summaryrefslogtreecommitdiff
path: root/thesis.lagda
blob: 97e846f98b4ff0973a3360b887fa329b5627bf13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
\documentclass[report]{article}
\usepackage{etex}

%% Narrow margins
% \usepackage{fullpage}

%% Bibtex
\usepackage{natbib}

%% Links
\usepackage{hyperref}

%% Frames
\usepackage{framed}

%% Symbols
\usepackage[fleqn]{amsmath}
\usepackage{stmaryrd}           %llbracket

%% Proof trees
\usepackage{bussproofs}

%% Diagrams
\usepackage[all]{xy}

%% Quotations
\usepackage{epigraph}

%% Images
\usepackage{graphicx}

%% Subfigure
\usepackage{subcaption}

%% diagrams
\usepackage{tikz}
\usetikzlibrary{shapes,arrows,positioning}
% \usepackage{tikz-cd}
% \usepackage{pgfplots}


%% -----------------------------------------------------------------------------
%% Commands for Agda
\usepackage[english]{babel}
\usepackage[conor]{agda}
\renewcommand{\AgdaKeywordFontStyle}[1]{\ensuremath{\mathrm{\underline{#1}}}}
\renewcommand{\AgdaFunction}[1]{\textbf{\textcolor{AgdaFunction}{#1}}}
\renewcommand{\AgdaField}{\AgdaFunction}
% \definecolor{AgdaBound} {HTML}{000000}
\definecolor{AgdaHole} {HTML} {FFFF33}

\DeclareUnicodeCharacter{9665}{\ensuremath{\lhd}}
\DeclareUnicodeCharacter{964}{\ensuremath{\tau}}
\DeclareUnicodeCharacter{963}{\ensuremath{\sigma}}
\DeclareUnicodeCharacter{915}{\ensuremath{\Gamma}}
\DeclareUnicodeCharacter{8799}{\ensuremath{\stackrel{?}{=}}}
\DeclareUnicodeCharacter{9655}{\ensuremath{\rhd}}


%% -----------------------------------------------------------------------------
%% Commands

\newcommand{\mysyn}{\AgdaKeyword}
\newcommand{\mytyc}{\AgdaDatatype}
% TODO have this with math mode so I can have subscripts
\newcommand{\mydc}{\AgdaInductiveConstructor}
\newcommand{\myfld}{\AgdaField}
\newcommand{\myfun}{\AgdaFunction}
\newcommand{\myb}[1]{\AgdaBound{$#1$}}
\newcommand{\myfield}{\AgdaField}
\newcommand{\myind}{\AgdaIndent}
\newcommand{\mykant}{\textsc{Kant}}
\newcommand{\mysynel}[1]{#1}
\newcommand{\myse}{\mysynel}
\newcommand{\mytmsyn}{\mysynel{term}}
\newcommand{\mysp}{\ }
\newcommand{\myabs}[2]{\mydc{$\lambda$} #1 \mathrel{\mydc{$\mapsto$}} #2}
\newcommand{\myappsp}{\hspace{0.07cm}}
\newcommand{\myapp}[2]{#1 \myappsp #2}
\newcommand{\mysynsep}{\ \ |\ \ }

\FrameSep0.2cm
\newcommand{\mydesc}[3]{
  \noindent
  \mbox{
    \parbox{\textwidth}{
      {\small
        \vspace{0.3cm}
        \hfill \textbf{#1} $#2$

        \framebox[\textwidth]{
          \parbox{\textwidth}{
            \vspace{0.1cm}
            \centering{
              #3
            }
            \vspace{0.1cm}
          }
        }
      }
    }
  }
}

% TODO is \mathbin the correct thing for arrow and times?

\newcommand{\mytmt}{\mysynel{t}}
\newcommand{\mytmm}{\mysynel{m}}
\newcommand{\mytmn}{\mysynel{n}}
\newcommand{\myred}{\leadsto}
\newcommand{\mysub}[3]{#1[#2 / #3]}
\newcommand{\mytysyn}{\mysynel{type}}
\newcommand{\mybasetys}{K}
% TODO change this name
\newcommand{\mybasety}[1]{B_{#1}}
\newcommand{\mytya}{\myse{A}}
\newcommand{\mytyb}{\myse{B}}
\newcommand{\mytycc}{\myse{C}}
\newcommand{\myarr}{\mathrel{\textcolor{AgdaDatatype}{\to}}}
\newcommand{\myprod}{\mathrel{\textcolor{AgdaDatatype}{\times}}}
\newcommand{\myctx}{\Gamma}
\newcommand{\myvalid}[1]{#1 \vdash \underline{\mathrm{valid}}}
\newcommand{\myjudd}[3]{#1 \vdash #2 : #3}
\newcommand{\myjud}[2]{\myjudd{\myctx}{#1}{#2}}
% TODO \mathbin or \mathrel here?
\newcommand{\myabss}[3]{\mydc{$\lambda$} #1 {:} #2 \mathrel{\mydc{$\mapsto$}} #3}
\newcommand{\mytt}{\mydc{$\langle\rangle$}}
\newcommand{\myunit}{\mytyc{Unit}}
\newcommand{\mypair}[2]{\mathopen{\mydc{$\langle$}}#1\mathpunct{\mydc{,}} #2\mathclose{\mydc{$\rangle$}}}
\newcommand{\myfst}{\myfld{fst}}
\newcommand{\mysnd}{\myfld{snd}}
\newcommand{\myconst}{\myse{c}}
\newcommand{\myemptyctx}{\cdot}
\newcommand{\myhole}{\AgdaHole}
\newcommand{\myfix}[3]{\mysyn{fix} \myappsp #1 {:} #2 \mapsto #3}
\newcommand{\mysum}{\mathbin{\textcolor{AgdaDatatype}{+}}}
\newcommand{\myleft}[1]{\mydc{left}_{#1}}
\newcommand{\myright}[1]{\mydc{right}_{#1}}
\newcommand{\myempty}{\mytyc{Empty}}
\newcommand{\mycase}[2]{\mathopen{\myfun{[}}#1\mathpunct{\myfun{,}} #2 \mathclose{\myfun{]}}}
\newcommand{\myabsurd}[1]{\myfun{absurd}_{#1}}
\newcommand{\myarg}{-}
\newcommand{\myderivsp}{\vspace{0.3cm}}
\newcommand{\mytyp}{\mytyc{Type}}
\newcommand{\myneg}{\myfun{$\neg$}}
\newcommand{\myar}{\,}
\newcommand{\mybool}{\mytyc{Bool}}
\newcommand{\mytrue}{\mydc{true}}
\newcommand{\myfalse}{\mydc{false}}
\newcommand{\myitee}[5]{\myfun{if}\,#1 / {#2.#3}\,\myfun{then}\,#4\,\myfun{else}\,#5}
\newcommand{\mynat}{\mytyc{$\mathbb{N}$}}
\newcommand{\myrat}{\mytyc{$\mathbb{R}$}}
\newcommand{\myite}[3]{\myfun{if}\,#1\,\myfun{then}\,#2\,\myfun{else}\,#3}
\newcommand{\myfora}[3]{(#1 {:} #2) \myarr #3}
\newcommand{\myexi}[3]{(#1 {:} #2) \myprod #3}
\newcommand{\mypairr}[4]{\mathopen{\mydc{$\langle$}}#1\mathpunct{\mydc{,}} #4\mathclose{\mydc{$\rangle$}}_{#2{.}#3}}
\newcommand{\mylist}{\mytyc{List}}
\newcommand{\mynil}[1]{\mydc{[]}_{#1}}
\newcommand{\mycons}{\mathbin{\mydc{∷}}}
\newcommand{\myfoldr}{\myfun{foldr}}
\newcommand{\myw}[3]{\myapp{\myapp{\mytyc{W}}{(#1 {:} #2)}}{#3}}
\newcommand{\mynode}[2]{\mathbin{\mydc{$\lhd$}_{#1.#2}}}
\newcommand{\myrec}[4]{\myfun{rec}\,#1 / {#2.#3}\,\myfun{with}\,#4}
\newcommand{\mylub}{\sqcup}
\newcommand{\mydefeq}{\cong}
\newcommand{\myrefl}{\mydc{refl}}
\newcommand{\mypeq}[1]{\mathrel{\mytyc{=}_{#1}}}
\newcommand{\myjeqq}{\myfun{=-elim}}
\newcommand{\myjeq}[3]{\myapp{\myapp{\myapp{\myjeqq}{#1}}{#2}}{#3}}
\newcommand{\mysubst}{\myfun{subst}}
\newcommand{\myprsyn}{\myse{prop}}
\newcommand{\myprdec}[1]{\mathopen{\mytyc{$\llbracket$}} #1 \mathopen{\mytyc{$\rrbracket$}}}
\newcommand{\myand}{\mathrel{\mytyc{$\wedge$}}}
\newcommand{\myprfora}[3]{\forall #1 {:} #2. #3}
\newcommand{\myimpl}{\mathrel{\mytyc{$\Rightarrow$}}}
\newcommand{\mybot}{\mytyc{$\bot$}}
\newcommand{\mytop}{\mytyc{$\top$}}
\newcommand{\mycoe}{\myfun{coe}}
\newcommand{\mycoee}[4]{\myapp{\myapp{\myapp{\myapp{\mycoe}{#1}}{#2}}{#3}}{#4}}
\newcommand{\mycoh}{\myfun{coh}}
\newcommand{\mycohh}[4]{\myapp{\myapp{\myapp{\myapp{\mycoh}{#1}}{#2}}{#3}}{#4}}
\newcommand{\myjm}[4]{(#1 {:} #2) \mathrel{\mytyc{=}} (#3 {:} #4)}
\newcommand{\myeq}{\mathrel{\mytyc{=}}}
\newcommand{\myprop}{\mytyc{Prop}}
\newcommand{\mytmup}{\mytmsyn\uparrow}
\newcommand{\mydefs}{\Delta}
\newcommand{\mynf}{\Downarrow}
\newcommand{\myinff}[3]{#1 \vdash #2 \Rightarrow #3}
\newcommand{\myinf}[2]{\myinff{\myctx}{#1}{#2}}
\newcommand{\mychkk}[3]{#1 \vdash #2 \Leftarrow #3}
\newcommand{\mychk}[2]{\mychkk{\myctx}{#1}{#2}}
\newcommand{\myann}[2]{#1 : #2}
\newcommand{\mydeclsyn}{\myse{decl}}
\newcommand{\myval}[3]{#1 : #2 \mapsto #3}
\newcommand{\mypost}[2]{\mysyn{postulate}\ #1 : #2}
\newcommand{\myadt}[4]{\mysyn{data}\ #1 : #2\ \mysyn{where}\ #3\{ #4 \}}
\newcommand{\myreco}[4]{\mysyn{record}\ #1 : #2\ \mysyn{where}\ #3\ \{ #4 \}}
% TODO change vdash
\newcommand{\myelabt}{\vdash}
\newcommand{\myelabf}{\rhd}
\newcommand{\myelab}[2]{\myctx \myelabt #1 \myelabf #2}
\newcommand{\mytele}{\Delta}
\newcommand{\mytelee}{\delta}
\newcommand{\mydcctx}{\Gamma}
\newcommand{\mynamesyn}{\myse{name}}
\newcommand{\myvec}{\overrightarrow}
\newcommand{\mymeta}{\textsc}
\newcommand{\myhyps}{\mymeta{hyps}}
\newcommand{\mycc}{;}
\newcommand{\myemptytele}{\cdot}
\newcommand{\mymetagoes}{\Longrightarrow}
% \newcommand{\mytesctx}{\
\newcommand{\mytelesyn}{\myse{telescope}}
\newcommand{\myrecs}{\mymeta{recs}}
\newcommand{\myle}{\mathrel{\lcfun{$\le$}}}

%% -----------------------------------------------------------------------------

\title{\mykant: Implementing Observational Equality}
\author{Francesco Mazzoli \href{mailto:fm2209@ic.ac.uk}{\nolinkurl{<fm2209@ic.ac.uk>}}}
\date{June 2013}

\begin{document}

\iffalse
\begin{code}
module thesis where
\end{code}
\fi

\maketitle

\begin{abstract}
  The marriage between programming and logic has been a very fertile one.  In
  particular, since the simply typed lambda calculus (STLC), a number of type
  systems have been devised with increasing expressive power.

  Section \ref{sec:types} will give a very brief overview of STLC, and then
  illustrate how it can be interpreted as a natural deduction system.  Section
  \ref{sec:itt} will introduce Inutitionistic Type Theory (ITT), which expands
  on this concept, employing a more expressive logic.  The exposition is quite
  dense since there is a lot of material to cover; for a more complete treatment
  of the material the reader can refer to \citep{Thompson1991, Pierce2002}.
  Section \ref{sec:equality} will explain why equality has always been a tricky
  business in these theories, and talk about the various attempts that have been
  made to make the situation better.  One interesting development has recently
  emerged: Observational Type theory.

  Section \ref{sec:practical} will describe common extensions found in the
  systems currently in use.  Finally, section \ref{sec:kant} will describe a
  system developed by the author that implements a core calculus based on the
  principles described.
\end{abstract}

\clearpage

\tableofcontents

\clearpage

\section{Simple and not-so-simple types}
\label{sec:types}

\subsection{The untyped $\lambda$-calculus}

Along with Turing's machines, the earliest attempts to formalise computation
lead to the $\lambda$-calculus \citep{Church1936}.  This early programming
language encodes computation with a minimal syntax and no `data' in the
traditional sense, but just functions.  Here we give a brief overview of the
language, which will give the chance to introduce concepts central to the
analysis of all the following calculi.  The exposition follows the one found in
chapter 5 of \cite{Queinnec2003}.

The syntax of $\lambda$-terms consists of three things: variables, abstractions,
and applications:

\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \myb{x} \mysynsep \myabs{\myb{x}}{\mytmsyn} \mysynsep (\myapp{\mytmsyn}{\mytmsyn}) \\
    x          & \in & \text{Some enumerable set of symbols}
  \end{array}
  $
}

Parenthesis will be omitted in the usual way:
$\myapp{\myapp{\mytmt}{\mytmm}}{\mytmn} =
\myapp{(\myapp{\mytmt}{\mytmm})}{\mytmn}$.

Abstractions roughly corresponds to functions, and their semantics is more
formally explained by the $\beta$-reduction rule:

\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
  $
  \begin{array}{l}
    \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}\text{, where} \\
    \myind{1}
    \begin{array}{l@{\ }c@{\ }l}
      \mysub{\myb{x}}{\myb{x}}{\mytmn} & = & \mytmn \\
      \mysub{\myb{y}}{\myb{x}}{\mytmn} & = & y\text{, with } \myb{x} \neq y \\
      \mysub{(\myapp{\mytmt}{\mytmm})}{\myb{x}}{\mytmn} & = & (\myapp{\mysub{\mytmt}{\myb{x}}{\mytmn}}{\mysub{\mytmm}{\myb{x}}{\mytmn}}) \\
      \mysub{(\myabs{\myb{x}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{x}}{\mytmm} \\
      \mysub{(\myabs{\myb{y}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{z}}{\mysub{\mysub{\mytmm}{\myb{y}}{\myb{z}}}{\myb{x}}{\mytmn}}, \\
      \multicolumn{3}{l}{\myind{1} \text{with $\myb{x} \neq \myb{y}$ and $\myb{z}$ not free in $\myapp{\mytmm}{\mytmn}$}}
    \end{array}
  \end{array}
  $
}

The care required during substituting variables for terms is required to avoid
name capturing.  We will use substitution in the future for other name-binding
constructs assuming similar precautions.

These few elements are of remarkable expressiveness, and in fact Turing
complete.  As a corollary, we must be able to devise a term that reduces forever
(`loops' in imperative terms):
\[
  (\myapp{\omega}{\omega}) \myred (\myapp{\omega}{\omega}) \myred \cdots \text{, with $\omega = \myabs{x}{\myapp{x}{x}}$}
\]

A \emph{redex} is a term that can be reduced.  In the untyped $\lambda$-calculus
this will be the case for an application in which the first term is an
abstraction, but in general we call aterm reducible if it appears to the left of
a reduction rule.  When a term contains no redexes it's said to be in
\emph{normal form}.  Given the observation above, not all terms reduce to a
normal forms: we call the ones that do \emph{normalising}, and the ones that
don't \emph{non-normalising}.

The reduction rule presented is not syntax directed, but \emph{evaluation
  strategies} can be employed to reduce term systematically. Common evaluation
strategies include \emph{call by value} (or \emph{strict}), where arguments of
abstractions are reduced before being applied to the abstraction; and conversely
\emph{call by name} (or \emph{lazy}), where we reduce only when we need to do so
to proceed---in other words when we have an application where the function is
still not a $\lambda$. In both these reduction strategies we never reduce under
an abstraction: for this reason a weaker form of normalisation is used, where
both abstractions and normal forms are said to be in \emph{weak head normal
  form}.

\subsection{The simply typed $\lambda$-calculus}

A convenient way to `discipline' and reason about $\lambda$-terms is to assign
\emph{types} to them, and then check that the terms that we are forming make
sense given our typing rules \citep{Curry1934}.  The first most basic instance
of this idea takes the name of \emph{simply typed $\lambda$ calculus}, whose
rules are shown in figure \ref{fig:stlc}.

Our types contain a set of \emph{type variables} $\Phi$, which might
correspond to some `primitive' types; and $\myarr$, the type former for
`arrow' types, the types of functions.  The language is explicitly
typed: when we bring a variable into scope with an abstraction, we
explicitly declare its type.  Reduction is unchanged from the untyped
$\lambda$-calculus.

\begin{figure}[t]
  \mydesc{syntax}{ }{
    $
    \begin{array}{r@{\ }c@{\ }l}
      \mytmsyn   & ::= & \myb{x} \mysynsep \myabss{\myb{x}}{\mytysyn}{\mytmsyn} \mysynsep
      (\myapp{\mytmsyn}{\mytmsyn}) \\
      \mytysyn   & ::= & \myse{\phi} \mysynsep \mytysyn \myarr \mytysyn  \mysynsep \\
      \myb{x}    & \in & \text{Some enumerable set of symbols} \\
      \myse{\phi} & \in & \Phi
    \end{array}
    $
  }
  
  \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
      \begin{tabular}{ccc}
        \AxiomC{$\myctx(x) = A$}
        \UnaryInfC{$\myjud{\myb{x}}{A}$}
        \DisplayProof
        &
        \AxiomC{$\myjudd{\myctx;\myb{x} : A}{\mytmt}{\mytyb}$}
        \UnaryInfC{$\myjud{\myabss{x}{A}{\mytmt}}{\mytyb}$}
        \DisplayProof
        &
        \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
        \AxiomC{$\myjud{\mytmn}{\mytya}$}
        \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mytyb}$}
        \DisplayProof
      \end{tabular}
}
  \caption{Syntax and typing rules for the STLC.  Reduction is unchanged from
    the untyped $\lambda$-calculus.}
  \label{fig:stlc}
\end{figure}

In the typing rules, a context $\myctx$ is used to store the types of bound
variables: $\myctx; \myb{x} : \mytya$ adds a variable to the context and
$\myctx(x)$ returns the type of the rightmost occurrence of $x$.

This typing system takes the name of `simply typed lambda calculus' (STLC), and
enjoys a number of properties.  Two of them are expected in most type systems
\citep{Pierce2002}:
\begin{description}
\item[Progress] A well-typed term is not stuck---it is either a variable, or its
  constructor does not appear on the left of the $\myred$ relation (currently
  only $\lambda$), or it can take a step according to the evaluation rules.
\item[Preservation] If a well-typed term takes a step of evaluation, then the
  resulting term is also well-typed, and preserves the previous type.  Also
  known as \emph{subject reduction}.
\end{description}

However, STLC buys us much more: every well-typed term is normalising
\citep{Tait1967}.  It is easy to see that we can't fill the blanks if we want to
give types to the non-normalising term shown before:
\begin{equation*}
  \myapp{(\myabss{\myb{x}}{\myhole{?}}{\myapp{\myb{x}}{\myb{x}}})}{(\myabss{\myb{x}}{\myhole{?}}{\myapp{\myb{x}}{\myb{x}}})}
\end{equation*}

This makes the STLC Turing incomplete.  We can recover the ability to loop by
adding a combinator that recurses:

\noindent
\begin{minipage}{0.5\textwidth}
\mydesc{syntax}{ } {
  $ \mytmsyn ::= \cdots b \mysynsep \myfix{\myb{x}}{\mytysyn}{\mytmsyn} $
  \vspace{0.4cm}
}
\end{minipage} 
\begin{minipage}{0.5\textwidth}
\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}} {
    \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytya}$}
    \UnaryInfC{$\myjud{\myfix{\myb{x}}{\mytya}{\mytmt}}{\mytya}$}
    \DisplayProof
}
\end{minipage} 

\mydesc{reduction:}{\myjud{\mytmsyn}{\mytmsyn}}{
    $ \myfix{\myb{x}}{\mytya}{\mytmt} \myred \mysub{\mytmt}{\myb{x}}{(\myfix{\myb{x}}{\mytya}{\mytmt})}$
}

This will deprive us of normalisation, which is a particularly bad thing if we
want to use the STLC as described in the next section.

\subsection{The Curry-Howard correspondence}

It turns out that the STLC can be seen a natural deduction system for
intuitionistic propositional logic.  Terms are proofs, and their types are the
propositions they prove.  This remarkable fact is known as the Curry-Howard
correspondence, or isomorphism.

The arrow ($\myarr$) type corresponds to implication.  If we wish to prove that
that $(\mytya \myarr \mytyb) \myarr (\mytyb \myarr \mytycc) \myarr (\mytya
\myarr \mytycc)$, all we need to do is to devise a $\lambda$-term that has the
correct type:
\[
  \myabss{\myb{f}}{(\mytya \myarr \mytyb)}{\myabss{\myb{g}}{(\mytyb \myarr \mytycc)}{\myabss{\myb{x}}{\mytya}{\myapp{\myb{g}}{(\myapp{\myb{f}}{\myb{x}})}}}}
\]
That is, function composition.  Going beyond arrow types, we can extend our bare
lambda calculus with useful types to represent other logical constructs, as
shown in figure \ref{fig:natded}.

\begin{figure}[t]
\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \cdots \\
             &  |  & \mytt \mysynsep \myapp{\myabsurd{\mytysyn}}{\mytmsyn} \\
             &  |  & \myapp{\myleft{\mytysyn}}{\mytmsyn} \mysynsep
                     \myapp{\myright{\mytysyn}}{\mytmsyn} \mysynsep
                     \myapp{\mycase{\mytmsyn}{\mytmsyn}}{\mytmsyn} \\
             &  |  & \mypair{\mytmsyn}{\mytmsyn} \mysynsep
                     \myapp{\myfst}{\mytmsyn} \mysynsep \myapp{\mysnd}{\mytmsyn} \\
    \mytysyn & ::= & \cdots \mysynsep \myunit \mysynsep \myempty \mysynsep \mytmsyn \mysum \mytmsyn \mysynsep \mytysyn \myprod \mytysyn
  \end{array}
  $
}

\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
    \begin{tabular}{cc}
      $
      \begin{array}{l@{ }l@{\ }c@{\ }l}
        \myapp{\mycase{\mytmm}{\mytmn}}{(\myapp{\myleft{\mytya} &}{\mytmt})} & \myred &
          \myapp{\mytmm}{\mytmt} \\
        \myapp{\mycase{\mytmm}{\mytmn}}{(\myapp{\myright{\mytya} &}{\mytmt})} & \myred &
          \myapp{\mytmn}{\mytmt}
      \end{array}
      $
      &
      $
      \begin{array}{l@{ }l@{\ }c@{\ }l}
        \myapp{\myfst &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
        \myapp{\mysnd &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
      \end{array}
      $
    \end{tabular}
}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
    \begin{tabular}{cc}
      \AxiomC{\phantom{$\myjud{\mytmt}{\myempty}$}}
      \UnaryInfC{$\myjud{\mytt}{\myunit}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\myempty}$}
      \UnaryInfC{$\myjud{\myapp{\myabsurd{\mytya}}{\mytmt}}{\mytya}$}
      \DisplayProof
    \end{tabular}

  \myderivsp

    \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytmt}{\mytya}$}
      \UnaryInfC{$\myjud{\myapp{\myleft{\mytyb}}{\mytmt}}{\mytya \mysum \mytyb}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\mytyb}$}
      \UnaryInfC{$\myjud{\myapp{\myright{\mytya}}{\mytmt}}{\mytya \mysum \mytyb}$}
      \DisplayProof

    \end{tabular}

  \myderivsp

    \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
      \AxiomC{$\myjud{\mytmn}{\mytya \myarr \mytycc}$}
      \AxiomC{$\myjud{\mytmt}{\mytya \mysum \mytyb}$}
      \TrinaryInfC{$\myjud{\myapp{\mycase{\mytmm}{\mytmn}}{\mytmt}}{\mytycc}$}
      \DisplayProof
    \end{tabular}

  \myderivsp

    \begin{tabular}{ccc}
      \AxiomC{$\myjud{\mytmm}{\mytya}$}
      \AxiomC{$\myjud{\mytmn}{\mytyb}$}
      \BinaryInfC{$\myjud{\mypair{\mytmm}{\mytmn}}{\mytya \myprod \mytyb}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
      \UnaryInfC{$\myjud{\myapp{\myfst}{\mytmt}}{\mytya}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
      \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
      \DisplayProof
    \end{tabular}
}
\caption{Rules for the extendend STLC.  Only the new features are shown, all the
  rules and syntax for the STLC apply here too.}
  \label{fig:natded}
\end{figure}

Tagged unions (or sums, or coproducts---$\mysum$ here, \texttt{Either}
in Haskell) correspond to disjunctions, and dually tuples (or pairs, or
products---$\myprod$ here, tuples in Haskell) correspond to
conjunctions.  This is apparent looking at the ways to construct and
destruct the values inhabiting those types: for $\mysum$ $\myleft{ }$
and $\myright{ }$ correspond to $\vee$ introduction, and
$\mycase{\myarg}{\myarg}$ to $\vee$ elimination; for $\myprod$
$\mypair{\myarg}{\myarg}$ corresponds to $\wedge$ introduction, $\myfst$
and $\mysnd$ to $\wedge$ elimination.

The trivial type $\myunit$ corresponds to the logical $\top$, and dually
$\myempty$ corresponds to the logical $\bot$.  $\myunit$ has one introduction
rule ($\mytt$), and thus one inhabitant; and no eliminators.  $\myempty$ has no
introduction rules, and thus no inhabitants; and one eliminator ($\myabsurd{
}$), corresponding to the logical \emph{ex falso quodlibet}.

With these rules, our STLC now looks remarkably similar in power and use to the
natural deduction we already know.  $\myneg \mytya$ can be expressed as $\mytya
\myarr \myempty$.  However, there is an important omission: there is no term of
the type $\mytya \mysum \myneg \mytya$ (excluded middle), or equivalently
$\myneg \myneg \mytya \myarr \mytya$ (double negation), or indeed any term with
a type equivalent to those.

This has a considerable effect on our logic and it's no coincidence, since there
is no obvious computational behaviour for laws like the excluded middle.
Theories of this kind are called \emph{intuitionistic}, or \emph{constructive},
and all the systems analysed will have this characteristic since they build on
the foundation of the STLC\footnote{There is research to give computational
  behaviour to classical logic, but I will not touch those subjects.}.

As in logic, if we want to keep our system consistent, we must make sure that no
closed terms (in other words terms not under a $\lambda$) inhabit $\myempty$.
The variant of STLC presented here is indeed
consistent, a result that follows from the fact that it is
normalising. % TODO explain
Going back to our $\mysyn{fix}$ combinator, it is easy to see how it ruins our
desire for consistency.  The following term works for every type $\mytya$,
including bottom:
\[
(\myfix{\myb{x}}{\mytya}{\myb{x}}) : \mytya
\]

\subsection{Inductive data}
\label{sec:ind-data}

To make the STLC more useful as a programming language or reasoning tool it is
common to include (or let the user define) inductive data types.  These comprise
of a type former, various constructors, and an eliminator (or destructor) that
serves as primitive recursor.

For example, we might add a $\mylist$ type constructor, along with an `empty
list' ($\mynil{ }$) and `cons cell' ($\mycons$) constructor.  The eliminator for
lists will be the usual folding operation ($\myfoldr$).  See figure
\ref{fig:list}.

\begin{figure}[h]
\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \cdots \mysynsep \mynil{\mytysyn} \mysynsep \mytmsyn \mycons \mytmsyn
                     \mysynsep
                     \myapp{\myapp{\myapp{\myfoldr}{\mytmsyn}}{\mytmsyn}}{\mytmsyn} \\
    \mytysyn & ::= & \cdots \mysynsep \myapp{\mylist}{\mytysyn}
  \end{array}
  $
}
\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
  $
  \begin{array}{l@{\ }c@{\ }l}
    \myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{\mynil{\mytya}} & \myred & \mytmt \\

    \myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{(\mytmm \mycons \mytmn)} & \myred &
    \myapp{\myapp{\myse{f}}{\mytmm}}{(\myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{\mytmn})}
  \end{array}
  $
}
\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
    \begin{tabular}{cc}
      \AxiomC{\phantom{$\myjud{\mytmm}{\mytya}$}}
      \UnaryInfC{$\myjud{\mynil{\mytya}}{\myapp{\mylist}{\mytya}}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmm}{\mytya}$}
      \AxiomC{$\myjud{\mytmn}{\myapp{\mylist}{\mytya}}$}
      \BinaryInfC{$\myjud{\mytmm \mycons \mytmn}{\myapp{\mylist}{\mytya}}$}
      \DisplayProof
    \end{tabular}
  \myderivsp

    \AxiomC{$\myjud{\mysynel{f}}{\mytya \myarr \mytyb \myarr \mytyb}$}
    \AxiomC{$\myjud{\mytmm}{\mytyb}$}
    \AxiomC{$\myjud{\mytmn}{\myapp{\mylist}{\mytya}}$}
    \TrinaryInfC{$\myjud{\myapp{\myapp{\myapp{\myfoldr}{\mysynel{f}}}{\mytmm}}{\mytmn}}{\mytyb}$}
    \DisplayProof
}
\caption{Rules for lists in the STLC.}
\label{fig:list}
\end{figure}

In section \ref{sec:well-order} we will see how to give a general account of
inductive data.  %TODO does this make sense to have here?

\section{Intuitionistic Type Theory}
\label{sec:itt}

\subsection{Extending the STLC}

The STLC can be made more expressive in various ways.  \cite{Barendregt1991}
succinctly expressed geometrically how we can add expressivity:

$$
\xymatrix@!0@=1.5cm{
  & \lambda\omega \ar@{-}[rr]\ar@{-}'[d][dd]
  & & \lambda C \ar@{-}[dd]
  \\
  \lambda2 \ar@{-}[ur]\ar@{-}[rr]\ar@{-}[dd]
  & & \lambda P2 \ar@{-}[ur]\ar@{-}[dd]
  \\
  & \lambda\underline\omega \ar@{-}'[r][rr]
  & & \lambda P\underline\omega
  \\
  \lambda{\to} \ar@{-}[rr]\ar@{-}[ur]
  & & \lambda P \ar@{-}[ur]
}
$$
Here $\lambda{\to}$, in the bottom left, is the STLC.  From there can move along
3 dimensions:
\begin{description}
\item[Terms depending on types (towards $\lambda{2}$)] We can quantify over
  types in our type signatures.  For example, we can define a polymorphic
  identity function:
  \[\displaystyle
  (\myabss{\myb{A}}{\mytyp}{\myabss{\myb{x}}{\myb{A}}{\myb{x}}}) : (\myb{A} : \mytyp) \myarr \myb{A} \myarr \myb{A}
  \]
  The first and most famous instance of this idea has been System F.  This form
  of polymorphism and has been wildly successful, also thanks to a well known
  inference algorithm for a restricted version of System F known as
  Hindley-Milner.  Languages like Haskell and SML are based on this discipline.
\item[Types depending on types (towards $\lambda{\underline{\omega}}$)] We have
  type operators.  For example we could define a function that given types $R$
  and $\mytya$ forms the type that represents a value of type $\mytya$ in
  continuation passing style: \[\displaystyle(\myabss{\myb{A} \myar \myb{R}}{\mytyp}{(\myb{A}
    \myarr \myb{R}) \myarr \myb{R}}) : \mytyp \myarr \mytyp \myarr \mytyp\]
\item[Types depending on terms (towards $\lambda{P}$)] Also known as `dependent
  types', give great expressive power.  For example, we can have values of whose
  type depend on a boolean:
  \[\displaystyle(\myabss{\myb{x}}{\mybool}{\myite{\myb{x}}{\mynat}{\myrat}}) : \mybool
  \myarr \mytyp\]
\end{description}

All the systems preserve the properties that make the STLC well behaved.  The
system we are going to focus on, Intuitionistic Type Theory, has all of the
above additions, and thus would sit where $\lambda{C}$ sits in the
`$\lambda$-cube'.  It will serve as the logical `core' of all the other
extensions that we will present and ultimately our implementation of a similar
logic.

\subsection{A Bit of History}

Logic frameworks and programming languages based on type theory have a long
history.  Per Martin-L\"{o}f described the first version of his theory in 1971,
but then revised it since the original version was inconsistent due to its
impredicativity\footnote{In the early version there was only one universe
  $\mytyp$ and $\mytyp : \mytyp$, see section \ref{sec:term-types} for an
  explanation on why this causes problems.}.  For this reason he gave a revised
and consistent definition later \citep{Martin-Lof1984}.

A related development is the polymorphic $\lambda$-calculus, and specifically
the previously mentioned System F, which was developed independently by Girard
and Reynolds.  An overview can be found in \citep{Reynolds1994}.  The surprising
fact is that while System F is impredicative it is still consistent and strongly
normalising.  \cite{Coquand1986} further extended this line of work with the
Calculus of Constructions (CoC).

Most widely used interactive theorem provers are based on ITT.  Popular ones
include Agda \citep{Norell2007, Bove2009}, Coq \citep{Coq}, and Epigram
\citep{McBride2004, EpigramTut}.

\subsection{A note on inference}

% TODO do this, adding links to the sections about bidi type checking and
% implicit universes.
In the following text I will often omit explicit typing for abstractions or

Moreover, I will use $\mytyp$ without bothering to specify a
universe, with the silent assumption that the definition is consistent
regarding to the hierarchy.

\subsection{A simple type theory}
\label{sec:core-tt}

The calculus I present follows the exposition in \citep{Thompson1991},
and is quite close to the original formulation of predicative ITT as
found in \citep{Martin-Lof1984}.  The system's syntax and reduction
rules are presented in their entirety in figure \ref{fig:core-tt-syn}.
The typing rules are presented piece by piece.  An Agda rendition of the
presented theory and all the examples is reproduced in appendix
\ref{app:agda-itt}.

\begin{figure}[t]
\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \myb{x} \mysynsep
                     \mytyp_{l} \mysynsep
                     \myunit \mysynsep \mytt \mysynsep
                     \myempty \mysynsep \myapp{\myabsurd{\mytmsyn}}{\mytmsyn} \\
             &  |  & \mybool \mysynsep \mytrue \mysynsep \myfalse \mysynsep
                     \myitee{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
             &  |  & \myfora{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     \myabss{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     (\myapp{\mytmsyn}{\mytmsyn}) \\
             &  |  & \myexi{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     \mypairr{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn} \\
             &  |  & \myapp{\myfst}{\mytmsyn} \mysynsep \myapp{\mysnd}{\mytmsyn} \\
             &  |  & \myw{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     \mytmsyn \mynode{\myb{x}}{\mytmsyn} \mytmsyn \\
             &  |  & \myrec{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn} \\
    l        & \in & \mathbb{N}
  \end{array}
  $
}

\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
    \begin{tabular}{ccc}
      $
      \begin{array}{l@{ }l@{\ }c@{\ }l}
        \myitee{\mytrue &}{\myb{x}}{\myse{P}}{\mytmm}{\mytmn} & \myred & \mytmm \\
        \myitee{\myfalse &}{\myb{x}}{\myse{P}}{\mytmm}{\mytmn} & \myred & \mytmn \\
      \end{array}
      $
      &
      $
      \myapp{(\myabss{\myb{x}}{\mytya}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}
      $
      &
    $
    \begin{array}{l@{ }l@{\ }c@{\ }l}
      \myapp{\myfst &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
      \myapp{\mysnd &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
    \end{array}
    $
    \end{tabular}

    \myderivsp

    $
    \myrec{(\myse{s} \mynode{\myb{x}}{\myse{T}} \myse{f})}{\myb{y}}{\myse{P}}{\myse{p}} \myred
    \myapp{\myapp{\myapp{\myse{p}}{\myse{s}}}{\myse{f}}}{(\myabss{\myb{t}}{\mysub{\myse{T}}{\myb{x}}{\myse{s}}}{
      \myrec{\myapp{\myse{f}}{\myb{t}}}{\myb{y}}{\myse{P}}{\mytmt}
    })}
    $
}
\caption{Syntax and reduction rules for our type theory.}
\label{fig:core-tt-syn}
\end{figure}

\subsubsection{Types are terms, some terms are types}
\label{sec:term-types}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
    \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytmt}{\mytya}$}
      \AxiomC{$\mytya \mydefeq \mytyb$}
      \BinaryInfC{$\myjud{\mytmt}{\mytyb}$}
      \DisplayProof
      &
      \AxiomC{\phantom{$\myjud{\mytmt}{\mytya}$}}
      \UnaryInfC{$\myjud{\mytyp_l}{\mytyp_{l + 1}}$}
      \DisplayProof
    \end{tabular}
}

The first thing to notice is that a barrier between values and types that we had
in the STLC is gone: values can appear in types, and the two are treated
uniformly in the syntax.

While the usefulness of doing this will become clear soon, a consequence is
that since types can be the result of computation, deciding type equality is
not immediate as in the STLC.  For this reason we define \emph{definitional
  equality}, $\mydefeq$, as the congruence relation extending
$\myred$---moreover, when comparing types syntactically we do it up to
renaming of bound names ($\alpha$-renaming).  For example under this
discipline we will find that
\[
\myabss{\myb{x}}{\mytya}{\myb{x}} \mydefeq \myabss{\myb{y}}{\mytya}{\myb{y}}
\]
Types that are definitionally equal can be used interchangeably.  Here the
`conversion' rule is not syntax directed, however we will see how it is
possible to employ $\myred$ to decide term equality in a systematic
way.  % TODO add section
Another thing to notice is that considering the need to reduce terms to decide
equality, it is essential for a dependently type system to be terminating and
confluent for type checking to be decidable.

Moreover, we specify a \emph{type hierarchy} to talk about `large' types:
$\mytyp_0$ will be the type of types inhabited by data: $\mybool$, $\mynat$,
$\mylist$, etc.  $\mytyp_1$ will be the type of $\mytyp_0$, and so on---for
example we have $\mytrue : \mybool : \mytyp_0 : \mytyp_1 : \cdots$.  Each type
`level' is often called a universe in the literature.  While it is possible,
to simplify things by having only one universe $\mytyp$ with $\mytyp :
\mytyp$, this plan is inconsistent for much the same reason that impredicative
na\"{\i}ve set theory is \citep{Hurkens1995}.  Moreover, various techniques
can be employed to lift the burden of explicitly handling universes.
% TODO add sectioon about universes

\subsubsection{Contexts}

\begin{minipage}{0.5\textwidth}
  \mydesc{context validity:}{\myvalid{\myctx}}{
      \begin{tabular}{cc}
        \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
        \UnaryInfC{$\myvalid{\myemptyctx}$}
        \DisplayProof
        &
        \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
        \UnaryInfC{$\myvalid{\myctx ; \myb{x} : \mytya}$}
        \DisplayProof
      \end{tabular}
  }
\end{minipage} 
\begin{minipage}{0.5\textwidth}
  \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
      \AxiomC{$\myctx(x) = \mytya$}
      \UnaryInfC{$\myjud{\myb{x}}{\mytya}$}
      \DisplayProof
  }
\end{minipage}
\vspace{0.1cm}

We need to refine the notion context to make sure that every variable appearing
is typed correctly, or that in other words each type appearing in the context is
indeed a type and not a value.  In every other rule, if no premises are present,
we assume the context in the conclusion to be valid.

Then we can re-introduce the old rule to get the type of a variable for a
context.

\subsubsection{$\myunit$, $\myempty$}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
    \begin{tabular}{ccc}
      \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
      \UnaryInfC{$\myjud{\myunit}{\mytyp_0}$}
      \noLine
      \UnaryInfC{$\myjud{\myempty}{\mytyp_0}$}
      \DisplayProof
      &
      \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
      \UnaryInfC{$\myjud{\mytt}{\myunit}$}
      \noLine
      \UnaryInfC{\phantom{$\myjud{\myempty}{\mytyp_0}$}}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\myempty}$}
      \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
      \BinaryInfC{$\myjud{\myapp{\myabsurd{\mytya}}{\mytmt}}{\mytya}$}
      \noLine
      \UnaryInfC{\phantom{$\myjud{\myempty}{\mytyp_0}$}}
      \DisplayProof
    \end{tabular}
}

Nothing surprising here: $\myunit$ and $\myempty$ are unchanged from the STLC,
with the added rules to type $\myunit$ and $\myempty$ themselves, and to make
sure that we are invoking $\myabsurd{}$ over a type.

\subsubsection{$\mybool$, and dependent $\myfun{if}$}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
   \begin{tabular}{ccc}
     \AxiomC{}
     \UnaryInfC{$\myjud{\mybool}{\mytyp_0}$}
     \DisplayProof
     &
     \AxiomC{}
     \UnaryInfC{$\myjud{\mytrue}{\mybool}$}
     \DisplayProof
     &
     \AxiomC{}
      \UnaryInfC{$\myjud{\myfalse}{\mybool}$}
      \DisplayProof
    \end{tabular}
    \myderivsp

    \AxiomC{$\myjud{\mytmt}{\mybool}$}
    \AxiomC{$\myjudd{\myctx : \mybool}{\mytya}{\mytyp_l}$}
    \noLine
    \BinaryInfC{$\myjud{\mytmm}{\mysub{\mytya}{x}{\mytrue}}$ \hspace{0.7cm} $\myjud{\mytmn}{\mysub{\mytya}{x}{\myfalse}}$}
    \UnaryInfC{$\myjud{\myitee{\mytmt}{\myb{x}}{\mytya}{\mytmm}{\mytmn}}{\mysub{\mytya}{\myb{x}}{\mytmt}}$}
    \DisplayProof
}

With booleans we get the first taste of `dependent' in `dependent types'.  While
the two introduction rules ($\mytrue$ and $\myfalse$) are not surprising, the
typing rules for $\myfun{if}$ are.  In most strongly typed languages we expect
the branches of an $\myfun{if}$ statements to be of the same type, to preserve
subject reduction, since execution could take both paths.  This is a pity, since
the type system does not reflect the fact that in each branch we gain knowledge
on the term we are branching on.  Which means that programs along the lines of
\begin{verbatim}
if null xs then head xs else 0
\end{verbatim}
are a necessary, well typed, danger.

However, in a more expressive system, we can do better: the branches' type can
depend on the value of the scrutinised boolean.  This is what the typing rule
expresses: the user provides a type $\mytya$ ranging over an $\myb{x}$
representing the scrutinised boolean type, and the branches are typechecked with
the updated knowledge on the value of $\myb{x}$.

\subsubsection{$\myarr$, or dependent function}

 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
     \BinaryInfC{$\myjud{\myfora{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
     \DisplayProof

     \myderivsp

    \begin{tabular}{cc}
      \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytyb}$}
      \UnaryInfC{$\myjud{\myabss{\myb{x}}{\mytya}{\mytmt}}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmm}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
      \AxiomC{$\myjud{\mytmn}{\mytya}$}
      \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mysub{\mytyb}{\myb{x}}{\mytmn}}$}
      \DisplayProof
    \end{tabular}
}

Dependent functions are one of the two key features that perhaps most
characterise dependent types---the other being dependent products.  With
dependent functions, the result type can depend on the value of the
argument.  This feature, together with the fact that the result type
might be a type itself, brings a lot of interesting possibilities.
Following this intuition, in the introduction rule, the return type is
typechecked in a context with an abstracted variable of lhs' type, and
in the elimination rule the actual argument is substituted in the return
type.  Keeping the correspondence with logic alive, dependent functions
are much like universal quantifiers ($\forall$) in logic.

For example, assuming that we have lists and natural numbers in our
language, using dependent functions we would be able to
write:
\[
\begin{array}{c@{\ }c@{\ }l@{\ }}
\myfun{length} & : & (\myb{A} {:} \mytyp_0) \myarr \myapp{\mylist}{\myb{A}} \myarr \mynat \\
\myarg \myfun{$>$} \myarg & : & \mynat \myarr \mynat \myarr \mytyp_0 \\
\myfun{head} & : & (\myb{A} {:} \mytyp_0) \myarr (\myb{l} {:} \myapp{\mylist}{\myb{A}})
               \myarr \myapp{\myapp{\myfun{length}}{\myb{A}}}{\myb{l}} \mathrel{\myfun{>}} 0 \myarr
               \myb{A}
\end{array}
\]

\myfun{length} is the usual polymorphic length function. $\myfun{>}$ is
a function that takes two naturals and returns a type: if the lhs is
greater then the rhs, $\myunit$ is returned, $\myempty$ otherwise.  This
way, we can express a `non-emptyness' condition in $\myfun{head}$, by
including a proof that the length of the list argument is non-zero.
This allows us to rule out the `empty list' case, so that we can safely
return the first element.

Again, we need to make sure that the type hierarchy is respected, which is the
reason why a type formed by $\myarr$ will live in the least upper bound of the
levels of argument and return type.  This trend will continue with the other
type-level binders, $\myprod$ and $\mytyc{W}$.

\subsubsection{$\myprod$, or dependent product}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
     \BinaryInfC{$\myjud{\myexi{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
     \DisplayProof

     \myderivsp

    \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytmm}{\mytya}$}
      \AxiomC{$\myjud{\mytmn}{\mysub{\mytyb}{\myb{x}}{\mytmm}}$}
      \BinaryInfC{$\myjud{\mypairr{\mytmm}{\myb{x}}{\mytyb}{\mytmn}}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
      \noLine
      \UnaryInfC{\phantom{$--$}}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
      \UnaryInfC{$\hspace{0.7cm}\myjud{\myapp{\myfst}{\mytmt}}{\mytya}\hspace{0.7cm}$}
      \noLine
      \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mysub{\mytyb}{\myb{x}}{\myapp{\myfst}{\mytmt}}}$}
      \DisplayProof
    \end{tabular}
}

If dependent functions are a generalisation of $\myarr$ in the STLC,
dependent products are a generalisation of $\myprod$ in the STLC.  The
improvement is that the second element's type can depend on the value of
the first element.  The corrispondence with logic is through the
existential quantifier: $\exists x \in \mathbb{N}. even(x)$ can be
expressed as $\myexi{\myb{x}}{\mynat}{\myapp{\myfun{even}}{\myb{x}}}$.
The first element will be a number, and the second evidence that the
number is even.  This highlights the fact that we are working in a
constructive logic: if we have an existence proof, we can always ask for
a witness.  This means, for instance, that $\neg \forall \neg$ is not
equivalent to $\exists$.

\subsubsection{$\mytyc{W}$, or well-order}
\label{sec:well-order}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
     \BinaryInfC{$\myjud{\myw{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
     \DisplayProof

     \myderivsp

     \AxiomC{$\myjud{\mytmt}{\mytya}$}
     \AxiomC{$\myjud{\mysynel{f}}{\mysub{\mytyb}{\myb{x}}{\mytmt} \myarr \myw{\myb{x}}{\mytya}{\mytyb}}$}
     \BinaryInfC{$\myjud{\mytmt \mynode{\myb{x}}{\mytyb} \myse{f}}{\myw{\myb{x}}{\mytya}{\mytyb}}$}
     \DisplayProof

     \myderivsp

     \AxiomC{$\myjud{\myse{u}}{\myw{\myb{x}}{\myse{S}}{\myse{T}}}$}
     \AxiomC{$\myjudd{\myctx; \myb{w} : \myw{\myb{x}}{\myse{S}}{\myse{T}}}{\myse{P}}{\mytyp_l}$}
     \noLine
     \BinaryInfC{$\myjud{\myse{p}}{
       \myfora{\myb{s}}{\myse{S}}{\myfora{\myb{f}}{\mysub{\myse{T}}{\myb{x}}{\myse{s}} \myarr \myw{\myb{x}}{\myse{S}}{\myse{T}}}{(\myfora{\myb{t}}{\mysub{\myse{T}}{\myb{x}}{\myb{s}}}{\mysub{\myse{P}}{\myb{w}}{\myapp{\myb{f}}{\myb{t}}}}) \myarr \mysub{\myse{P}}{\myb{w}}{\myb{f}}}}
     }$}
     \UnaryInfC{$\myjud{\myrec{\myse{u}}{\myb{w}}{\myse{P}}{\myse{p}}}{\mysub{\myse{P}}{\myb{w}}{\myse{u}}}$}
     \DisplayProof
}

\section{The struggle for equality}
\label{sec:equality}

In the previous section we saw how a type checker (or a human) needs a
notion of \emph{definitional equality}.  Beyond this meta-theoretic
notion, in this section we will explore the ways of expressing equality
\emph{inside} the theory, as a reasoning tool available to the user.
This area is the main concern of this thesis, and in general a very
active research topic, since we do not have a fully satisfactory
solution, yet.  As in the previous section, everything presented is
formalised in Agda in appendix \ref{app:agda-code}.

\subsection{Propositional equality}

\noindent
\begin{minipage}{0.5\textwidth}
\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \cdots \\
             &  |  & \mytmsyn \mypeq{\mytmsyn} \mytmsyn \mysynsep
                     \myapp{\myrefl}{\mytmsyn} \\
             &  |  & \myjeq{\mytmsyn}{\mytmsyn}{\mytmsyn}
  \end{array}
  $
}
\end{minipage} 
\begin{minipage}{0.5\textwidth}
\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
    $
    \myjeq{\myse{P}}{(\myapp{\myrefl}{\mytmm})}{\mytmn} \myred \mytmn
    $
  \vspace{0.9cm}
}
\end{minipage}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
    \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
    \AxiomC{$\myjud{\mytmm}{\mytya}$}
    \AxiomC{$\myjud{\mytmn}{\mytya}$}
    \TrinaryInfC{$\myjud{\mytmm \mypeq{\mytya} \mytmn}{\mytyp_l}$}
    \DisplayProof

    \myderivsp

    \begin{tabular}{cc}
      \AxiomC{\phantom{$\myctx P \mytyp_l$}}
      \noLine
      \UnaryInfC{$\myjud{\mytmm}{\mytya}\hspace{1.1cm}\mytmm \mydefeq \mytmn$}
      \UnaryInfC{$\myjud{\myapp{\myrefl}{\mytmm}}{\mytmm \mypeq{\mytya} \mytmn}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\myse{P}}{\myfora{\myb{x}\ \myb{y}}{\mytya}{\myfora{q}{\myb{x} \mypeq{\mytya} \myb{y}}{\mytyp_l}}}$}
      \noLine
      \UnaryInfC{$\myjud{\myse{q}}{\mytmm \mypeq{\mytya} \mytmn}\hspace{1.1cm}\myjud{\myse{p}}{\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmm}}{(\myapp{\myrefl}{\mytmm})}}$}
      \UnaryInfC{$\myjud{\myjeq{\myse{P}}{\myse{q}}{\myse{p}}}{\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmn}}{q}}$}
      \DisplayProof
    \end{tabular}
}

To express equality between two terms inside ITT, the obvious way to do so is
to have the equality construction to be a type-former.  Here we present what
has survived as the dominating form of equality in systems based on ITT up to
the present day.

Our type former is $\mypeq{\mytya}$, which given a type (in this case
$\mytya$) relates equal terms of that type.  $\mypeq{}$ has one introduction
rule, $\myrefl$, which introduces an equality relation between definitionally
equal terms---in the typing rule we display the term as `the same', meaning
`the same up to $\mydefeq$'. % TODO maybe mention this earlier

Finally, we have one eliminator for $\mypeq{}$, $\myjeqq$.  $\myjeq{\myse{P}}{\myse{q}}{\myse{p}}$ takes
\begin{itemize}
\item $\myse{P}$, a predicate working with two terms of a certain type (say
  $\mytya$) and a proof of their equality
\item $\myse{q}$, a proof that two terms in $\mytya$ (say $\myse{m}$ and
  $\myse{n}$) are equal
\item and $\myse{p}$, an inhabitant of $\myse{P}$ applied to $\myse{m}$, plus
  the trivial proof by reflexivity showing that $\myse{m}$ is equal to itself
\end{itemize}
Given these ingredients, $\myjeqq$ retuns a member of $\myse{P}$ applied to
$\mytmm$, $\mytmn$, and $\myse{q}$.  In other words $\myjeqq$ takes a
witness that $\myse{P}$ works with \emph{definitionally equal} terms, and
returns a witness of $\myse{P}$ working with \emph{propositionally equal}
terms.  Invokations of $\myjeqq$ will vanish when the equality proofs will
reduce to invocations to reflexivity, at which point the arguments must be
definitionally equal, and thus the provided
$\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmm}}{(\myapp{\myrefl}{\mytmm})}$
can be returned.

While the $\myjeqq$ rule is slightly convoluted, ve can derive many more
`friendly' rules from it, for example a more obvious `substitution' rule, that
replaces equal for equal in predicates:
\[
\begin{array}{l}
(\myabs{\myb{A}\ \myb{P}\ \myb{x}\ \myb{y}\ \myb{q}\ \myb{p}}{
  \myjeq{(\myabs{\myb{x}\ \myb{y}\ \myb{q}}{\myapp{\myb{P}}{\myb{y}}})}{\myb{q}}{\myb{p}}}) : \\
\myind{1} \myfora{\myb{A}}{\mytyp}{\myfora{\myb{P}}{\myb{A} \myarr \mytyp}{\myfora{\myb{x}\ \myb{y}}{\myb{A}}{\myb{x} \mypeq{\myb{A}} \myb{y} \myarr \myapp{\myb{P}}{\myb{x}} \myarr \myapp{\myb{P}}{\myb{y}}}}}
\end{array}
\]
This rule is often called $\myfun{subst}$---here we will invoke it without
specifying the type ($\myb{A}$) and the sides of the equality
($\myb{x},\myb{y}$).

Once we have $\myfun{subst}$, we can easily prove more familiar laws regarding
equality, such as symmetry, transitivity, and a congruence law:

% TODO finish this

\subsection{Common extensions}

eta law

congruence

UIP

\subsection{Limitations}

\epigraph{\emph{Half of my time spent doing research involves thinking up clever
  schemes to avoid needing functional extensionality.}}{@larrytheliquid}

However, propositional equality as described is quite restricted when
reasoning about equality beyond the term structure, which is what definitional
equality gives us (extension notwithstanding).

The problem is best exemplified by \emph{function extensionality}.  In
mathematics, we would expect to be able to treat functions that give equal
output for equal input as the same.  When reasoning in a mechanised framework
we ought to be able to do the same: in the end, without considering the
operational behaviour, all functions equal extensionally are going to be
replaceable with one another.

However this is not the case, or in other words with the tools we have we have
no term of type
\[
\myfun{ext} : \myfora{\myb{A}\ \myb{B}}{\mytyp}{\myfora{\myb{f}\ \myb{g}}{
    \myb{A} \myarr \myb{B}}{
        (\myfora{\myb{x}}{\myb{A}}{\myapp{\myb{f}}{\myb{x}} \mypeq{\myb{B}} \myapp{\myb{g}}{\myb{x}}}) \myarr
        \myb{f} \mypeq{\myb{A} \myarr \myb{B}} \myb{g}
    }
}
\]
To see why this is the case, consider the functions
\[\myabs{\myb{x}}{0 \mathrel{\myfun{+}} \myb{x}}$ and $\myabs{\myb{x}}{\myb{x} \mathrel{\myfun{+}} 0}\]
where $\myfun{+}$ is defined by recursion on the first argument,
gradually destructing it to build up successors of the second argument.
The two functions are clearly extensionally equal, and we can in fact
prove that
\[
\myfora{\myb{x}}{\mynat}{(0 \mathrel{\myfun{+}} \myb{x}) \mypeq{\mynat} (\myb{x} \mathrel{\myfun{+}} 0)}
\]
By analysis on the $\myb{x}$.  However, the two functions are not
definitionally equal, and thus we won't be able to get rid of the
quantification.

For the reasons above, theories that offer a propositional equality similar to
what we presented are called \emph{intensional}, as opposed to
\emph{extensional}.  Most systems in wide use today (such as Agda, Coq and
Epigram) are of this kind.

This is quite an annoyance that often makes reasoning awkward to execute.  It
also extends to other fields, for example proving bisimulation between
processes specified by coinduction, or in general proving equivalences based
on the behaviour on a term.

\subsection{Equality reflection}

One way to `solve' this problem is by identifying propositional equality with
definitional equality:

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
    \AxiomC{$\myjud{\myse{q}}{\mytmm \mypeq{\mytya} \mytmn}$}
    \UnaryInfC{$\myjud{\mytmm \mydefeq \mytmn}{\mytya}$}
    \DisplayProof
}

This rule takes the name of \emph{equality reflection}, and is a very
different rule from the ones we saw up to now: it links a typing judgement
internal to the type theory to a meta-theoretic judgement that the type
checker uses to work with terms.  It is easy to see the dangerous consequences
that this causes:
\begin{itemize}
\item The rule is syntax directed, and the type checker is presumably expected
  to come up with equality proofs when needed.
\item More worryingly, type checking becomes undecidable also because
  computing under false assumptions becomes unsafe.
  Consider for example
  \[
  \myabss{\myb{q}}{\mytya \mypeq{\mytyp} (\mytya \myarr \mytya)}{\myhole{?}}
  \]
  Using the assumed proof in tandem with equality reflection we could easily
  write a classic Y combinator, sending the compiler into a loop.
\end{itemize}

Given these facts theories employing equality reflection, like NuPRL
\citep{NuPRL}, carry the derivations that gave rise to each typing judgement
to keep the systems manageable.  % TODO more info, problems with that.

For all its faults, equality reflection does allow us to prove extensionality,
using the extensions we gave above.  Assuming that $\myctx$ contains
\[\myb{A}, \myb{B} : \mytyp; \myb{f}, \myb{g} : \myb{A} \myarr \myb{B}; \myb{q} : \myfora{\myb{x}}{\myb{A}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}\]
We can then derive
\begin{prooftree}
  \AxiomC{$\hspace{1.1cm}\myjudd{\myctx; \myb{x} : \myb{A}}{\myapp{\myb{q}}{\myb{x}}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}\hspace{1.1cm}$}
  \RightLabel{equality reflection}
  \UnaryInfC{$\myjudd{\myctx; \myb{x} : \myb{A}}{\myapp{\myb{f}}{\myb{x}} \mydefeq \myapp{\myb{g}}{\myb{x}}}{\myb{B}}$}
  \RightLabel{congruence for $\lambda$s}
  \UnaryInfC{$\myjud{(\myabs{\myb{x}}{\myapp{\myb{f}}{\myb{x}}}) \mydefeq (\myabs{\myb{x}}{\myapp{\myb{g}}{\myb{x}}})}{\myb{A} \myarr \myb{B}}$}
  \RightLabel{$\eta$-law for $\lambda$}
  \UnaryInfC{$\hspace{1.4cm}\myjud{\myb{f} \mydefeq \myb{g}}{\myb{A} \myarr \myb{B}}\hspace{1.4cm}$}
  \RightLabel{$\myrefl$}
  \UnaryInfC{$\myjud{\myapp{\myrefl}{\myb{f}}}{\myb{f} \mypeq{} \myb{g}}$}
\end{prooftree}

Now, the question is: do we need to give up well-behavedness of our theory to
gain extensionality?

\subsection{Observational equality}
\label{sec:ott}

% TODO should we explain this in detail?
A recent development by \citet{Altenkirch2007}, \emph{Observational Type
  Theory} (OTT), promises to keep the well behavedness of ITT while being able
to gain many useful equality proofs\footnote{It is suspected that OTT gains
  \emph{all} the equality proofs of ETT, but no proof exists yet.}, including
function extensionality.  The main idea is to give the user the possibility to
\emph{coerce} (or transport) values from a type $\mytya$ to a type $\mytyb$,
if the type checker can prove structurally that $\mytya$ and $\mytya$ are
equal; and providing a value-level equality based on similar principles.  A
brief overview is given below,

\mydesc{syntax}{ }{
    $\mytyp_l$ is replaced by $\mytyp$. \\
    $
    \begin{array}{r@{\ }c@{\ }l}
      \mytmsyn & ::= & \cdots \\
      &  |  & \myprdec{\myprsyn} \mysynsep
      \mycoee{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \mysynsep
      \mycohh{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
      \myprsyn & ::= & \mybot \mysynsep \mytop \mysynsep \myprsyn \myand \myprsyn
      \mysynsep \myprfora{\myb{x}}{\mytmsyn}{\myprsyn} \\\
      &  |  & \mytmsyn \myeq \mytmsyn \mysynsep
      \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn}
    \end{array}
    $
}

\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{

  There is only $\mytyp$, which corresponds to $\mytyp_0$.  \\ Thus all
  the type-formers take $\mytyp$ arguments and form a $\mytyp$. \\ \ \\

  % TODO insert large eliminator

  \begin{tabular}{cc}
    \AxiomC{$\myjud{\myse{P}}{\myprop}$}
    \UnaryInfC{$\myjud{\myprdec{\myse{P}}}{\mytyp}$}
    \DisplayProof
    &
    \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
    \AxiomC{$\myjud{\mytmt}{\mytya}$}
    \BinaryInfC{$\myjud{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}$}
    \DisplayProof
  \end{tabular}

  \myderivsp

  \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
  \AxiomC{$\myjud{\mytmt}{\mytya}$}
  \BinaryInfC{$\myjud{\mycohh{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\myprdec{\myjm{\mytmt}{\mytya}{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}}}$}
  \DisplayProof
}

\mydesc{propositions:}{\myjud{\myprsyn}{\myprop}}{
    \begin{tabular}{cc}
      \AxiomC{\phantom{$\myjud{\myse{P}}{\myprop}$}}
      \UnaryInfC{$\myjud{\mytop}{\myprop}$}
      \noLine
      \UnaryInfC{$\myjud{\mybot}{\myprop}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\myse{P}}{\myprop}$}
      \AxiomC{$\myjud{\myse{Q}}{\myprop}$}
      \BinaryInfC{$\myjud{\myse{P} \myand \myse{Q}}{\myprop}$}
      \noLine
      \UnaryInfC{\phantom{$\myjud{\mybot}{\myprop}$}}
      \DisplayProof
    \end{tabular}

    \myderivsp

    \begin{tabular}{cc}
      \AxiomC{$\myjud{\myse{A}}{\mytyp}$}
      \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\myse{P}}{\myprop}$}
      \BinaryInfC{$\myjud{\myprfora{\myb{x}}{\mytya}{\myse{P}}}{\myprop}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\myse{A}}{\mytyp}$}
      \AxiomC{$\myjud{\myse{B}}{\mytyp}$}
      \BinaryInfC{$\myjud{\mytya \myeq \mytyb}{\myprop}$}
      \DisplayProof
    \end{tabular}

    \myderivsp

    \AxiomC{$\myjud{\myse{A}}{\mytyp}$}
    \AxiomC{$\myjud{\mytmm}{\myse{A}}$}
    \AxiomC{$\myjud{\myse{B}}{\mytyp}$}
    \AxiomC{$\myjud{\mytmn}{\myse{B}}$}
    \QuaternaryInfC{$\myjud{\myjm{\mytmm}{\myse{A}}{\mytmn}{\myse{B}}}{\myprop}$}
    \DisplayProof
}

\mydesc{proposition decoding:}{\myprdec{\mytmsyn} \myred \mytmsyn}{
    \begin{tabular}{cc}
    $
    \begin{array}{l@{\ }c@{\ }l}
      \myprdec{\mybot} & \myred & \myempty \\
      \myprdec{\mytop} & \myred & \myunit
    \end{array}
    $
    &
    $
    \begin{array}{r@{ }c@{ }l@{\ }c@{\ }l}
      \myprdec{&\myse{P} \myand \myse{Q} &} & \myred & \myprdec{\myse{P}} \myprod \myprdec{\myse{Q}} \\
      \myprdec{&\myprfora{\myb{x}}{\mytya}{\myse{P}} &} & \myred &
             \myfora{\myb{x}}{\mytya}{\myprdec{\myse{P}}}
    \end{array}
    $
    \end{tabular}
}

\mydesc{equality reduction:}{\myprsyn \myred \myprsyn}{
    $
      \begin{array}{c@{\ }c@{\ }c@{\ }l}
        \myempty & \myeq & \myempty & \myred \mytop \\
        \myunit  & \myeq &  \myunit & \myred  \mytop \\
        \mybool  & \myeq &  \mybool &   \myred  \mytop \\
        \myexi{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myexi{\myb{x_2}}{\mytya_2}{\mytyb_2} & \myred \\
        \multicolumn{4}{l}{
          \myind{2} \mytya_1 \myeq \mytyb_1 \myand 
                  \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{\myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2}} \myimpl \mytyb_1 \myeq \mytyb_2}
                  } \\
      \myfora{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myfora{\myb{x_2}}{\mytya_2}{\mytyb_2} & \myred \cdots \\
      \myw{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myw{\myb{x_2}}{\mytya_2}{\mytyb_2} & \myred \cdots \\
      \mytya & \myeq & \mytyb & \myred \mybot\ \text{for other canonical types.}
      \end{array}
    $
}

\mydesc{reduction}{\mytmsyn \myred \mytmsyn}{
  $
  \begin{array}{l@{\ }l@{\ }l@{\ }l@{\ }l@{\ }c@{\ }l@{\ }}
    \mycoe & \myempty & \myempty & \myse{Q} & \myse{t} & \myred & \myse{t} \\
    \mycoe & \myunit  & \myunit  & \myse{Q} & \mytt & \myred & \mytt \\
    \mycoe & \mybool  & \mybool  & \myse{Q} & \mytrue & \myred & \mytrue \\
    \mycoe & \mybool  & \mybool  & \myse{Q} & \myfalse & \myred & \myfalse \\
    \mycoe & (\myexi{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
             (\myexi{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
             \mytmt_1 & \myred &
           foo \\
    \mycoe & (\myfora{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
             (\myfora{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
             \mytmt_1 & \myred &
           \cdots \\

    \mycoe & (\myw{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
             (\myw{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
             \mytmt_1 & \myred &
           \cdots \\

    \mycoe & \mytya & \mytyb & \myse{Q} & \mytmt & \myred & \myapp{\myabsurd{\mytyb}}{\myse{Q}}
  \end{array}
  $
}

The original presentation of OTT employs the theory presented above.  It is
close to the one presented in section \ref{sec:itt}, with the additions
presented above, and the change that only one the `first' universe, the type
of small types ($\mytyp_0$), is present.

The propositional universe is meant to be where equality proofs live in.  The
equality proofs are respectively between types ($\mytya = \mytyb$), and
between values 



However, only one universe is present ($\mytyp_0$), and a \emph{propositional}
universe is isolated, intended to be the universe where equality proofs live
in.  Propositions (as long as our system is consistent) are inhabited only by
one element, and thus can all be treated as definitionally equal.



% \section{Augmenting ITT}
% \label{sec:practical}

% \subsection{A more liberal hierarchy}

% \subsection{Type inference}

% \subsubsection{Bidirectional type checking}

% \subsubsection{Pattern unification}

% \subsection{Pattern matching and explicit fixpoints}

% \subsection{Induction-recursion}

% \subsection{Coinduction}

% \subsection{Dealing with partiality}

% \subsection{Type holes}

\section{\mykant : the theory}
\label{sec:kant-theory}

\mykant\ is an interactive theorem prover developed as part of this thesis.
The plan is to present a core language which would be capable of serving as
the basis for a more featureful system, while still presenting interesting
features and more importantly observational equality.

The author learnt the hard way the implementations challenges for such a
project, and while there is a solid and working base to work on, observational
equality is not currently implemented.  However, a detailed plan on how to add
it this functionality is provided, and should not prove to be too much work.

The features currently implemented in \mykant\ are:

\begin{description}
\item[Full dependent types] As we would expect, we have dependent a system
  which is as expressive as the `best' corner in the lambda cube described in
  section \ref{sec:itt}.

\item[Implicit, cumulative universe hierarchy] The user does not need to
  specify universe level explicitly, and universes are \emph{cumulative}.

\item[User defined data types and records] Instead of forcing the user to
  choose from a restricted toolbox, we let her define inductive data types,
  with associated primitive recursion operators; or records, with associated
  projections for each field.

\item[Bidirectional type checking] While no `fancy' inference via unification
  is present, we take advantage of an type synthesis system in the style of
  \cite{Pierce2000}, extending the concept for user defined data types.

\item[Type holes] When building up programs interactively, it is useful to
  leave parts unfinished while exploring the current context.  This is what
  type holes are for.
\end{description}

The planned features are:

\begin{description}
\item[Observational equality] As described in section \ref{sec:ott} but
  extended to work with the type hierarchy and to admit equality between
  arbitrary data types.

\item[Coinductive data] ...
\end{description}

We will analyse the features one by one, along with motivations and tradeoffs
for the design decisions made.

\subsection{Bidirectional type checking}

We start by describing bidirectional type checking since it calls for fairly
different typing rules that what we have seen up to now.  The idea is to have
two kind of terms: terms for which a type can always be inferred, and terms
that need to be checked against a type.  A nice observation is that this
duality runs through the semantics of the terms: data destructors (function
application, record projections, primitive re cursors) \emph{infer} types,
while data constructors (abstractions, record/data types data constructors)
need to be checked.  In the literature these terms are respectively known as

To introduce the concept and notation, we will revisit the STLC in a
bidirectional style.  The presentation follows \cite{Loh2010}.

% TODO do this --- is it even necessary

% \subsubsection{Declarations and contexts}

% A \mykant declaration can be one of 4 kinds:

% \begin{description}
% \item[Value] A declared variable, together with a type and a body.
% \item[Postulate] An abstract variable, with a type but no body.
% \item[Inductive data] A datatype, with a type constructor and various data
%   constructors---somewhat similar to what we find in Haskell.  A primitive
%   recursor (or `destructor') will be generated automatically.
% \item[Record] A record, which consists of one data constructor and various
%   fields, with no recursive occurrences.  We will explain the need for records
%   later.
% \end{description}

% The syntax of 

\subsection{Base terms and types}

Let us begin by describing the primitives available without the user defining
any data types, and without equality.  The syntax given here is the one of the
core (`desugared') terms, and the way we handle variables and substitution is
left unspecified, and explained in section \ref{sec:term-repr}, along with
other implementation issues.  We are also going to give an account of the
implicit type hierarchy separately in section \ref{sec:term-hierarchy}, so as
not to clutter derivation rules too much, and just treat types as
impredicative for the time being.

\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \mynamesyn \mysynsep \mytyp \\
             &  |  & \myfora{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     \myabss{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
                     (\myapp{\mytmsyn}{\mytmsyn}) \mysynsep
                     (\myann{\mytmsyn}{\mytmsyn}) \\
    \mynamesyn & ::= & \myb{x} \mysynsep \myfun{f}
  \end{array}
  $
}

The syntax for our calculus includes just two basic constructs: abstractions
and $\mytyp$s.  Everything else will be provided by user-definable constructs.
Since we let the user define values, we will need a context capable of
carrying the body of variables along with their type.  We also want to make
sure not to have duplicate top names, so we enforce that.

% \mytyc{D} \mysynsep \mytyc{D}.\mydc{c}
%                        \mysynsep \mytyc{D}.\myfun{f} \mysynsep 

\mydesc{context validity:}{\myvalid{\myctx}}{
    \begin{tabular}{ccc}
      \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
      \UnaryInfC{$\myvalid{\myemptyctx}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytya}{\mytyp}$}
      \AxiomC{$\mynamesyn \not\in \myctx$}
      \BinaryInfC{$\myvalid{\myctx ; \mynamesyn : \mytya}$}
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytmt}{\mytya}$}
      \AxiomC{$\myfun{f} \not\in \myctx$}
      \BinaryInfC{$\myvalid{\myctx ; \myfun{f} \mapsto \mytmt : \mytya}$}
      \DisplayProof
    \end{tabular}
}

Now we can present the reduction rules, which are unsurprising.  We have the
usual functional application ($\beta$-reduction), but also a rule to replace
names with their bodies, if in the context ($\delta$-reduction), and one to
discard type annotations.  For this reason the new reduction rules are
dependent on the context:

\mydesc{reduction:}{\myctx \vdash \mytmsyn \myred \mytmsyn}{
    \begin{tabular}{ccc}
      \AxiomC{\phantom{$\myb{x} \mapsto \mytmt : \mytya \in \myctx$}}
      \UnaryInfC{$\myctx \vdash \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn}
                  \myred \mysub{\mytmm}{\myb{x}}{\mytmn}$}
      \DisplayProof
      &
      \AxiomC{$\myfun{f} \mapsto \mytmt : \mytya \in \myctx$}
      \UnaryInfC{$\myctx \vdash \myfun{f} \myred \mytmt$}
      \DisplayProof
      &
      \AxiomC{\phantom{$\myb{x} \mapsto \mytmt : \mytya \in \myctx$}}
      \UnaryInfC{$\myctx \vdash \myann{\mytmm}{\mytya} \myred \mytmm$}
      \DisplayProof
    \end{tabular}
}

We want to define a \emph{weak head normal form} (WHNF) for our terms, to give
a syntax directed presentation of type rules with no `conversion' rule.  We
will consider all \emph{canonical} forms (abstractions and data constructors)
to be in weak head normal form...  % TODO finish

We can now give types to our terms.  Using our definition of WHNF, I will use
$\mytmm \mynf \mytmn$ to indicate that $\mytmm$'s normal form is $\mytmn$.
This way, we can avoid the non syntax-directed conversion rule, giving a more
algorithmic presentation of type checking.

\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{   
    \begin{tabular}{ccc}
      \AxiomC{$\myb{x} : A \in \myctx$ or $\myb{x} \mapsto \mytmt : A \in \myctx$}
      \UnaryInfC{$\myinf{\myb{x}}{A}$}
      \DisplayProof
      &
      \AxiomC{$\mychk{\mytmt}{\mytya}$}
      \UnaryInfC{$\myinf{\myann{\mytmt}{\mytya}}{\mytya}$}
      \DisplayProof
    \end{tabular}
    \myderivsp

    \AxiomC{$\myinf{\mytmm}{\mytya}$}
    \AxiomC{$\myctx \vdash \mytya \mynf \myfora{\myb{x}}{\mytyb}{\myse{C}}$}
    \AxiomC{$\mychk{\mytmn}{\mytyb}$}
    \TrinaryInfC{$\myinf{\myapp{\mytmm}{\mytmn}}{\mysub{\myse{C}}{\myb{x}}{\mytmn}}$}
    \DisplayProof

    \myderivsp

    \AxiomC{$\myctx \vdash \mytya \mynf \myfora{\myb{x}}{\mytyb}{\myse{C}}$}
    \AxiomC{$\mychkk{\myctx; \myb{x}: \mytyb}{\mytmt}{\myse{C}}$}
    \BinaryInfC{$\mychk{\myabs{\myb{x}}{\mytmt}}{\mytya}$}
    \DisplayProof
}

\subsection{Elaboration}

\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
      \mydeclsyn & ::= & \myval{\myb{x}}{\mytmsyn}{\mytmsyn} \\
                 &  |  & \mypost{\myb{x}}{\mytmsyn} \\
                 &  |  & \myadt{\mytyc{D}}{\mytelesyn}{}{\mydc{c} : \mytelesyn\ |\ \cdots } \\
                 &  |  & \myreco{\mytyc{D}}{\mytelesyn}{}{\myfun{f} : \mytmsyn,\ \cdots } \\

      \mytelesyn & ::= & \myemptytele \mysynsep \mytelesyn \mycc (\myb{x} {:} \mytmsyn)
  \end{array}
  $
}

\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{   

}

\subsubsection{Values and postulated variables}

As mentioned, in \mykant\ we can defined top level variables, with or without
a body.  We call the variables

\mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
    \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytmt}{\mytya}$}
      \AxiomC{$\myfun{f} \not\in \myctx$}
      \BinaryInfC{
        $\myctx \myelabt \myval{\myfun{f}}{\mytya}{\mytmt} \ \ \myelabf\ \  \myctx; \myfun{f} \mapsto \mytmt : \mytya$
      }
      \DisplayProof
      &
      \AxiomC{$\myjud{\mytya}{\mytyp}$}
      \AxiomC{$\myfun{f} \not\in \myctx$}
      \BinaryInfC{
        $
          \myctx \myelabt \mypost{\myfun{f}}{\mytya}
          \ \ \myelabf\ \  \myctx; \myfun{f} : \mytya
        $
      }
      \DisplayProof
    \end{tabular}
}

\subsubsection{User defined types}

\mydesc{syntax}{ }{
  $
  \begin{array}{l}
    \mynamesyn ::= \cdots \mysynsep \mytyc{D} \mysynsep \mytyc{D}.\mydc{c} \mysynsep \mytyc{D}.\myfun{f}
  \end{array}
  $
}

\mydesc{typing:}{ }{
    \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
    \AxiomC{$\mytyc{D}.\mydc{c} : \mytele \mycc \mytele' \myarr
      \myapp{\mytyc{D}}{\mytelee} \in \myctx$}
    \BinaryInfC{$\mychk{\myapp{\mytyc{D}.\mydc{c}}{\vec{t}}}{\myapp{\mytyc{D}}{\vec{A}}}$}
    \DisplayProof
    % TODO

    \myderivsp

    \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
    \AxiomC{$\mytyc{D}.\myfun{f} : \mytele \myarr
      \myapp{\mytyc{D}}{\mytelee} \myarr \myse{F}$}
    \AxiomC{$\myjud{\mytmt}{\myapp{\mytyc{D}}{\vec{A}}}$}
    \TrinaryInfC{$\myinf{\myapp{\mytyc{D}.\myfun{f}}{\mytmt}}{TODO}$}
    \DisplayProof
}

\subsubsection{Data types}

\begin{figure}[t]
  \mydesc{syntax elaboration:}{\mydeclsyn \myelabf \mytmsyn ::= \cdots}{
      $
      \begin{array}{r@{\ }l}
         & \myadt{\mytyc{D}}{\mytele}{}{\cdots\ |\ \mydc{c}_n : \myvec{(\myb{x} {:} \mytya)} \ |\ \cdots } \\
        \myelabf &
        
        \begin{array}{r@{\ }c@{\ }l}
          \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\myvec{\mytmsyn}} \mysynsep
          \mytyc{D}.\mydc{c}_n \myappsp \myvec{\mytmsyn} \mysynsep  \cdots \mysynsep \mytyc{D}.\myfun{elim} \myappsp \mytmsyn \\
        \end{array}
      \end{array}
      $
  }

  \mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
      \AxiomC{$\myinf{\mytele \myarr \mytyp}{\mytyp}$}
      \AxiomC{$\mytyc{D} \not\in \myctx$}
      \noLine
      \BinaryInfC{$\myinff{\myctx;\ \mytyc{D} : \mytele \myarr \mytyp}{\mytele \mycc \mytele_i \myarr \myapp{\mytyc{D}}{\mytelee}}{\mytyp}\ \ \ (1 \leq i \leq n)$}
      \noLine
      \UnaryInfC{For each $(\myb{x} {:} \mytya)$ in each $\mytele_i$, if $\mytyc{D} \in \mytya$, then $\mytya = \myapp{\mytyc{D}}{\vec{\mytmt}}$.}
      \UnaryInfC{$
        \begin{array}{r@{\ }c@{\ }l}
          \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{ \mydc{c} : \mytele_1 \ |\ \cdots \ |\ \mydc{c}_n : \mytele_n } \\
          & & \vspace{-0.2cm} \\
          & \myelabf & \myctx;\ \mytyc{D} : \mytele \mycc \mytyp;\ \mytyc{D}.\mydc{c}_1 : \mytele \mycc \mytele_1 \myarr \myapp{\mytyc{D}}{\mytelee};\ \cdots;\ \mytyc{D}.\mydc{c}_n : \mytele \mycc \mytele_n \myarr \myapp{\mytyc{D}}{\mytelee}; \\
          &          &
          \begin{array}{@{}r@{\ }l l}
            \mytyc{D}.\myfun{elim} : & \mytele \myarr (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr & \textbf{target} \\
            & (\myb{P} {:} \myapp{\mytyc{D}}{\mytelee} \myarr \mytyp) \myarr & \textbf{motive} \\
            & \left.
              \begin{array}{@{}l}
                (\mytele_1 \mycc \myhyps(\myb{P}, \mytele_1) \myarr \myapp{\myb{P}}{(\myapp{\mytyc{D}.\mydc{c}_1}{\mytelee_1})}) \myarr \\
                \myind{3} \vdots \\
                (\mytele_n \mycc \myhyps(\myb{P}, \mytele_n) \myarr \myapp{\myb{P}}{(\myapp{\mytyc{D}.\mydc{c}_n}{\mytelee_n})}) \myarr
              \end{array} \right \}
            & \textbf{methods}  \\
            & \myapp{\myb{P}}{\myb{x}} &
          \end{array} \\
          \\
          \multicolumn{3}{l}{
        \begin{array}{@{}l l@{\ } l@{} r c l}
          \textbf{where} & \myhyps(\myb{P}, & \myemptytele &) & \mymetagoes & \myemptytele \\
          & \myhyps(\myb{P}, & (\myb{r} {:} \myapp{\mytyc{D}}{\vec{\mytmt}}) \mycc \mytele &) & \mymetagoes & (\myb{r'} {:} \myapp{\myb{P}}{\myb{r}}) \mycc \myhyps(\myb{P}, \mytele) \\
          & \myhyps(\myb{P}, & (\myb{x} {:} \mytya) \mycc \mytele & ) & \mymetagoes & \myhyps(\myb{P}, \mytele)
        \end{array}
        }
        \end{array}
        $}
      \DisplayProof
  }

  \mydesc{reduction elaboration:}{\mydeclsyn \myelabf \myctx \vdash \mytmsyn \myred \mytmsyn}{  
      \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
      \AxiomC{$\mytyc{D}.\mydc{c}_i : \mytele;\mytele_i \myarr \myapp{\mytyc{D}}{\mytelee} \in \myctx$}
      \BinaryInfC{$
        \begin{array}{c}
          \myctx \vdash \myapp{\myapp{\myapp{\mytyc{D}.\myfun{elim}}{(\myapp{\mytyc{D}.\mydc{c}_i}{\vec{\myse{t}}})}}{\myse{P}}}{\vec{\myse{m}}} \myred \myapp{\myapp{\myse{m}_i}{\vec{\mytmt}}}{\myrecs(\myse{P}, \vec{m}, \mytele_i)} \\ \\
        \begin{array}{@{}l l@{\ } l@{} r c l}
          \textbf{where} & \myrecs(\myse{P}, \vec{m}, & \myemptytele &) & \mymetagoes & \myemptytele \\
                         & \myrecs(\myse{P}, \vec{m}, & (\myb{r} {:} \myapp{\mytyc{D}}{\vec{A}}); \mytele & ) & \mymetagoes &  (\mytyc{D}.\myfun{elim} \myappsp \myb{r} \myappsp \myse{P} \myappsp \vec{m}); \myrecs(\myse{P}, \vec{m}, \mytele) \\
                         & \myrecs(\myse{P}, \vec{m}, & (\myb{x} {:} \mytya); \mytele &) & \mymetagoes & \myrecs(\myse{P}, \vec{m}, \mytele)
          \end{array}
        \end{array}
        $}
      \DisplayProof
  }

  \caption{Elaborations for data types.}
  \label{fig:elab-adt}
\end{figure}


\subsubsection{Records}

\begin{figure}[t]
\mydesc{syntax elaboration:}{\myelab{\mydeclsyn}{\mytmsyn ::= \cdots}}{
    $
    \begin{array}{r@{\ }c@{\ }l}
      \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{\cdots\ |\ \mydc{c}_n : \myvec{(\myb{x} {:} \mytya)} \ |\ \cdots } \\
             & \myelabf &

             \begin{array}{r@{\ }c@{\ }l}
               \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\myvec{\mytmsyn}} \mysynsep
                                \mytyc{D}.\mydc{c}_n \myappsp \myvec{\mytmsyn} \mysynsep  \cdots \mysynsep \mytyc{D}.\myfun{elim} \myappsp \mytmsyn \\
             \end{array}
    \end{array}
    $
}


\mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
    \AxiomC{$\myinf{\mytele \myarr \mytyp}{\mytyp}$}
    \AxiomC{$\mytyc{D} \not\in \myctx$}
    \noLine
    \BinaryInfC{$\myinff{\myctx; \mytele; (\myb{f}_j : \myse{F}_j)_{j=1}^{i - 1}}{F_i}{\mytyp} \myind{3} (1 \le i \le n)$}
    \UnaryInfC{$
      \begin{array}{r@{\ }c@{\ }l}
        \myctx & \myelabt & \myreco{\mytyc{D}}{\mytele}{}{ \myfun{f}_1 : \myse{F}_1, \cdots, \myfun{f}_n : \myse{F}_n } \\
        & & \vspace{-0.2cm} \\
        & \myelabf & \myctx;\ \mytyc{D} : \mytele \myarr \mytyp;\\
        & & \mytyc{D}.\myfun{f}_1 : \mytele \myarr \myapp{\mytyc{D}}{\mytelee} \myarr \myse{F}_1;\ \cdots;\ \mytyc{D}.\myfun{f}_n : \mytele \myarr (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \mysub{\myse{F}_n}{\myb{f}_i}{\myapp{\myfun{f}_i}{\myb{x}}}_{i = 1}^{n-1}; \\
        & & \mytyc{D}.\mydc{constr} : \mytele \myarr \myse{F}_1 \myarr \cdots \myarr \myse{F}_n \myarr \myapp{\mytyc{D}}{\mytelee};
      \end{array}
      $}
    \DisplayProof
}

  \mydesc{reduction elaboration:}{\mydeclsyn \myelabf \myctx \vdash \mytmsyn \myred \mytmsyn}{
      \AxiomC{$\mytyc{D} \in \myctx$}
      \UnaryInfC{$\myctx \vdash \myapp{\mytyc{D}.\myfun{f}_i}{(\mytyc{D}.\mydc{constr} \myappsp \vec{t})} \myred t_i$}
      \DisplayProof
  }

  \caption{Elaborations for records.}
  \label{fig:elab-adt}
\end{figure}


\subsection{Type hierarchy}
\label{sec:term-hierarchy}

\subsection{Observational equality, \mykant\ style}

\mydesc{syntax}{ }{
  $
  \begin{array}{r@{\ }c@{\ }l}
    \mytmsyn & ::= & \mytmsyn \myeq \mytmsyn \mysynsep \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
             &  |  & \mycoee{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \mysynsep
                     \mycohh{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn}
  \end{array}
  $
}

\section{\mykant : The practice}
\label{sec:kant-practice}

The codebase consists of around 2500 lines of Haskell, as reported by the
\texttt{cloc} utility.  The high level design is heavily inspired by Conor
McBride's work on various incarnations of Epigram, and specifically by the
first version as described \citep{McBride2004} and the codebase for the new
version \footnote{Available intermittently as a \texttt{darcs} repository at
  \url{http://sneezy.cs.nott.ac.uk/darcs/Pig09}.}.  In many ways \mykant\ is
something in between the first and second version of Epigram.

The interaction happens in a read-eval-print loop (REPL).  The repl is a
available both as a commandline application and in a web interface, which is
available at \url{kant.mazzo.li} and presents itself as in figure
\ref{fig:kant-web}.

\begin{figure}
  \centering{
    \includegraphics[scale=1.0]{kant-web.png}
  }
  \caption{The \mykant\ web prompt.}
  \label{fig:kant-web}
\end{figure}

The interaction with the user takes place in a loop living in and updating a
context \mykant\ declarations.  The user inputs a new declaration that goes
through various stages starts with the user inputing a \mykant\ declaration or
another REPL command, which then goes through various stages that can end up
in a context update, or in failures of various kind.  The process is described
diagrammatically in figure \ref{fig:kant-process}:

\begin{description}
\item[Parse] In this phase the text input gets converted to a sugared
  version of the core language.

\item[Desugar] The sugared declaration is converted to a core term.

\item[Reference] Occurrences of $\mytyp$ get decorated by a unique reference,
  which is necessary to implement the type hierarchy check.

\item[Elaborate] Convert the declaration to some context item, which might be
  a value declaration (type and body) or a data type declaration (constructors
  and destructors).  This phase works in tandem with \textbf{Typechecking},
  which in turns needs to \textbf{Evaluate} terms.

\item[Distill] and report the result.  `Distilling' refers to the process of
  converting a core term back to a sugared version that the user can
  visualise.  This can be necessary both to display errors including terms or
  to display result of evaluations or type checking that the user has
  requested.

\item[Pretty print] Format the terms in a nice way, and display the result to
  the user.

\end{description}

The details of each phase will be described in section % TODO insert section
      
\begin{figure}
  \centering{\small
    \tikzstyle{block} = [rectangle, draw, text width=5em, text centered, rounded
    corners, minimum height=2.5em, node distance=0.7cm]
      
      \tikzstyle{decision} = [diamond, draw, text width=4.5em, text badly
      centered, inner sep=0pt, node distance=0.7cm]
      
      \tikzstyle{line} = [draw, -latex']
      
      \tikzstyle{cloud} = [draw, ellipse, minimum height=2em, text width=5em, text
      centered, node distance=1.5cm]
      
      
      \begin{tikzpicture}[auto]
        \node [cloud] (user) {User};
        \node [block, below left=1cm and 0.1cm of user] (parse) {Parse};
        \node [block, below=of parse] (desugar) {Desugar};
        \node [block, below=of desugar] (reference) {Reference};
        \node [block, below=of reference] (elaborate) {Elaborate};
        \node [block, left=of elaborate] (tycheck) {Typecheck};
        \node [block, left=of tycheck] (evaluate) {Evaluate};
        \node [decision, right=of elaborate] (error) {Error?};
        \node [block, right=of parse] (distill) {Distill};
        \node [block, right=of desugar] (update) {Update context};
        
        \path [line] (user) -- (parse);
        \path [line] (parse) -- (desugar);
        \path [line] (desugar) -- (reference);
        \path [line] (reference) -- (elaborate);
        \path [line] (elaborate) edge[bend right] (tycheck);
        \path [line] (tycheck) edge[bend right] (elaborate);
        \path [line] (elaborate) -- (error);
        \path [line] (error) edge[out=0,in=0] node [near start] {yes} (distill);
        \path [line] (error) -- node [near start] {no} (update);
        \path [line] (update) -- (distill);
        \path [line] (distill) -- (user);
        \path [line] (tycheck) edge[bend right] (evaluate);
        \path [line] (evaluate) edge[bend right] (tycheck);
      \end{tikzpicture}
  }
  \caption{High level overview of the life of a \mykant\ prompt cycle.}
  \label{fig:kant-process}
\end{figure}

\subsection{Term representation}
\label{sec:term-repr}

\subsection{Type hierarchy}

\subsection{Elaboration}

\section{Evaluation}

\section{Future work}

\appendix

\section{Notation and syntax}

Syntax, derivation rules, and reduction rules, are enclosed in frames describing
the type of relation being established and the syntactic elements appearing,
for example

\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
  Typing derivations here.
}

In the languages presented and Agda code samples I also highlight the syntax,
following a uniform color and font convention:

\begin{center}
  \begin{tabular}{c | l}
    $\mytyc{Sans}$   & Type constructors. \\
    $\mydc{sans}$    & Data constructors. \\
    % $\myfld{sans}$  & Field accessors (e.g. \myfld{fst} and \myfld{snd} for products). \\
    $\mysyn{roman}$  & Keywords of the language. \\
    $\myfun{roman}$  & Defined values and destructors. \\
    $\myb{math}$     & Bound variables.
  \end{tabular}
\end{center}

Moreover, I will from time to time give examples in the Haskell programming
language as defined in \citep{Haskell2010}, which I will typeset in
\texttt{teletype} font.  I assume that the reader is already familiar with
Haskell, plenty of good introductions are available \citep{LYAH,ProgInHask}.

When presenting grammars, I will use a word in $\mysynel{math}$ font
(e.g. $\mytmsyn$ or $\mytysyn$) to indicate indicate nonterminals. Additionally,
I will use quite flexibly a $\mysynel{math}$ font to indicate a syntactic
element.  More specifically, terms are usually indicated by lowercase letters
(often $\mytmt$, $\mytmm$, or $\mytmn$); and types by an uppercase letter (often
$\mytya$, $\mytyb$, or $\mytycc$).

When presenting type derivations, I will often abbreviate and present multiple
conclusions, each on a separate line:

\begin{prooftree}
  \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
  \UnaryInfC{$\myjud{\myapp{\myfst}{\mytmt}}{\mytya}$}
  \noLine
  \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
\end{prooftree}

\section{Agda rendition of ITT}
\label{app:agda-itt}

Note that in what follows rules for `base' types are
universe-polymorphic, to reflect the exposition.  Derived definitions,
on the other hand, mostly work with \mytyc{Set}, reflecting the fact
that in the theory presented we don't have universe polymorphism.

\begin{code}
module ITT where
  open import Level

  data Empty : Set where

  absurd : ∀ {a} {A : Set a} → Empty → A
  absurd ()

  ¬_ : ∀ {a} → (A : Set a) → Set a
  ¬ A = A → Empty

  record Unit : Set where
    constructor tt

  record _×_ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
    constructor _,_
    field
      fst  : A
      snd  : B fst

  data Bool : Set where
    true false : Bool

  if_then_else_ : ∀ {a} {P : Bool → Set a} (x : Bool) → P true → P false → P x
  if true then x else _ = x
  if false then _ else x = x

  data W {s p} (S : Set s) (P : S → Set p) : Set (s ⊔ p) where
    _◁_ : (s : S) → (P s → W S P) → W S P

  rec : ∀ {a b} {S : Set a} {P : S → Set b}
    (C : W S P → Set) →       -- some conclusion we hope holds
    ((s : S) →                -- given a shape...
     (f : P s → W S P) →      -- ...and a bunch of kids...
     ((p : P s) → C (f p)) →  -- ...and C for each kid in the bunch...
     C (s ◁ f)) →             -- ...does C hold for the node?
    (x : W S P) →             -- If so, ...
    C x                       -- ...C always holds.
  rec C c (s ◁ f) = c s f (λ p → rec C c (f p))

module Examples-→ where
  open ITT

  data ℕ : Set where
    zero : ℕ
    suc : ℕ → ℕ

  -- These pragmas are needed so we can use number literals.
  {-# BUILTIN NATURAL ℕ #-}
  {-# BUILTIN ZERO zero #-}
  {-# BUILTIN SUC suc #-}

  data List (A : Set) : Set where
    [] : List A
    _∷_ : A → List A → List A

  length : ∀ {A} → List A → ℕ
  length [] = zero
  length (_ ∷ l) = suc (length l)

  _>_ : ℕ → ℕ → Set
  zero > _ = Empty
  suc _ > zero = Unit
  suc x > suc y = x > y

  head : ∀ {A} → (l : List A) → length l > 0 → A
  head [] p = absurd p
  head (x ∷ _) _ = x

module Examples-× where
  open ITT
  open Examples-→

  even : ℕ → Set
  even zero = Unit
  even (suc zero) = Empty
  even (suc (suc n)) = even n

  6-is-even : even 6
  6-is-even = tt

  5-is-not-even : ¬ (even 5)
  5-is-not-even = absurd
  
  there-is-an-even-number : ℕ × even
  there-is-an-even-number = 6 , 6-is-even

module Equality where
  open ITT
  
  data _≡_ {a} {A : Set a} : A → A → Set a where
    refl : ∀ x → x ≡ x

  ≡-elim : ∀ {a b} {A : Set a}
    (P : (x y : A) → x ≡ y → Set b) →
    ∀ {x y} → P x x (refl x) → (x≡y : x ≡ y) → P x y x≡y
  ≡-elim P p (refl x) = p

  subst : ∀ {A : Set} (P : A → Set) → ∀ {x y} → (x≡y : x ≡ y) → P x → P y
  subst P x≡y p = ≡-elim (λ _ y _ → P y) p x≡y

  sym : ∀ {A : Set} (x y : A) → x ≡ y → y ≡ x
  sym x y p = subst (λ y′ → y′ ≡ x) p (refl x)

  trans : ∀ {A : Set} (x y z : A) → x ≡ y → y ≡ z → x ≡ z
  trans x y z p q = subst (λ z′ → x ≡ z′) q p

  cong : ∀ {A B : Set} (x y : A) → x ≡ y → (f : A → B) → f x ≡ f y 
  cong x y p f = subst (λ y′ → f x ≡ f y′) p (refl (f x))
\end{code}

\nocite{*}
\bibliographystyle{authordate1}
\bibliography{thesis}

\end{document}