed due to Null Dst Bufferlist data"
			"(status == %d).\n", __FUNCTION__, status);
		crp->crp_etype = ECANCELED;
		crypto_done(crp);
		return;
	}

	if (CPA_STATUS_SUCCESS == status) {

		if (temp_drvOpData->bufferType == ICP_CRYPTO_F_PACKET_BUF) {
			if (ICP_OCF_DRV_STATUS_SUCCESS !=
			    icp_ocfDrvBufferListToPacketBuff(pDstBuffer,
							     (icp_packet_buffer_t
							      **)
							     & (crp->crp_buf))) {
				EPRINTK("%s(): BufferList to SkBuff "
					"conversion error.\n", __FUNCTION__);
				crp->crp_etype = EPERM;
			}
		} else {
			icp_ocfDrvBufferListToPtrAndLen(pDstBuffer,
							(void **)&tempBasePtr,
							&tempLen);
			crp->crp_olen = (int)tempLen;
		}

	} else {
		DPRINTK("%s(): The callback from the LAC component has failed"
			"(status == %d).\n", __FUNCTION__, status);

		crp->crp_etype = ECANCELED;
	}

	if (temp_drvOpData->numBufferListArray >
	    ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) {
		icp_kfree(pDstBuffer->pBuffers);
	}
	icp_ocfDrvFreeMetaData(pDstBuffer);
	ICP_CACHE_FREE(drvOpData_zone, temp_drvOpData);

	/* Invoke the OCF callback function */
	crypto_done(crp);

	return;
}

/* Name        : icp_ocfDrvNewSession 
 *
 * Description : This function will create a new Driver<->OCF session
 *
 * Notes : LAC session registration happens during the first perform call.
 * That is the first time we know all information about a given session.
 */
int icp_ocfDrvNewSession(icp_device_t dev, uint32_t * sid,
			 struct cryptoini *cri)
{
	struct icp_drvSessionData *sessionData = NULL;
	uint32_t delete_session = 0;

	/* The SID passed in should be our driver ID. We can return the     */
	/* local ID (LID) which is a unique identifier which we can use     */
	/* to differentiate between the encrypt/decrypt LAC session handles */
	if (NULL == sid) {
		EPRINTK("%s(): Invalid input parameters - NULL sid.\n",
			__FUNCTION__);
		return EINVAL;
	}

	if (NULL == cri) {
		EPRINTK("%s(): Invalid input parameters - NULL cryptoini.\n",
			__FUNCTION__);
		return EINVAL;
	}

	if (icp_ocfDrvDriverId != *sid) {
		EPRINTK("%s(): Invalid input parameters - bad driver ID\n",
			__FUNCTION__);
		EPRINTK("\t sid = 0x08%p \n \t cri = 0x08%p \n", sid, cri);
		return EINVAL;
	}

	sessionData = icp_kmem_cache_zalloc(drvSessionData_zone, ICP_M_NOWAIT);
	if (NULL == sessionData) {
		DPRINTK("%s():No memory for Session Data\n", __FUNCTION__);
		return ENOMEM;
	}

	/*ENTER CRITICAL SECTION */
	icp_spin_lockbh_lock(&icp_ocfDrvSymSessInfoListSpinlock);
	/*put this check in the spinlock so no new sessions can be added to the
	   linked list when we are exiting */
	if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) {
		delete_session++;

	} else if (NO_OCF_TO_DRV_MAX_SESSIONS != max_sessions) {
		if (icp_atomic_read(&num_ocf_to_drv_registered_sessions) >=
		    (max_sessions -
		     icp_atomic_read(&lac_session_failed_dereg_count))) {
			delete_session++;
		} else {
			icp_atomic_inc(&num_ocf_to_drv_registered_sessions);
			/* Add to session data linked list */
			ICP_LIST_ADD(sessionData, &icp_ocfDrvGlobalSymListHead,
				     listNode);
		}

	} else if (NO_OCF_TO_DRV_MAX_SESSIONS == max_sessions) {
		ICP_LIST_ADD(sessionData, &icp_ocfDrvGlobalSymListHead,
			     listNode);
	}

	sessionData->inUse = ICP_SESSION_INITIALISED;

	/*EXIT CRITICAL SECTION */
	icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock);

	if (delete_session) {
		DPRINTK("%s():No Session handles available\n", __FUNCTION__);
		ICP_CACHE_FREE(drvSessionData_zone, sessionData);
		return EPERM;
	}

	if (ICP_OCF_DRV_STATUS_SUCCESS !=
	    icp_ocfDrvAlgorithmSetup(cri, &(sessionData->lacSessCtx))) {
		DPRINTK("%s():algorithm not supported\n", __FUNCTION__);
		icp_ocfDrvFreeOCFSession(sessionData);
		return EINVAL;
	}

	if (cri->cri_next) {
		if (cri->cri_next->cri_next != NULL) {
			DPRINTK("%s():only two chained algorithms supported\n",
				__FUNCTION__);
			icp_ocfDrvFreeOCFSession(sessionData);
			return EPERM;
		}

		if (ICP_OCF_DRV_STATUS_SUCCESS !=
		    icp_ocfDrvAlgorithmSetup(cri->cri_next,
					     &(sessionData->lacSessCtx))) {
			DPRINTK("%s():second algorithm not supported\n",
				__FUNCTION__);
			icp_ocfDrvFreeOCFSession(sessionData);
			return EINVAL;
		}

		sessionData->lacSessCtx.symOperation =
		    CPA_CY_SYM_OP_ALGORITHM_CHAINING;
	}

	*sid = (uint32_t) sessionData;

	return ICP_OCF_DRV_STATUS_SUCCESS;
}

/* Name        : icp_ocfDrvAlgorithmSetup
 *
 * Description : This function builds the session context data from the
 * information supplied through OCF. Algorithm chain order and whether the
 * session is Encrypt/Decrypt can only be found out at perform time however, so
 * the session is registered with LAC at that time.
 */
static int
icp_ocfDrvAlgorithmSetup(struct cryptoini *cri,
			 CpaCySymSessionSetupData * lacSessCtx)
{

	lacSessCtx->sessionPriority = CPA_CY_PRIORITY_NORMAL;

	switch (cri->cri_alg) {

	case CRYPTO_NULL_CBC:
		DPRINTK("%s(): NULL CBC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER;
		lacSessCtx->cipherSetupData.cipherAlgorithm =
		    CPA_CY_SYM_CIPHER_NULL;
		lacSessCtx->cipherSetupData.cipherKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key;
		break;

	case CRYPTO_DES_CBC:
		DPRINTK("%s(): DES CBC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER;
		lacSessCtx->cipherSetupData.cipherAlgorithm =
		    CPA_CY_SYM_CIPHER_DES_CBC;
		lacSessCtx->cipherSetupData.cipherKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key;
		break;

	case CRYPTO_3DES_CBC:
		DPRINTK("%s(): 3DES CBC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER;
		lacSessCtx->cipherSetupData.cipherAlgorithm =
		    CPA_CY_SYM_CIPHER_3DES_CBC;
		lacSessCtx->cipherSetupData.cipherKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key;
		break;

	case CRYPTO_AES_CBC:
		DPRINTK("%s(): AES CBC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER;
		lacSessCtx->cipherSetupData.cipherAlgorithm =
		    CPA_CY_SYM_CIPHER_AES_CBC;
		lacSessCtx->cipherSetupData.cipherKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key;
		break;

	case CRYPTO_ARC4:
		DPRINTK("%s(): ARC4\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_CIPHER;
		lacSessCtx->cipherSetupData.cipherAlgorithm =
		    CPA_CY_SYM_CIPHER_ARC4;
		lacSessCtx->cipherSetupData.cipherKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->cipherSetupData.pCipherKey = cri->cri_key;
		break;

	case CRYPTO_SHA1:
		DPRINTK("%s(): SHA1\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES);

		break;

	case CRYPTO_SHA1_HMAC:
		DPRINTK("%s(): SHA1_HMAC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_SHA1;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA1_DIGEST_SIZE_IN_BYTES);
		lacSessCtx->hashSetupData.authModeSetupData.authKey =
		    cri->cri_key;
		lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0;

		break;

	case CRYPTO_SHA2_256:
		DPRINTK("%s(): SHA256\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA256;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES);

		break;

	case CRYPTO_SHA2_256_HMAC:
		DPRINTK("%s(): SHA256_HMAC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA256;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA256_DIGEST_SIZE_IN_BYTES);
		lacSessCtx->hashSetupData.authModeSetupData.authKey =
		    cri->cri_key;
		lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0;

		break;

	case CRYPTO_SHA2_384:
		DPRINTK("%s(): SHA384\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA384;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES);

		break;

	case CRYPTO_SHA2_384_HMAC:
		DPRINTK("%s(): SHA384_HMAC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA384;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA384_DIGEST_SIZE_IN_BYTES);
		lacSessCtx->hashSetupData.authModeSetupData.authKey =
		    cri->cri_key;
		lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0;

		break;

	case CRYPTO_SHA2_512:
		DPRINTK("%s(): SHA512\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA512;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES);

		break;

	case CRYPTO_SHA2_512_HMAC:
		DPRINTK("%s(): SHA512_HMAC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm =
		    CPA_CY_SYM_HASH_SHA512;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_SHA512_DIGEST_SIZE_IN_BYTES);
		lacSessCtx->hashSetupData.authModeSetupData.authKey =
		    cri->cri_key;
		lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0;

		break;

	case CRYPTO_MD5:
		DPRINTK("%s(): MD5\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_PLAIN;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES);

		break;

	case CRYPTO_MD5_HMAC:
		DPRINTK("%s(): MD5_HMAC\n", __FUNCTION__);
		lacSessCtx->symOperation = CPA_CY_SYM_OP_HASH;
		lacSessCtx->hashSetupData.hashAlgorithm = CPA_CY_SYM_HASH_MD5;
		lacSessCtx->hashSetupData.hashMode = CPA_CY_SYM_HASH_MODE_AUTH;
		lacSessCtx->hashSetupData.digestResultLenInBytes =
		    (cri->cri_mlen ?
		     cri->cri_mlen : ICP_MD5_DIGEST_SIZE_IN_BYTES);
		lacSessCtx->hashSetupData.authModeSetupData.authKey =
		    cri->cri_key;
		lacSessCtx->hashSetupData.authModeSetupData.authKeyLenInBytes =
		    cri->cri_klen / NUM_BITS_IN_BYTE;
		lacSessCtx->hashSetupData.authModeSetupData.aadLenInBytes = 0;

		break;

	default:
		DPRINTK("%s(): ALG Setup FAIL\n", __FUNCTION__);
		return ICP_OCF_DRV_STATUS_FAIL;
	}

	return ICP_OCF_DRV_STATUS_SUCCESS;
}

/* Name        : icp_ocfDrvFreeOCFSession
 *
 * Description : This function deletes all existing Session data representing
 * the Cryptographic session established between OCF and this driver. This
 * also includes freeing the memory allocated for the session context. The
 * session object is also removed from the session linked list.
 */
static void icp_ocfDrvFreeOCFSession(struct icp_drvSessionData *sessionData)
{

	sessionData->inUse = ICP_SESSION_DEREGISTERED;

	/*ENTER CRITICAL SECTION */
	icp_spin_lockbh_lock(&icp_ocfDrvSymSessInfoListSpinlock);

	if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) {
		/*If the Driver is exiting, allow that process to
		   handle any deletions */
		/*EXIT CRITICAL SECTION */
		icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock);
		return;
	}

	icp_atomic_dec(&num_ocf_to_drv_registered_sessions);

	ICP_LIST_DEL(sessionData, listNode);

	/*EXIT CRITICAL SECTION */
	icp_spin_lockbh_unlock(&icp_ocfDrvSymSessInfoListSpinlock);

	if (NULL != sessionData->sessHandle) {
		icp_kfree(sessionData->sessHandle);
	}
	ICP_CACHE_FREE(drvSessionData_zone, sessionData);
}

/* Name        : icp_ocfDrvFreeLACSession
 *
 * Description : This attempts to deregister a LAC session. If it fails, the
 * deregistation retry function is called.
 */
int icp_ocfDrvFreeLACSession(icp_device_t dev, uint64_t sid)
{
	CpaCySymSessionCtx sessionToDeregister = NULL;
	struct icp_drvSessionData *sessionData = NULL;
	CpaStatus lacStatus = CPA_STATUS_SUCCESS;
	int retval = 0;

	sessionData = (struct icp_drvSessionData *)CRYPTO_SESID2LID(sid);
	if (NULL == sessionData) {
		EPRINTK("%s(): OCF Free session called with Null Session ID.\n",
			__FUNCTION__);
		return EINVAL;
	}

	sessionToDeregister = sessionData->sessHandle;

	if ((ICP_SESSION_INITIALISED != sessionData->inUse) &&
	    (ICP_SESSION_RUNNING != sessionData->inUse) &&
	    (ICP_SESSION_DEREGISTERED != sessionData->inUse)) {
		DPRINTK("%s() Session not initialised.\n", __FUNCTION__);
		return EINVAL;
	}

	if (ICP_SESSION_RUNNING == sessionData->inUse) {
		lacStatus = cpaCySymRemoveSession(CPA_INSTANCE_HANDLE_SINGLE,
						  sessionToDeregister);
		if (CPA_STATUS_RETRY == lacStatus) {
			if (ICP_OCF_DRV_STATUS_SUCCESS !=
			    icp_ocfDrvDeregRetry(&sessionToDeregister)) {
				/* the retry function increments the 
				   dereg failed count */
				DPRINTK("%s(): LAC failed to deregister the "
					"session. (localSessionId= %p)\n",
					__FUNCTION__, sessionToDeregister);
				retval = EPERM;
			}

		} else if (CPA_STATUS_SUCCESS != lacStatus) {
			DPRINTK("%s(): LAC failed to deregister the session. "
				"localSessionId= %p, lacStatus = %d\n",
				__FUNCTION__, sessionToDeregister, lacStatus);
			icp_atomic_inc(&lac_session_failed_dereg_count);
			retval = EPERM;
		}
	} else {
		DPRINTK("%s() Session not registered with LAC.\n",
			__FUNCTION__);
	}

	icp_ocfDrvFreeOCFSession(sessionData);
	return retval;

}

/* Name        : icp_ocfDrvAlgCheck 
 *
 * Description : This function checks whether the cryptodesc argument pertains
 * to a sym or hash function
 */
static int icp_ocfDrvAlgCheck(struct cryptodesc *crp_desc)
{

	if (crp_desc->crd_alg == CRYPTO_3DES_CBC ||
	    crp_desc->crd_alg == CRYPTO_AES_CBC ||
	    crp_desc->crd_alg == CRYPTO_DES_CBC ||
	    crp_desc->crd_alg == CRYPTO_NULL_CBC ||
	    crp_desc->crd_alg == CRYPTO_ARC4) {
		return ICP_OCF_DRV_ALG_CIPHER;
	}

	return ICP_OCF_DRV_ALG_HASH;
}

/* Name        : icp_ocfDrvSymProcess 
 *
 * Description : This function will map symmetric functionality calls from OCF
 * to the LAC API. It will also allocate memory to store the session context.
 * 
 * Notes: If it is the first perform call for a given session, then a LAC
 * session is registered. After the session is registered, no checks as
 * to whether session paramaters have changed (e.g. alg chain order) are
 * done.
 */
int icp_ocfDrvSymProcess(icp_device_t dev, struct cryptop *crp, int hint)
{
	struct icp_drvSessionData *sessionData = NULL;
	struct icp_drvOpData *drvOpData = NULL;
	CpaStatus lacStatus = CPA_STATUS_SUCCESS;
	Cpa32U sessionCtxSizeInBytes = 0;

	if (NULL == crp) {
		DPRINTK("%s(): Invalid input parameters, cryptop is NULL\n",
			__FUNCTION__);
		return EINVAL;
	}

	if (NULL == crp->crp_desc) {
		DPRINTK("%s(): Invalid input parameters, no crp_desc attached "
			"to crp\n", __FUNCTION__);
		crp->crp_etype = EINVAL;
		return EINVAL;
	}

	if (NULL == crp->crp_buf) {
		DPRINTK("%s(): Invalid input parameters, no buffer attached "
			"to crp\n", __FUNCTION__);
		crp->crp_etype = EINVAL;
		return EINVAL;
	}

	if (CPA_TRUE == icp_atomic_read(&icp_ocfDrvIsExiting)) {
		crp->crp_etype = EFAULT;
		return EFAULT;
	}

	sessionData = (struct icp_drvSessionData *)
	    (CRYPTO_SESID2LID(crp->crp_sid));
	if (NULL == sessionData) {
		DPRINTK("%s(): Invalid input parameters, Null Session ID \n",
			__FUNCTION__);
		crp->crp_etype = EINVAL;
		return EINVAL;
	}

/*If we get a request against a deregisted session, cancel operation*/
	if (ICP_SESSION_DEREGISTERED == sessionData->inUse) {
		DPRINTK("%s(): Session ID %d was deregistered \n",
			__FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid)));
		crp->crp_etype = EFAULT;
		return EFAULT;
	}

/*If none of the session states are set, then the session structure was either
  not initialised properly or we are reading from a freed memory area (possible
  due to OCF batch mode not removing queued requests against deregistered 
  sessions*/
	if (ICP_SESSION_INITIALISED != sessionData->inUse &&
	    ICP_SESSION_RUNNING != sessionData->inUse) {
		DPRINTK("%s(): Session - ID %d - not properly initialised or "
			"memory freed back to the kernel \n",
			__FUNCTION__, (int)(CRYPTO_SESID2LID(crp->crp_sid)));
		crp->crp_etype = EINVAL;
		return EINVAL;
	}

	/*For the below checks, remember error checking is already done in LAC.
	   We're not validating inputs subsequent to registration */
	if (sessionData->inUse == ICP_SESSION_INITIALISED) {
		DPRINTK("%s(): Initialising session\n", __FUNCTION__);

		if (NULL != crp->crp_desc->crd_next) {
			if (ICP_OCF_DRV_ALG_CIPHER ==
			    icp_ocfDrvAlgCheck(crp->crp_desc)) {

				sessionData->lacSessCtx.algChainOrder =
				    CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH;

				if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) {
					sessionData->lacSessCtx.cipherSetupData.
					    cipherDirection =
					    CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT;
				} else {
					sessionData->lacSessCtx.cipherSetupData.
					    cipherDirection =
					    CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT;
				}
			} else {
				sessionData->lacSessCtx.algChainOrder =
				    CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER;

				if (crp->crp_desc->crd_next->crd_flags &
				    CRD_F_ENCRYPT) {
					sessionData->lacSessCtx.cipherSetupData.
					    cipherDirection =
					    CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT;
				} else {
					sessionData->lacSessCtx.cipherSetupData.
					    cipherDirection =
					    CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT;
				}

			}

		} else if (ICP_OCF_DRV_ALG_CIPHER ==
			   icp_ocfDrvAlgCheck(crp->crp_desc)) {
			if (crp->crp_desc->crd_flags & CRD_F_ENCRYPT) {
				sessionData->lacSessCtx.cipherSetupData.
				    cipherDirection =
				    CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT;
			} else {
				sessionData->lacSessCtx.cipherSetupData.
				    cipherDirection =
				    CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT;
			}

		}

		/*No action required for standalone Auth here */

		/* Allocate memory for SymSessionCtx before the Session Registration */
		lacStatus =
		    cpaCySymSessionCtxGetSize(CPA_INSTANCE_HANDLE_SINGLE,
					      &(sessionData->lacSessCtx),
					      &sessionCtxSizeInBytes);
		if (CPA_STATUS_SUCCESS != lacStatus) {
			EPRINTK("%s(): cpaCySymSessionCtxGetSize failed - %d\n",
				__FUNCTION__, lacStatus);
			crp->crp_etype = EINVAL;
			return EINVAL;
		}
		sessionData->sessHandle =
		    icp_kmalloc(sessionCtxSizeInBytes, ICP_M_NOWAIT);
		if (NULL == sessionData->sessHandle) {
			EPRINTK
			    ("%s(): Failed to get memory for SymSessionCtx\n",
			     __FUNCTION__);
			crp->crp_etype = ENOMEM;
			return ENOMEM;
		}

		lacStatus = cpaCySymInitSession(CPA_INSTANCE_HANDLE_SINGLE,
						icp_ocfDrvSymCallBack,
						&(sessionData->lacSessCtx),
						sessionData->sessHandle);

		if (CPA_STATUS_SUCCESS != lacStatus) {
			EPRINTK("%s(): cpaCySymInitSession failed -%d \n",
				__FUNCTION__, lacStatus);
			crp->crp_etype = EFAULT;
			return EFAULT;
		}

		sessionData->inUse = ICP_SESSION_RUNNING;
	}

	drvOpData = icp_kmem_cache_zalloc(drvOpData_zone, ICP_M_NOWAIT);
	if (NULL == drvOpData) {
		EPRINTK("%s():Failed to get memory for drvOpData\n",
			__FUNCTION__);
		crp->crp_etype = ENOMEM;
		return ENOMEM;
	}

	drvOpData->lacOpData.pSessionCtx = sessionData->sessHandle;
	drvOpData->digestSizeInBytes = sessionData->lacSessCtx.hashSetupData.
	    digestResultLenInBytes;
	drvOpData->crp = crp;

	/* Set the default buffer list array memory allocation */
	drvOpData->srcBuffer.pBuffers = drvOpData->bufferListArray;
	drvOpData->numBufferListArray = ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS;

	if (ICP_OCF_DRV_STATUS_SUCCESS !=
	    icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp->crp_desc)) {
		crp->crp_etype = EINVAL;
		goto err;
	}

	if (drvOpData->crp->crp_desc->crd_next != NULL) {
		if (icp_ocfDrvProcessDataSetup(drvOpData, drvOpData->crp->
					       crp_desc->crd_next)) {
			crp->crp_etype = EINVAL;
			goto err;
		}

	}

	/* 
	 * Allocate buffer list array memory if the data fragment is more than
	 * the default number (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) and not 
	 * calculated already
	 */
	if (crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) {
		if (NULL == drvOpData->lacOpData.pDigestResult) {
			drvOpData->numBufferListArray =
			    icp_ocfDrvGetPacketBuffFrags((icp_packet_buffer_t *)
							 crp->crp_buf);
		}

		if (ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS <
		    drvOpData->numBufferListArray) {
			DPRINTK("%s() numBufferListArray more than default\n",
				__FUNCTION__);
			drvOpData->srcBuffer.pBuffers = NULL;
			drvOpData->srcBuffer.pBuffers =
			    icp_kmalloc(drvOpData->numBufferListArray *
					sizeof(CpaFlatBuffer), ICP_M_NOWAIT);
			if (NULL == drvOpData->srcBuffer.pBuffers) {
				EPRINTK("%s() Failed to get memory for "
					"pBuffers\n", __FUNCTION__);
				ICP_CACHE_FREE(drvOpData_zone, drvOpData);
				crp->crp_etype = ENOMEM;
				return ENOMEM;
			}
		}
	}

	/*
	 * Check the type of buffer structure we got and convert it into
	 * CpaBufferList format.
	 */
	if (crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) {
		if (ICP_OCF_DRV_STATUS_SUCCESS !=
		    icp_ocfDrvPacketBuffToBufferList((icp_packet_buffer_t *)
						     crp->crp_buf,
						     &(drvOpData->srcBuffer))) {
			EPRINTK("%s():Failed to translate from packet buffer "
				"to bufferlist\n", __FUNCTION__);
			crp->crp_etype = EINVAL;
			goto err;
		}

		drvOpData->bufferType = ICP_CRYPTO_F_PACKET_BUF;
	} else if (crp->crp_flags & CRYPTO_F_IOV) {
		/* OCF only supports IOV of one entry. */
		if (NUM_IOV_SUPPORTED ==
		    ((struct uio *)(crp->crp_buf))->uio_iovcnt) {

			icp_ocfDrvPtrAndLenToBufferList(((struct uio *)(crp->
									crp_buf))->
							uio_iov[0].iov_base,
							((struct uio *)(crp->
									crp_buf))->
							uio_iov[0].iov_len,
							&(drvOpData->
							  srcBuffer));

			drvOpData->bufferType = CRYPTO_F_IOV;

		} else {
			DPRINTK("%s():Unable to handle IOVs with lengths of "
				"greater than one!\n", __FUNCTION__);
			crp->crp_etype = EINVAL;
			goto err;
		}

	} else {
		icp_ocfDrvPtrAndLenToBufferList(crp->crp_buf,
						crp->crp_ilen,
						&(drvOpData->srcBuffer));

		drvOpData->bufferType = CRYPTO_BUF_CONTIG;
	}

	/* Allocate srcBuffer's private meta data */
	if (ICP_OCF_DRV_STATUS_SUCCESS !=
	    icp_ocfDrvAllocMetaData(&(drvOpData->srcBuffer), drvOpData)) {
		EPRINTK("%s() icp_ocfDrvAllocMetaData failed\n", __FUNCTION__);
		memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData));
		crp->crp_etype = EINVAL;
		goto err;
	}

	/* Perform "in-place" crypto operation */
	lacStatus = cpaCySymPerformOp(CPA_INSTANCE_HANDLE_SINGLE,
				      (void *)drvOpData,
				      &(drvOpData->lacOpData),
				      &(drvOpData->srcBuffer),
				      &(drvOpData->srcBuffer),
				      &(drvOpData->verifyResult));
	if (CPA_STATUS_RETRY == lacStatus) {
		DPRINTK("%s(): cpaCySymPerformOp retry, lacStatus = %d\n",
			__FUNCTION__, lacStatus);
		memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData));
		crp->crp_etype = ERESTART;
		goto err;
	}
	if (CPA_STATUS_SUCCESS != lacStatus) {
		EPRINTK("%s(): cpaCySymPerformOp failed, lacStatus = %d\n",
			__FUNCTION__, lacStatus);
		memset(&(drvOpData->lacOpData), 0, sizeof(CpaCySymOpData));
		crp->crp_etype = EINVAL;
		goto err;
	}

	return 0;		//OCF success status value

      err:
	if (drvOpData->numBufferListArray > ICP_OCF_DRV_DEFAULT_BUFFLIST_ARRAYS) {
		icp_kfree(drvOpData->srcBuffer.pBuffers);
	}
	icp_ocfDrvFreeMetaData(&(drvOpData->srcBuffer));
	ICP_CACHE_FREE(drvOpData_zone, drvOpData);

	return crp->crp_etype;
}

/* Name        : icp_ocfDrvProcessDataSetup
 *
 * Description : This function will setup all the cryptographic operation data
 *               that is required by LAC to execute the operation.
 */
static int icp_ocfDrvProcessDataSetup(struct icp_drvOpData *drvOpData,
				      struct cryptodesc *crp_desc)
{
	CpaCyRandGenOpData randGenOpData;
	CpaFlatBuffer randData;

	drvOpData->lacOpData.packetType = CPA_CY_SYM_PACKET_TYPE_FULL;

	/* Convert from the cryptop to the ICP LAC crypto parameters */
	switch (crp_desc->crd_alg) {
	case CRYPTO_NULL_CBC:
		drvOpData->lacOpData.
		    cryptoStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToCipherInBytes = crp_desc->crd_len;
		drvOpData->verifyResult = CPA_FALSE;
		drvOpData->lacOpData.ivLenInBytes = NULL_BLOCK_LEN;
		break;
	case CRYPTO_DES_CBC:
		drvOpData->lacOpData.
		    cryptoStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToCipherInBytes = crp_desc->crd_len;
		drvOpData->verifyResult = CPA_FALSE;
		drvOpData->lacOpData.ivLenInBytes = DES_BLOCK_LEN;
		break;
	case CRYPTO_3DES_CBC:
		drvOpData->lacOpData.
		    cryptoStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToCipherInBytes = crp_desc->crd_len;
		drvOpData->verifyResult = CPA_FALSE;
		drvOpData->lacOpData.ivLenInBytes = DES3_BLOCK_LEN;
		break;
	case CRYPTO_ARC4:
		drvOpData->lacOpData.
		    cryptoStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToCipherInBytes = crp_desc->crd_len;
		drvOpData->verifyResult = CPA_FALSE;
		drvOpData->lacOpData.ivLenInBytes = ARC4_COUNTER_LEN;
		break;
	case CRYPTO_AES_CBC:
		drvOpData->lacOpData.
		    cryptoStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToCipherInBytes = crp_desc->crd_len;
		drvOpData->verifyResult = CPA_FALSE;
		drvOpData->lacOpData.ivLenInBytes = RIJNDAEL128_BLOCK_LEN;
		break;
	case CRYPTO_SHA1:
	case CRYPTO_SHA1_HMAC:
	case CRYPTO_SHA2_256:
	case CRYPTO_SHA2_256_HMAC:
	case CRYPTO_SHA2_384:
	case CRYPTO_SHA2_384_HMAC:
	case CRYPTO_SHA2_512:
	case CRYPTO_SHA2_512_HMAC:
	case CRYPTO_MD5:
	case CRYPTO_MD5_HMAC:
		drvOpData->lacOpData.
		    hashStartSrcOffsetInBytes = crp_desc->crd_skip;
		drvOpData->lacOpData.
		    messageLenToHashInBytes = crp_desc->crd_len;
		drvOpData->lacOpData.
		    pDigestResult =
		    icp_ocfDrvDigestPointerFind(drvOpData, crp_desc);

		if (NULL == drvOpData->lacOpData.pDigestResult) {
			DPRINTK("%s(): ERROR - could not calculate "
				"Digest Result memory address\n", __FUNCTION__);
			return ICP_OCF_DRV_STATUS_FAIL;
		}

		drvOpData->lacOpData.digestVerify = CPA_FALSE;
		break;
	default:
		DPRINTK("%s(): Crypto process error - algorithm not "
			"found \n", __FUNCTION__);
		return ICP_OCF_DRV_STATUS_FAIL;
	}

	/* Figure out what the IV is supposed to be */
	if ((crp_desc->crd_alg == CRYPTO_DES_CBC) ||
	    (crp_desc->crd_alg == CRYPTO_3DES_CBC) ||
	    (crp_desc->crd_alg == CRYPTO_AES_CBC)) {
		/*ARC4 doesn't use an IV */
		if (crp_desc->crd_flags & CRD_F_IV_EXPLICIT) {
			/* Explicit IV provided to OCF */
			drvOpData->lacOpData.pIv = crp_desc->crd_iv;
		} else {
			/* IV is not explicitly provided to OCF */

			/* Point the LAC OP Data IV pointer to our allocated
			   storage location for this session. */
			drvOpData->lacOpData.pIv = drvOpData->ivData;

			if ((crp_desc->crd_flags & CRD_F_ENCRYPT) &&
			    ((crp_desc->crd_flags & CRD_F_IV_PRESENT) == 0)) {

				/* Encrypting - need to create IV */
				randGenOpData.generateBits = CPA_TRUE;
				randGenOpData.lenInBytes = MAX_IV_LEN_IN_BYTES;

				icp_ocfDrvPtrAndLenToFlatBuffer((Cpa8U *)
								drvOpData->
								ivData,
								MAX_IV_LEN_IN_BYTES,
								&randData);

				if (CPA_STATUS_SUCCESS !=
				    cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE,
						 NULL, NULL,
						 &randGenOpData, &randData)) {
					DPRINTK("%s(): ERROR - Failed to"
						" generate"
						" Initialisation Vector\n",
						__FUNCTION__);
					return ICP_OCF_DRV_STATUS_FAIL;
				}

				crypto_copyback(drvOpData->crp->
						crp_flags,
						drvOpData->crp->crp_buf,
						crp_desc->crd_inject,
						drvOpData->lacOpData.
						ivLenInBytes,
						(caddr_t) (drvOpData->lacOpData.
							   pIv));
			} else {
				/* Reading IV from buffer */
				crypto_copydata(drvOpData->crp->
						crp_flags,
						drvOpData->crp->crp_buf,
						crp_desc->crd_inject,
						drvOpData->lacOpData.
						ivLenInBytes,
						(caddr_t) (drvOpData->lacOpData.
							   pIv));
			}

		}

	}

	return ICP_OCF_DRV_STATUS_SUCCESS;
}

/* Name        : icp_ocfDrvDigestPointerFind
 *
 * Description : This function is used to find the memory address of where the
 * digest information shall be stored in. Input buffer types are an skbuff, iov
 * or flat buffer. The address is found using the buffer data start address and
 * an offset.
 *
 * Note: In the case of a linux skbuff, the digest address may exist within
 * a memory space linked to from the start buffer. These linked memory spaces
 * must be traversed by the data length offset in order to find the digest start
 * address. Whether there is enough space for the digest must also be checked.
 */
uint8_t *icp_ocfDrvDigestPointerFind(struct icp_drvOpData * drvOpData,
				     struct cryptodesc * crp_desc)
{

	int offsetInBytes = crp_desc->crd_inject;
	uint32_t digestSizeInBytes = drvOpData->digestSizeInBytes;
	uint8_t *flat_buffer_base = NULL;
	int flat_buffer_length = 0;

	if (drvOpData->crp->crp_flags & ICP_CRYPTO_F_PACKET_BUF) {

		return icp_ocfDrvPacketBufferDigestPointerFind(drvOpData,
							       offsetInBytes,
							       digestSizeInBytes);

	} else {
		/* IOV or flat buffer */
		if (drvOpData->crp->crp_flags & CRYPTO_F_IOV) {
			/*single IOV check has already been done */
			flat_buffer_base = ((struct uio *)
					    (drvOpData->crp->crp_buf))->
			    uio_iov[0].iov_base;
			flat_buffer_length = ((struct uio *)
					      (drvOpData->crp->crp_buf))->
			    uio_iov[0].iov_len;
		} else {
			flat_buffer_base = (uint8_t *) drvOpData->crp->crp_buf;
			flat_buffer_length = drvOpData->crp->crp_ilen;
		}

		if (flat_buffer_length < (offsetInBytes + digestSizeInBytes)) {
			DPRINTK("%s() Not enough space for Digest "
				"(IOV/Flat Buffer) \n", __FUNCTION__);
			return NULL;
		} else {
			return (uint8_t *) (flat_buffer_base + offsetInBytes);
		}
	}
	DPRINTK("%s() Should not reach this point\n", __FUNCTION__);
	return NULL;
}