1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/* rijndael-alg-ref.c v2.0 August '99
* Reference ANSI C code
* authors: Paulo Barreto
* Vincent Rijmen, K.U.Leuven
*
* This code is placed in the public domain.
*/
#include "mvOs.h"
#include "mvAesAlg.h"
#include "mvAesBoxes.dat"
MV_U8 mul1(MV_U8 aa, MV_U8 bb);
void KeyAddition(MV_U8 a[4][MAXBC], MV_U8 rk[4][MAXBC], MV_U8 BC);
void ShiftRow128Enc(MV_U8 a[4][MAXBC]);
void ShiftRow128Dec(MV_U8 a[4][MAXBC]);
void Substitution(MV_U8 a[4][MAXBC], MV_U8 box[256]);
void MixColumn(MV_U8 a[4][MAXBC], MV_U8 rk[4][MAXBC]);
void InvMixColumn(MV_U8 a[4][MAXBC]);
#define mul(aa, bb) (mask[bb] & Alogtable[aa + Logtable[bb]])
MV_U8 mul1(MV_U8 aa, MV_U8 bb)
{
return mask[bb] & Alogtable[aa + Logtable[bb]];
}
void KeyAddition(MV_U8 a[4][MAXBC], MV_U8 rk[4][MAXBC], MV_U8 BC)
{
/* Exor corresponding text input and round key input bytes
*/
((MV_U32*)(&(a[0][0])))[0] ^= ((MV_U32*)(&(rk[0][0])))[0];
((MV_U32*)(&(a[1][0])))[0] ^= ((MV_U32*)(&(rk[1][0])))[0];
((MV_U32*)(&(a[2][0])))[0] ^= ((MV_U32*)(&(rk[2][0])))[0];
((MV_U32*)(&(a[3][0])))[0] ^= ((MV_U32*)(&(rk[3][0])))[0];
}
void ShiftRow128Enc(MV_U8 a[4][MAXBC]) {
/* Row 0 remains unchanged
* The other three rows are shifted a variable amount
*/
MV_U8 tmp[MAXBC];
tmp[0] = a[1][1];
tmp[1] = a[1][2];
tmp[2] = a[1][3];
tmp[3] = a[1][0];
((MV_U32*)(&(a[1][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[1][0] = tmp[0];
a[1][1] = tmp[1];
a[1][2] = tmp[2];
a[1][3] = tmp[3];
*/
tmp[0] = a[2][2];
tmp[1] = a[2][3];
tmp[2] = a[2][0];
tmp[3] = a[2][1];
((MV_U32*)(&(a[2][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[2][0] = tmp[0];
a[2][1] = tmp[1];
a[2][2] = tmp[2];
a[2][3] = tmp[3];
*/
tmp[0] = a[3][3];
tmp[1] = a[3][0];
tmp[2] = a[3][1];
tmp[3] = a[3][2];
((MV_U32*)(&(a[3][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[3][0] = tmp[0];
a[3][1] = tmp[1];
a[3][2] = tmp[2];
a[3][3] = tmp[3];
*/
}
void ShiftRow128Dec(MV_U8 a[4][MAXBC]) {
/* Row 0 remains unchanged
* The other three rows are shifted a variable amount
*/
MV_U8 tmp[MAXBC];
tmp[0] = a[1][3];
tmp[1] = a[1][0];
tmp[2] = a[1][1];
tmp[3] = a[1][2];
((MV_U32*)(&(a[1][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[1][0] = tmp[0];
a[1][1] = tmp[1];
a[1][2] = tmp[2];
a[1][3] = tmp[3];
*/
tmp[0] = a[2][2];
tmp[1] = a[2][3];
tmp[2] = a[2][0];
tmp[3] = a[2][1];
((MV_U32*)(&(a[2][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[2][0] = tmp[0];
a[2][1] = tmp[1];
a[2][2] = tmp[2];
a[2][3] = tmp[3];
*/
tmp[0] = a[3][1];
tmp[1] = a[3][2];
tmp[2] = a[3][3];
tmp[3] = a[3][0];
((MV_U32*)(&(a[3][0])))[0] = ((MV_U32*)(&(tmp[0])))[0];
/*
a[3][0] = tmp[0];
a[3][1] = tmp[1];
a[3][2] = tmp[2];
a[3][3] = tmp[3];
*/
}
void Substitution(MV_U8 a[4][MAXBC], MV_U8 box[256]) {
/* Replace every byte of the input by the byte at that place
* in the nonlinear S-box
*/
int i, j;
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++) a[i][j] = box[a[i][j]] ;
}
void MixColumn(MV_U8 a[4][MAXBC], MV_U8 rk[4][MAXBC]) {
/* Mix the four bytes of every column in a linear way
*/
MV_U8 b[4][MAXBC];
int i, j;
for(j = 0; j < 4; j++){
b[0][j] = mul(25,a[0][j]) ^ mul(1,a[1][j]) ^ a[2][j] ^ a[3][j];
b[1][j] = mul(25,a[1][j]) ^ mul(1,a[2][j]) ^ a[3][j] ^ a[0][j];
b[2][j] = mul(25,a[2][j]) ^ mul(1,a[3][j]) ^ a[0][j] ^ a[1][j];
b[3][j] = mul(25,a[3][j]) ^ mul(1,a[0][j]) ^ a[1][j] ^ a[2][j];
}
for(i = 0; i < 4; i++)
/*for(j = 0; j < BC; j++) a[i][j] = b[i][j];*/
((MV_U32*)(&(a[i][0])))[0] = ((MV_U32*)(&(b[i][0])))[0] ^ ((MV_U32*)(&(rk[i][0])))[0];;
}
void InvMixColumn(MV_U8 a[4][MAXBC]) {
/* Mix the four bytes of every column in a linear way
* This is the opposite operation of Mixcolumn
*/
MV_U8 b[4][MAXBC];
int i, j;
for(j = 0; j < 4; j++){
b[0][j] = mul(223,a[0][j]) ^ mul(104,a[1][j]) ^ mul(238,a[2][j]) ^ mul(199,a[3][j]);
b[1][j] = mul(223,a[1][j]) ^ mul(104,a[2][j]) ^ mul(238,a[3][j]) ^ mul(199,a[0][j]);
b[2][j] = mul(223,a[2][j]) ^ mul(104,a[3][j]) ^ mul(238,a[0][j]) ^ mul(199,a[1][j]);
b[3][j] = mul(223,a[3][j]) ^ mul(104,a[0][j]) ^ mul(238,a[1][j]) ^ mul(199,a[2][j]);
}
for(i = 0; i < 4; i++)
/*for(j = 0; j < BC; j++) a[i][j] = b[i][j];*/
((MV_U32*)(&(a[i][0])))[0] = ((MV_U32*)(&(b[i][0])))[0];
}
int rijndaelKeySched (MV_U8 k[4][MAXKC], int keyBits, int blockBits, MV_U8 W[MAXROUNDS+1][4][MAXBC])
{
/* Calculate the necessary round keys
* The number of calculations depends on keyBits and blockBits
*/
int KC, BC, ROUNDS;
int i, j, t, rconpointer = 0;
MV_U8 tk[4][MAXKC];
switch (keyBits) {
case 128: KC = 4; break;
case 192: KC = 6; break;
case 256: KC = 8; break;
default : return (-1);
}
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
for(j = 0; j < KC; j++)
for(i = 0; i < 4; i++)
tk[i][j] = k[i][j];
t = 0;
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)
for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];
while (t < (ROUNDS+1)*BC) { /* while not enough round key material calculated */
/* calculate new values */
for(i = 0; i < 4; i++)
tk[i][0] ^= S[tk[(i+1)%4][KC-1]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8)
for(j = 1; j < KC; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
else {
for(j = 1; j < KC/2; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
for(i = 0; i < 4; i++) tk[i][KC/2] ^= S[tk[i][KC/2 - 1]];
for(j = KC/2 + 1; j < KC; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
}
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)
for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];
}
return 0;
}
int rijndaelEncrypt128(MV_U8 a[4][MAXBC], MV_U8 rk[MAXROUNDS+1][4][MAXBC], int rounds)
{
/* Encryption of one block.
*/
int r, BC, ROUNDS;
BC = 4;
ROUNDS = rounds;
/* begin with a key addition
*/
KeyAddition(a,rk[0],BC);
/* ROUNDS-1 ordinary rounds
*/
for(r = 1; r < ROUNDS; r++) {
Substitution(a,S);
ShiftRow128Enc(a);
MixColumn(a, rk[r]);
/*KeyAddition(a,rk[r],BC);*/
}
/* Last round is special: there is no MixColumn
*/
Substitution(a,S);
ShiftRow128Enc(a);
KeyAddition(a,rk[ROUNDS],BC);
return 0;
}
int rijndaelDecrypt128(MV_U8 a[4][MAXBC], MV_U8 rk[MAXROUNDS+1][4][MAXBC], int rounds)
{
int r, BC, ROUNDS;
BC = 4;
ROUNDS = rounds;
/* To decrypt: apply the inverse operations of the encrypt routine,
* in opposite order
*
* (KeyAddition is an involution: it 's equal to its inverse)
* (the inverse of Substitution with table S is Substitution with the inverse table of S)
* (the inverse of Shiftrow is Shiftrow over a suitable distance)
*/
/* First the special round:
* without InvMixColumn
* with extra KeyAddition
*/
KeyAddition(a,rk[ROUNDS],BC);
ShiftRow128Dec(a);
Substitution(a,Si);
/* ROUNDS-1 ordinary rounds
*/
for(r = ROUNDS-1; r > 0; r--) {
KeyAddition(a,rk[r],BC);
InvMixColumn(a);
ShiftRow128Dec(a);
Substitution(a,Si);
}
/* End with the extra key addition
*/
KeyAddition(a,rk[0],BC);
return 0;
}
|