summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile1
-rw-r--r--thesis.lagda13
2 files changed, 7 insertions, 7 deletions
diff --git a/Makefile b/Makefile
index ad3f550..a5e8cc6 100644
--- a/Makefile
+++ b/Makefile
@@ -33,4 +33,3 @@ clean: cleanup
cleanup:
rm -f *.log *.aux *.nav *.snm *.toc *.vrb *.out *.bbl *.blg *.agdai
-
diff --git a/thesis.lagda b/thesis.lagda
index 985c611..4407487 100644
--- a/thesis.lagda
+++ b/thesis.lagda
@@ -15,6 +15,7 @@
\usepackage[conor]{agda}
\renewcommand{\AgdaKeywordFontStyle}[1]{\ensuremath{\mathrm{\underline{#1}}}}
\renewcommand{\AgdaFunction}[1]{\textbf{\textcolor{AgdaFunction}{#1}}}
+\renewcommand{\AgdaField}{\AgdaFunction}
\definecolor{AgdaBound} {HTML}{000000}
\DeclareUnicodeCharacter{9665}{\ensuremath{\lhd}}
@@ -39,12 +40,12 @@
\begin{document}
-%if False
+\iffalse
\begin{code}
module thesis where
open import Level
\end{code}
-%endif
+\fi
\maketitle
@@ -98,7 +99,7 @@ different things:
\begin{tabular}{c | l}
$\mytyc{Sans}$ & Type constructors. \\
$\myind{sans}$ & Data constructors. \\
- $\myfld{sans}$ & Field accessors (e.g. \myfld{fst} and \myfld{snd} for products). \\
+ % $\myfld{sans}$ & Field accessors (e.g. \myfld{fst} and \myfld{snd} for products). \\
$\mysyn{roman}$ & Syntax of the language. \\
$\myfun{roman}$ & Defined values. \\
$\myb{math}$ & Bound variables.
@@ -123,12 +124,12 @@ module ITT where
field
fst : A
snd : B fst
- open _×_ public
data Bool : Set where
true false : Bool
- if_/_then_else_ : ∀ {a} (x : Bool) → (P : Bool → Set a) → P true → P false → P x
+ if_/_then_else_ : ∀ {a}
+ (x : Bool) → (P : Bool → Set a) → P true → P false → P x
if true / _ then x else _ = x
if false / _ then _ else x = x
@@ -140,7 +141,7 @@ module ITT where
((s : S) → -- given a shape...
(f : P s → W S P) → -- ...and a bunch of kids...
((p : P s) → C (f p)) → -- ...and C for each kid in the bunch...
- C (_◁_ s f)) → -- ...does C hold for the node?
+ C (s ◁ f)) → -- ...does C hold for the node?
(x : W S P) → -- If so, ...
C x -- ...C always holds.
rec C c (s ◁ f) = c s f (λ p → rec C c (f p))