summaryrefslogtreecommitdiff
path: root/package/ead/src/tinysrp/t_conf.c
diff options
context:
space:
mode:
Diffstat (limited to 'package/ead/src/tinysrp/t_conf.c')
-rw-r--r--package/ead/src/tinysrp/t_conf.c1080
1 files changed, 1080 insertions, 0 deletions
diff --git a/package/ead/src/tinysrp/t_conf.c b/package/ead/src/tinysrp/t_conf.c
new file mode 100644
index 0000000000..fbe6f410e2
--- /dev/null
+++ b/package/ead/src/tinysrp/t_conf.c
@@ -0,0 +1,1080 @@
+/*
+ * Copyright (c) 1997-1999 The Stanford SRP Authentication Project
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL STANFORD BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
+ * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * In addition, the following conditions apply:
+ *
+ * 1. Any software that incorporates the SRP authentication technology
+ * must display the following acknowlegment:
+ * "This product uses the 'Secure Remote Password' cryptographic
+ * authentication system developed by Tom Wu (tjw@CS.Stanford.EDU)."
+ *
+ * 2. Any software that incorporates all or part of the SRP distribution
+ * itself must also display the following acknowledgment:
+ * "This product includes software developed by Tom Wu and Eugene
+ * Jhong for the SRP Distribution (http://srp.stanford.edu/srp/)."
+ *
+ * 3. Redistributions in source or binary form must retain an intact copy
+ * of this copyright notice and list of conditions.
+ */
+
+#include <stdio.h>
+
+#include "t_defines.h"
+#include "t_pwd.h"
+#include "t_read.h"
+#include "bn.h"
+#include "bn_lcl.h"
+#include "bn_prime.h"
+
+#define TABLE_SIZE 32
+
+static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
+
+/*
+ * This is the safe prime generation logic.
+ * To generate a safe prime p (where p = 2q+1 and q is prime), we start
+ * with a random odd q that is one bit shorter than the desired length
+ * of p. We use a simple 30-element sieve to filter the values of q
+ * and consider only those that are 11, 23, or 29 (mod 30). (If q were
+ * anything else, either q or p would be divisible by 2, 3, or 5).
+ * For the values of q that are left, we apply the following tests in
+ * this order:
+ *
+ * trial divide q
+ * let p = 2q + 1
+ * trial divide p
+ * apply Fermat test to q (2^q == 2 (mod q))
+ * apply Fermat test to p (2^p == 2 (mod p))
+ * apply real probablistic primality test to q
+ * apply real probablistic primality test to p
+ *
+ * A number that passes all these tests is considered a safe prime for
+ * our purposes. The tests are ordered this way for efficiency; the
+ * slower tests are run rarely if ever at all.
+ */
+
+static int
+trialdiv(x)
+ const BigInteger x;
+{
+ static int primes[] = { /* All odd primes < 256 */
+ 3, 5, 7, 11, 13, 17, 19, 23, 29,
+ 31, 37, 41, 43, 47, 53, 59, 61, 67,
+ 71, 73, 79, 83, 89, 97, 101, 103,
+ 107, 109, 113, 127, 131, 137, 139, 149, 151,
+ 157, 163, 167, 173, 179, 181, 191, 193, 197,
+ 199, 211, 223, 227, 229, 233, 239, 241, 251
+ };
+ static int nprimes = sizeof(primes) / sizeof(int);
+ int i;
+
+ for(i = 0; i < nprimes; ++i) {
+ if(BigIntegerModInt(x, primes[i]) == 0)
+ return primes[i];
+ }
+ return 1;
+}
+
+/* x + sieve30[x%30] == 11, 23, or 29 (mod 30) */
+
+static int sieve30[] =
+{ 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
+ 1, 12, 11, 10, 9, 8, 7, 6, 5, 4,
+ 3, 2, 1, 6, 5, 4, 3, 2, 1, 12
+};
+
+/* Find a Sophie-Germain prime between "lo" and "hi". NOTE: this is not
+ a "safe prime", but the smaller prime. Take 2q+1 to get the safe prime. */
+
+static void
+sophie_germain(q, lo, hi)
+ BigInteger q; /* assumed initialized */
+ const BigInteger lo;
+ const BigInteger hi;
+{
+ BigInteger m, p, r;
+ char parambuf[MAXPARAMLEN];
+ int foundprime = 0;
+ int i, mod30;
+
+ m = BigIntegerFromInt(0);
+ BigIntegerSub(m, hi, lo);
+ i = (BigIntegerBitLen(m) + 7) / 8;
+ t_random(parambuf, i);
+ r = BigIntegerFromBytes(parambuf, i);
+ BigIntegerMod(r, r, m);
+
+ BigIntegerAdd(q, r, lo);
+ if(BigIntegerModInt(q, 2) == 0)
+ BigIntegerAddInt(q, q, 1); /* make q odd */
+
+ mod30 = BigIntegerModInt(q, 30); /* mod30 = q % 30 */
+
+ BigIntegerFree(m);
+ m = BigIntegerFromInt(2); /* m = 2 */
+ p = BigIntegerFromInt(0);
+
+ while(BigIntegerCmp(q, hi) < 0) {
+ if(trialdiv(q) < 2) {
+ BigIntegerMulInt(p, q, 2); /* p = 2 * q */
+ BigIntegerAddInt(p, p, 1); /* p += 1 */
+ if(trialdiv(p) < 2) {
+ BigIntegerModExp(r, m, q, q); /* r = 2^q % q */
+ if(BigIntegerCmpInt(r, 2) == 0) { /* if(r == 2) */
+ BigIntegerModExp(r, m, p, p); /* r = 2^p % p */
+ if(BigIntegerCmpInt(r, 2) == 0) { /* if(r == 2) */
+ if(BigIntegerCheckPrime(q) && BigIntegerCheckPrime(p)) {
+ ++foundprime;
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ i = sieve30[mod30];
+ BigIntegerAddInt(q, q, i); /* q += i */
+ mod30 = (mod30 + i) % 30;
+ }
+
+ /* should wrap around on failure */
+ if(!foundprime) {
+ fprintf(stderr, "Prime generation failed!\n");
+ exit(1);
+ }
+
+ BigIntegerFree(r);
+ BigIntegerFree(m);
+ BigIntegerFree(p);
+}
+
+_TYPE( struct t_confent * )
+t_makeconfent(tc, nsize)
+ struct t_conf * tc;
+ int nsize;
+{
+ BigInteger n, g, q, t, u;
+
+ t = BigIntegerFromInt(0);
+ u = BigIntegerFromInt(1); /* u = 1 */
+ BigIntegerLShift(t, u, nsize - 2); /* t = 2^(nsize-2) */
+ BigIntegerMulInt(u, t, 2); /* u = 2^(nsize-1) */
+
+ q = BigIntegerFromInt(0);
+ sophie_germain(q, t, u);
+
+ n = BigIntegerFromInt(0);
+ BigIntegerMulInt(n, q, 2);
+ BigIntegerAddInt(n, n, 1);
+
+ /* Look for a generator mod n */
+ g = BigIntegerFromInt(2);
+ while(1) {
+ BigIntegerModExp(t, g, q, n); /* t = g^q % n */
+ if(BigIntegerCmpInt(t, 1) == 0) /* if(t == 1) */
+ BigIntegerAddInt(g, g, 1); /* ++g */
+ else
+ break;
+ }
+ BigIntegerFree(t);
+ BigIntegerFree(u);
+ BigIntegerFree(q);
+
+ tc->tcbuf.modulus.data = tc->modbuf;
+ tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data);
+ BigIntegerFree(n);
+
+ tc->tcbuf.generator.data = tc->genbuf;
+ tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data);
+ BigIntegerFree(g);
+
+ tc->tcbuf.index = 1;
+ return &tc->tcbuf;
+}
+
+_TYPE( struct t_confent * )
+t_makeconfent_c(tc, nsize)
+ struct t_conf * tc;
+ int nsize;
+{
+ BigInteger g, n, p, q, j, k, t, u;
+ int psize, qsize;
+
+ psize = nsize / 2;
+ qsize = nsize - psize;
+
+ t = BigIntegerFromInt(1); /* t = 1 */
+ u = BigIntegerFromInt(0);
+ BigIntegerLShift(u, t, psize - 3); /* u = t*2^(psize-3) = 2^(psize-3) */
+ BigIntegerMulInt(t, u, 3); /* t = 3*u = 1.5*2^(psize-2) */
+ BigIntegerAdd(u, u, t); /* u += t [u = 2^(psize-1)] */
+ j = BigIntegerFromInt(0);
+ sophie_germain(j, t, u);
+
+ k = BigIntegerFromInt(0);
+ if(qsize != psize) {
+ BigIntegerFree(t);
+ t = BigIntegerFromInt(1); /* t = 1 */
+ BigIntegerLShift(u, t, qsize - 3); /* u = t*2^(qsize-3) = 2^(qsize-3) */
+ BigIntegerMulInt(t, u, 3); /* t = 3*u = 1.5*2^(qsize-2) */
+ BigIntegerAdd(u, u, t); /* u += t [u = 2^(qsize-1)] */
+ }
+ sophie_germain(k, t, u);
+
+ p = BigIntegerFromInt(0);
+ BigIntegerMulInt(p, j, 2); /* p = 2 * j */
+ BigIntegerAddInt(p, p, 1); /* p += 1 */
+
+ q = BigIntegerFromInt(0);
+ BigIntegerMulInt(q, k, 2); /* q = 2 * k */
+ BigIntegerAddInt(q, q, 1); /* q += 1 */
+
+ n = BigIntegerFromInt(0);
+ BigIntegerMul(n, p, q); /* n = p * q */
+ BigIntegerMul(u, j, k); /* u = j * k */
+
+ BigIntegerFree(p);
+ BigIntegerFree(q);
+ BigIntegerFree(j);
+ BigIntegerFree(k);
+
+ g = BigIntegerFromInt(2); /* g = 2 */
+
+ /* Look for a generator mod n */
+ while(1) {
+ BigIntegerModExp(t, g, u, n); /* t = g^u % n */
+ if(BigIntegerCmpInt(t, 1) == 0)
+ BigIntegerAddInt(g, g, 1); /* ++g */
+ else
+ break;
+ }
+
+ BigIntegerFree(u);
+ BigIntegerFree(t);
+
+ tc->tcbuf.modulus.data = tc->modbuf;
+ tc->tcbuf.modulus.len = BigIntegerToBytes(n, tc->tcbuf.modulus.data);
+ BigIntegerFree(n);
+
+ tc->tcbuf.generator.data = tc->genbuf;
+ tc->tcbuf.generator.len = BigIntegerToBytes(g, tc->tcbuf.generator.data);
+ BigIntegerFree(g);
+
+ tc->tcbuf.index = 1;
+ return &tc->tcbuf;
+}
+
+_TYPE( struct t_confent * )
+t_newconfent(tc)
+ struct t_conf * tc;
+{
+ tc->tcbuf.index = 0;
+ tc->tcbuf.modulus.data = tc->modbuf;
+ tc->tcbuf.modulus.len = 0;
+ tc->tcbuf.generator.data = tc->genbuf;
+ tc->tcbuf.generator.len = 0;
+ return &tc->tcbuf;
+}
+
+_TYPE( void )
+t_putconfent(ent, fp)
+ const struct t_confent * ent;
+ FILE * fp;
+{
+ char strbuf[MAXB64PARAMLEN];
+
+ fprintf(fp, "%d:%s:", ent->index,
+ t_tob64(strbuf, ent->modulus.data, ent->modulus.len));
+ fprintf(fp, "%s\n",
+ t_tob64(strbuf, ent->generator.data, ent->generator.len));
+}
+
+int
+BigIntegerBitLen(b)
+ BigInteger b;
+{
+ return BN_num_bits(b);
+}
+
+int
+BigIntegerCheckPrime(n)
+ BigInteger n;
+{
+ BN_CTX * ctx = BN_CTX_new();
+ int rv = BN_is_prime(n, 25, NULL, ctx, NULL);
+ BN_CTX_free(ctx);
+ return rv;
+}
+
+unsigned int
+BigIntegerModInt(d, m)
+ BigInteger d;
+ unsigned int m;
+{
+ return BN_mod_word(d, m);
+}
+
+void
+BigIntegerMod(result, d, m)
+ BigInteger result, d, m;
+{
+ BN_CTX * ctx = BN_CTX_new();
+ BN_mod(result, d, m, ctx);
+ BN_CTX_free(ctx);
+}
+
+void
+BigIntegerMul(result, m1, m2)
+ BigInteger result, m1, m2;
+{
+ BN_CTX * ctx = BN_CTX_new();
+ BN_mul(result, m1, m2, ctx);
+ BN_CTX_free(ctx);
+}
+
+void
+BigIntegerLShift(result, x, bits)
+ BigInteger result, x;
+ unsigned int bits;
+{
+ BN_lshift(result, x, bits);
+}
+
+int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
+ BN_CTX *ctx_passed, void *cb_arg)
+ {
+ return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
+ }
+
+int BN_is_prime_fasttest(const BIGNUM *a, int checks,
+ void (*callback)(int,int,void *),
+ BN_CTX *ctx_passed, void *cb_arg,
+ int do_trial_division)
+ {
+ int i, j, ret = -1;
+ int k;
+ BN_CTX *ctx = NULL;
+ BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
+ BN_MONT_CTX *mont = NULL;
+ const BIGNUM *A = NULL;
+
+ if (checks == BN_prime_checks)
+ checks = BN_prime_checks_for_size(BN_num_bits(a));
+
+ /* first look for small factors */
+ if (!BN_is_odd(a))
+ return(0);
+ if (do_trial_division)
+ {
+ for (i = 1; i < NUMPRIMES; i++)
+ if (BN_mod_word(a, primes[i]) == 0)
+ return 0;
+ if (callback != NULL) callback(1, -1, cb_arg);
+ }
+
+ if (ctx_passed != NULL)
+ ctx = ctx_passed;
+ else
+ if ((ctx=BN_CTX_new()) == NULL)
+ goto err;
+ BN_CTX_start(ctx);
+
+ /* A := abs(a) */
+ if (a->neg)
+ {
+ BIGNUM *t;
+ if ((t = BN_CTX_get(ctx)) == NULL) goto err;
+ BN_copy(t, a);
+ t->neg = 0;
+ A = t;
+ }
+ else
+ A = a;
+ A1 = BN_CTX_get(ctx);
+ A1_odd = BN_CTX_get(ctx);
+ check = BN_CTX_get(ctx);
+ if (check == NULL) goto err;
+
+ /* compute A1 := A - 1 */
+ if (!BN_copy(A1, A))
+ goto err;
+ if (!BN_sub_word(A1, 1))
+ goto err;
+ if (BN_is_zero(A1))
+ {
+ ret = 0;
+ goto err;
+ }
+
+ /* write A1 as A1_odd * 2^k */
+ k = 1;
+ while (!BN_is_bit_set(A1, k))
+ k++;
+ if (!BN_rshift(A1_odd, A1, k))
+ goto err;
+
+ /* Montgomery setup for computations mod A */
+ mont = BN_MONT_CTX_new();
+ if (mont == NULL)
+ goto err;
+ if (!BN_MONT_CTX_set(mont, A, ctx))
+ goto err;
+
+ for (i = 0; i < checks; i++)
+ {
+ if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
+ goto err;
+ if (BN_cmp(check, A1) >= 0)
+ if (!BN_sub(check, check, A1))
+ goto err;
+ if (!BN_add_word(check, 1))
+ goto err;
+ /* now 1 <= check < A */
+
+ j = witness(check, A, A1, A1_odd, k, ctx, mont);
+ if (j == -1) goto err;
+ if (j)
+ {
+ ret=0;
+ goto err;
+ }
+ if (callback != NULL) callback(1,i,cb_arg);
+ }
+ ret=1;
+err:
+ if (ctx != NULL)
+ {
+ BN_CTX_end(ctx);
+ if (ctx_passed == NULL)
+ BN_CTX_free(ctx);
+ }
+ if (mont != NULL)
+ BN_MONT_CTX_free(mont);
+
+ return(ret);
+ }
+
+static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
+ {
+ if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 0; /* probably prime */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ while (--k)
+ {
+ if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 1; /* 'a' is composite, otherwise a previous 'w' would
+ * have been == -1 (mod 'a') */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ }
+ /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
+ * and it is neither -1 nor +1 -- so 'a' cannot be prime */
+ return 1;
+ }
+
+int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p,
+ const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
+ {
+ int i,j,bits,ret=0,wstart,wend,window,wvalue;
+ int start=1,ts=0;
+ BIGNUM *d,*r;
+ BIGNUM *aa;
+ BIGNUM val[TABLE_SIZE];
+ BN_MONT_CTX *mont=NULL;
+
+ bn_check_top(a);
+ bn_check_top(p);
+ bn_check_top(m);
+
+ if (!(m->d[0] & 1))
+ {
+ return(0);
+ }
+ bits=BN_num_bits(p);
+ if (bits == 0)
+ {
+ BN_one(rr);
+ return(1);
+ }
+ BN_CTX_start(ctx);
+ d = BN_CTX_get(ctx);
+ r = BN_CTX_get(ctx);
+ if (d == NULL || r == NULL) goto err;
+
+ /* If this is not done, things will break in the montgomery
+ * part */
+
+ if (in_mont != NULL)
+ mont=in_mont;
+ else
+ {
+ if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
+ if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
+ }
+
+ BN_init(&val[0]);
+ ts=1;
+ if (BN_ucmp(a,m) >= 0)
+ {
+ if (!BN_mod(&(val[0]),a,m,ctx))
+ goto err;
+ aa= &(val[0]);
+ }
+ else
+ aa=a;
+ if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */
+
+ window = BN_window_bits_for_exponent_size(bits);
+ if (window > 1)
+ {
+ if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */
+ j=1<<(window-1);
+ for (i=1; i<j; i++)
+ {
+ BN_init(&(val[i]));
+ if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx))
+ goto err;
+ }
+ ts=i;
+ }
+
+ start=1; /* This is used to avoid multiplication etc
+ * when there is only the value '1' in the
+ * buffer. */
+ wvalue=0; /* The 'value' of the window */
+ wstart=bits-1; /* The top bit of the window */
+ wend=0; /* The bottom bit of the window */
+
+ if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
+ for (;;)
+ {
+ if (BN_is_bit_set(p,wstart) == 0)
+ {
+ if (!start)
+ {
+ if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
+ goto err;
+ }
+ if (wstart == 0) break;
+ wstart--;
+ continue;
+ }
+ /* We now have wstart on a 'set' bit, we now need to work out
+ * how bit a window to do. To do this we need to scan
+ * forward until the last set bit before the end of the
+ * window */
+ j=wstart;
+ wvalue=1;
+ wend=0;
+ for (i=1; i<window; i++)
+ {
+ if (wstart-i < 0) break;
+ if (BN_is_bit_set(p,wstart-i))
+ {
+ wvalue<<=(i-wend);
+ wvalue|=1;
+ wend=i;
+ }
+ }
+
+ /* wend is the size of the current window */
+ j=wend+1;
+ /* add the 'bytes above' */
+ if (!start)
+ for (i=0; i<j; i++)
+ {
+ if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
+ goto err;
+ }
+
+ /* wvalue will be an odd number < 2^window */
+ if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx))
+ goto err;
+
+ /* move the 'window' down further */
+ wstart-=wend+1;
+ wvalue=0;
+ start=0;
+ if (wstart < 0) break;
+ }
+ if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
+ ret=1;
+err:
+ if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
+ BN_CTX_end(ctx);
+ for (i=0; i<ts; i++)
+ BN_clear_free(&(val[i]));
+ return(ret);
+ }
+
+BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
+ {
+#ifndef BN_LLONG
+ BN_ULONG ret=0;
+#else
+ BN_ULLONG ret=0;
+#endif
+ int i;
+
+ w&=BN_MASK2;
+ for (i=a->top-1; i>=0; i--)
+ {
+#ifndef BN_LLONG
+ ret=((ret<<BN_BITS4)|((a->d[i]>>BN_BITS4)&BN_MASK2l))%w;
+ ret=((ret<<BN_BITS4)|(a->d[i]&BN_MASK2l))%w;
+#else
+ ret=(BN_ULLONG)(((ret<<(BN_ULLONG)BN_BITS2)|a->d[i])%
+ (BN_ULLONG)w);
+#endif
+ }
+ return((BN_ULONG)ret);
+ }
+
+static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom)
+ {
+ unsigned char *buf=NULL;
+ int ret=0,bit,bytes,mask;
+
+ if (bits == 0)
+ {
+ BN_zero(rnd);
+ return 1;
+ }
+
+ bytes=(bits+7)/8;
+ bit=(bits-1)%8;
+ mask=0xff<<bit;
+
+ buf=(unsigned char *)malloc(bytes);
+ if (buf == NULL)
+ {
+ goto err;
+ }
+
+ /* make a random number and set the top and bottom bits */
+ /* this ignores the pseudorand flag */
+
+ t_random(buf, bytes);
+
+ if (top)
+ {
+ if (bit == 0)
+ {
+ buf[0]=1;
+ buf[1]|=0x80;
+ }
+ else
+ {
+ buf[0]|=(3<<(bit-1));
+ buf[0]&= ~(mask<<1);
+ }
+ }
+ else
+ {
+ buf[0]|=(1<<bit);
+ buf[0]&= ~(mask<<1);
+ }
+ if (bottom) /* set bottom bits to whatever odd is */
+ buf[bytes-1]|=1;
+ if (!BN_bin2bn(buf,bytes,rnd)) goto err;
+ ret=1;
+err:
+ if (buf != NULL)
+ {
+ memset(buf,0,bytes);
+ free(buf);
+ }
+ return(ret);
+ }
+
+/* BN_pseudo_rand is the same as BN_rand, now. */
+
+int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
+ {
+ return bnrand(1, rnd, bits, top, bottom);
+ }
+
+#define MONT_WORD /* use the faster word-based algorithm */
+
+int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
+ BN_MONT_CTX *mont, BN_CTX *ctx)
+ {
+ BIGNUM *tmp,*tmp2;
+ int ret=0;
+
+ BN_CTX_start(ctx);
+ tmp = BN_CTX_get(ctx);
+ tmp2 = BN_CTX_get(ctx);
+ if (tmp == NULL || tmp2 == NULL) goto err;
+
+ bn_check_top(tmp);
+ bn_check_top(tmp2);
+
+ if (a == b)
+ {
+ if (!BN_sqr(tmp,a,ctx)) goto err;
+ }
+ else
+ {
+ if (!BN_mul(tmp,a,b,ctx)) goto err;
+ }
+ /* reduce from aRR to aR */
+ if (!BN_from_montgomery(r,tmp,mont,ctx)) goto err;
+ ret=1;
+err:
+ BN_CTX_end(ctx);
+ return(ret);
+ }
+
+int BN_from_montgomery(BIGNUM *ret, BIGNUM *a, BN_MONT_CTX *mont,
+ BN_CTX *ctx)
+ {
+ int retn=0;
+
+#ifdef MONT_WORD
+ BIGNUM *n,*r;
+ BN_ULONG *ap,*np,*rp,n0,v,*nrp;
+ int al,nl,max,i,x,ri;
+
+ BN_CTX_start(ctx);
+ if ((r = BN_CTX_get(ctx)) == NULL) goto err;
+
+ if (!BN_copy(r,a)) goto err;
+ n= &(mont->N);
+
+ ap=a->d;
+ /* mont->ri is the size of mont->N in bits (rounded up
+ to the word size) */
+ al=ri=mont->ri/BN_BITS2;
+
+ nl=n->top;
+ if ((al == 0) || (nl == 0)) { r->top=0; return(1); }
+
+ max=(nl+al+1); /* allow for overflow (no?) XXX */
+ if (bn_wexpand(r,max) == NULL) goto err;
+ if (bn_wexpand(ret,max) == NULL) goto err;
+
+ r->neg=a->neg^n->neg;
+ np=n->d;
+ rp=r->d;
+ nrp= &(r->d[nl]);
+
+ /* clear the top words of T */
+#if 1
+ for (i=r->top; i<max; i++) /* memset? XXX */
+ r->d[i]=0;
+#else
+ memset(&(r->d[r->top]),0,(max-r->top)*sizeof(BN_ULONG));
+#endif
+
+ r->top=max;
+ n0=mont->n0;
+
+#ifdef BN_COUNT
+ printf("word BN_from_montgomery %d * %d\n",nl,nl);
+#endif
+ for (i=0; i<nl; i++)
+ {
+#ifdef __TANDEM
+ {
+ long long t1;
+ long long t2;
+ long long t3;
+ t1 = rp[0] * (n0 & 0177777);
+ t2 = 037777600000l;
+ t2 = n0 & t2;
+ t3 = rp[0] & 0177777;
+ t2 = (t3 * t2) & BN_MASK2;
+ t1 = t1 + t2;
+ v=bn_mul_add_words(rp,np,nl,(BN_ULONG) t1);
+ }
+#else
+ v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
+#endif
+ nrp++;
+ rp++;
+ if (((nrp[-1]+=v)&BN_MASK2) >= v)
+ continue;
+ else
+ {
+ if (((++nrp[0])&BN_MASK2) != 0) continue;
+ if (((++nrp[1])&BN_MASK2) != 0) continue;
+ for (x=2; (((++nrp[x])&BN_MASK2) == 0); x++) ;
+ }
+ }
+ bn_fix_top(r);
+
+ /* mont->ri will be a multiple of the word size */
+#if 0
+ BN_rshift(ret,r,mont->ri);
+#else
+ ret->neg = r->neg;
+ x=ri;
+ rp=ret->d;
+ ap= &(r->d[x]);
+ if (r->top < x)
+ al=0;
+ else
+ al=r->top-x;
+ ret->top=al;
+ al-=4;
+ for (i=0; i<al; i+=4)
+ {
+ BN_ULONG t1,t2,t3,t4;
+
+ t1=ap[i+0];
+ t2=ap[i+1];
+ t3=ap[i+2];
+ t4=ap[i+3];
+ rp[i+0]=t1;
+ rp[i+1]=t2;
+ rp[i+2]=t3;
+ rp[i+3]=t4;
+ }
+ al+=4;
+ for (; i<al; i++)
+ rp[i]=ap[i];
+#endif
+#else /* !MONT_WORD */
+ BIGNUM *t1,*t2;
+
+ BN_CTX_start(ctx);
+ t1 = BN_CTX_get(ctx);
+ t2 = BN_CTX_get(ctx);
+ if (t1 == NULL || t2 == NULL) goto err;
+
+ if (!BN_copy(t1,a)) goto err;
+ BN_mask_bits(t1,mont->ri);
+
+ if (!BN_mul(t2,t1,&mont->Ni,ctx)) goto err;
+ BN_mask_bits(t2,mont->ri);
+
+ if (!BN_mul(t1,t2,&mont->N,ctx)) goto err;
+ if (!BN_add(t2,a,t1)) goto err;
+ BN_rshift(ret,t2,mont->ri);
+#endif /* MONT_WORD */
+
+ if (BN_ucmp(ret, &(mont->N)) >= 0)
+ {
+ BN_usub(ret,ret,&(mont->N));
+ }
+ retn=1;
+ err:
+ BN_CTX_end(ctx);
+ return(retn);
+ }
+
+void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
+ {
+ ctx->ri=0;
+ BN_init(&(ctx->RR));
+ BN_init(&(ctx->N));
+ BN_init(&(ctx->Ni));
+ ctx->flags=0;
+ }
+
+BN_MONT_CTX *BN_MONT_CTX_new(void)
+ {
+ BN_MONT_CTX *ret;
+
+ if ((ret=(BN_MONT_CTX *)malloc(sizeof(BN_MONT_CTX))) == NULL)
+ return(NULL);
+
+ BN_MONT_CTX_init(ret);
+ ret->flags=BN_FLG_MALLOCED;
+ return(ret);
+ }
+
+void BN_MONT_CTX_free(BN_MONT_CTX *mont)
+ {
+ if(mont == NULL)
+ return;
+
+ BN_free(&(mont->RR));
+ BN_free(&(mont->N));
+ BN_free(&(mont->Ni));
+ if (mont->flags & BN_FLG_MALLOCED)
+ free(mont);
+ }
+
+int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
+ {
+ BIGNUM Ri,*R;
+
+ BN_init(&Ri);
+ R= &(mont->RR); /* grab RR as a temp */
+ BN_copy(&(mont->N),mod); /* Set N */
+
+#ifdef MONT_WORD
+ {
+ BIGNUM tmod;
+ BN_ULONG buf[2];
+
+ mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2;
+ BN_zero(R);
+ BN_set_bit(R,BN_BITS2); /* R */
+
+ buf[0]=mod->d[0]; /* tmod = N mod word size */
+ buf[1]=0;
+ tmod.d=buf;
+ tmod.top=1;
+ tmod.dmax=2;
+ tmod.neg=mod->neg;
+ /* Ri = R^-1 mod N*/
+ if ((BN_mod_inverse(&Ri,R,&tmod,ctx)) == NULL)
+ goto err;
+ BN_lshift(&Ri,&Ri,BN_BITS2); /* R*Ri */
+ if (!BN_is_zero(&Ri))
+ BN_sub_word(&Ri,1);
+ else /* if N mod word size == 1 */
+ BN_set_word(&Ri,BN_MASK2); /* Ri-- (mod word size) */
+ BN_div(&Ri,NULL,&Ri,&tmod,ctx); /* Ni = (R*Ri-1)/N,
+ * keep only least significant word: */
+ mont->n0=Ri.d[0];
+ BN_free(&Ri);
+ }
+#else /* !MONT_WORD */
+ { /* bignum version */
+ mont->ri=BN_num_bits(mod);
+ BN_zero(R);
+ BN_set_bit(R,mont->ri); /* R = 2^ri */
+ /* Ri = R^-1 mod N*/
+ if ((BN_mod_inverse(&Ri,R,mod,ctx)) == NULL)
+ goto err;
+ BN_lshift(&Ri,&Ri,mont->ri); /* R*Ri */
+ BN_sub_word(&Ri,1);
+ /* Ni = (R*Ri-1) / N */
+ BN_div(&(mont->Ni),NULL,&Ri,mod,ctx);
+ BN_free(&Ri);
+ }
+#endif
+
+ /* setup RR for conversions */
+ BN_zero(&(mont->RR));
+ BN_set_bit(&(mont->RR),mont->ri*2);
+ BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx);
+
+ return(1);
+err:
+ return(0);
+ }
+
+BIGNUM *BN_value_one(void)
+ {
+ static BN_ULONG data_one=1L;
+ static BIGNUM const_one={&data_one,1,1,0};
+
+ return(&const_one);
+ }
+
+/* solves ax == 1 (mod n) */
+BIGNUM *BN_mod_inverse(BIGNUM *in, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
+ {
+ BIGNUM *A,*B,*X,*Y,*M,*D,*R=NULL;
+ BIGNUM *T,*ret=NULL;
+ int sign;
+
+ bn_check_top(a);
+ bn_check_top(n);
+
+ BN_CTX_start(ctx);
+ A = BN_CTX_get(ctx);
+ B = BN_CTX_get(ctx);
+ X = BN_CTX_get(ctx);
+ D = BN_CTX_get(ctx);
+ M = BN_CTX_get(ctx);
+ Y = BN_CTX_get(ctx);
+ if (Y == NULL) goto err;
+
+ if (in == NULL)
+ R=BN_new();
+ else
+ R=in;
+ if (R == NULL) goto err;
+
+ BN_zero(X);
+ BN_one(Y);
+ if (BN_copy(A,a) == NULL) goto err;
+ if (BN_copy(B,n) == NULL) goto err;
+ sign=1;
+
+ while (!BN_is_zero(B))
+ {
+ if (!BN_div(D,M,A,B,ctx)) goto err;
+ T=A;
+ A=B;
+ B=M;
+ /* T has a struct, M does not */
+
+ if (!BN_mul(T,D,X,ctx)) goto err;
+ if (!BN_add(T,T,Y)) goto err;
+ M=Y;
+ Y=X;
+ X=T;
+ sign= -sign;
+ }
+ if (sign < 0)
+ {
+ if (!BN_sub(Y,n,Y)) goto err;
+ }
+
+ if (BN_is_one(A))
+ { if (!BN_mod(R,Y,n,ctx)) goto err; }
+ else
+ {
+ goto err;
+ }
+ ret=R;
+err:
+ if ((ret == NULL) && (in == NULL)) BN_free(R);
+ BN_CTX_end(ctx);
+ return(ret);
+ }
+
+int BN_set_bit(BIGNUM *a, int n)
+ {
+ int i,j,k;
+
+ i=n/BN_BITS2;
+ j=n%BN_BITS2;
+ if (a->top <= i)
+ {
+ if (bn_wexpand(a,i+1) == NULL) return(0);
+ for(k=a->top; k<i+1; k++)
+ a->d[k]=0;
+ a->top=i+1;
+ }
+
+ a->d[i]|=(((BN_ULONG)1)<<j);
+ return(1);
+ }
+