summaryrefslogtreecommitdiff
path: root/target/linux/lantiq/patches
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/lantiq/patches')
-rw-r--r--target/linux/lantiq/patches/000-mips-bad-intctl.patch35
-rw-r--r--target/linux/lantiq/patches/010-mips_clocksource_init_war.patch33
-rw-r--r--target/linux/lantiq/patches/020-genirq_fix.patch12
-rw-r--r--target/linux/lantiq/patches/100-board.patch641
-rw-r--r--target/linux/lantiq/patches/101-header.patch136
-rw-r--r--target/linux/lantiq/patches/104-board_xway.patch3129
-rw-r--r--target/linux/lantiq/patches/105-header_xway.patch565
-rw-r--r--target/linux/lantiq/patches/106-early_printk.patch93
-rw-r--r--target/linux/lantiq/patches/110-machine.patch55
-rw-r--r--target/linux/lantiq/patches/200-serial.patch799
-rw-r--r--target/linux/lantiq/patches/210-nor.patch245
-rw-r--r--target/linux/lantiq/patches/211-nor_split.patch99
-rw-r--r--target/linux/lantiq/patches/230-xway_etop.patch580
-rw-r--r--target/linux/lantiq/patches/250-watchdog.patch246
-rw-r--r--target/linux/lantiq/patches/260-pci.patch436
-rw-r--r--target/linux/lantiq/patches/270-crypto.patch6209
-rw-r--r--target/linux/lantiq/patches/300-udp_redirect.patch346
-rw-r--r--target/linux/lantiq/patches/310-atm_hack.patch42
-rw-r--r--target/linux/lantiq/patches/400-mach-arv45xx.patch211
-rw-r--r--target/linux/lantiq/patches/700-dwc_otg.patch15693
-rw-r--r--target/linux/lantiq/patches/809-mt-vpe.patch1173
-rw-r--r--target/linux/lantiq/patches/810-ar9-cache-split.patch301
-rw-r--r--target/linux/lantiq/patches/900-pci_ath5k_hook.patch40
23 files changed, 31119 insertions, 0 deletions
diff --git a/target/linux/lantiq/patches/000-mips-bad-intctl.patch b/target/linux/lantiq/patches/000-mips-bad-intctl.patch
new file mode 100644
index 0000000000..7c0f52db06
--- /dev/null
+++ b/target/linux/lantiq/patches/000-mips-bad-intctl.patch
@@ -0,0 +1,35 @@
+--- a/arch/mips/kernel/traps.c
++++ b/arch/mips/kernel/traps.c
+@@ -1496,7 +1496,18 @@ void __cpuinit per_cpu_trap_init(void)
+ if (cpu_has_mips_r2) {
+ cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
+ cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
++
++ if (!cp0_compare_irq)
++ cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
++
+ cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
++
++ if (!cp0_perfcount_irq)
++ cp0_perfcount_irq = CP0_LEGACY_PERFCNT_IRQ;
++
++ if (arch_fixup_c0_irqs)
++ arch_fixup_c0_irqs();
++
+ if (cp0_perfcount_irq == cp0_compare_irq)
+ cp0_perfcount_irq = -1;
+ } else {
+--- a/arch/mips/include/asm/irq.h
++++ b/arch/mips/include/asm/irq.h
+@@ -133,9 +133,11 @@ extern void free_irqno(unsigned int irq)
+ * IE7. Since R2 their number has to be read from the c0_intctl register.
+ */
+ #define CP0_LEGACY_COMPARE_IRQ 7
++#define CP0_LEGACY_PERFCNT_IRQ 7
+
+ extern int cp0_compare_irq;
+ extern int cp0_compare_irq_shift;
+ extern int cp0_perfcount_irq;
++extern void __weak arch_fixup_c0_irqs(void);
+
+ #endif /* _ASM_IRQ_H */
diff --git a/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch b/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch
new file mode 100644
index 0000000000..81eabc6dcd
--- /dev/null
+++ b/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch
@@ -0,0 +1,33 @@
+--- a/arch/mips/kernel/cevt-r4k.c
++++ b/arch/mips/kernel/cevt-r4k.c
+@@ -22,6 +22,22 @@
+
+ #ifndef CONFIG_MIPS_MT_SMTC
+
++/*
++ * Compare interrupt can be routed and latched outside the core,
++ * so a single execution hazard barrier may not be enough to give
++ * it time to clear as seen in the Cause register. 4 time the
++ * pipeline depth seems reasonably conservative, and empirically
++ * works better in configurations with high CPU/bus clock ratios.
++ */
++
++#define compare_change_hazard() \
++ do { \
++ irq_disable_hazard(); \
++ irq_disable_hazard(); \
++ irq_disable_hazard(); \
++ irq_disable_hazard(); \
++ } while (0)
++
+ static int mips_next_event(unsigned long delta,
+ struct clock_event_device *evt)
+ {
+@@ -31,6 +47,7 @@ static int mips_next_event(unsigned long
+ cnt = read_c0_count();
+ cnt += delta;
+ write_c0_compare(cnt);
++ compare_change_hazard();
+ res = ((int)(read_c0_count() - cnt) > 0) ? -ETIME : 0;
+ return res;
+ }
diff --git a/target/linux/lantiq/patches/020-genirq_fix.patch b/target/linux/lantiq/patches/020-genirq_fix.patch
new file mode 100644
index 0000000000..0503d0d2ac
--- /dev/null
+++ b/target/linux/lantiq/patches/020-genirq_fix.patch
@@ -0,0 +1,12 @@
+--- a/kernel/irq/chip.c
++++ b/kernel/irq/chip.c
+@@ -650,6 +650,9 @@ handle_percpu_irq(unsigned int irq, stru
+
+ kstat_incr_irqs_this_cpu(irq, desc);
+
++ if (unlikely(!desc->action || (desc->status & IRQ_DISABLED)))
++ return;
++
+ if (desc->chip->ack)
+ desc->chip->ack(irq);
+
diff --git a/target/linux/lantiq/patches/100-board.patch b/target/linux/lantiq/patches/100-board.patch
new file mode 100644
index 0000000000..201fa96737
--- /dev/null
+++ b/target/linux/lantiq/patches/100-board.patch
@@ -0,0 +1,641 @@
+--- a/arch/mips/Kconfig
++++ b/arch/mips/Kconfig
+@@ -139,6 +139,9 @@ config MACH_DECSTATION
+
+ otherwise choose R3000.
+
++config LANTIQ
++ bool "Lantiq MIPS"
++
+ config MACH_JAZZ
+ bool "Jazz family of machines"
+ select ARC
+@@ -693,6 +696,7 @@ source "arch/mips/txx9/Kconfig"
+ source "arch/mips/vr41xx/Kconfig"
+ source "arch/mips/cavium-octeon/Kconfig"
+ source "arch/mips/loongson/Kconfig"
++source "arch/mips/lantiq/Kconfig"
+
+ endmenu
+
+--- a/arch/mips/Makefile
++++ b/arch/mips/Makefile
+@@ -317,6 +317,17 @@ cflags-$(CONFIG_MIPS_COBALT) += -I$(srct
+ load-$(CONFIG_MIPS_COBALT) += 0xffffffff80080000
+
+ #
++# Lantiq
++#
++load-$(CONFIG_LANTIQ) += 0xffffffff80002000
++core-$(CONFIG_LANTIQ) += arch/mips/lantiq/
++cflags-$(CONFIG_LANTIQ) += -I$(srctree)/arch/mips/include/asm/mach-lantiq
++core-$(CONFIG_SOC_LANTIQ_FALCON) += arch/mips/lantiq/falcon/
++cflags-$(CONFIG_SOC_LANTIQ_FALCON) += -I$(srctree)/arch/mips/include/asm/mach-lantiq/falcon
++core-$(CONFIG_SOC_LANTIQ_XWAY) += arch/mips/lantiq/xway/
++cflags-$(CONFIG_SOC_LANTIQ_XWAY) += -I$(srctree)/arch/mips/include/asm/mach-lantiq/xway
++
++#
+ # DECstation family
+ #
+ core-$(CONFIG_MACH_DECSTATION) += arch/mips/dec/
+--- /dev/null
++++ b/arch/mips/lantiq/Kconfig
+@@ -0,0 +1,36 @@
++if LANTIQ
++
++config SOC_LANTIQ
++ bool
++ select DMA_NONCOHERENT
++ select IRQ_CPU
++ select CEVT_R4K
++ select CSRC_R4K
++ select SYS_HAS_CPU_MIPS32_R1
++ select SYS_HAS_CPU_MIPS32_R2
++ select SYS_SUPPORTS_BIG_ENDIAN
++ select SYS_SUPPORTS_32BIT_KERNEL
++ select SYS_SUPPORTS_MULTITHREADING
++ select SYS_HAS_EARLY_PRINTK
++ select HW_HAS_PCI
++ select ARCH_REQUIRE_GPIOLIB
++ select SWAP_IO_SPACE
++ select MIPS_MACHINE
++
++choice
++ prompt "SoC Type"
++ default SOC_LANTIQ_XWAY
++
++#config SOC_LANTIQ_FALCON
++# bool "FALCON"
++# select SOC_LANTIQ
++
++config SOC_LANTIQ_XWAY
++ bool "XWAY"
++ select SOC_LANTIQ
++endchoice
++
++#source "arch/mips/lantiq/falcon/Kconfig"
++source "arch/mips/lantiq/xway/Kconfig"
++
++endif
+--- /dev/null
++++ b/arch/mips/lantiq/Makefile
+@@ -0,0 +1,2 @@
++obj-y := irq.o setup.o clk.o prom.o
++obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
+--- /dev/null
++++ b/arch/mips/lantiq/irq.c
+@@ -0,0 +1,212 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/module.h>
++#include <linux/interrupt.h>
++
++#include <asm/bootinfo.h>
++#include <asm/irq_cpu.h>
++
++#include <lantiq.h>
++#include <irq.h>
++
++#define LQ_ICU_BASE_ADDR (KSEG1 | 0x1F880200)
++
++#define LQ_ICU_IM0_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0000))
++#define LQ_ICU_IM0_IER ((u32 *)(LQ_ICU_BASE_ADDR + 0x0008))
++#define LQ_ICU_IM0_IOSR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0010))
++#define LQ_ICU_IM0_IRSR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0018))
++#define LQ_ICU_IM0_IMR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0020))
++
++#define LQ_ICU_IM1_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0028))
++#define LQ_ICU_IM2_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0050))
++#define LQ_ICU_IM3_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0078))
++#define LQ_ICU_IM4_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x00A0))
++
++#define LQ_ICU_OFFSET (LQ_ICU_IM1_ISR - LQ_ICU_IM0_ISR)
++
++void
++lq_disable_irq(unsigned int irq_nr)
++{
++ u32 *ier = LQ_ICU_IM0_IER;
++ irq_nr -= INT_NUM_IRQ0;
++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET);
++ irq_nr %= INT_NUM_IM_OFFSET;
++ lq_w32(lq_r32(ier) & ~(1 << irq_nr), ier);
++}
++EXPORT_SYMBOL(lq_disable_irq);
++
++void
++lq_mask_and_ack_irq(unsigned int irq_nr)
++{
++ u32 *ier = LQ_ICU_IM0_IER;
++ u32 *isr = LQ_ICU_IM0_ISR;
++ irq_nr -= INT_NUM_IRQ0;
++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET);
++ isr += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET);
++ irq_nr %= INT_NUM_IM_OFFSET;
++ lq_w32(lq_r32(ier) & ~(1 << irq_nr), ier);
++ lq_w32((1 << irq_nr), isr);
++}
++EXPORT_SYMBOL(lq_mask_and_ack_irq);
++
++static void
++lq_ack_irq(unsigned int irq_nr)
++{
++ u32 *isr = LQ_ICU_IM0_ISR;
++ irq_nr -= INT_NUM_IRQ0;
++ isr += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET);
++ irq_nr %= INT_NUM_IM_OFFSET;
++ lq_w32((1 << irq_nr), isr);
++}
++
++void
++lq_enable_irq(unsigned int irq_nr)
++{
++ u32 *ier = LQ_ICU_IM0_IER;
++ irq_nr -= INT_NUM_IRQ0;
++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET);
++ irq_nr %= INT_NUM_IM_OFFSET;
++ lq_w32(lq_r32(ier) | (1 << irq_nr), ier);
++}
++EXPORT_SYMBOL(lq_enable_irq);
++
++static unsigned int
++lq_startup_irq(unsigned int irq)
++{
++ lq_enable_irq(irq);
++ return 0;
++}
++
++static void
++lq_end_irq(unsigned int irq)
++{
++ if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS)))
++ lq_enable_irq(irq);
++}
++
++static struct irq_chip
++lq_irq_type = {
++ "lq_irq",
++ .startup = lq_startup_irq,
++ .enable = lq_enable_irq,
++ .disable = lq_disable_irq,
++ .unmask = lq_enable_irq,
++ .ack = lq_ack_irq,
++ .mask = lq_disable_irq,
++ .mask_ack = lq_mask_and_ack_irq,
++ .end = lq_end_irq,
++};
++
++static void
++lq_hw_irqdispatch(int module)
++{
++ u32 irq;
++
++ irq = lq_r32(LQ_ICU_IM0_IOSR + (module * LQ_ICU_OFFSET));
++ if (irq == 0)
++ return;
++
++ /* silicon bug causes only the msb set to 1 to be valid. all
++ other bits might be bogus */
++ irq = __fls(irq);
++ do_IRQ((int)irq + INT_NUM_IM0_IRL0 + (INT_NUM_IM_OFFSET * module));
++}
++
++#define DEFINE_HWx_IRQDISPATCH(x) \
++static void lq_hw ## x ## _irqdispatch(void)\
++{\
++ lq_hw_irqdispatch(x); \
++}
++static void lq_hw5_irqdispatch(void)
++{
++ do_IRQ(MIPS_CPU_TIMER_IRQ);
++}
++DEFINE_HWx_IRQDISPATCH(0)
++DEFINE_HWx_IRQDISPATCH(1)
++DEFINE_HWx_IRQDISPATCH(2)
++DEFINE_HWx_IRQDISPATCH(3)
++DEFINE_HWx_IRQDISPATCH(4)
++/*DEFINE_HWx_IRQDISPATCH(5)*/
++
++asmlinkage void
++plat_irq_dispatch(void)
++{
++ unsigned int pending = read_c0_status() & read_c0_cause() & ST0_IM;
++ unsigned int i;
++
++ if (pending & CAUSEF_IP7)
++ {
++ do_IRQ(MIPS_CPU_TIMER_IRQ);
++ goto out;
++ } else {
++ for (i = 0; i < 5; i++)
++ {
++ if (pending & (CAUSEF_IP2 << i))
++ {
++ lq_hw_irqdispatch(i);
++ goto out;
++ }
++ }
++ }
++ printk(KERN_ALERT "Spurious IRQ: CAUSE=0x%08x\n", read_c0_status());
++
++out:
++ return;
++}
++
++static struct irqaction
++cascade = {
++ .handler = no_action,
++ .flags = IRQF_DISABLED,
++ .name = "cascade",
++};
++
++void __init
++arch_init_irq(void)
++{
++ int i;
++
++ for (i = 0; i < 5; i++)
++ lq_w32(0, LQ_ICU_IM0_IER + (i * LQ_ICU_OFFSET));
++
++ mips_cpu_irq_init();
++
++ for (i = 2; i <= 6; i++)
++ setup_irq(i, &cascade);
++
++ if (cpu_has_vint) {
++ printk(KERN_INFO "Setting up vectored interrupts\n");
++ set_vi_handler(2, lq_hw0_irqdispatch);
++ set_vi_handler(3, lq_hw1_irqdispatch);
++ set_vi_handler(4, lq_hw2_irqdispatch);
++ set_vi_handler(5, lq_hw3_irqdispatch);
++ set_vi_handler(6, lq_hw4_irqdispatch);
++ set_vi_handler(7, lq_hw5_irqdispatch);
++ }
++
++ for (i = INT_NUM_IRQ0; i <= (INT_NUM_IRQ0 + (5 * INT_NUM_IM_OFFSET)); i++)
++ set_irq_chip_and_handler(i, &lq_irq_type,
++ handle_level_irq);
++
++ #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
++ set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 |
++ IE_IRQ3 | IE_IRQ4 | IE_IRQ5);
++ #else
++ set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ0 | IE_IRQ1 |
++ IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5);
++ #endif
++}
++
++void __cpuinit
++arch_fixup_c0_irqs(void)
++{
++ /* FIXME: check for CPUID and only do fix for specific chips/versions */
++ cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
++ cp0_perfcount_irq = CP0_LEGACY_PERFCNT_IRQ;
++}
+--- /dev/null
++++ b/arch/mips/lantiq/setup.c
+@@ -0,0 +1,47 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/io.h>
++#include <linux/ioport.h>
++
++#include <lantiq.h>
++#include <lantiq_regs.h>
++
++void __init
++plat_mem_setup(void)
++{
++ /* assume 16M as default */
++ int memsize = 16;
++ char **envp = (char **) KSEG1ADDR(fw_arg2);
++ u32 status;
++
++ /* make sure to have no "reverse endian" for user mode! */
++ status = read_c0_status();
++ status &= (~(1<<25));
++ write_c0_status(status);
++
++ ioport_resource.start = IOPORT_RESOURCE_START;
++ ioport_resource.end = IOPORT_RESOURCE_END;
++ iomem_resource.start = IOMEM_RESOURCE_START;
++ iomem_resource.end = IOMEM_RESOURCE_END;
++
++ while (*envp)
++ {
++ char *e = (char *)KSEG1ADDR(*envp);
++ if (!strncmp(e, "memsize=", 8))
++ {
++ e += 8;
++ memsize = simple_strtoul(e, NULL, 10);
++ }
++ envp++;
++ }
++ memsize *= 1024 * 1024;
++ add_memory_region(0x00000000, memsize, BOOT_MEM_RAM);
++}
+--- /dev/null
++++ b/arch/mips/lantiq/clk.c
+@@ -0,0 +1,141 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 Thomas Langer, Lantiq Deutschland
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/io.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/kernel.h>
++#include <linux/types.h>
++#include <linux/clk.h>
++#include <linux/err.h>
++#include <linux/list.h>
++
++#include <asm/time.h>
++#include <asm/irq.h>
++#include <asm/div64.h>
++
++#include <lantiq.h>
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++#include <xway.h>
++#endif
++
++extern unsigned long lq_get_cpu_hz(void);
++extern unsigned long lq_get_fpi_hz(void);
++extern unsigned long lq_get_io_region_clock(void);
++
++struct clk {
++ const char *name;
++ unsigned long rate;
++ unsigned long (*get_rate) (void);
++};
++
++static struct clk *cpu_clk = 0;
++static int cpu_clk_cnt = 0;
++
++static unsigned int r4k_offset;
++static unsigned int r4k_cur;
++
++static struct clk cpu_clk_generic[] = {
++ {
++ .name = "cpu",
++ .get_rate = lq_get_cpu_hz,
++ }, {
++ .name = "fpi",
++ .get_rate = lq_get_fpi_hz,
++ }, {
++ .name = "io",
++ .get_rate = lq_get_io_region_clock,
++ },
++};
++
++void
++clk_init(void)
++{
++ int i;
++ cpu_clk = cpu_clk_generic;
++ cpu_clk_cnt = ARRAY_SIZE(cpu_clk_generic);
++ for(i = 0; i < cpu_clk_cnt; i++)
++ printk("%s: %ld\n", cpu_clk[i].name, clk_get_rate(&cpu_clk[i]));
++}
++
++static inline int
++clk_good(struct clk *clk)
++{
++ return clk && !IS_ERR(clk);
++}
++
++unsigned long
++clk_get_rate(struct clk *clk)
++{
++ if (unlikely(!clk_good(clk)))
++ return 0;
++
++ if (clk->rate != 0)
++ return clk->rate;
++
++ if (clk->get_rate != NULL)
++ return clk->get_rate();
++
++ return 0;
++}
++EXPORT_SYMBOL(clk_get_rate);
++
++struct clk*
++clk_get(struct device *dev, const char *id)
++{
++ int i;
++ for(i = 0; i < cpu_clk_cnt; i++)
++ if (!strcmp(id, cpu_clk[i].name))
++ return &cpu_clk[i];
++ BUG();
++ return ERR_PTR(-ENOENT);
++}
++EXPORT_SYMBOL(clk_get);
++
++void
++clk_put(struct clk *clk)
++{
++ /* not used */
++}
++EXPORT_SYMBOL(clk_put);
++
++static inline u32
++lq_get_counter_resolution(void)
++{
++ u32 res;
++ __asm__ __volatile__(
++ ".set push\n"
++ ".set mips32r2\n"
++ ".set noreorder\n"
++ "rdhwr %0, $3\n"
++ "ehb\n"
++ ".set pop\n"
++ : "=&r" (res)
++ : /* no input */
++ : "memory");
++ instruction_hazard();
++ return res;
++}
++
++void __init
++plat_time_init(void)
++{
++ struct clk *clk = clk_get(0, "cpu");
++ mips_hpt_frequency = clk_get_rate(clk) / lq_get_counter_resolution();
++ r4k_cur = (read_c0_count() + r4k_offset);
++ write_c0_compare(r4k_cur);
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++#define LQ_GPTU_GPT_CLC ((u32 *)(LQ_GPTU_BASE_ADDR + 0x0000))
++ lq_pmu_enable(PMU_GPT);
++ lq_pmu_enable(PMU_FPI);
++
++ lq_w32(0x100, LQ_GPTU_GPT_CLC);
++#endif
++}
+--- /dev/null
++++ b/arch/mips/lantiq/prom.c
+@@ -0,0 +1,118 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/module.h>
++#include <linux/clk.h>
++#include <asm/bootinfo.h>
++#include <asm/time.h>
++
++#include <lantiq.h>
++
++#include "prom.h"
++
++static struct lq_soc_info soc_info;
++
++/* for Multithreading (APRP) on MIPS34K */
++unsigned long physical_memsize;
++
++/* all access to the ebu must be locked */
++DEFINE_SPINLOCK(ebu_lock);
++EXPORT_SYMBOL_GPL(ebu_lock);
++
++extern void clk_init(void);
++
++unsigned int
++lq_get_cpu_ver(void)
++{
++ return soc_info.rev;
++}
++EXPORT_SYMBOL(lq_get_cpu_ver);
++
++unsigned int
++lq_get_soc_type(void)
++{
++ return soc_info.type;
++}
++EXPORT_SYMBOL(lq_get_soc_type);
++
++const char*
++get_system_type(void)
++{
++ return soc_info.sys_type;
++}
++
++void
++prom_free_prom_memory(void)
++{
++}
++
++#ifdef CONFIG_IMAGE_CMDLINE_HACK
++extern char __image_cmdline[];
++
++static void __init
++prom_init_image_cmdline(void)
++{
++ char *p = __image_cmdline;
++ int replace = 0;
++
++ if (*p == '-') {
++ replace = 1;
++ p++;
++ }
++
++ if (*p == '\0')
++ return;
++
++ if (replace) {
++ strlcpy(arcs_cmdline, p, sizeof(arcs_cmdline));
++ } else {
++ strlcat(arcs_cmdline, " ", sizeof(arcs_cmdline));
++ strlcat(arcs_cmdline, p, sizeof(arcs_cmdline));
++ }
++}
++#else
++static void __init prom_init_image_cmdline(void) { return; }
++#endif
++
++static void __init
++prom_init_cmdline(void)
++{
++ int argc = fw_arg0;
++ char **argv = (char**)KSEG1ADDR(fw_arg1);
++ int i;
++
++ arcs_cmdline[0] = '\0';
++ if(argc)
++ for (i = 1; i < argc; i++)
++ {
++ strlcat(arcs_cmdline, (char*)KSEG1ADDR(argv[i]), COMMAND_LINE_SIZE);
++ if(i + 1 != argc)
++ strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
++ }
++
++ if (!*arcs_cmdline)
++ strcpy(&(arcs_cmdline[0]),
++ "console=ttyS1,115200 rootfstype=squashfs,jffs2");
++ prom_init_image_cmdline();
++}
++
++void __init
++prom_init(void)
++{
++ struct clk *clk;
++ lq_soc_detect(&soc_info);
++
++ clk_init();
++ clk = clk_get(0, "cpu");
++ snprintf(soc_info.sys_type, LQ_SYS_TYPE_LEN - 1, "%s rev1.%d %ldMhz",
++ soc_info.name, soc_info.rev, clk_get_rate(clk) / 1000000);
++ soc_info.sys_type[LQ_SYS_TYPE_LEN - 1] = '\0';
++ printk("SoC: %s\n", soc_info.sys_type);
++
++ prom_init_cmdline();
++}
+--- /dev/null
++++ b/arch/mips/lantiq/prom.h
+@@ -0,0 +1,24 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LQ_PROM_H__
++#define _LQ_PROM_H__
++
++#define LQ_SYS_TYPE_LEN 0x100
++
++struct lq_soc_info {
++ unsigned char *name;
++ unsigned int rev;
++ unsigned int partnum;
++ unsigned int type;
++ unsigned char sys_type[LQ_SYS_TYPE_LEN];
++};
++
++void lq_soc_detect(struct lq_soc_info *i);
++
++#endif
diff --git a/target/linux/lantiq/patches/101-header.patch b/target/linux/lantiq/patches/101-header.patch
new file mode 100644
index 0000000000..3d0caf2f16
--- /dev/null
+++ b/target/linux/lantiq/patches/101-header.patch
@@ -0,0 +1,136 @@
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/war.h
+@@ -0,0 +1,24 @@
++/*
++ * This file is subject to the terms and conditions of the GNU General Public
++ * License. See the file "COPYING" in the main directory of this archive
++ * for more details.
++ *
++ */
++#ifndef __ASM_MIPS_MACH_LANTIQ_WAR_H
++#define __ASM_MIPS_MACH_LANTIQ_WAR_H
++
++#define R4600_V1_INDEX_ICACHEOP_WAR 0
++#define R4600_V1_HIT_CACHEOP_WAR 0
++#define R4600_V2_HIT_CACHEOP_WAR 0
++#define R5432_CP0_INTERRUPT_WAR 0
++#define BCM1250_M3_WAR 0
++#define SIBYTE_1956_WAR 0
++#define MIPS4K_ICACHE_REFILL_WAR 0
++#define MIPS_CACHE_SYNC_WAR 0
++#define TX49XX_ICACHE_INDEX_INV_WAR 0
++#define RM9000_CDEX_SMP_WAR 0
++#define ICACHE_REFILLS_WORKAROUND_WAR 0
++#define R10000_LLSC_WAR 0
++#define MIPS34K_MISSED_ITLB_WAR 0
++
++#endif
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/lantiq.h
+@@ -0,0 +1,47 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LANTIQ_H__
++#define _LANTIQ_H__
++
++/* generic reg access functions */
++#define lq_r32(reg) __raw_readl(reg)
++#define lq_w32(val, reg) __raw_writel(val, reg)
++#define lq_w32_mask(clear, set, reg) lq_w32((lq_r32(reg) & ~clear) | set, reg)
++
++extern unsigned int lq_get_cpu_ver(void);
++extern unsigned int lq_get_soc_type(void);
++
++/* clock speeds */
++#define CLOCK_60M 60000000
++#define CLOCK_83M 83333333
++#define CLOCK_111M 111111111
++#define CLOCK_111M 111111111
++#define CLOCK_133M 133333333
++#define CLOCK_167M 166666667
++#define CLOCK_200M 200000000
++#define CLOCK_333M 333333333
++#define CLOCK_400M 400000000
++
++/* spinlock all ebu i/o */
++extern spinlock_t ebu_lock;
++
++/* some irq helpers */
++extern void lq_disable_irq(unsigned int irq_nr);
++extern void lq_mask_and_ack_irq(unsigned int irq_nr);
++extern void lq_enable_irq(unsigned int irq_nr);
++
++#define IOPORT_RESOURCE_START 0x10000000
++#define IOPORT_RESOURCE_END 0xffffffff
++#define IOMEM_RESOURCE_START 0x10000000
++#define IOMEM_RESOURCE_END 0xffffffff
++
++#define LQ_FLASH_START 0x10000000
++#define LQ_FLASH_MAX 0x04000000
++
++#endif
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/lantiq_regs.h
+@@ -0,0 +1,17 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LANTIQ_REGS_H__
++#define _LANTIQ_REGS_H__
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++#include <xway.h>
++#include <xway_irq.h>
++#endif
++
++#endif
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/lantiq_platform.h
+@@ -0,0 +1,36 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LANTIQ_PLATFORM_H__
++#define _LANTIQ_PLATFORM_H__
++
++#include <linux/mtd/partitions.h>
++
++/* struct used to pass info to network drivers */
++enum {
++ MII_MODE,
++ REV_MII_MODE,
++};
++
++struct lq_eth_data {
++ unsigned char *mac;
++ int mii_mode;
++};
++
++/* struct used to pass info to the pci core */
++enum {
++ PCI_CLOCK_INT = 0,
++ PCI_CLOCK_EXT
++};
++
++struct lq_pci_data {
++ int clock;
++ int req_mask;
++};
++
++#endif
diff --git a/target/linux/lantiq/patches/104-board_xway.patch b/target/linux/lantiq/patches/104-board_xway.patch
new file mode 100644
index 0000000000..1aaeab63e1
--- /dev/null
+++ b/target/linux/lantiq/patches/104-board_xway.patch
@@ -0,0 +1,3129 @@
+
+--- /dev/null
++++ b/arch/mips/lantiq/xway/Kconfig
+@@ -0,0 +1,19 @@
++if SOC_LANTIQ_XWAY
++
++menu "Mips Machine"
++
++config LANTIQ_MACH_EASY50812
++ bool "Easy50812"
++ default y
++
++config LANTIQ_MACH_EASY50712
++ bool "Easy50712"
++ default y
++
++config LANTIQ_MACH_EASY4010
++ bool "Easy4010"
++ default y
++
++endmenu
++
++endif
+--- /dev/null
++++ b/arch/mips/lantiq/xway/gpio_ebu.c
+@@ -0,0 +1,107 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/platform_device.h>
++#include <linux/mutex.h>
++#include <linux/gpio.h>
++
++#include <xway.h>
++
++#define LQ_EBU_BUSCON 0x1e7ff
++#define LQ_EBU_WP 0x80000000
++
++static int shadow = 0x0000;
++static void __iomem *virt;
++
++static int
++lq_ebu_direction_output(struct gpio_chip *chip, unsigned offset, int value)
++{
++ return 0;
++}
++
++static void
++lq_ebu_set(struct gpio_chip *chip, unsigned offset, int value)
++{
++ unsigned long flags;
++ if(value)
++ shadow |= (1 << offset);
++ else
++ shadow &= ~(1 << offset);
++ spin_lock_irqsave(&ebu_lock, flags);
++ lq_w32(LQ_EBU_BUSCON, LQ_EBU_BUSCON1);
++ *((__u16*)virt) = shadow;
++ lq_w32(LQ_EBU_BUSCON | LQ_EBU_WP, LQ_EBU_BUSCON1);
++ spin_unlock_irqrestore(&ebu_lock, flags);
++}
++
++static struct gpio_chip
++lq_ebu_chip =
++{
++ .label = "lq_ebu",
++ .direction_output = lq_ebu_direction_output,
++ .set = lq_ebu_set,
++ .base = 32,
++ .ngpio = 16,
++ .can_sleep = 1,
++ .owner = THIS_MODULE,
++};
++
++static int __devinit
++lq_ebu_probe(struct platform_device *pdev)
++{
++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ int ret = 0;
++ if (!res)
++ return -ENOENT;
++ res = request_mem_region(res->start, resource_size(res),
++ dev_name(&pdev->dev));
++ if (!res)
++ return -EBUSY;
++
++ /* tell the ebu controller which mem addr we will be using */
++ lq_w32(pdev->resource->start | 0x1, LQ_EBU_ADDRSEL1);
++ lq_w32(LQ_EBU_BUSCON | LQ_EBU_WP, LQ_EBU_BUSCON1);
++
++ virt = ioremap_nocache(res->start, resource_size(res));
++ if (!virt)
++ {
++ dev_err(&pdev->dev, "Failed to ioremap mem region\n");
++ ret = -ENOMEM;
++ goto err_release_mem_region;
++ }
++ /* grab the default settings passed form the platform code */
++ shadow = (unsigned int) pdev->dev.platform_data;
++
++ ret = gpiochip_add(&lq_ebu_chip);
++ if (!ret)
++ return 0;
++
++err_release_mem_region:
++ release_mem_region(res->start, resource_size(res));
++ return ret;
++}
++
++static struct platform_driver
++lq_ebu_driver = {
++ .probe = lq_ebu_probe,
++ .driver = {
++ .name = "lq_ebu",
++ .owner = THIS_MODULE,
++ },
++};
++
++static int __init
++init_lq_ebu(void)
++{
++ return platform_driver_register(&lq_ebu_driver);
++}
++
++arch_initcall(init_lq_ebu);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/gpio_leds.c
+@@ -0,0 +1,161 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2007 John Crispin <blogic@openwrt.org>
++ *
++ */
++
++#include <linux/slab.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/platform_device.h>
++#include <linux/mutex.h>
++#include <linux/gpio.h>
++
++#include <xway.h>
++
++#define LQ_STP_BASE 0x1E100BB0
++#define LQ_STP_SIZE 0x40
++
++#define LQ_STP_CON0 0x00
++#define LQ_STP_CON1 0x04
++#define LQ_STP_CPU0 0x08
++#define LQ_STP_CPU1 0x0C
++#define LQ_STP_AR 0x10
++
++#define STP_CON0_SWU (1 << 31)
++
++#define LQ_STP_2HZ (0)
++#define LQ_STP_4HZ (1 << 23)
++#define LQ_STP_8HZ (2 << 23)
++#define LQ_STP_10HZ (3 << 23)
++#define LQ_STP_MASK (0xf << 23)
++
++#define LQ_STP_UPD_SRC_FPI (1 << 31)
++#define LQ_STP_UPD_MASK (3 << 30)
++#define LQ_STP_ADSL_SRC (3 << 24)
++
++#define LQ_STP_GROUP0 (1 << 0)
++
++#define LQ_STP_RISING 0
++#define LQ_STP_FALLING (1 << 26)
++#define LQ_STP_EDGE_MASK (1 << 26)
++
++#define lq_stp_r32(reg) __raw_readl(virt + reg)
++#define lq_stp_w32(val, reg) __raw_writel(val, virt + reg)
++#define lq_stp_w32_mask(clear, set, reg) \
++ lq_w32((lq_r32(virt + reg) & ~clear) | set, virt + reg)
++
++static int shadow = 0xffff;
++static void __iomem *virt;
++
++static int
++lq_stp_direction_output(struct gpio_chip *chip, unsigned offset, int value)
++{
++ return 0;
++}
++
++static void
++lq_stp_set(struct gpio_chip *chip, unsigned offset, int value)
++{
++ if(value)
++ shadow |= (1 << offset);
++ else
++ shadow &= ~(1 << offset);
++ lq_stp_w32(shadow, LQ_STP_CPU0);
++}
++
++static struct gpio_chip lq_stp_chip =
++{
++ .label = "lq_stp",
++ .direction_output = lq_stp_direction_output,
++ .set = lq_stp_set,
++ .base = 48,
++ .ngpio = 24,
++ .can_sleep = 1,
++ .owner = THIS_MODULE,
++};
++
++static int
++lq_stp_hw_init(void)
++{
++ /* the 3 pins used to control the external stp */
++ lq_gpio_request(4, 1, 0, 1, "stp-st");
++ lq_gpio_request(5, 1, 0, 1, "stp-d");
++ lq_gpio_request(6, 1, 0, 1, "stp-sh");
++
++ /* sane defaults */
++ lq_stp_w32(0, LQ_STP_AR);
++ lq_stp_w32(0, LQ_STP_CPU0);
++ lq_stp_w32(0, LQ_STP_CPU1);
++ lq_stp_w32(STP_CON0_SWU, LQ_STP_CON0);
++ lq_stp_w32(0, LQ_STP_CON1);
++
++ /* rising or falling edge */
++ lq_stp_w32_mask(LQ_STP_EDGE_MASK, LQ_STP_FALLING, LQ_STP_CON0);
++
++ /* per default stp 15-0 are set */
++ lq_stp_w32_mask(0, LQ_STP_GROUP0, LQ_STP_CON1);
++
++ /* stp are update periodically by the FPID */
++ lq_stp_w32_mask(LQ_STP_UPD_MASK, LQ_STP_UPD_SRC_FPI, LQ_STP_CON1);
++
++ /* set stp update speed */
++ lq_stp_w32_mask(LQ_STP_MASK, LQ_STP_8HZ, LQ_STP_CON1);
++
++ /* adsl 0 and 1 stp are updated by the arc */
++ lq_stp_w32_mask(0, LQ_STP_ADSL_SRC, LQ_STP_CON0);
++
++ lq_pmu_enable(PMU_LED);
++ return 0;
++}
++
++static int
++lq_stp_probe(struct platform_device *pdev)
++{
++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ int ret = 0;
++ if (!res)
++ return -ENOENT;
++ res = request_mem_region(res->start, resource_size(res),
++ dev_name(&pdev->dev));
++ if (!res)
++ return -EBUSY;
++ virt = ioremap_nocache(res->start, resource_size(res));
++ if(!virt)
++ {
++ ret = -ENOMEM;
++ goto err_release_mem_region;
++ }
++ ret = gpiochip_add(&lq_stp_chip);
++ if(!ret)
++ return lq_stp_hw_init();
++
++ iounmap(virt);
++err_release_mem_region:
++ release_mem_region(res->start, resource_size(res));
++ return ret;
++}
++
++static struct platform_driver lq_stp_driver = {
++ .probe = lq_stp_probe,
++ .driver = {
++ .name = "lq_stp",
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init
++init_lq_stp(void)
++{
++ int ret = platform_driver_register(&lq_stp_driver);
++ if (ret)
++ printk(KERN_INFO
++ "lq_stp: error registering platfom driver");
++ return ret;
++}
++
++arch_initcall(init_lq_stp);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/mach-easy4010.c
+@@ -0,0 +1,79 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/gpio.h>
++#include <linux/gpio_buttons.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/physmap.h>
++#include <linux/input.h>
++
++#include <machine.h>
++
++#include <xway.h>
++#include <lantiq_platform.h>
++
++#include "devices.h"
++
++#ifdef CONFIG_MTD_PARTITIONS
++static struct mtd_partition easy4010_partitions[] =
++{
++ {
++ .name = "uboot",
++ .offset = 0x0,
++ .size = 0x20000,
++ },
++ {
++ .name = "uboot_env",
++ .offset = 0x20000,
++ .size = 0x10000,
++ },
++ {
++ .name = "linux",
++ .offset = 0x30000,
++ .size = 0x3D0000,
++ },
++};
++#endif
++
++static struct physmap_flash_data easy4010_flash_data = {
++#ifdef CONFIG_MTD_PARTITIONS
++ .nr_parts = ARRAY_SIZE(easy4010_partitions),
++ .parts = easy4010_partitions,
++#endif
++};
++
++static struct lq_pci_data lq_pci_data = {
++ .clock = PCI_CLOCK_INT,
++ .req_mask = 0xf,
++};
++
++static struct lq_eth_data lq_eth_data = {
++ .mii_mode = REV_MII_MODE,
++};
++
++static void __init
++easy4010_init(void)
++{
++ lq_register_gpio();
++ lq_register_gpio_stp();
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_nor(&easy4010_flash_data);
++ lq_register_wdt();
++ lq_register_pci(&lq_pci_data);
++ lq_register_ethernet(&lq_eth_data);
++}
++
++MIPS_MACHINE(LANTIQ_MACH_EASY4010,
++ "EASY4010",
++ "EASY4010 Eval Board",
++ easy4010_init);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/mach-easy50712.c
+@@ -0,0 +1,79 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/gpio.h>
++#include <linux/gpio_buttons.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/physmap.h>
++#include <linux/input.h>
++
++#include <machine.h>
++
++#include <xway.h>
++#include <lantiq_platform.h>
++
++#include "devices.h"
++
++#ifdef CONFIG_MTD_PARTITIONS
++static struct mtd_partition easy50712_partitions[] =
++{
++ {
++ .name = "uboot",
++ .offset = 0x0,
++ .size = 0x20000,
++ },
++ {
++ .name = "uboot_env",
++ .offset = 0x20000,
++ .size = 0x10000,
++ },
++ {
++ .name = "linux",
++ .offset = 0x30000,
++ .size = 0x3D0000,
++ },
++};
++#endif
++
++static struct physmap_flash_data easy50712_flash_data = {
++#ifdef CONFIG_MTD_PARTITIONS
++ .nr_parts = ARRAY_SIZE(easy50712_partitions),
++ .parts = easy50712_partitions,
++#endif
++};
++
++static struct lq_pci_data lq_pci_data = {
++ .clock = PCI_CLOCK_INT,
++ .req_mask = 0xf,
++};
++
++static struct lq_eth_data lq_eth_data = {
++ .mii_mode = REV_MII_MODE,
++};
++
++static void __init
++easy50712_init(void)
++{
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_gpio();
++ lq_register_gpio_stp();
++ lq_register_nor(&easy50712_flash_data);
++ lq_register_wdt();
++ lq_register_pci(&lq_pci_data);
++ lq_register_ethernet(&lq_eth_data);
++}
++
++MIPS_MACHINE(LANTIQ_MACH_EASY50712,
++ "EASY50712",
++ "EASY50712 Eval Board",
++ easy50712_init);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/mach-easy50812.c
+@@ -0,0 +1,78 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/gpio.h>
++#include <linux/gpio_buttons.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/physmap.h>
++#include <linux/input.h>
++
++#include <machine.h>
++
++#include <xway.h>
++#include <lantiq_platform.h>
++
++#include "devices.h"
++
++#ifdef CONFIG_MTD_PARTITIONS
++static struct mtd_partition easy50812_partitions[] =
++{
++ {
++ .name = "uboot",
++ .offset = 0x0,
++ .size = 0x40000,
++ },
++ {
++ .name = "uboot_env",
++ .offset = 0x40000,
++ .size = 0x10000,
++ },
++ {
++ .name = "linux",
++ .offset = 0x50000,
++ .size = 0x3B0000,
++ },
++};
++#endif
++
++static struct physmap_flash_data easy50812_flash_data = {
++#ifdef CONFIG_MTD_PARTITIONS
++ .nr_parts = ARRAY_SIZE(easy50812_partitions),
++ .parts = easy50812_partitions,
++#endif
++};
++
++static struct lq_pci_data lq_pci_data = {
++ .clock = PCI_CLOCK_INT,
++ .req_mask = 0xf,
++};
++
++static struct lq_eth_data lq_eth_data = {
++ .mii_mode = REV_MII_MODE,
++};
++
++static void __init
++easy50812_init(void)
++{
++ lq_register_gpio();
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_nor(&easy50812_flash_data);
++ lq_register_wdt();
++ lq_register_pci(&lq_pci_data);
++ lq_register_ethernet(&lq_eth_data);
++}
++
++MIPS_MACHINE(LANTIQ_MACH_EASY50812,
++ "EASY50812",
++ "EASY50812 Eval Board",
++ easy50812_init);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/prom.c
+@@ -0,0 +1,52 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/module.h>
++#include <linux/clk.h>
++#include <asm/bootinfo.h>
++#include <asm/time.h>
++
++#include <xway.h>
++
++#include "../prom.h"
++
++#define SOC_DANUBE "Danube"
++#define SOC_TWINPASS "Twinpass"
++#define SOC_AR9 "AR9"
++
++void __init
++lq_soc_detect(struct lq_soc_info *i)
++{
++ i->partnum = (lq_r32(LQ_MPS_CHIPID) & 0x0FFFFFFF) >> 12;
++ i->rev = (lq_r32(LQ_MPS_CHIPID) & 0xF0000000) >> 28;
++ switch (i->partnum)
++ {
++ case SOC_ID_DANUBE1:
++ case SOC_ID_DANUBE2:
++ i->name = SOC_DANUBE;
++ i->type = SOC_TYPE_DANUBE;
++ break;
++
++ case SOC_ID_TWINPASS:
++ i->name = SOC_TWINPASS;
++ i->type = SOC_TYPE_DANUBE;
++ break;
++
++ case SOC_ID_ARX188:
++ case SOC_ID_ARX168:
++ case SOC_ID_ARX182:
++ i->name = SOC_AR9;
++ i->type = SOC_TYPE_AR9;
++ break;
++
++ default:
++ printk(KERN_ERR "unknown chiprev : 0x%08X\n", i->partnum);
++ while(1) { };
++ break;
++ }
++}
+--- /dev/null
++++ b/arch/mips/lantiq/xway/devices.c
+@@ -0,0 +1,278 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/string.h>
++#include <linux/mtd/physmap.h>
++#include <linux/kernel.h>
++#include <linux/reboot.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/etherdevice.h>
++#include <linux/reboot.h>
++#include <linux/time.h>
++#include <linux/io.h>
++#include <linux/gpio.h>
++#include <linux/leds.h>
++
++#include <asm/bootinfo.h>
++#include <asm/irq.h>
++
++#include <xway.h>
++#include <xway_irq.h>
++#include <lantiq_platform.h>
++
++#define IRQ_RES(resname,irq) {.name=#resname,.start=(irq),.flags=IORESOURCE_IRQ}
++
++/* gpio leds */
++static struct gpio_led_platform_data lq_gpio_led_data;
++
++static struct platform_device lq_gpio_leds =
++{
++ .name = "leds-gpio",
++ .dev = {
++ .platform_data = (void *) &lq_gpio_led_data,
++ }
++};
++
++void __init
++lq_register_gpio_leds(struct gpio_led *leds, int cnt)
++{
++ lq_gpio_led_data.leds = leds;
++ lq_gpio_led_data.num_leds = cnt;
++ platform_device_register(&lq_gpio_leds);
++}
++
++/* serial to parallel conversion */
++static struct resource lq_stp_resource =
++{
++ .name = "stp",
++ .start = LQ_STP_BASE,
++ .end = LQ_STP_BASE + LQ_STP_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++};
++
++void __init
++lq_register_gpio_stp(void)
++{
++ platform_device_register_simple("lq_stp", 0, &lq_stp_resource, 1);
++}
++
++/* nor flash */
++static struct resource lq_nor_resource =
++{
++ .name = "nor",
++ .start = LQ_FLASH_START,
++ .end = LQ_FLASH_START + LQ_FLASH_MAX - 1,
++ .flags = IORESOURCE_MEM,
++};
++
++static struct platform_device lq_nor =
++{
++ .name = "lq_nor",
++ .resource = &lq_nor_resource,
++ .num_resources = 1,
++};
++
++void __init
++lq_register_nor(struct physmap_flash_data *data)
++{
++ lq_nor.dev.platform_data = data;
++ platform_device_register(&lq_nor);
++}
++
++/* watchdog */
++static struct resource lq_wdt_resource =
++{
++ .name = "watchdog",
++ .start = LQ_WDT_BASE,
++ .end = LQ_WDT_BASE + LQ_WDT_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++};
++
++void __init
++lq_register_wdt(void)
++{
++ platform_device_register_simple("lq_wdt", 0, &lq_wdt_resource, 1);
++}
++
++/* gpio */
++static struct resource lq_gpio_resource[] = {
++ {
++ .name = "gpio0",
++ .start = LQ_GPIO0_BASE_ADDR,
++ .end = LQ_GPIO0_BASE_ADDR + LQ_GPIO_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ }, {
++ .name = "gpio1",
++ .start = LQ_GPIO1_BASE_ADDR,
++ .end = LQ_GPIO1_BASE_ADDR + LQ_GPIO_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ }
++};
++
++void __init
++lq_register_gpio(void)
++{
++ platform_device_register_simple("lq_gpio", 0, &lq_gpio_resource[0], 1);
++ platform_device_register_simple("lq_gpio", 1, &lq_gpio_resource[1], 1);
++}
++
++/* pci */
++static struct platform_device lq_pci =
++{
++ .name = "lq_pci",
++ .num_resources = 0,
++};
++
++void __init
++lq_register_pci(struct lq_pci_data *data)
++{
++ lq_pci.dev.platform_data = data;
++ platform_device_register(&lq_pci);
++}
++
++/* ebu */
++static struct resource lq_ebu_resource =
++{
++ .name = "gpio_ebu",
++ .start = LQ_EBU_GPIO_START,
++ .end = LQ_EBU_GPIO_START + LQ_EBU_GPIO_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++};
++
++void __init
++lq_register_gpio_ebu(unsigned int value)
++{
++ platform_device_register_simple("lq_ebu", 0, &lq_ebu_resource, 1);
++}
++
++/* ethernet */
++unsigned char lq_ethaddr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
++
++static int __init
++lq_set_ethaddr(char *str)
++{
++ sscanf(&str[8], "0%02hhx:0%02hhx:0%02hhx:0%02hhx:0%02hhx:0%02hhx",
++ &lq_ethaddr[0], &lq_ethaddr[1], &lq_ethaddr[2],
++ &lq_ethaddr[3], &lq_ethaddr[4], &lq_ethaddr[5]);
++ return 0;
++}
++__setup("ethaddr=", lq_set_ethaddr);
++
++static struct resource lq_ethernet_resources =
++{
++ .name = "etop",
++ .start = LQ_PPE32_BASE_ADDR,
++ .end = LQ_PPE32_BASE_ADDR + LQ_PPE32_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++};
++
++static struct platform_device lq_ethernet =
++{
++ .name = "lq_etop",
++ .resource = &lq_ethernet_resources,
++ .num_resources = 1,
++};
++
++void __init
++lq_register_ethernet(struct lq_eth_data *eth)
++{
++ if(!eth)
++ return;
++ if(!eth->mac)
++ eth->mac = lq_ethaddr;
++ if(!is_valid_ether_addr(eth->mac))
++ random_ether_addr(eth->mac);
++ lq_ethernet.dev.platform_data = eth;
++ platform_device_register(&lq_ethernet);
++}
++
++/* tapi */
++static struct resource mps_resources[] = {
++ {
++ .name = "voice-mem",
++ .flags = IORESOURCE_MEM,
++ .start = 0x1f107000,
++ .end = 0x1f1073ff,
++ },
++ {
++ .name = "voice-mailbox",
++ .flags = IORESOURCE_MEM,
++ .start = 0x1f200000,
++ .end = 0x1f2007ff,
++ },
++};
++
++static struct platform_device mps_device = {
++ .name = "mps",
++ .resource = mps_resources,
++ .num_resources = ARRAY_SIZE(mps_resources),
++};
++
++static struct platform_device vmmc_device = {
++ .name = "vmmc",
++ .dev = {
++ .parent = &mps_device.dev,
++ },
++};
++
++void __init
++lq_register_tapi(void)
++{
++#define CP1_SIZE (1 << 20)
++ dma_addr_t dma;
++ mps_device.dev.platform_data =
++ (void*)CPHYSADDR(dma_alloc_coherent(NULL, CP1_SIZE, &dma, GFP_ATOMIC));
++ platform_device_register(&mps_device);
++ platform_device_register(&vmmc_device);
++}
++
++/* asc ports */
++static struct resource lq_asc0_resources[] =
++{
++ {
++ .start = LQ_ASC0_BASE,
++ .end = LQ_ASC0_BASE + LQ_ASC_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ },
++ IRQ_RES(tx, INT_NUM_IM3_IRL0),
++ IRQ_RES(rx, INT_NUM_IM3_IRL0 + 1),
++ IRQ_RES(err, INT_NUM_IM3_IRL0 + 2),
++};
++
++static struct resource lq_asc1_resources[] =
++{
++ {
++ .start = LQ_ASC1_BASE,
++ .end = LQ_ASC1_BASE + LQ_ASC_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ },
++ IRQ_RES(tx, INT_NUM_IM3_IRL0 + 8),
++ IRQ_RES(rx, INT_NUM_IM3_IRL0 + 9),
++ IRQ_RES(err, INT_NUM_IM3_IRL0 + 10),
++};
++
++void __init
++lq_register_asc(int port)
++{
++ switch (port) {
++ case 0:
++ platform_device_register_simple("lq_asc", 0,
++ lq_asc0_resources, ARRAY_SIZE(lq_asc0_resources));
++ break;
++ case 1:
++ platform_device_register_simple("lq_asc", 1,
++ lq_asc1_resources, ARRAY_SIZE(lq_asc1_resources));
++ break;
++ default:
++ break;
++ }
++}
+--- /dev/null
++++ b/arch/mips/lantiq/xway/devices.h
+@@ -0,0 +1,24 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LQ_DEVICES_H__
++#define _LQ_DEVICES_H__
++
++#include <lantiq_platform.h>
++
++extern void __init lq_register_gpio(void);
++extern void __init lq_register_gpio_stp(void);
++extern void __init lq_register_gpio_ebu(unsigned int value);
++extern void __init lq_register_gpio_leds(struct gpio_led *leds, int cnt);
++extern void __init lq_register_pci(struct lq_pci_data *data);
++extern void __init lq_register_nor(struct physmap_flash_data *data);
++extern void __init lq_register_wdt(void);
++extern void __init lq_register_ethernet(struct lq_eth_data *eth);
++extern void __init lq_register_asc(int port);
++
++#endif
+--- /dev/null
++++ b/arch/mips/lantiq/xway/dma.c
+@@ -0,0 +1,701 @@
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/sched.h>
++#include <linux/kernel.h>
++#include <linux/slab.h>
++#include <linux/string.h>
++#include <linux/timer.h>
++#include <linux/fs.h>
++#include <linux/errno.h>
++#include <linux/stat.h>
++#include <linux/mm.h>
++#include <linux/tty.h>
++#include <linux/selection.h>
++#include <linux/kmod.h>
++#include <linux/vmalloc.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <linux/uaccess.h>
++#include <linux/errno.h>
++#include <linux/io.h>
++
++#include <xway.h>
++#include <xway_irq.h>
++#include <xway_dma.h>
++
++#define LQ_DMA_CS ((u32 *)(LQ_DMA_BASE_ADDR + 0x18))
++#define LQ_DMA_CIE ((u32 *)(LQ_DMA_BASE_ADDR + 0x2C))
++#define LQ_DMA_IRNEN ((u32 *)(LQ_DMA_BASE_ADDR + 0xf4))
++#define LQ_DMA_CCTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x1C))
++#define LQ_DMA_CIS ((u32 *)(LQ_DMA_BASE_ADDR + 0x28))
++#define LQ_DMA_CDLEN ((u32 *)(LQ_DMA_BASE_ADDR + 0x24))
++#define LQ_DMA_PS ((u32 *)(LQ_DMA_BASE_ADDR + 0x40))
++#define LQ_DMA_PCTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x44))
++#define LQ_DMA_CTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x10))
++#define LQ_DMA_CPOLL ((u32 *)(LQ_DMA_BASE_ADDR + 0x14))
++#define LQ_DMA_CDBA ((u32 *)(LQ_DMA_BASE_ADDR + 0x20))
++
++/*25 descriptors for each dma channel,4096/8/20=25.xx*/
++#define LQ_DMA_DESCRIPTOR_OFFSET 25
++
++#define MAX_DMA_DEVICE_NUM 6 /*max ports connecting to dma */
++#define MAX_DMA_CHANNEL_NUM 20 /*max dma channels */
++#define DMA_INT_BUDGET 100 /*budget for interrupt handling */
++#define DMA_POLL_COUNTER 4 /*fix me, set the correct counter value here! */
++
++extern void lq_mask_and_ack_irq(unsigned int irq_nr);
++extern void lq_enable_irq(unsigned int irq_nr);
++extern void lq_disable_irq(unsigned int irq_nr);
++
++u64 *g_desc_list;
++struct dma_device_info dma_devs[MAX_DMA_DEVICE_NUM];
++struct dma_channel_info dma_chan[MAX_DMA_CHANNEL_NUM];
++
++static const char *global_device_name[MAX_DMA_DEVICE_NUM] =
++ { "PPE", "DEU", "SPI", "SDIO", "MCTRL0", "MCTRL1" };
++
++struct dma_chan_map default_dma_map[MAX_DMA_CHANNEL_NUM] = {
++ {"PPE", LQ_DMA_RX, 0, LQ_DMA_CH0_INT, 0},
++ {"PPE", LQ_DMA_TX, 0, LQ_DMA_CH1_INT, 0},
++ {"PPE", LQ_DMA_RX, 1, LQ_DMA_CH2_INT, 1},
++ {"PPE", LQ_DMA_TX, 1, LQ_DMA_CH3_INT, 1},
++ {"PPE", LQ_DMA_RX, 2, LQ_DMA_CH4_INT, 2},
++ {"PPE", LQ_DMA_TX, 2, LQ_DMA_CH5_INT, 2},
++ {"PPE", LQ_DMA_RX, 3, LQ_DMA_CH6_INT, 3},
++ {"PPE", LQ_DMA_TX, 3, LQ_DMA_CH7_INT, 3},
++ {"DEU", LQ_DMA_RX, 0, LQ_DMA_CH8_INT, 0},
++ {"DEU", LQ_DMA_TX, 0, LQ_DMA_CH9_INT, 0},
++ {"DEU", LQ_DMA_RX, 1, LQ_DMA_CH10_INT, 1},
++ {"DEU", LQ_DMA_TX, 1, LQ_DMA_CH11_INT, 1},
++ {"SPI", LQ_DMA_RX, 0, LQ_DMA_CH12_INT, 0},
++ {"SPI", LQ_DMA_TX, 0, LQ_DMA_CH13_INT, 0},
++ {"SDIO", LQ_DMA_RX, 0, LQ_DMA_CH14_INT, 0},
++ {"SDIO", LQ_DMA_TX, 0, LQ_DMA_CH15_INT, 0},
++ {"MCTRL0", LQ_DMA_RX, 0, LQ_DMA_CH16_INT, 0},
++ {"MCTRL0", LQ_DMA_TX, 0, LQ_DMA_CH17_INT, 0},
++ {"MCTRL1", LQ_DMA_RX, 1, LQ_DMA_CH18_INT, 1},
++ {"MCTRL1", LQ_DMA_TX, 1, LQ_DMA_CH19_INT, 1}
++};
++
++struct dma_chan_map *chan_map = default_dma_map;
++volatile u32 g_lq_dma_int_status;
++volatile int g_lq_dma_in_process; /* 0=not in process, 1=in process */
++
++void do_dma_tasklet(unsigned long);
++DECLARE_TASKLET(dma_tasklet, do_dma_tasklet, 0);
++
++u8 *common_buffer_alloc(int len, int *byte_offset, void **opt)
++{
++ u8 *buffer = kmalloc(len * sizeof(u8), GFP_KERNEL);
++
++ *byte_offset = 0;
++
++ return buffer;
++}
++
++void common_buffer_free(u8 *dataptr, void *opt)
++{
++ kfree(dataptr);
++}
++
++void enable_ch_irq(struct dma_channel_info *pCh)
++{
++ int chan_no = (int)(pCh - dma_chan);
++ unsigned long flag;
++
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(0x4a, LQ_DMA_CIE);
++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN);
++ local_irq_restore(flag);
++ lq_enable_irq(pCh->irq);
++}
++
++void disable_ch_irq(struct dma_channel_info *pCh)
++{
++ unsigned long flag;
++ int chan_no = (int) (pCh - dma_chan);
++
++ local_irq_save(flag);
++ g_lq_dma_int_status &= ~(1 << chan_no);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(0, LQ_DMA_CIE);
++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN);
++ local_irq_restore(flag);
++ lq_mask_and_ack_irq(pCh->irq);
++}
++
++void open_chan(struct dma_channel_info *pCh)
++{
++ unsigned long flag;
++ int chan_no = (int)(pCh - dma_chan);
++
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 1, LQ_DMA_CCTRL);
++ if (pCh->dir == LQ_DMA_RX)
++ enable_ch_irq(pCh);
++ local_irq_restore(flag);
++}
++
++void close_chan(struct dma_channel_info *pCh)
++{
++ unsigned long flag;
++ int chan_no = (int) (pCh - dma_chan);
++
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL);
++ disable_ch_irq(pCh);
++ local_irq_restore(flag);
++}
++
++void reset_chan(struct dma_channel_info *pCh)
++{
++ int chan_no = (int) (pCh - dma_chan);
++
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL);
++}
++
++void rx_chan_intr_handler(int chan_no)
++{
++ struct dma_device_info *pDev = (struct dma_device_info *)dma_chan[chan_no].dma_dev;
++ struct dma_channel_info *pCh = &dma_chan[chan_no];
++ struct rx_desc *rx_desc_p;
++ int tmp;
++ unsigned long flag;
++
++ /*handle command complete interrupt */
++ rx_desc_p = (struct rx_desc *)pCh->desc_base + pCh->curr_desc;
++ if (rx_desc_p->status.field.OWN == CPU_OWN
++ && rx_desc_p->status.field.C
++ && rx_desc_p->status.field.data_length < 1536){
++ /* Every thing is correct, then we inform the upper layer */
++ pDev->current_rx_chan = pCh->rel_chan_no;
++ if (pDev->intr_handler)
++ pDev->intr_handler(pDev, RCV_INT);
++ pCh->weight--;
++ } else {
++ local_irq_save(flag);
++ tmp = lq_r32(LQ_DMA_CS);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(lq_r32(LQ_DMA_CIS) | 0x7e, LQ_DMA_CIS);
++ lq_w32(tmp, LQ_DMA_CS);
++ g_lq_dma_int_status &= ~(1 << chan_no);
++ local_irq_restore(flag);
++ lq_enable_irq(dma_chan[chan_no].irq);
++ }
++}
++
++inline void tx_chan_intr_handler(int chan_no)
++{
++ struct dma_device_info *pDev = (struct dma_device_info *)dma_chan[chan_no].dma_dev;
++ struct dma_channel_info *pCh = &dma_chan[chan_no];
++ int tmp;
++ unsigned long flag;
++
++ local_irq_save(flag);
++ tmp = lq_r32(LQ_DMA_CS);
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(lq_r32(LQ_DMA_CIS) | 0x7e, LQ_DMA_CIS);
++ lq_w32(tmp, LQ_DMA_CS);
++ g_lq_dma_int_status &= ~(1 << chan_no);
++ local_irq_restore(flag);
++ pDev->current_tx_chan = pCh->rel_chan_no;
++ if (pDev->intr_handler)
++ pDev->intr_handler(pDev, TRANSMIT_CPT_INT);
++}
++
++void do_dma_tasklet(unsigned long unused)
++{
++ int i;
++ int chan_no = 0;
++ int budget = DMA_INT_BUDGET;
++ int weight = 0;
++ unsigned long flag;
++
++ while (g_lq_dma_int_status) {
++ if (budget-- < 0) {
++ tasklet_schedule(&dma_tasklet);
++ return;
++ }
++ chan_no = -1;
++ weight = 0;
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) {
++ if ((g_lq_dma_int_status & (1 << i)) && dma_chan[i].weight > 0) {
++ if (dma_chan[i].weight > weight) {
++ chan_no = i;
++ weight = dma_chan[chan_no].weight;
++ }
++ }
++ }
++
++ if (chan_no >= 0) {
++ if (chan_map[chan_no].dir == LQ_DMA_RX)
++ rx_chan_intr_handler(chan_no);
++ else
++ tx_chan_intr_handler(chan_no);
++ } else {
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++)
++ dma_chan[i].weight = dma_chan[i].default_weight;
++ }
++ }
++
++ local_irq_save(flag);
++ g_lq_dma_in_process = 0;
++ if (g_lq_dma_int_status) {
++ g_lq_dma_in_process = 1;
++ tasklet_schedule(&dma_tasklet);
++ }
++ local_irq_restore(flag);
++}
++
++irqreturn_t dma_interrupt(int irq, void *dev_id)
++{
++ struct dma_channel_info *pCh;
++ int chan_no = 0;
++ int tmp;
++
++ pCh = (struct dma_channel_info *)dev_id;
++ chan_no = (int)(pCh - dma_chan);
++ if (chan_no < 0 || chan_no > 19)
++ BUG();
++
++ tmp = lq_r32(LQ_DMA_IRNEN);
++ lq_w32(0, LQ_DMA_IRNEN);
++ g_lq_dma_int_status |= 1 << chan_no;
++ lq_w32(tmp, LQ_DMA_IRNEN);
++ lq_mask_and_ack_irq(irq);
++
++ if (!g_lq_dma_in_process) {
++ g_lq_dma_in_process = 1;
++ tasklet_schedule(&dma_tasklet);
++ }
++
++ return IRQ_HANDLED;
++}
++
++struct dma_device_info *dma_device_reserve(char *dev_name)
++{
++ int i;
++
++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) {
++ if (strcmp(dev_name, dma_devs[i].device_name) == 0) {
++ if (dma_devs[i].reserved)
++ return NULL;
++ dma_devs[i].reserved = 1;
++ break;
++ }
++ }
++
++ return &dma_devs[i];
++}
++EXPORT_SYMBOL(dma_device_reserve);
++
++void dma_device_release(struct dma_device_info *dev)
++{
++ dev->reserved = 0;
++}
++EXPORT_SYMBOL(dma_device_release);
++
++void dma_device_register(struct dma_device_info *dev)
++{
++ int i, j;
++ int chan_no = 0;
++ u8 *buffer;
++ int byte_offset;
++ unsigned long flag;
++ struct dma_device_info *pDev;
++ struct dma_channel_info *pCh;
++ struct rx_desc *rx_desc_p;
++ struct tx_desc *tx_desc_p;
++
++ for (i = 0; i < dev->max_tx_chan_num; i++) {
++ pCh = dev->tx_chan[i];
++ if (pCh->control == LQ_DMA_CH_ON) {
++ chan_no = (int)(pCh - dma_chan);
++ for (j = 0; j < pCh->desc_len; j++) {
++ tx_desc_p = (struct tx_desc *)pCh->desc_base + j;
++ memset(tx_desc_p, 0, sizeof(struct tx_desc));
++ }
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ /* check if the descriptor length is changed */
++ if (lq_r32(LQ_DMA_CDLEN) != pCh->desc_len)
++ lq_w32(pCh->desc_len, LQ_DMA_CDLEN);
++
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL);
++ while (lq_r32(LQ_DMA_CCTRL) & 2)
++ ;
++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN);
++ lq_w32(0x30100, LQ_DMA_CCTRL); /* reset and enable channel,enable channel later */
++ local_irq_restore(flag);
++ }
++ }
++
++ for (i = 0; i < dev->max_rx_chan_num; i++) {
++ pCh = dev->rx_chan[i];
++ if (pCh->control == LQ_DMA_CH_ON) {
++ chan_no = (int)(pCh - dma_chan);
++
++ for (j = 0; j < pCh->desc_len; j++) {
++ rx_desc_p = (struct rx_desc *)pCh->desc_base + j;
++ pDev = (struct dma_device_info *)(pCh->dma_dev);
++ buffer = pDev->buffer_alloc(pCh->packet_size, &byte_offset, (void *)&(pCh->opt[j]));
++ if (!buffer)
++ break;
++
++ dma_cache_inv((unsigned long) buffer, pCh->packet_size);
++
++ rx_desc_p->Data_Pointer = (u32)CPHYSADDR((u32)buffer);
++ rx_desc_p->status.word = 0;
++ rx_desc_p->status.field.byte_offset = byte_offset;
++ rx_desc_p->status.field.OWN = DMA_OWN;
++ rx_desc_p->status.field.data_length = pCh->packet_size;
++ }
++
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ /* check if the descriptor length is changed */
++ if (lq_r32(LQ_DMA_CDLEN) != pCh->desc_len)
++ lq_w32(pCh->desc_len, LQ_DMA_CDLEN);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL);
++ while (lq_r32(LQ_DMA_CCTRL) & 2)
++ ;
++ lq_w32(0x0a, LQ_DMA_CIE); /* fix me, should enable all the interrupts here? */
++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN);
++ lq_w32(0x30000, LQ_DMA_CCTRL);
++ local_irq_restore(flag);
++ lq_enable_irq(dma_chan[chan_no].irq);
++ }
++ }
++}
++EXPORT_SYMBOL(dma_device_register);
++
++void dma_device_unregister(struct dma_device_info *dev)
++{
++ int i, j;
++ int chan_no;
++ struct dma_channel_info *pCh;
++ struct rx_desc *rx_desc_p;
++ struct tx_desc *tx_desc_p;
++ unsigned long flag;
++
++ for (i = 0; i < dev->max_tx_chan_num; i++) {
++ pCh = dev->tx_chan[i];
++ if (pCh->control == LQ_DMA_CH_ON) {
++ chan_no = (int)(dev->tx_chan[i] - dma_chan);
++ local_irq_save(flag);
++ lq_w32(chan_no, LQ_DMA_CS);
++ pCh->curr_desc = 0;
++ pCh->prev_desc = 0;
++ pCh->control = LQ_DMA_CH_OFF;
++ lq_w32(0, LQ_DMA_CIE); /* fix me, should disable all the interrupts here? */
++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN); /* disable interrupts */
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL);
++ while (lq_r32(LQ_DMA_CCTRL) & 1)
++ ;
++ local_irq_restore(flag);
++
++ for (j = 0; j < pCh->desc_len; j++) {
++ tx_desc_p = (struct tx_desc *)pCh->desc_base + j;
++ if ((tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C)
++ || (tx_desc_p->status.field.OWN == DMA_OWN && tx_desc_p->status.field.data_length > 0)) {
++ dev->buffer_free((u8 *) __va(tx_desc_p->Data_Pointer), (void *)pCh->opt[j]);
++ }
++ tx_desc_p->status.field.OWN = CPU_OWN;
++ memset(tx_desc_p, 0, sizeof(struct tx_desc));
++ }
++ /* TODO should free buffer that is not transferred by dma */
++ }
++ }
++
++ for (i = 0; i < dev->max_rx_chan_num; i++) {
++ pCh = dev->rx_chan[i];
++ chan_no = (int)(dev->rx_chan[i] - dma_chan);
++ lq_disable_irq(pCh->irq);
++
++ local_irq_save(flag);
++ g_lq_dma_int_status &= ~(1 << chan_no);
++ pCh->curr_desc = 0;
++ pCh->prev_desc = 0;
++ pCh->control = LQ_DMA_CH_OFF;
++
++ lq_w32(chan_no, LQ_DMA_CS);
++ lq_w32(0, LQ_DMA_CIE); /* fix me, should disable all the interrupts here? */
++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN); /* disable interrupts */
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL);
++ while (lq_r32(LQ_DMA_CCTRL) & 1)
++ ;
++
++ local_irq_restore(flag);
++ for (j = 0; j < pCh->desc_len; j++) {
++ rx_desc_p = (struct rx_desc *) pCh->desc_base + j;
++ if ((rx_desc_p->status.field.OWN == CPU_OWN
++ && rx_desc_p->status.field.C)
++ || (rx_desc_p->status.field.OWN == DMA_OWN
++ && rx_desc_p->status.field.data_length > 0)) {
++ dev->buffer_free((u8 *)
++ __va(rx_desc_p->Data_Pointer),
++ (void *) pCh->opt[j]);
++ }
++ }
++ }
++}
++EXPORT_SYMBOL(dma_device_unregister);
++
++int dma_device_read(struct dma_device_info *dma_dev, u8 **dataptr, void **opt)
++{
++ u8 *buf;
++ int len;
++ int byte_offset = 0;
++ void *p = NULL;
++ struct dma_channel_info *pCh = dma_dev->rx_chan[dma_dev->current_rx_chan];
++ struct rx_desc *rx_desc_p;
++
++ /* get the rx data first */
++ rx_desc_p = (struct rx_desc *) pCh->desc_base + pCh->curr_desc;
++ if (!(rx_desc_p->status.field.OWN == CPU_OWN && rx_desc_p->status.field.C))
++ return 0;
++
++ buf = (u8 *) __va(rx_desc_p->Data_Pointer);
++ *(u32 *)dataptr = (u32)buf;
++ len = rx_desc_p->status.field.data_length;
++
++ if (opt)
++ *(int *)opt = (int)pCh->opt[pCh->curr_desc];
++
++ /* replace with a new allocated buffer */
++ buf = dma_dev->buffer_alloc(pCh->packet_size, &byte_offset, &p);
++
++ if (buf) {
++ dma_cache_inv((unsigned long) buf, pCh->packet_size);
++ pCh->opt[pCh->curr_desc] = p;
++ wmb();
++
++ rx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) buf);
++ rx_desc_p->status.word = (DMA_OWN << 31) | ((byte_offset) << 23) | pCh->packet_size;
++ wmb();
++ } else {
++ *(u32 *) dataptr = 0;
++ if (opt)
++ *(int *) opt = 0;
++ len = 0;
++ }
++
++ /* increase the curr_desc pointer */
++ pCh->curr_desc++;
++ if (pCh->curr_desc == pCh->desc_len)
++ pCh->curr_desc = 0;
++
++ return len;
++}
++EXPORT_SYMBOL(dma_device_read);
++
++int dma_device_write(struct dma_device_info *dma_dev, u8 *dataptr, int len, void *opt)
++{
++ unsigned long flag;
++ u32 tmp, byte_offset;
++ struct dma_channel_info *pCh;
++ int chan_no;
++ struct tx_desc *tx_desc_p;
++ local_irq_save(flag);
++
++ pCh = dma_dev->tx_chan[dma_dev->current_tx_chan];
++ chan_no = (int)(pCh - (struct dma_channel_info *) dma_chan);
++
++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->prev_desc;
++ while (tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C) {
++ dma_dev->buffer_free((u8 *) __va(tx_desc_p->Data_Pointer), pCh->opt[pCh->prev_desc]);
++ memset(tx_desc_p, 0, sizeof(struct tx_desc));
++ pCh->prev_desc = (pCh->prev_desc + 1) % (pCh->desc_len);
++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->prev_desc;
++ }
++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->curr_desc;
++ /* Check whether this descriptor is available */
++ if (tx_desc_p->status.field.OWN == DMA_OWN || tx_desc_p->status.field.C) {
++ /* if not, the tell the upper layer device */
++ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT);
++ local_irq_restore(flag);
++ printk(KERN_INFO "%s %d: failed to write!\n", __func__, __LINE__);
++
++ return 0;
++ }
++ pCh->opt[pCh->curr_desc] = opt;
++ /* byte offset----to adjust the starting address of the data buffer, should be multiple of the burst length. */
++ byte_offset = ((u32) CPHYSADDR((u32) dataptr)) % ((dma_dev->tx_burst_len) * 4);
++ dma_cache_wback((unsigned long) dataptr, len);
++ wmb();
++ tx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) dataptr) - byte_offset;
++ wmb();
++ tx_desc_p->status.word = (DMA_OWN << 31) | DMA_DESC_SOP_SET | DMA_DESC_EOP_SET | ((byte_offset) << 23) | len;
++ wmb();
++
++ pCh->curr_desc++;
++ if (pCh->curr_desc == pCh->desc_len)
++ pCh->curr_desc = 0;
++
++ /*Check whether this descriptor is available */
++ tx_desc_p = (struct tx_desc *) pCh->desc_base + pCh->curr_desc;
++ if (tx_desc_p->status.field.OWN == DMA_OWN) {
++ /*if not , the tell the upper layer device */
++ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT);
++ }
++
++ lq_w32(chan_no, LQ_DMA_CS);
++ tmp = lq_r32(LQ_DMA_CCTRL);
++
++ if (!(tmp & 1))
++ pCh->open(pCh);
++
++ local_irq_restore(flag);
++
++ return len;
++}
++EXPORT_SYMBOL(dma_device_write);
++
++int map_dma_chan(struct dma_chan_map *map)
++{
++ int i, j;
++ int result;
++
++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++)
++ strcpy(dma_devs[i].device_name, global_device_name[i]);
++
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) {
++ dma_chan[i].irq = map[i].irq;
++ result = request_irq(dma_chan[i].irq, dma_interrupt, IRQF_DISABLED, map[i].dev_name, (void *)&dma_chan[i]);
++ if (result) {
++ printk(KERN_WARNING "error, cannot get dma_irq!\n");
++ free_irq(dma_chan[i].irq, (void *) &dma_interrupt);
++
++ return -EFAULT;
++ }
++ }
++
++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) {
++ dma_devs[i].num_tx_chan = 0; /*set default tx channel number to be one */
++ dma_devs[i].num_rx_chan = 0; /*set default rx channel number to be one */
++ dma_devs[i].max_rx_chan_num = 0;
++ dma_devs[i].max_tx_chan_num = 0;
++ dma_devs[i].buffer_alloc = &common_buffer_alloc;
++ dma_devs[i].buffer_free = &common_buffer_free;
++ dma_devs[i].intr_handler = NULL;
++ dma_devs[i].tx_burst_len = 4;
++ dma_devs[i].rx_burst_len = 4;
++ if (i == 0) {
++ lq_w32(0, LQ_DMA_PS);
++ lq_w32(lq_r32(LQ_DMA_PCTRL) | ((0xf << 8) | (1 << 6)), LQ_DMA_PCTRL); /*enable dma drop */
++ }
++
++ if (i == 1) {
++ lq_w32(1, LQ_DMA_PS);
++ lq_w32(0x14, LQ_DMA_PCTRL); /*deu port setting */
++ }
++
++ for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) {
++ dma_chan[j].byte_offset = 0;
++ dma_chan[j].open = &open_chan;
++ dma_chan[j].close = &close_chan;
++ dma_chan[j].reset = &reset_chan;
++ dma_chan[j].enable_irq = &enable_ch_irq;
++ dma_chan[j].disable_irq = &disable_ch_irq;
++ dma_chan[j].rel_chan_no = map[j].rel_chan_no;
++ dma_chan[j].control = LQ_DMA_CH_OFF;
++ dma_chan[j].default_weight = LQ_DMA_CH_DEFAULT_WEIGHT;
++ dma_chan[j].weight = dma_chan[j].default_weight;
++ dma_chan[j].curr_desc = 0;
++ dma_chan[j].prev_desc = 0;
++ }
++
++ for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) {
++ if (strcmp(dma_devs[i].device_name, map[j].dev_name) == 0) {
++ if (map[j].dir == LQ_DMA_RX) {
++ dma_chan[j].dir = LQ_DMA_RX;
++ dma_devs[i].max_rx_chan_num++;
++ dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1] = &dma_chan[j];
++ dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1]->pri = map[j].pri;
++ dma_chan[j].dma_dev = (void *)&dma_devs[i];
++ } else if (map[j].dir == LQ_DMA_TX) {
++ /*TX direction */
++ dma_chan[j].dir = LQ_DMA_TX;
++ dma_devs[i].max_tx_chan_num++;
++ dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1] = &dma_chan[j];
++ dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1]->pri = map[j].pri;
++ dma_chan[j].dma_dev = (void *)&dma_devs[i];
++ } else {
++ printk(KERN_WARNING "WRONG DMA MAP!\n");
++ }
++ }
++ }
++ }
++
++ return 0;
++}
++
++void dma_chip_init(void)
++{
++ int i;
++
++ /* enable DMA from PMU */
++ lq_pmu_enable(PMU_DMA);
++
++ /* reset DMA */
++ lq_w32(lq_r32(LQ_DMA_CTRL) | 1, LQ_DMA_CTRL);
++
++ /* disable all interrupts */
++ lq_w32(0, LQ_DMA_IRNEN);
++
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) {
++ lq_w32(i, LQ_DMA_CS);
++ lq_w32(0x2, LQ_DMA_CCTRL);
++ lq_w32(0x80000040, LQ_DMA_CPOLL);
++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~0x1, LQ_DMA_CCTRL);
++ }
++}
++
++int lq_dma_init(void)
++{
++ int i;
++
++ dma_chip_init();
++
++ if (map_dma_chan(default_dma_map))
++ BUG();
++
++ g_desc_list = (u64 *)KSEG1ADDR(__get_free_page(GFP_DMA));
++
++ if (g_desc_list == NULL) {
++ printk(KERN_WARNING "no memory for desriptor\n");
++ return -ENOMEM;
++ }
++
++ memset(g_desc_list, 0, PAGE_SIZE);
++
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) {
++ dma_chan[i].desc_base = (u32)g_desc_list + i * LQ_DMA_DESCRIPTOR_OFFSET * 8;
++ dma_chan[i].curr_desc = 0;
++ dma_chan[i].desc_len = LQ_DMA_DESCRIPTOR_OFFSET;
++
++ lq_w32(i, LQ_DMA_CS);
++ lq_w32((u32)CPHYSADDR(dma_chan[i].desc_base), LQ_DMA_CDBA);
++ lq_w32(dma_chan[i].desc_len, LQ_DMA_CDLEN);
++ }
++ return 0;
++}
++
++arch_initcall(lq_dma_init);
++
++void dma_cleanup(void)
++{
++ int i;
++
++ free_page(KSEG0ADDR((unsigned long) g_desc_list));
++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++)
++ free_irq(dma_chan[i].irq, (void *)&dma_interrupt);
++}
++
++MODULE_LICENSE("GPL");
+--- /dev/null
++++ b/arch/mips/lantiq/xway/pmu.c
+@@ -0,0 +1,36 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/version.h>
++
++#include <xway.h>
++
++#define LQ_PMU_PWDCR ((u32 *)(LQ_PMU_BASE_ADDR + 0x001C))
++#define LQ_PMU_PWDSR ((u32 *)(LQ_PMU_BASE_ADDR + 0x0020))
++
++void
++lq_pmu_enable(unsigned int module)
++{
++ int err = 1000000;
++
++ lq_w32(lq_r32(LQ_PMU_PWDCR) & ~module, LQ_PMU_PWDCR);
++ while (--err && (lq_r32(LQ_PMU_PWDSR) & module));
++
++ if (!err)
++ panic("activating PMU module failed!");
++}
++EXPORT_SYMBOL(lq_pmu_enable);
++
++void
++lq_pmu_disable(unsigned int module)
++{
++ lq_w32(lq_r32(LQ_PMU_PWDCR) | module, LQ_PMU_PWDCR);
++}
++EXPORT_SYMBOL(lq_pmu_disable);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/timer.c
+@@ -0,0 +1,828 @@
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/version.h>
++#include <linux/types.h>
++#include <linux/fs.h>
++#include <linux/miscdevice.h>
++#include <linux/init.h>
++#include <linux/uaccess.h>
++#include <linux/unistd.h>
++#include <linux/errno.h>
++#include <linux/interrupt.h>
++#include <linux/sched.h>
++
++#include <asm/irq.h>
++#include <asm/div64.h>
++
++#include <xway.h>
++#include <xway_irq.h>
++#include <lantiq_timer.h>
++
++#define MAX_NUM_OF_32BIT_TIMER_BLOCKS 6
++
++#ifdef TIMER1A
++#define FIRST_TIMER TIMER1A
++#else
++#define FIRST_TIMER 2
++#endif
++
++/*
++ * GPTC divider is set or not.
++ */
++#define GPTU_CLC_RMC_IS_SET 0
++
++/*
++ * Timer Interrupt (IRQ)
++ */
++/* Must be adjusted when ICU driver is available */
++#define TIMER_INTERRUPT (INT_NUM_IM3_IRL0 + 22)
++
++/*
++ * Bits Operation
++ */
++#define GET_BITS(x, msb, lsb) \
++ (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb))
++#define SET_BITS(x, msb, lsb, value) \
++ (((x) & ~(((1 << ((msb) + 1)) - 1) ^ ((1 << (lsb)) - 1))) | \
++ (((value) & ((1 << (1 + (msb) - (lsb))) - 1)) << (lsb)))
++
++/*
++ * GPTU Register Mapping
++ */
++#define LQ_GPTU (KSEG1 + 0x1E100A00)
++#define LQ_GPTU_CLC ((volatile u32 *)(LQ_GPTU + 0x0000))
++#define LQ_GPTU_ID ((volatile u32 *)(LQ_GPTU + 0x0008))
++#define LQ_GPTU_CON(n, X) ((volatile u32 *)(LQ_GPTU + 0x0010 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */
++#define LQ_GPTU_RUN(n, X) ((volatile u32 *)(LQ_GPTU + 0x0018 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */
++#define LQ_GPTU_RELOAD(n, X) ((volatile u32 *)(LQ_GPTU + 0x0020 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */
++#define LQ_GPTU_COUNT(n, X) ((volatile u32 *)(LQ_GPTU + 0x0028 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */
++#define LQ_GPTU_IRNEN ((volatile u32 *)(LQ_GPTU + 0x00F4))
++#define LQ_GPTU_IRNICR ((volatile u32 *)(LQ_GPTU + 0x00F8))
++#define LQ_GPTU_IRNCR ((volatile u32 *)(LQ_GPTU + 0x00FC))
++
++/*
++ * Clock Control Register
++ */
++#define GPTU_CLC_SMC GET_BITS(*LQ_GPTU_CLC, 23, 16)
++#define GPTU_CLC_RMC GET_BITS(*LQ_GPTU_CLC, 15, 8)
++#define GPTU_CLC_FSOE (*LQ_GPTU_CLC & (1 << 5))
++#define GPTU_CLC_EDIS (*LQ_GPTU_CLC & (1 << 3))
++#define GPTU_CLC_SPEN (*LQ_GPTU_CLC & (1 << 2))
++#define GPTU_CLC_DISS (*LQ_GPTU_CLC & (1 << 1))
++#define GPTU_CLC_DISR (*LQ_GPTU_CLC & (1 << 0))
++
++#define GPTU_CLC_SMC_SET(value) SET_BITS(0, 23, 16, (value))
++#define GPTU_CLC_RMC_SET(value) SET_BITS(0, 15, 8, (value))
++#define GPTU_CLC_FSOE_SET(value) ((value) ? (1 << 5) : 0)
++#define GPTU_CLC_SBWE_SET(value) ((value) ? (1 << 4) : 0)
++#define GPTU_CLC_EDIS_SET(value) ((value) ? (1 << 3) : 0)
++#define GPTU_CLC_SPEN_SET(value) ((value) ? (1 << 2) : 0)
++#define GPTU_CLC_DISR_SET(value) ((value) ? (1 << 0) : 0)
++
++/*
++ * ID Register
++ */
++#define GPTU_ID_ID GET_BITS(*LQ_GPTU_ID, 15, 8)
++#define GPTU_ID_CFG GET_BITS(*LQ_GPTU_ID, 7, 5)
++#define GPTU_ID_REV GET_BITS(*LQ_GPTU_ID, 4, 0)
++
++/*
++ * Control Register of Timer/Counter nX
++ * n is the index of block (1 based index)
++ * X is either A or B
++ */
++#define GPTU_CON_SRC_EG(n, X) (*LQ_GPTU_CON(n, X) & (1 << 10))
++#define GPTU_CON_SRC_EXT(n, X) (*LQ_GPTU_CON(n, X) & (1 << 9))
++#define GPTU_CON_SYNC(n, X) (*LQ_GPTU_CON(n, X) & (1 << 8))
++#define GPTU_CON_EDGE(n, X) GET_BITS(*LQ_GPTU_CON(n, X), 7, 6)
++#define GPTU_CON_INV(n, X) (*LQ_GPTU_CON(n, X) & (1 << 5))
++#define GPTU_CON_EXT(n, X) (*LQ_GPTU_CON(n, A) & (1 << 4)) /* Timer/Counter B does not have this bit */
++#define GPTU_CON_STP(n, X) (*LQ_GPTU_CON(n, X) & (1 << 3))
++#define GPTU_CON_CNT(n, X) (*LQ_GPTU_CON(n, X) & (1 << 2))
++#define GPTU_CON_DIR(n, X) (*LQ_GPTU_CON(n, X) & (1 << 1))
++#define GPTU_CON_EN(n, X) (*LQ_GPTU_CON(n, X) & (1 << 0))
++
++#define GPTU_CON_SRC_EG_SET(value) ((value) ? 0 : (1 << 10))
++#define GPTU_CON_SRC_EXT_SET(value) ((value) ? (1 << 9) : 0)
++#define GPTU_CON_SYNC_SET(value) ((value) ? (1 << 8) : 0)
++#define GPTU_CON_EDGE_SET(value) SET_BITS(0, 7, 6, (value))
++#define GPTU_CON_INV_SET(value) ((value) ? (1 << 5) : 0)
++#define GPTU_CON_EXT_SET(value) ((value) ? (1 << 4) : 0)
++#define GPTU_CON_STP_SET(value) ((value) ? (1 << 3) : 0)
++#define GPTU_CON_CNT_SET(value) ((value) ? (1 << 2) : 0)
++#define GPTU_CON_DIR_SET(value) ((value) ? (1 << 1) : 0)
++
++#define GPTU_RUN_RL_SET(value) ((value) ? (1 << 2) : 0)
++#define GPTU_RUN_CEN_SET(value) ((value) ? (1 << 1) : 0)
++#define GPTU_RUN_SEN_SET(value) ((value) ? (1 << 0) : 0)
++
++#define GPTU_IRNEN_TC_SET(n, X, value) ((value) ? (1 << (((n) - 1) * 2 + (X))) : 0)
++#define GPTU_IRNCR_TC_SET(n, X, value) ((value) ? (1 << (((n) - 1) * 2 + (X))) : 0)
++
++#define TIMER_FLAG_MASK_SIZE(x) (x & 0x0001)
++#define TIMER_FLAG_MASK_TYPE(x) (x & 0x0002)
++#define TIMER_FLAG_MASK_STOP(x) (x & 0x0004)
++#define TIMER_FLAG_MASK_DIR(x) (x & 0x0008)
++#define TIMER_FLAG_NONE_EDGE 0x0000
++#define TIMER_FLAG_MASK_EDGE(x) (x & 0x0030)
++#define TIMER_FLAG_REAL 0x0000
++#define TIMER_FLAG_INVERT 0x0040
++#define TIMER_FLAG_MASK_INVERT(x) (x & 0x0040)
++#define TIMER_FLAG_MASK_TRIGGER(x) (x & 0x0070)
++#define TIMER_FLAG_MASK_SYNC(x) (x & 0x0080)
++#define TIMER_FLAG_CALLBACK_IN_HB 0x0200
++#define TIMER_FLAG_MASK_HANDLE(x) (x & 0x0300)
++#define TIMER_FLAG_MASK_SRC(x) (x & 0x1000)
++
++struct timer_dev_timer {
++ unsigned int f_irq_on;
++ unsigned int irq;
++ unsigned int flag;
++ unsigned long arg1;
++ unsigned long arg2;
++};
++
++struct timer_dev {
++ struct mutex gptu_mutex;
++ unsigned int number_of_timers;
++ unsigned int occupation;
++ unsigned int f_gptu_on;
++ struct timer_dev_timer timer[MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2];
++};
++
++static int gptu_ioctl(struct inode *, struct file *, unsigned int, unsigned long);
++static int gptu_open(struct inode *, struct file *);
++static int gptu_release(struct inode *, struct file *);
++
++static struct file_operations gptu_fops = {
++ .owner = THIS_MODULE,
++ .ioctl = gptu_ioctl,
++ .open = gptu_open,
++ .release = gptu_release
++};
++
++static struct miscdevice gptu_miscdev = {
++ .minor = MISC_DYNAMIC_MINOR,
++ .name = "gptu",
++ .fops = &gptu_fops,
++};
++
++static struct timer_dev timer_dev;
++
++static irqreturn_t timer_irq_handler(int irq, void *p)
++{
++ unsigned int timer;
++ unsigned int flag;
++ struct timer_dev_timer *dev_timer = (struct timer_dev_timer *)p;
++
++ timer = irq - TIMER_INTERRUPT;
++ if (timer < timer_dev.number_of_timers
++ && dev_timer == &timer_dev.timer[timer]) {
++ /* Clear interrupt. */
++ lq_w32(1 << timer, LQ_GPTU_IRNCR);
++
++ /* Call user hanler or signal. */
++ flag = dev_timer->flag;
++ if (!(timer & 0x01)
++ || TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT) {
++ /* 16-bit timer or timer A of 32-bit timer */
++ switch (TIMER_FLAG_MASK_HANDLE(flag)) {
++ case TIMER_FLAG_CALLBACK_IN_IRQ:
++ case TIMER_FLAG_CALLBACK_IN_HB:
++ if (dev_timer->arg1)
++ (*(timer_callback)dev_timer->arg1)(dev_timer->arg2);
++ break;
++ case TIMER_FLAG_SIGNAL:
++ send_sig((int)dev_timer->arg2, (struct task_struct *)dev_timer->arg1, 0);
++ break;
++ }
++ }
++ }
++ return IRQ_HANDLED;
++}
++
++static inline void lq_enable_gptu(void)
++{
++ lq_pmu_enable(PMU_GPT);
++
++ /* Set divider as 1, disable write protection for SPEN, enable module. */
++ *LQ_GPTU_CLC =
++ GPTU_CLC_SMC_SET(0x00) |
++ GPTU_CLC_RMC_SET(0x01) |
++ GPTU_CLC_FSOE_SET(0) |
++ GPTU_CLC_SBWE_SET(1) |
++ GPTU_CLC_EDIS_SET(0) |
++ GPTU_CLC_SPEN_SET(0) |
++ GPTU_CLC_DISR_SET(0);
++}
++
++static inline void lq_disable_gptu(void)
++{
++ lq_w32(0x00, LQ_GPTU_IRNEN);
++ lq_w32(0xfff, LQ_GPTU_IRNCR);
++
++ /* Set divider as 0, enable write protection for SPEN, disable module. */
++ *LQ_GPTU_CLC =
++ GPTU_CLC_SMC_SET(0x00) |
++ GPTU_CLC_RMC_SET(0x00) |
++ GPTU_CLC_FSOE_SET(0) |
++ GPTU_CLC_SBWE_SET(0) |
++ GPTU_CLC_EDIS_SET(0) |
++ GPTU_CLC_SPEN_SET(0) |
++ GPTU_CLC_DISR_SET(1);
++
++ lq_pmu_disable(PMU_GPT);
++}
++
++int lq_request_timer(unsigned int timer, unsigned int flag,
++ unsigned long value, unsigned long arg1, unsigned long arg2)
++{
++ int ret = 0;
++ unsigned int con_reg, irnen_reg;
++ int n, X;
++
++ if (timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ printk(KERN_INFO "request_timer(%d, 0x%08X, %lu)...",
++ timer, flag, value);
++
++ if (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT)
++ value &= 0xFFFF;
++ else
++ timer &= ~0x01;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ /*
++ * Allocate timer.
++ */
++ if (timer < FIRST_TIMER) {
++ unsigned int mask;
++ unsigned int shift;
++ /* This takes care of TIMER1B which is the only choice for Voice TAPI system */
++ unsigned int offset = TIMER2A;
++
++ /*
++ * Pick up a free timer.
++ */
++ if (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT) {
++ mask = 1 << offset;
++ shift = 1;
++ } else {
++ mask = 3 << offset;
++ shift = 2;
++ }
++ for (timer = offset;
++ timer < offset + timer_dev.number_of_timers;
++ timer += shift, mask <<= shift)
++ if (!(timer_dev.occupation & mask)) {
++ timer_dev.occupation |= mask;
++ break;
++ }
++ if (timer >= offset + timer_dev.number_of_timers) {
++ printk("failed![%d]\n", __LINE__);
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ } else
++ ret = timer;
++ } else {
++ register unsigned int mask;
++
++ /*
++ * Check if the requested timer is free.
++ */
++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if ((timer_dev.occupation & mask)) {
++ printk("failed![%d] mask %#x, timer_dev.occupation %#x\n",
++ __LINE__, mask, timer_dev.occupation);
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EBUSY;
++ } else {
++ timer_dev.occupation |= mask;
++ ret = 0;
++ }
++ }
++
++ /*
++ * Prepare control register value.
++ */
++ switch (TIMER_FLAG_MASK_EDGE(flag)) {
++ default:
++ case TIMER_FLAG_NONE_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x00);
++ break;
++ case TIMER_FLAG_RISE_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x01);
++ break;
++ case TIMER_FLAG_FALL_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x02);
++ break;
++ case TIMER_FLAG_ANY_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x03);
++ break;
++ }
++ if (TIMER_FLAG_MASK_TYPE(flag) == TIMER_FLAG_TIMER)
++ con_reg |=
++ TIMER_FLAG_MASK_SRC(flag) ==
++ TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EXT_SET(1) :
++ GPTU_CON_SRC_EXT_SET(0);
++ else
++ con_reg |=
++ TIMER_FLAG_MASK_SRC(flag) ==
++ TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EG_SET(1) :
++ GPTU_CON_SRC_EG_SET(0);
++ con_reg |=
++ TIMER_FLAG_MASK_SYNC(flag) ==
++ TIMER_FLAG_UNSYNC ? GPTU_CON_SYNC_SET(0) :
++ GPTU_CON_SYNC_SET(1);
++ con_reg |=
++ TIMER_FLAG_MASK_INVERT(flag) ==
++ TIMER_FLAG_REAL ? GPTU_CON_INV_SET(0) : GPTU_CON_INV_SET(1);
++ con_reg |=
++ TIMER_FLAG_MASK_SIZE(flag) ==
++ TIMER_FLAG_16BIT ? GPTU_CON_EXT_SET(0) :
++ GPTU_CON_EXT_SET(1);
++ con_reg |=
++ TIMER_FLAG_MASK_STOP(flag) ==
++ TIMER_FLAG_ONCE ? GPTU_CON_STP_SET(1) : GPTU_CON_STP_SET(0);
++ con_reg |=
++ TIMER_FLAG_MASK_TYPE(flag) ==
++ TIMER_FLAG_TIMER ? GPTU_CON_CNT_SET(0) :
++ GPTU_CON_CNT_SET(1);
++ con_reg |=
++ TIMER_FLAG_MASK_DIR(flag) ==
++ TIMER_FLAG_UP ? GPTU_CON_DIR_SET(1) : GPTU_CON_DIR_SET(0);
++
++ /*
++ * Fill up running data.
++ */
++ timer_dev.timer[timer - FIRST_TIMER].flag = flag;
++ timer_dev.timer[timer - FIRST_TIMER].arg1 = arg1;
++ timer_dev.timer[timer - FIRST_TIMER].arg2 = arg2;
++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT)
++ timer_dev.timer[timer - FIRST_TIMER + 1].flag = flag;
++
++ /*
++ * Enable GPTU module.
++ */
++ if (!timer_dev.f_gptu_on) {
++ lq_enable_gptu();
++ timer_dev.f_gptu_on = 1;
++ }
++
++ /*
++ * Enable IRQ.
++ */
++ if (TIMER_FLAG_MASK_HANDLE(flag) != TIMER_FLAG_NO_HANDLE) {
++ if (TIMER_FLAG_MASK_HANDLE(flag) == TIMER_FLAG_SIGNAL)
++ timer_dev.timer[timer - FIRST_TIMER].arg1 =
++ (unsigned long) find_task_by_vpid((int) arg1);
++
++ irnen_reg = 1 << (timer - FIRST_TIMER);
++
++ if (TIMER_FLAG_MASK_HANDLE(flag) == TIMER_FLAG_SIGNAL
++ || (TIMER_FLAG_MASK_HANDLE(flag) ==
++ TIMER_FLAG_CALLBACK_IN_IRQ
++ && timer_dev.timer[timer - FIRST_TIMER].arg1)) {
++ enable_irq(timer_dev.timer[timer - FIRST_TIMER].irq);
++ timer_dev.timer[timer - FIRST_TIMER].f_irq_on = 1;
++ }
++ } else
++ irnen_reg = 0;
++
++ /*
++ * Write config register, reload value and enable interrupt.
++ */
++ n = timer >> 1;
++ X = timer & 0x01;
++ *LQ_GPTU_CON(n, X) = con_reg;
++ *LQ_GPTU_RELOAD(n, X) = value;
++ /* printk("reload value = %d\n", (u32)value); */
++ *LQ_GPTU_IRNEN |= irnen_reg;
++
++ mutex_unlock(&timer_dev.gptu_mutex);
++ printk("successful!\n");
++ return ret;
++}
++EXPORT_SYMBOL(lq_request_timer);
++
++int lq_free_timer(unsigned int timer)
++{
++ unsigned int flag;
++ unsigned int mask;
++ int n, X;
++
++ if (!timer_dev.f_gptu_on)
++ return -EINVAL;
++
++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ flag = timer_dev.timer[timer - FIRST_TIMER].flag;
++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT)
++ timer &= ~0x01;
++
++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if (((timer_dev.occupation & mask) ^ mask)) {
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ }
++
++ n = timer >> 1;
++ X = timer & 0x01;
++
++ if (GPTU_CON_EN(n, X))
++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_CEN_SET(1);
++
++ *LQ_GPTU_IRNEN &= ~GPTU_IRNEN_TC_SET(n, X, 1);
++ *LQ_GPTU_IRNCR |= GPTU_IRNCR_TC_SET(n, X, 1);
++
++ if (timer_dev.timer[timer - FIRST_TIMER].f_irq_on) {
++ disable_irq(timer_dev.timer[timer - FIRST_TIMER].irq);
++ timer_dev.timer[timer - FIRST_TIMER].f_irq_on = 0;
++ }
++
++ timer_dev.occupation &= ~mask;
++ if (!timer_dev.occupation && timer_dev.f_gptu_on) {
++ lq_disable_gptu();
++ timer_dev.f_gptu_on = 0;
++ }
++
++ mutex_unlock(&timer_dev.gptu_mutex);
++
++ return 0;
++}
++EXPORT_SYMBOL(lq_free_timer);
++
++int lq_start_timer(unsigned int timer, int is_resume)
++{
++ unsigned int flag;
++ unsigned int mask;
++ int n, X;
++
++ if (!timer_dev.f_gptu_on)
++ return -EINVAL;
++
++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ flag = timer_dev.timer[timer - FIRST_TIMER].flag;
++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT)
++ timer &= ~0x01;
++
++ mask = (TIMER_FLAG_MASK_SIZE(flag) ==
++ TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if (((timer_dev.occupation & mask) ^ mask)) {
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ }
++
++ n = timer >> 1;
++ X = timer & 0x01;
++
++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_RL_SET(!is_resume) | GPTU_RUN_SEN_SET(1);
++
++ mutex_unlock(&timer_dev.gptu_mutex);
++
++ return 0;
++}
++EXPORT_SYMBOL(lq_start_timer);
++
++int lq_stop_timer(unsigned int timer)
++{
++ unsigned int flag;
++ unsigned int mask;
++ int n, X;
++
++ if (!timer_dev.f_gptu_on)
++ return -EINVAL;
++
++ if (timer < FIRST_TIMER
++ || timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ flag = timer_dev.timer[timer - FIRST_TIMER].flag;
++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT)
++ timer &= ~0x01;
++
++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if (((timer_dev.occupation & mask) ^ mask)) {
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ }
++
++ n = timer >> 1;
++ X = timer & 0x01;
++
++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_CEN_SET(1);
++
++ mutex_unlock(&timer_dev.gptu_mutex);
++
++ return 0;
++}
++EXPORT_SYMBOL(lq_stop_timer);
++
++int lq_reset_counter_flags(u32 timer, u32 flags)
++{
++ unsigned int oflag;
++ unsigned int mask, con_reg;
++ int n, X;
++
++ if (!timer_dev.f_gptu_on)
++ return -EINVAL;
++
++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ oflag = timer_dev.timer[timer - FIRST_TIMER].flag;
++ if (TIMER_FLAG_MASK_SIZE(oflag) != TIMER_FLAG_16BIT)
++ timer &= ~0x01;
++
++ mask = (TIMER_FLAG_MASK_SIZE(oflag) == TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if (((timer_dev.occupation & mask) ^ mask)) {
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ }
++
++ switch (TIMER_FLAG_MASK_EDGE(flags)) {
++ default:
++ case TIMER_FLAG_NONE_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x00);
++ break;
++ case TIMER_FLAG_RISE_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x01);
++ break;
++ case TIMER_FLAG_FALL_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x02);
++ break;
++ case TIMER_FLAG_ANY_EDGE:
++ con_reg = GPTU_CON_EDGE_SET(0x03);
++ break;
++ }
++ if (TIMER_FLAG_MASK_TYPE(flags) == TIMER_FLAG_TIMER)
++ con_reg |= TIMER_FLAG_MASK_SRC(flags) == TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EXT_SET(1) : GPTU_CON_SRC_EXT_SET(0);
++ else
++ con_reg |= TIMER_FLAG_MASK_SRC(flags) == TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EG_SET(1) : GPTU_CON_SRC_EG_SET(0);
++ con_reg |= TIMER_FLAG_MASK_SYNC(flags) == TIMER_FLAG_UNSYNC ? GPTU_CON_SYNC_SET(0) : GPTU_CON_SYNC_SET(1);
++ con_reg |= TIMER_FLAG_MASK_INVERT(flags) == TIMER_FLAG_REAL ? GPTU_CON_INV_SET(0) : GPTU_CON_INV_SET(1);
++ con_reg |= TIMER_FLAG_MASK_SIZE(flags) == TIMER_FLAG_16BIT ? GPTU_CON_EXT_SET(0) : GPTU_CON_EXT_SET(1);
++ con_reg |= TIMER_FLAG_MASK_STOP(flags) == TIMER_FLAG_ONCE ? GPTU_CON_STP_SET(1) : GPTU_CON_STP_SET(0);
++ con_reg |= TIMER_FLAG_MASK_TYPE(flags) == TIMER_FLAG_TIMER ? GPTU_CON_CNT_SET(0) : GPTU_CON_CNT_SET(1);
++ con_reg |= TIMER_FLAG_MASK_DIR(flags) == TIMER_FLAG_UP ? GPTU_CON_DIR_SET(1) : GPTU_CON_DIR_SET(0);
++
++ timer_dev.timer[timer - FIRST_TIMER].flag = flags;
++ if (TIMER_FLAG_MASK_SIZE(flags) != TIMER_FLAG_16BIT)
++ timer_dev.timer[timer - FIRST_TIMER + 1].flag = flags;
++
++ n = timer >> 1;
++ X = timer & 0x01;
++
++ *LQ_GPTU_CON(n, X) = con_reg;
++ smp_wmb();
++ printk(KERN_INFO "[%s]: counter%d oflags %#x, nflags %#x, GPTU_CON %#x\n", __func__, timer, oflag, flags, *LQ_GPTU_CON(n, X));
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return 0;
++}
++EXPORT_SYMBOL(lq_reset_counter_flags);
++
++int lq_get_count_value(unsigned int timer, unsigned long *value)
++{
++ unsigned int flag;
++ unsigned int mask;
++ int n, X;
++
++ if (!timer_dev.f_gptu_on)
++ return -EINVAL;
++
++ if (timer < FIRST_TIMER
++ || timer >= FIRST_TIMER + timer_dev.number_of_timers)
++ return -EINVAL;
++
++ mutex_lock(&timer_dev.gptu_mutex);
++
++ flag = timer_dev.timer[timer - FIRST_TIMER].flag;
++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT)
++ timer &= ~0x01;
++
++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer;
++ if (((timer_dev.occupation & mask) ^ mask)) {
++ mutex_unlock(&timer_dev.gptu_mutex);
++ return -EINVAL;
++ }
++
++ n = timer >> 1;
++ X = timer & 0x01;
++
++ *value = *LQ_GPTU_COUNT(n, X);
++
++ mutex_unlock(&timer_dev.gptu_mutex);
++
++ return 0;
++}
++EXPORT_SYMBOL(lq_get_count_value);
++
++u32 lq_cal_divider(unsigned long freq)
++{
++ u64 module_freq, fpi = lq_get_fpi_bus_clock(2);
++ u32 clock_divider = 1;
++ module_freq = fpi * 1000;
++ do_div(module_freq, clock_divider * freq);
++ return module_freq;
++}
++EXPORT_SYMBOL(lq_cal_divider);
++
++int lq_set_timer(unsigned int timer, unsigned int freq, int is_cyclic,
++ int is_ext_src, unsigned int handle_flag, unsigned long arg1,
++ unsigned long arg2)
++{
++ unsigned long divider;
++ unsigned int flag;
++
++ divider = lq_cal_divider(freq);
++ if (divider == 0)
++ return -EINVAL;
++ flag = ((divider & ~0xFFFF) ? TIMER_FLAG_32BIT : TIMER_FLAG_16BIT)
++ | (is_cyclic ? TIMER_FLAG_CYCLIC : TIMER_FLAG_ONCE)
++ | (is_ext_src ? TIMER_FLAG_EXT_SRC : TIMER_FLAG_INT_SRC)
++ | TIMER_FLAG_TIMER | TIMER_FLAG_DOWN
++ | TIMER_FLAG_MASK_HANDLE(handle_flag);
++
++ printk(KERN_INFO "lq_set_timer(%d, %d), divider = %lu\n",
++ timer, freq, divider);
++ return lq_request_timer(timer, flag, divider, arg1, arg2);
++}
++EXPORT_SYMBOL(lq_set_timer);
++
++int lq_set_counter(unsigned int timer, unsigned int flag, u32 reload,
++ unsigned long arg1, unsigned long arg2)
++{
++ printk(KERN_INFO "lq_set_counter(%d, %#x, %d)\n", timer, flag, reload);
++ return lq_request_timer(timer, flag, reload, arg1, arg2);
++}
++EXPORT_SYMBOL(lq_set_counter);
++
++static int gptu_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
++ unsigned long arg)
++{
++ int ret;
++ struct gptu_ioctl_param param;
++
++ if (!access_ok(VERIFY_READ, arg, sizeof(struct gptu_ioctl_param)))
++ return -EFAULT;
++ copy_from_user(&param, (void *) arg, sizeof(param));
++
++ if ((((cmd == GPTU_REQUEST_TIMER || cmd == GPTU_SET_TIMER
++ || GPTU_SET_COUNTER) && param.timer < 2)
++ || cmd == GPTU_GET_COUNT_VALUE || cmd == GPTU_CALCULATE_DIVIDER)
++ && !access_ok(VERIFY_WRITE, arg,
++ sizeof(struct gptu_ioctl_param)))
++ return -EFAULT;
++
++ switch (cmd) {
++ case GPTU_REQUEST_TIMER:
++ ret = lq_request_timer(param.timer, param.flag, param.value,
++ (unsigned long) param.pid,
++ (unsigned long) param.sig);
++ if (ret > 0) {
++ copy_to_user(&((struct gptu_ioctl_param *) arg)->
++ timer, &ret, sizeof(&ret));
++ ret = 0;
++ }
++ break;
++ case GPTU_FREE_TIMER:
++ ret = lq_free_timer(param.timer);
++ break;
++ case GPTU_START_TIMER:
++ ret = lq_start_timer(param.timer, param.flag);
++ break;
++ case GPTU_STOP_TIMER:
++ ret = lq_stop_timer(param.timer);
++ break;
++ case GPTU_GET_COUNT_VALUE:
++ ret = lq_get_count_value(param.timer, &param.value);
++ if (!ret)
++ copy_to_user(&((struct gptu_ioctl_param *) arg)->
++ value, &param.value,
++ sizeof(param.value));
++ break;
++ case GPTU_CALCULATE_DIVIDER:
++ param.value = lq_cal_divider(param.value);
++ if (param.value == 0)
++ ret = -EINVAL;
++ else {
++ copy_to_user(&((struct gptu_ioctl_param *) arg)->
++ value, &param.value,
++ sizeof(param.value));
++ ret = 0;
++ }
++ break;
++ case GPTU_SET_TIMER:
++ ret = lq_set_timer(param.timer, param.value,
++ TIMER_FLAG_MASK_STOP(param.flag) !=
++ TIMER_FLAG_ONCE ? 1 : 0,
++ TIMER_FLAG_MASK_SRC(param.flag) ==
++ TIMER_FLAG_EXT_SRC ? 1 : 0,
++ TIMER_FLAG_MASK_HANDLE(param.flag) ==
++ TIMER_FLAG_SIGNAL ? TIMER_FLAG_SIGNAL :
++ TIMER_FLAG_NO_HANDLE,
++ (unsigned long) param.pid,
++ (unsigned long) param.sig);
++ if (ret > 0) {
++ copy_to_user(&((struct gptu_ioctl_param *) arg)->
++ timer, &ret, sizeof(&ret));
++ ret = 0;
++ }
++ break;
++ case GPTU_SET_COUNTER:
++ lq_set_counter(param.timer, param.flag, param.value, 0, 0);
++ if (ret > 0) {
++ copy_to_user(&((struct gptu_ioctl_param *) arg)->
++ timer, &ret, sizeof(&ret));
++ ret = 0;
++ }
++ break;
++ default:
++ ret = -ENOTTY;
++ }
++
++ return ret;
++}
++
++static int gptu_open(struct inode *inode, struct file *file)
++{
++ return 0;
++}
++
++static int gptu_release(struct inode *inode, struct file *file)
++{
++ return 0;
++}
++
++int __init lq_gptu_init(void)
++{
++ int ret;
++ unsigned int i;
++
++ lq_w32(0, LQ_GPTU_IRNEN);
++ lq_w32(0xfff, LQ_GPTU_IRNCR);
++
++ memset(&timer_dev, 0, sizeof(timer_dev));
++ mutex_init(&timer_dev.gptu_mutex);
++
++ lq_enable_gptu();
++ timer_dev.number_of_timers = GPTU_ID_CFG * 2;
++ lq_disable_gptu();
++ if (timer_dev.number_of_timers > MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2)
++ timer_dev.number_of_timers = MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2;
++ printk(KERN_INFO "gptu: totally %d 16-bit timers/counters\n", timer_dev.number_of_timers);
++
++ ret = misc_register(&gptu_miscdev);
++ if (ret) {
++ printk(KERN_ERR "gptu: can't misc_register, get error %d\n", -ret);
++ return ret;
++ } else {
++ printk(KERN_INFO "gptu: misc_register on minor %d\n", gptu_miscdev.minor);
++ }
++
++ for (i = 0; i < timer_dev.number_of_timers; i++) {
++ ret = request_irq(TIMER_INTERRUPT + i, timer_irq_handler, IRQF_TIMER, gptu_miscdev.name, &timer_dev.timer[i]);
++ if (ret) {
++ for (; i >= 0; i--)
++ free_irq(TIMER_INTERRUPT + i, &timer_dev.timer[i]);
++ misc_deregister(&gptu_miscdev);
++ printk(KERN_ERR "gptu: failed in requesting irq (%d), get error %d\n", i, -ret);
++ return ret;
++ } else {
++ timer_dev.timer[i].irq = TIMER_INTERRUPT + i;
++ disable_irq(timer_dev.timer[i].irq);
++ printk(KERN_INFO "gptu: succeeded to request irq %d\n", timer_dev.timer[i].irq);
++ }
++ }
++
++ return 0;
++}
++
++void __exit lq_gptu_exit(void)
++{
++ unsigned int i;
++
++ for (i = 0; i < timer_dev.number_of_timers; i++) {
++ if (timer_dev.timer[i].f_irq_on)
++ disable_irq(timer_dev.timer[i].irq);
++ free_irq(timer_dev.timer[i].irq, &timer_dev.timer[i]);
++ }
++ lq_disable_gptu();
++ misc_deregister(&gptu_miscdev);
++}
++
++module_init(lq_gptu_init);
++module_exit(lq_gptu_exit);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/timer.h
+@@ -0,0 +1,155 @@
++#ifndef __DANUBE_GPTU_DEV_H__2005_07_26__10_19__
++#define __DANUBE_GPTU_DEV_H__2005_07_26__10_19__
++
++
++/******************************************************************************
++ Copyright (c) 2002, Infineon Technologies. All rights reserved.
++
++ No Warranty
++ Because the program is licensed free of charge, there is no warranty for
++ the program, to the extent permitted by applicable law. Except when
++ otherwise stated in writing the copyright holders and/or other parties
++ provide the program "as is" without warranty of any kind, either
++ expressed or implied, including, but not limited to, the implied
++ warranties of merchantability and fitness for a particular purpose. The
++ entire risk as to the quality and performance of the program is with
++ you. should the program prove defective, you assume the cost of all
++ necessary servicing, repair or correction.
++
++ In no event unless required by applicable law or agreed to in writing
++ will any copyright holder, or any other party who may modify and/or
++ redistribute the program as permitted above, be liable to you for
++ damages, including any general, special, incidental or consequential
++ damages arising out of the use or inability to use the program
++ (including but not limited to loss of data or data being rendered
++ inaccurate or losses sustained by you or third parties or a failure of
++ the program to operate with any other programs), even if such holder or
++ other party has been advised of the possibility of such damages.
++******************************************************************************/
++
++
++/*
++ * ####################################
++ * Definition
++ * ####################################
++ */
++
++/*
++ * Available Timer/Counter Index
++ */
++#define TIMER(n, X) (n * 2 + (X ? 1 : 0))
++#define TIMER_ANY 0x00
++#define TIMER1A TIMER(1, 0)
++#define TIMER1B TIMER(1, 1)
++#define TIMER2A TIMER(2, 0)
++#define TIMER2B TIMER(2, 1)
++#define TIMER3A TIMER(3, 0)
++#define TIMER3B TIMER(3, 1)
++
++/*
++ * Flag of Timer/Counter
++ * These flags specify the way in which timer is configured.
++ */
++/* Bit size of timer/counter. */
++#define TIMER_FLAG_16BIT 0x0000
++#define TIMER_FLAG_32BIT 0x0001
++/* Switch between timer and counter. */
++#define TIMER_FLAG_TIMER 0x0000
++#define TIMER_FLAG_COUNTER 0x0002
++/* Stop or continue when overflowing/underflowing. */
++#define TIMER_FLAG_ONCE 0x0000
++#define TIMER_FLAG_CYCLIC 0x0004
++/* Count up or counter down. */
++#define TIMER_FLAG_UP 0x0000
++#define TIMER_FLAG_DOWN 0x0008
++/* Count on specific level or edge. */
++#define TIMER_FLAG_HIGH_LEVEL_SENSITIVE 0x0000
++#define TIMER_FLAG_LOW_LEVEL_SENSITIVE 0x0040
++#define TIMER_FLAG_RISE_EDGE 0x0010
++#define TIMER_FLAG_FALL_EDGE 0x0020
++#define TIMER_FLAG_ANY_EDGE 0x0030
++/* Signal is syncronous to module clock or not. */
++#define TIMER_FLAG_UNSYNC 0x0000
++#define TIMER_FLAG_SYNC 0x0080
++/* Different interrupt handle type. */
++#define TIMER_FLAG_NO_HANDLE 0x0000
++#if defined(__KERNEL__)
++ #define TIMER_FLAG_CALLBACK_IN_IRQ 0x0100
++#endif // defined(__KERNEL__)
++#define TIMER_FLAG_SIGNAL 0x0300
++/* Internal clock source or external clock source */
++#define TIMER_FLAG_INT_SRC 0x0000
++#define TIMER_FLAG_EXT_SRC 0x1000
++
++
++/*
++ * ioctl Command
++ */
++#define GPTU_REQUEST_TIMER 0x01 /* General method to setup timer/counter. */
++#define GPTU_FREE_TIMER 0x02 /* Free timer/counter. */
++#define GPTU_START_TIMER 0x03 /* Start or resume timer/counter. */
++#define GPTU_STOP_TIMER 0x04 /* Suspend timer/counter. */
++#define GPTU_GET_COUNT_VALUE 0x05 /* Get current count value. */
++#define GPTU_CALCULATE_DIVIDER 0x06 /* Calculate timer divider from given freq.*/
++#define GPTU_SET_TIMER 0x07 /* Simplified method to setup timer. */
++#define GPTU_SET_COUNTER 0x08 /* Simplified method to setup counter. */
++
++/*
++ * Data Type Used to Call ioctl
++ */
++struct gptu_ioctl_param {
++ unsigned int timer; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and *
++ * GPTU_SET_COUNTER, this field is ID of expected *
++ * timer/counter. If it's zero, a timer/counter would *
++ * be dynamically allocated and ID would be stored in *
++ * this field. *
++ * In command GPTU_GET_COUNT_VALUE, this field is *
++ * ignored. *
++ * In other command, this field is ID of timer/counter *
++ * allocated. */
++ unsigned int flag; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and *
++ * GPTU_SET_COUNTER, this field contains flags to *
++ * specify how to configure timer/counter. *
++ * In command GPTU_START_TIMER, zero indicate start *
++ * and non-zero indicate resume timer/counter. *
++ * In other command, this field is ignored. */
++ unsigned long value; /* In command GPTU_REQUEST_TIMER, this field contains *
++ * init/reload value. *
++ * In command GPTU_SET_TIMER, this field contains *
++ * frequency (0.001Hz) of timer. *
++ * In command GPTU_GET_COUNT_VALUE, current count *
++ * value would be stored in this field. *
++ * In command GPTU_CALCULATE_DIVIDER, this field *
++ * contains frequency wanted, and after calculation, *
++ * divider would be stored in this field to overwrite *
++ * the frequency. *
++ * In other command, this field is ignored. */
++ int pid; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, *
++ * if signal is required, this field contains process *
++ * ID to which signal would be sent. *
++ * In other command, this field is ignored. */
++ int sig; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, *
++ * if signal is required, this field contains signal *
++ * number which would be sent. *
++ * In other command, this field is ignored. */
++};
++
++/*
++ * ####################################
++ * Data Type
++ * ####################################
++ */
++typedef void (*timer_callback)(unsigned long arg);
++
++extern int ifxmips_request_timer(unsigned int, unsigned int, unsigned long, unsigned long, unsigned long);
++extern int ifxmips_free_timer(unsigned int);
++extern int ifxmips_start_timer(unsigned int, int);
++extern int ifxmips_stop_timer(unsigned int);
++extern int ifxmips_reset_counter_flags(u32 timer, u32 flags);
++extern int ifxmips_get_count_value(unsigned int, unsigned long *);
++extern u32 ifxmips_cal_divider(unsigned long);
++extern int ifxmips_set_timer(unsigned int, unsigned int, int, int, unsigned int, unsigned long, unsigned long);
++extern int ifxmips_set_counter(unsigned int timer, unsigned int flag,
++ u32 reload, unsigned long arg1, unsigned long arg2);
++
++#endif /* __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ */
+--- /dev/null
++++ b/arch/mips/lantiq/xway/Makefile
+@@ -0,0 +1,5 @@
++obj-y := pmu.o prom.o dma.o timer.o reset.o clk-xway.o
++obj-y += gpio.o gpio_ebu.o gpio_leds.o devices.o
++obj-$(CONFIG_LANTIQ_MACH_EASY50812) += mach-easy50812.o
++obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o
++obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o
+--- /dev/null
++++ b/arch/mips/lantiq/xway/clk-xway.c
+@@ -0,0 +1,219 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2007 Xu Liang, infineon
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/io.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/clk.h>
++
++#include <asm/time.h>
++#include <asm/irq.h>
++#include <asm/div64.h>
++
++#include <xway.h>
++
++static unsigned int lq_ram_clocks[] = {CLOCK_167M, CLOCK_133M, CLOCK_111M, CLOCK_83M };
++#define DDR_HZ lq_ram_clocks[lq_r32(LQ_CGU_SYS) & 0x3]
++
++#define BASIC_FREQUENCY_1 35328000
++#define BASIC_FREQUENCY_2 36000000
++#define BASIS_REQUENCY_USB 12000000
++
++#define GET_BITS(x, msb, lsb) (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb))
++
++#define CGU_PLL0_PHASE_DIVIDER_ENABLE (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 31))
++#define CGU_PLL0_BYPASS (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 30))
++#define CGU_PLL0_CFG_DSMSEL (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 28))
++#define CGU_PLL0_CFG_FRAC_EN (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 27))
++#define CGU_PLL1_SRC (lq_r32(LQ_CGU_PLL1_CFG) & (1 << 31))
++#define CGU_PLL2_PHASE_DIVIDER_ENABLE (lq_r32(LQ_CGU_PLL2_CFG) & (1 << 20))
++#define CGU_SYS_FPI_SEL (1 << 6)
++#define CGU_SYS_DDR_SEL 0x3
++#define CGU_PLL0_SRC (1 << 29)
++
++#define CGU_PLL0_CFG_PLLK GET_BITS(*LQ_CGU_PLL0_CFG, 26, 17)
++#define CGU_PLL0_CFG_PLLN GET_BITS(*LQ_CGU_PLL0_CFG, 12, 6)
++#define CGU_PLL0_CFG_PLLM GET_BITS(*LQ_CGU_PLL0_CFG, 5, 2)
++#define CGU_PLL2_SRC GET_BITS(*LQ_CGU_PLL2_CFG, 18, 17)
++#define CGU_PLL2_CFG_INPUT_DIV GET_BITS(*LQ_CGU_PLL2_CFG, 16, 13)
++
++#define LQ_GPTU_GPT_CLC ((u32 *)(LQ_GPTU_BASE_ADDR + 0x0000))
++#define LQ_CGU_PLL0_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x0004))
++#define LQ_CGU_PLL1_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x0008))
++#define LQ_CGU_PLL2_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x000C))
++#define LQ_CGU_SYS ((u32 *)(LQ_CGU_BASE_ADDR + 0x0010))
++#define LQ_CGU_UPDATE ((u32 *)(LQ_CGU_BASE_ADDR + 0x0014))
++#define LQ_CGU_IF_CLK ((u32 *)(LQ_CGU_BASE_ADDR + 0x0018))
++#define LQ_CGU_OSC_CON ((u32 *)(LQ_CGU_BASE_ADDR + 0x001C))
++#define LQ_CGU_SMD ((u32 *)(LQ_CGU_BASE_ADDR + 0x0020))
++#define LQ_CGU_CT1SR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0028))
++#define LQ_CGU_CT2SR ((u32 *)(LQ_CGU_BASE_ADDR + 0x002C))
++#define LQ_CGU_PCMCR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0030))
++#define LQ_CGU_PCI_CR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0034))
++#define LQ_CGU_PD_PC ((u32 *)(LQ_CGU_BASE_ADDR + 0x0038))
++#define LQ_CGU_FMR ((u32 *)(LQ_CGU_BASE_ADDR + 0x003C))
++
++static unsigned int lq_get_pll0_fdiv(void);
++
++static inline unsigned int
++get_input_clock(int pll)
++{
++ switch (pll) {
++ case 0:
++ if (lq_r32(LQ_CGU_PLL0_CFG) & CGU_PLL0_SRC)
++ return BASIS_REQUENCY_USB;
++ else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
++ return BASIC_FREQUENCY_1;
++ else
++ return BASIC_FREQUENCY_2;
++ case 1:
++ if (CGU_PLL1_SRC)
++ return BASIS_REQUENCY_USB;
++ else if (CGU_PLL0_PHASE_DIVIDER_ENABLE)
++ return BASIC_FREQUENCY_1;
++ else
++ return BASIC_FREQUENCY_2;
++ case 2:
++ switch (CGU_PLL2_SRC) {
++ case 0:
++ return lq_get_pll0_fdiv();
++ case 1:
++ return CGU_PLL2_PHASE_DIVIDER_ENABLE ?
++ BASIC_FREQUENCY_1 :
++ BASIC_FREQUENCY_2;
++ case 2:
++ return BASIS_REQUENCY_USB;
++ }
++ default:
++ return 0;
++ }
++}
++
++static inline unsigned int
++cal_dsm(int pll, unsigned int num, unsigned int den)
++{
++ u64 res, clock = get_input_clock(pll);
++ res = num * clock;
++ do_div(res, den);
++ return res;
++}
++
++static inline unsigned int
++mash_dsm(int pll, unsigned int M, unsigned int N, unsigned int K)
++{
++ unsigned int num = ((N + 1) << 10) + K;
++ unsigned int den = (M + 1) << 10;
++ return cal_dsm(pll, num, den);
++}
++
++static inline unsigned int
++ssff_dsm_1(int pll, unsigned int M, unsigned int N, unsigned int K)
++{
++ unsigned int num = ((N + 1) << 11) + K + 512;
++ unsigned int den = (M + 1) << 11;
++ return cal_dsm(pll, num, den);
++}
++
++static inline unsigned int
++ssff_dsm_2(int pll, unsigned int M, unsigned int N, unsigned int K)
++{
++ unsigned int num = K >= 512 ?
++ ((N + 1) << 12) + K - 512 : ((N + 1) << 12) + K + 3584;
++ unsigned int den = (M + 1) << 12;
++ return cal_dsm(pll, num, den);
++}
++
++static inline unsigned int
++dsm(int pll, unsigned int M, unsigned int N, unsigned int K,
++ unsigned int dsmsel, unsigned int phase_div_en)
++{
++ if (!dsmsel)
++ return mash_dsm(pll, M, N, K);
++ else if (!phase_div_en)
++ return mash_dsm(pll, M, N, K);
++ else
++ return ssff_dsm_2(pll, M, N, K);
++}
++
++static inline unsigned int
++lq_get_pll0_fosc(void)
++{
++ if (CGU_PLL0_BYPASS)
++ return get_input_clock(0);
++ else
++ return !CGU_PLL0_CFG_FRAC_EN
++ ? dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, 0, CGU_PLL0_CFG_DSMSEL,
++ CGU_PLL0_PHASE_DIVIDER_ENABLE)
++ : dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, CGU_PLL0_CFG_PLLK,
++ CGU_PLL0_CFG_DSMSEL, CGU_PLL0_PHASE_DIVIDER_ENABLE);
++}
++
++static unsigned int
++lq_get_pll0_fdiv(void)
++{
++ unsigned int div = CGU_PLL2_CFG_INPUT_DIV + 1;
++ return (lq_get_pll0_fosc() + (div >> 1)) / div;
++}
++
++unsigned int
++lq_get_io_region_clock(void)
++{
++ unsigned int ret = lq_get_pll0_fosc();
++ switch (lq_r32(LQ_CGU_PLL2_CFG) & CGU_SYS_DDR_SEL) {
++ default:
++ case 0:
++ return (ret + 1) / 2;
++ case 1:
++ return (ret * 2 + 2) / 5;
++ case 2:
++ return (ret + 1) / 3;
++ case 3:
++ return (ret + 2) / 4;
++ }
++}
++EXPORT_SYMBOL(lq_get_io_region_clock);
++
++unsigned int
++lq_get_fpi_bus_clock(int fpi)
++{
++ unsigned int ret = lq_get_io_region_clock();
++ if ((fpi == 2) && (lq_r32(LQ_CGU_SYS) & CGU_SYS_FPI_SEL))
++ ret >>= 1;
++ return ret;
++}
++EXPORT_SYMBOL(lq_get_fpi_bus_clock);
++
++unsigned int
++lq_get_cpu_hz(void)
++{
++ switch (lq_r32(LQ_CGU_SYS) & 0xc)
++ {
++ case 0:
++ return CLOCK_333M;
++ case 4:
++ return DDR_HZ;
++ case 8:
++ return DDR_HZ << 1;
++ default:
++ return DDR_HZ >> 1;
++ }
++}
++EXPORT_SYMBOL(lq_get_cpu_hz);
++
++unsigned int
++lq_get_fpi_hz(void)
++{
++ unsigned int ddr_clock = DDR_HZ;
++ if (lq_r32(LQ_CGU_SYS) & 0x40)
++ return ddr_clock >> 1;
++ return ddr_clock;
++}
++EXPORT_SYMBOL(lq_get_fpi_hz);
++
++
+--- /dev/null
++++ b/arch/mips/lantiq/xway/gpio.c
+@@ -0,0 +1,203 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/slab.h>
++#include <linux/module.h>
++#include <linux/platform_device.h>
++#include <linux/gpio.h>
++
++#include <lantiq.h>
++
++#define LQ_GPIO0_BASE_ADDR 0x1E100B10
++#define LQ_GPIO1_BASE_ADDR 0x1E100B40
++#define LQ_GPIO_SIZE 0x30
++
++#define LQ_GPIO_OUT 0x00
++#define LQ_GPIO_IN 0x04
++#define LQ_GPIO_DIR 0x08
++#define LQ_GPIO_ALTSEL0 0x0C
++#define LQ_GPIO_ALTSEL1 0x10
++#define LQ_GPIO_OD 0x14
++
++#define PINS_PER_PORT 16
++
++#define lq_gpio_getbit(m, r, p) !!(lq_r32(m + r) & (1 << p))
++#define lq_gpio_setbit(m, r, p) lq_w32_mask(0, (1 << p), m + r)
++#define lq_gpio_clearbit(m, r, p) lq_w32_mask((1 << p), 0, m + r)
++
++struct lq_gpio
++{
++ void __iomem *membase;
++ struct gpio_chip chip;
++};
++
++int
++gpio_to_irq(unsigned int gpio)
++{
++ return -EINVAL;
++}
++EXPORT_SYMBOL(gpio_to_irq);
++
++int
++lq_gpio_setconfig(unsigned int pin, unsigned int reg, unsigned int val)
++{
++ void __iomem *membase = (void*)KSEG1ADDR(LQ_GPIO0_BASE_ADDR);
++ if(pin >= (2 * PINS_PER_PORT))
++ return -EINVAL;
++ if(pin >= PINS_PER_PORT)
++ {
++ pin -= PINS_PER_PORT;
++ membase += LQ_GPIO_SIZE;
++ }
++ if(val)
++ lq_w32_mask(0, (1 << pin), membase + reg);
++ else
++ lq_w32_mask((1 << pin), 0, membase + reg);
++ return 0;
++}
++EXPORT_SYMBOL(lq_gpio_setconfig);
++
++int
++lq_gpio_request(unsigned int pin, unsigned int alt0,
++ unsigned int alt1, unsigned int dir, const char *name)
++{
++ void __iomem *membase = (void*)KSEG1ADDR(LQ_GPIO0_BASE_ADDR);
++ if(pin >= (2 * PINS_PER_PORT))
++ return -EINVAL;
++ if(gpio_request(pin, name))
++ {
++ printk("failed to register %s gpio\n", name);
++ return -EBUSY;
++ }
++ gpio_direction_output(pin, dir);
++ if(pin >= PINS_PER_PORT)
++ {
++ pin -= PINS_PER_PORT;
++ membase += LQ_GPIO_SIZE;
++ }
++ if(alt0)
++ lq_gpio_setbit(membase, LQ_GPIO_ALTSEL0, pin);
++ else
++ lq_gpio_clearbit(membase, LQ_GPIO_ALTSEL0, pin);
++ if(alt1)
++ lq_gpio_setbit(membase, LQ_GPIO_ALTSEL1, pin);
++ else
++ lq_gpio_clearbit(membase, LQ_GPIO_ALTSEL1, pin);
++ return 0;
++}
++EXPORT_SYMBOL(lq_gpio_request);
++
++static void
++lq_gpio_set(struct gpio_chip *chip, unsigned int offset, int value)
++{
++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip);
++ if(value)
++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_OUT, offset);
++ else
++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_OUT, offset);
++}
++
++static int
++lq_gpio_get(struct gpio_chip *chip, unsigned int offset)
++{
++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip);
++ return lq_gpio_getbit(lq_gpio->membase, LQ_GPIO_IN, offset);
++}
++
++static int
++lq_gpio_direction_input(struct gpio_chip *chip, unsigned int offset)
++{
++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip);
++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_OD, offset);
++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_DIR, offset);
++ return 0;
++}
++
++static int
++lq_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value)
++{
++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip);
++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_OD, offset);
++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_DIR, offset);
++ lq_gpio_set(chip, offset, value);
++ return 0;
++}
++
++static int
++lq_gpio_req(struct gpio_chip *chip, unsigned offset)
++{
++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip);
++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_ALTSEL0, offset);
++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_ALTSEL1, offset);
++ return 0;
++}
++
++static int
++lq_gpio_probe(struct platform_device *pdev)
++{
++ struct lq_gpio *lq_gpio = kzalloc(sizeof(struct lq_gpio), GFP_KERNEL);
++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ int ret = 0;
++ if(!res)
++ {
++ ret = -ENOENT;
++ goto err_free;
++ }
++ res = request_mem_region(res->start, resource_size(res),
++ dev_name(&pdev->dev));
++ if(!res)
++ {
++ ret = -EBUSY;
++ goto err_free;
++ }
++ lq_gpio->membase = ioremap_nocache(res->start, resource_size(res));
++ if(!lq_gpio->membase)
++ {
++ ret = -ENOMEM;
++ goto err_release_mem_region;
++ }
++ lq_gpio->chip.label = "lq_gpio";
++ lq_gpio->chip.direction_input = lq_gpio_direction_input;
++ lq_gpio->chip.direction_output = lq_gpio_direction_output;
++ lq_gpio->chip.get = lq_gpio_get;
++ lq_gpio->chip.set = lq_gpio_set;
++ lq_gpio->chip.request = lq_gpio_req;
++ lq_gpio->chip.base = PINS_PER_PORT * pdev->id;
++ lq_gpio->chip.ngpio = PINS_PER_PORT;
++ platform_set_drvdata(pdev, lq_gpio);
++ ret = gpiochip_add(&lq_gpio->chip);
++ if(!ret)
++ return 0;
++
++ iounmap(lq_gpio->membase);
++err_release_mem_region:
++ release_mem_region(res->start, resource_size(res));
++err_free:
++ kfree(lq_gpio);
++ return ret;
++}
++
++static struct platform_driver
++lq_gpio_driver = {
++ .probe = lq_gpio_probe,
++ .driver = {
++ .name = "lq_gpio",
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init
++lq_gpio_init(void)
++{
++ int ret = platform_driver_register(&lq_gpio_driver);
++ if(ret)
++ printk(KERN_INFO "lq_gpio : Error registering platfom driver!");
++ return ret;
++}
++
++arch_initcall(lq_gpio_init);
+--- /dev/null
++++ b/arch/mips/lantiq/xway/reset.c
+@@ -0,0 +1,53 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/io.h>
++#include <linux/pm.h>
++#include <asm/reboot.h>
++
++#include <xway.h>
++
++#define LQ_RCU_RST ((u32 *)(LQ_RCU_BASE_ADDR + 0x0010))
++#define LQ_RCU_RST_ALL 0x40000000
++
++static void
++lq_machine_restart(char *command)
++{
++ printk(KERN_NOTICE "System restart\n");
++ local_irq_disable();
++ lq_w32(lq_r32(LQ_RCU_RST) | LQ_RCU_RST_ALL, LQ_RCU_RST);
++ for(;;);
++}
++
++static void
++lq_machine_halt(void)
++{
++ printk(KERN_NOTICE "System halted.\n");
++ local_irq_disable();
++ for(;;);
++}
++
++static void
++lq_machine_power_off(void)
++{
++ printk(KERN_NOTICE "Please turn off the power now.\n");
++ local_irq_disable();
++ for(;;);
++}
++
++static int __init
++mips_reboot_setup(void)
++{
++ _machine_restart = lq_machine_restart;
++ _machine_halt = lq_machine_halt;
++ pm_power_off = lq_machine_power_off;
++ return 0;
++}
++
++arch_initcall(mips_reboot_setup);
diff --git a/target/linux/lantiq/patches/105-header_xway.patch b/target/linux/lantiq/patches/105-header_xway.patch
new file mode 100644
index 0000000000..f41e335a6c
--- /dev/null
+++ b/target/linux/lantiq/patches/105-header_xway.patch
@@ -0,0 +1,565 @@
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/xway/irq.h
+@@ -0,0 +1,18 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef __LANTIQ_IRQ_H
++#define __LANTIQ_IRQ_H
++
++#include <xway_irq.h>
++
++#define NR_IRQS 256
++
++#include_next <irq.h>
++
++#endif
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/lantiq_timer.h
+@@ -0,0 +1,155 @@
++#ifndef __DANUBE_GPTU_DEV_H__2005_07_26__10_19__
++#define __DANUBE_GPTU_DEV_H__2005_07_26__10_19__
++
++
++/******************************************************************************
++ Copyright (c) 2002, Infineon Technologies. All rights reserved.
++
++ No Warranty
++ Because the program is licensed free of charge, there is no warranty for
++ the program, to the extent permitted by applicable law. Except when
++ otherwise stated in writing the copyright holders and/or other parties
++ provide the program "as is" without warranty of any kind, either
++ expressed or implied, including, but not limited to, the implied
++ warranties of merchantability and fitness for a particular purpose. The
++ entire risk as to the quality and performance of the program is with
++ you. should the program prove defective, you assume the cost of all
++ necessary servicing, repair or correction.
++
++ In no event unless required by applicable law or agreed to in writing
++ will any copyright holder, or any other party who may modify and/or
++ redistribute the program as permitted above, be liable to you for
++ damages, including any general, special, incidental or consequential
++ damages arising out of the use or inability to use the program
++ (including but not limited to loss of data or data being rendered
++ inaccurate or losses sustained by you or third parties or a failure of
++ the program to operate with any other programs), even if such holder or
++ other party has been advised of the possibility of such damages.
++******************************************************************************/
++
++
++/*
++ * ####################################
++ * Definition
++ * ####################################
++ */
++
++/*
++ * Available Timer/Counter Index
++ */
++#define TIMER(n, X) (n * 2 + (X ? 1 : 0))
++#define TIMER_ANY 0x00
++#define TIMER1A TIMER(1, 0)
++#define TIMER1B TIMER(1, 1)
++#define TIMER2A TIMER(2, 0)
++#define TIMER2B TIMER(2, 1)
++#define TIMER3A TIMER(3, 0)
++#define TIMER3B TIMER(3, 1)
++
++/*
++ * Flag of Timer/Counter
++ * These flags specify the way in which timer is configured.
++ */
++/* Bit size of timer/counter. */
++#define TIMER_FLAG_16BIT 0x0000
++#define TIMER_FLAG_32BIT 0x0001
++/* Switch between timer and counter. */
++#define TIMER_FLAG_TIMER 0x0000
++#define TIMER_FLAG_COUNTER 0x0002
++/* Stop or continue when overflowing/underflowing. */
++#define TIMER_FLAG_ONCE 0x0000
++#define TIMER_FLAG_CYCLIC 0x0004
++/* Count up or counter down. */
++#define TIMER_FLAG_UP 0x0000
++#define TIMER_FLAG_DOWN 0x0008
++/* Count on specific level or edge. */
++#define TIMER_FLAG_HIGH_LEVEL_SENSITIVE 0x0000
++#define TIMER_FLAG_LOW_LEVEL_SENSITIVE 0x0040
++#define TIMER_FLAG_RISE_EDGE 0x0010
++#define TIMER_FLAG_FALL_EDGE 0x0020
++#define TIMER_FLAG_ANY_EDGE 0x0030
++/* Signal is syncronous to module clock or not. */
++#define TIMER_FLAG_UNSYNC 0x0000
++#define TIMER_FLAG_SYNC 0x0080
++/* Different interrupt handle type. */
++#define TIMER_FLAG_NO_HANDLE 0x0000
++#if defined(__KERNEL__)
++ #define TIMER_FLAG_CALLBACK_IN_IRQ 0x0100
++#endif // defined(__KERNEL__)
++#define TIMER_FLAG_SIGNAL 0x0300
++/* Internal clock source or external clock source */
++#define TIMER_FLAG_INT_SRC 0x0000
++#define TIMER_FLAG_EXT_SRC 0x1000
++
++
++/*
++ * ioctl Command
++ */
++#define GPTU_REQUEST_TIMER 0x01 /* General method to setup timer/counter. */
++#define GPTU_FREE_TIMER 0x02 /* Free timer/counter. */
++#define GPTU_START_TIMER 0x03 /* Start or resume timer/counter. */
++#define GPTU_STOP_TIMER 0x04 /* Suspend timer/counter. */
++#define GPTU_GET_COUNT_VALUE 0x05 /* Get current count value. */
++#define GPTU_CALCULATE_DIVIDER 0x06 /* Calculate timer divider from given freq.*/
++#define GPTU_SET_TIMER 0x07 /* Simplified method to setup timer. */
++#define GPTU_SET_COUNTER 0x08 /* Simplified method to setup counter. */
++
++/*
++ * Data Type Used to Call ioctl
++ */
++struct gptu_ioctl_param {
++ unsigned int timer; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and *
++ * GPTU_SET_COUNTER, this field is ID of expected *
++ * timer/counter. If it's zero, a timer/counter would *
++ * be dynamically allocated and ID would be stored in *
++ * this field. *
++ * In command GPTU_GET_COUNT_VALUE, this field is *
++ * ignored. *
++ * In other command, this field is ID of timer/counter *
++ * allocated. */
++ unsigned int flag; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and *
++ * GPTU_SET_COUNTER, this field contains flags to *
++ * specify how to configure timer/counter. *
++ * In command GPTU_START_TIMER, zero indicate start *
++ * and non-zero indicate resume timer/counter. *
++ * In other command, this field is ignored. */
++ unsigned long value; /* In command GPTU_REQUEST_TIMER, this field contains *
++ * init/reload value. *
++ * In command GPTU_SET_TIMER, this field contains *
++ * frequency (0.001Hz) of timer. *
++ * In command GPTU_GET_COUNT_VALUE, current count *
++ * value would be stored in this field. *
++ * In command GPTU_CALCULATE_DIVIDER, this field *
++ * contains frequency wanted, and after calculation, *
++ * divider would be stored in this field to overwrite *
++ * the frequency. *
++ * In other command, this field is ignored. */
++ int pid; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, *
++ * if signal is required, this field contains process *
++ * ID to which signal would be sent. *
++ * In other command, this field is ignored. */
++ int sig; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, *
++ * if signal is required, this field contains signal *
++ * number which would be sent. *
++ * In other command, this field is ignored. */
++};
++
++/*
++ * ####################################
++ * Data Type
++ * ####################################
++ */
++typedef void (*timer_callback)(unsigned long arg);
++
++extern int ifxmips_request_timer(unsigned int, unsigned int, unsigned long, unsigned long, unsigned long);
++extern int ifxmips_free_timer(unsigned int);
++extern int ifxmips_start_timer(unsigned int, int);
++extern int ifxmips_stop_timer(unsigned int);
++extern int ifxmips_reset_counter_flags(u32 timer, u32 flags);
++extern int ifxmips_get_count_value(unsigned int, unsigned long *);
++extern u32 ifxmips_cal_divider(unsigned long);
++extern int ifxmips_set_timer(unsigned int, unsigned int, int, int, unsigned int, unsigned long, unsigned long);
++extern int ifxmips_set_counter(unsigned int timer, unsigned int flag,
++ u32 reload, unsigned long arg1, unsigned long arg2);
++
++#endif /* __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ */
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/xway/xway.h
+@@ -0,0 +1,121 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2005 infineon
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++
++#ifndef _LQ_XWAY_H__
++#define _LQ_XWAY_H__
++
++#include <lantiq.h>
++
++/* request a non-gpio and set the PIO config */
++extern int lq_gpio_request(unsigned int pin, unsigned int alt0,
++ unsigned int alt1, unsigned int dir, const char *name);
++extern int lq_gpio_setconfig(unsigned int pin, unsigned int reg, unsigned int val);
++
++extern void lq_pmu_enable(unsigned int module);
++extern void lq_pmu_disable(unsigned int module);
++
++extern unsigned int lq_get_fpi_bus_clock(int bus);
++
++#define BOARD_SYSTEM_TYPE "LANTIQ"
++
++/*------------ Chip IDs */
++#define SOC_ID_DANUBE1 0x129
++#define SOC_ID_DANUBE2 0x12B
++#define SOC_ID_TWINPASS 0x12D
++#define SOC_ID_ARX188 0x16C
++#define SOC_ID_ARX168 0x16D
++#define SOC_ID_ARX182 0x16F
++
++/*------------ SoC Types */
++#define SOC_TYPE_DANUBE 0x01
++#define SOC_TYPE_TWINPASS 0x02
++#define SOC_TYPE_AR9 0x03
++
++/*------------ ASC0/1 */
++#define LQ_ASC0_BASE 0x1E100400
++#define LQ_ASC1_BASE 0x1E100C00
++#define LQ_ASC_SIZE 0x400
++
++/*------------ RCU */
++#define LQ_RCU_BASE_ADDR 0xBF203000
++
++/*------------ GPTU */
++#define LQ_GPTU_BASE_ADDR 0xB8000300
++
++/*------------ EBU */
++#define LQ_EBU_GPIO_START 0x14000000
++#define LQ_EBU_GPIO_SIZE 0x1000
++
++#define LQ_EBU_BASE_ADDR 0xBE105300
++
++#define LQ_EBU_BUSCON0 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0060))
++#define LQ_EBU_PCC_CON ((u32 *)(LQ_EBU_BASE_ADDR + 0x0090))
++#define LQ_EBU_PCC_IEN ((u32 *)(LQ_EBU_BASE_ADDR + 0x00A4))
++#define LQ_EBU_PCC_ISTAT ((u32 *)(LQ_EBU_BASE_ADDR + 0x00A0))
++#define LQ_EBU_BUSCON1 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0064))
++#define LQ_EBU_ADDRSEL1 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0024))
++
++#define EBU_WRDIS 0x80000000
++
++/*------------ CGU */
++#define LQ_CGU_BASE_ADDR (KSEG1 + 0x1F103000)
++
++/*------------ PMU */
++#define LQ_PMU_BASE_ADDR (KSEG1 + 0x1F102000)
++
++#define PMU_DMA 0x0020
++#define PMU_USB 0x8041
++#define PMU_LED 0x0800
++#define PMU_GPT 0x1000
++#define PMU_PPE 0x2000
++#define PMU_FPI 0x4000
++#define PMU_SWITCH 0x10000000
++
++/*------------ ETOP */
++#define LQ_PPE32_BASE_ADDR 0xBE180000
++#define LQ_PPE32_SIZE 0x40000
++
++/*------------ DMA */
++#define LQ_DMA_BASE_ADDR 0xBE104100
++
++/*------------ PCI */
++#define PCI_CR_PR_BASE_ADDR (KSEG1 + 0x1E105400)
++#define PCI_CS_PR_BASE_ADDR (KSEG1 + 0x17000000)
++
++/*------------ WDT */
++#define LQ_WDT_BASE 0x1F880000
++#define LQ_WDT_SIZE 0x400
++
++/*------------ Serial To Parallel conversion */
++#define LQ_STP_BASE 0x1E100BB0
++#define LQ_STP_SIZE 0x40
++
++/*------------ GPIO */
++#define LQ_GPIO0_BASE_ADDR 0x1E100B10
++#define LQ_GPIO1_BASE_ADDR 0x1E100B40
++#define LQ_GPIO_SIZE 0x30
++
++/*------------ SSC */
++#define LQ_SSC_BASE_ADDR (KSEG1 + 0x1e100800)
++
++/*------------ MEI */
++#define LQ_MEI_BASE_ADDR (KSEG1 + 0x1E116000)
++
++/*------------ DEU */
++#define LQ_DEU_BASE (KSEG1 + 0x1E103100)
++
++/*------------ MPS */
++#define LQ_MPS_BASE_ADDR (KSEG1 + 0x1F107000)
++#define LQ_MPS_CHIPID ((u32 *)(LQ_MPS_BASE_ADDR + 0x0344))
++
++#endif
++
++#endif
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/xway/xway_dma.h
+@@ -0,0 +1,144 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2005 infineon
++ * Copyright (C) 2007 John Crispin <blogic@openwrt.org>
++ *
++ */
++#ifndef _LQ_DMA_H__
++#define _LQ_DMA_H__
++
++#define RCV_INT 1
++#define TX_BUF_FULL_INT 2
++#define TRANSMIT_CPT_INT 4
++#define LQ_DMA_CH_ON 1
++#define LQ_DMA_CH_OFF 0
++#define LQ_DMA_CH_DEFAULT_WEIGHT 100
++
++enum attr_t{
++ TX = 0,
++ RX = 1,
++ RESERVED = 2,
++ DEFAULT = 3,
++};
++
++#define DMA_OWN 1
++#define CPU_OWN 0
++#define DMA_MAJOR 250
++
++#define DMA_DESC_OWN_CPU 0x0
++#define DMA_DESC_OWN_DMA 0x80000000
++#define DMA_DESC_CPT_SET 0x40000000
++#define DMA_DESC_SOP_SET 0x20000000
++#define DMA_DESC_EOP_SET 0x10000000
++
++#define MISCFG_MASK 0x40
++#define RDERR_MASK 0x20
++#define CHOFF_MASK 0x10
++#define DESCPT_MASK 0x8
++#define DUR_MASK 0x4
++#define EOP_MASK 0x2
++
++#define DMA_DROP_MASK (1<<31)
++
++#define LQ_DMA_RX -1
++#define LQ_DMA_TX 1
++
++struct dma_chan_map {
++ const char *dev_name;
++ enum attr_t dir;
++ int pri;
++ int irq;
++ int rel_chan_no;
++};
++
++#ifdef CONFIG_CPU_LITTLE_ENDIAN
++struct rx_desc {
++ u32 data_length:16;
++ volatile u32 reserved:7;
++ volatile u32 byte_offset:2;
++ volatile u32 Burst_length_offset:3;
++ volatile u32 EoP:1;
++ volatile u32 Res:1;
++ volatile u32 C:1;
++ volatile u32 OWN:1;
++ volatile u32 Data_Pointer; /* fixme: should be 28 bits here */
++};
++
++struct tx_desc {
++ volatile u32 data_length:16;
++ volatile u32 reserved1:7;
++ volatile u32 byte_offset:5;
++ volatile u32 EoP:1;
++ volatile u32 SoP:1;
++ volatile u32 C:1;
++ volatile u32 OWN:1;
++ volatile u32 Data_Pointer; /* fixme: should be 28 bits here */
++};
++#else /* BIG */
++struct rx_desc {
++ union {
++ struct {
++ volatile u32 OWN:1;
++ volatile u32 C:1;
++ volatile u32 SoP:1;
++ volatile u32 EoP:1;
++ volatile u32 Burst_length_offset:3;
++ volatile u32 byte_offset:2;
++ volatile u32 reserve:7;
++ volatile u32 data_length:16;
++ } field;
++ volatile u32 word;
++ } status;
++ volatile u32 Data_Pointer;
++};
++
++struct tx_desc {
++ union {
++ struct {
++ volatile u32 OWN:1;
++ volatile u32 C:1;
++ volatile u32 SoP:1;
++ volatile u32 EoP:1;
++ volatile u32 byte_offset:5;
++ volatile u32 reserved:7;
++ volatile u32 data_length:16;
++ } field;
++ volatile u32 word;
++ } status;
++ volatile u32 Data_Pointer;
++};
++#endif /* ENDIAN */
++
++struct dma_channel_info {
++ /* relative channel number */
++ int rel_chan_no;
++ /* class for this channel for QoS */
++ int pri;
++ /* specify byte_offset */
++ int byte_offset;
++ /* direction */
++ int dir;
++ /* irq number */
++ int irq;
++ /* descriptor parameter */
++ int desc_base;
++ int desc_len;
++ int curr_desc;
++ int prev_desc; /* only used if it is a tx channel*/
++ /* weight setting for WFQ algorithm*/
++ int weight;
++ int default_weight;
++ int packet_size;
++ int burst_len;
++ /* on or off of this channel */
++ int control;
++ /* optional information for the upper layer devices */
++#if defined(CONFIG_LQ_ETHERNET_D2) || defined(CONFIG_LQ_PPA)
++ void *opt[64];
++#else
++ void *opt[25];
++#endif
++ /* Pointer to the peripheral device who is using this channel */
++ void *dma_dev;
++ /* channel operations */
++ void (*open)(struct dma_channel_info *pCh);
++ void (*close)(struct dma_channel_info *pCh);
++ void (*reset)(struct dma_channel_info *pCh);
++ void (*enable_irq)(struct dma_channel_info *pCh);
++ void (*disable_irq)(struct dma_channel_info *pCh);
++};
++
++struct dma_device_info {
++ /* device name of this peripheral */
++ char device_name[15];
++ int reserved;
++ int tx_burst_len;
++ int rx_burst_len;
++ int default_weight;
++ int current_tx_chan;
++ int current_rx_chan;
++ int num_tx_chan;
++ int num_rx_chan;
++ int max_rx_chan_num;
++ int max_tx_chan_num;
++ struct dma_channel_info *tx_chan[20];
++ struct dma_channel_info *rx_chan[20];
++ /*functions, optional*/
++ u8 *(*buffer_alloc)(int len, int *offset, void **opt);
++ void (*buffer_free)(u8 *dataptr, void *opt);
++ int (*intr_handler)(struct dma_device_info *info, int status);
++ void *priv; /* used by peripheral driver only */
++};
++
++struct dma_device_info *dma_device_reserve(char *dev_name);
++void dma_device_release(struct dma_device_info *dev);
++void dma_device_register(struct dma_device_info *info);
++void dma_device_unregister(struct dma_device_info *info);
++int dma_device_read(struct dma_device_info *info, u8 **dataptr, void **opt);
++int dma_device_write(struct dma_device_info *info, u8 *dataptr, int len,
++ void *opt);
++
++#endif
++
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/xway/xway_irq.h
+@@ -0,0 +1,62 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LANTIQ_XWAY_IRQ_H__
++#define _LANTIQ_XWAY_IRQ_H__
++
++#define INT_NUM_IRQ0 8
++#define INT_NUM_IM0_IRL0 (INT_NUM_IRQ0 + 0)
++#define INT_NUM_IM1_IRL0 (INT_NUM_IRQ0 + 32)
++#define INT_NUM_IM2_IRL0 (INT_NUM_IRQ0 + 64)
++#define INT_NUM_IM3_IRL0 (INT_NUM_IRQ0 + 96)
++#define INT_NUM_IM4_IRL0 (INT_NUM_IRQ0 + 128)
++#define INT_NUM_IM_OFFSET (INT_NUM_IM1_IRL0 - INT_NUM_IM0_IRL0)
++
++#define LQ_ASC_TIR(x) (INT_NUM_IM3_IRL0 + (x * 7))
++#define LQ_ASC_RIR(x) (INT_NUM_IM3_IRL0 + (x * 7) + 2)
++#define LQ_ASC_EIR(x) (INT_NUM_IM3_IRL0 + (x * 7) + 3)
++
++#define LQ_SSC_TIR (INT_NUM_IM0_IRL0 + 15)
++#define LQ_SSC_RIR (INT_NUM_IM0_IRL0 + 14)
++#define LQ_SSC_EIR (INT_NUM_IM0_IRL0 + 16)
++
++#define LQ_MEI_DYING_GASP_INT (INT_NUM_IM1_IRL0 + 21)
++#define LQ_MEI_INT (INT_NUM_IM1_IRL0 + 23)
++
++#define LQ_TIMER6_INT (INT_NUM_IM1_IRL0 + 23)
++#define LQ_USB_INT (INT_NUM_IM1_IRL0 + 22)
++#define LQ_USB_OC_INT (INT_NUM_IM4_IRL0 + 23)
++
++#define MIPS_CPU_TIMER_IRQ 7
++
++#define LQ_DMA_CH0_INT (INT_NUM_IM2_IRL0)
++#define LQ_DMA_CH1_INT (INT_NUM_IM2_IRL0 + 1)
++#define LQ_DMA_CH2_INT (INT_NUM_IM2_IRL0 + 2)
++#define LQ_DMA_CH3_INT (INT_NUM_IM2_IRL0 + 3)
++#define LQ_DMA_CH4_INT (INT_NUM_IM2_IRL0 + 4)
++#define LQ_DMA_CH5_INT (INT_NUM_IM2_IRL0 + 5)
++#define LQ_DMA_CH6_INT (INT_NUM_IM2_IRL0 + 6)
++#define LQ_DMA_CH7_INT (INT_NUM_IM2_IRL0 + 7)
++#define LQ_DMA_CH8_INT (INT_NUM_IM2_IRL0 + 8)
++#define LQ_DMA_CH9_INT (INT_NUM_IM2_IRL0 + 9)
++#define LQ_DMA_CH10_INT (INT_NUM_IM2_IRL0 + 10)
++#define LQ_DMA_CH11_INT (INT_NUM_IM2_IRL0 + 11)
++#define LQ_DMA_CH12_INT (INT_NUM_IM2_IRL0 + 25)
++#define LQ_DMA_CH13_INT (INT_NUM_IM2_IRL0 + 26)
++#define LQ_DMA_CH14_INT (INT_NUM_IM2_IRL0 + 27)
++#define LQ_DMA_CH15_INT (INT_NUM_IM2_IRL0 + 28)
++#define LQ_DMA_CH16_INT (INT_NUM_IM2_IRL0 + 29)
++#define LQ_DMA_CH17_INT (INT_NUM_IM2_IRL0 + 30)
++#define LQ_DMA_CH18_INT (INT_NUM_IM2_IRL0 + 16)
++#define LQ_DMA_CH19_INT (INT_NUM_IM2_IRL0 + 21)
++
++#define LQ_PPE_MBOX_INT (INT_NUM_IM2_IRL0 + 24)
++
++#define INT_NUM_IM4_IRL14 (INT_NUM_IM4_IRL0 + 14)
++
++#endif
diff --git a/target/linux/lantiq/patches/106-early_printk.patch b/target/linux/lantiq/patches/106-early_printk.patch
new file mode 100644
index 0000000000..34e0bdf4d2
--- /dev/null
+++ b/target/linux/lantiq/patches/106-early_printk.patch
@@ -0,0 +1,93 @@
+--- a/arch/mips/lantiq/Kconfig
++++ b/arch/mips/lantiq/Kconfig
+@@ -33,4 +33,19 @@ endchoice
+ source "arch/mips/lantiq/falcon/Kconfig"
+ source "arch/mips/lantiq/xway/Kconfig"
+
++if EARLY_PRINTK
++choice
++ prompt "Early printk port"
++ default LANTIQ_PROM_ASC1
++ help
++ Choose which serial port is used, until the console driver is loaded
++
++config LANTIQ_PROM_ASC0
++ bool "ASC0"
++
++config LANTIQ_PROM_ASC1
++ bool "ASC1"
++endchoice
++endif
++
+ endif
+--- /dev/null
++++ b/arch/mips/lantiq/early_printk.c
+@@ -0,0 +1,68 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/cpu.h>
++
++#include <lantiq.h>
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++#include <xway.h>
++#ifdef CONFIG_LANTIQ_PROM_ASC0
++#define LQ_ASC_BASE KSEG1ADDR(LQ_ASC0_BASE)
++#else
++#define LQ_ASC_BASE KSEG1ADDR(LQ_ASC1_BASE)
++#endif
++
++#elif CONFIG_SOC_LANTIQ_FALCON
++#include <falcon/gpon_reg_base.h>
++#ifdef CONFIG_LANTIQ_PROM_ASC0
++#define LQ_ASC_BASE GPON_ASC0_BASE
++#else
++#define LQ_ASC_BASE GPON_ASC1_BASE
++#endif
++
++#endif
++
++#define ASC_BUF 1024
++#define LQ_ASC_FSTAT 0x0048
++#define LQ_ASC_TBUF 0x0020
++#define TXMASK 0x3F00
++#define TXOFFSET 8
++
++static char buf[ASC_BUF];
++
++void
++prom_putchar(char c)
++{
++ unsigned long flags;
++
++ local_irq_save(flags);
++ while ((lq_r32((u32 *)(LQ_ASC_BASE + LQ_ASC_FSTAT)) & TXMASK) >> TXOFFSET);
++
++ if (c == '\n')
++ lq_w32('\r', (u32 *)(LQ_ASC_BASE + LQ_ASC_TBUF));
++ lq_w32(c, (u32 *)(LQ_ASC_BASE + LQ_ASC_TBUF));
++ local_irq_restore(flags);
++}
++
++void
++early_printf(const char *fmt, ...)
++{
++ va_list args;
++ int l;
++ char *p, *buf_end;
++
++ va_start(args, fmt);
++ l = vsnprintf(buf, ASC_BUF, fmt, args);
++ va_end(args);
++ buf_end = buf + l;
++
++ for (p = buf; p < buf_end; p++)
++ prom_putchar(*p);
++}
diff --git a/target/linux/lantiq/patches/110-machine.patch b/target/linux/lantiq/patches/110-machine.patch
new file mode 100644
index 0000000000..9d0b7b71c8
--- /dev/null
+++ b/target/linux/lantiq/patches/110-machine.patch
@@ -0,0 +1,55 @@
+--- a/arch/mips/lantiq/setup.c
++++ b/arch/mips/lantiq/setup.c
+@@ -13,7 +13,8 @@
+ #include <linux/ioport.h>
+
+ #include <lantiq.h>
+-#include <lantiq_regs.h>
++
++#include <machine.h>
+
+ void __init
+ plat_mem_setup(void)
+@@ -46,3 +47,25 @@ plat_mem_setup(void)
+ memsize *= 1024 * 1024;
+ add_memory_region(0x00000000, memsize, BOOT_MEM_RAM);
+ }
++
++static int __init
++lq_machine_setup(void)
++{
++ mips_machine_setup();
++ return 0;
++}
++
++static void __init
++mach_generic_init(void)
++{
++}
++
++MIPS_MACHINE(LANTIQ_MACH_GENERIC,
++ "Generic",
++ "Generic",
++ mach_generic_init);
++
++arch_initcall(lq_machine_setup);
++
++/* for backward compatibility, define "board=" as alias for "machtype=" */
++__setup("board=", mips_machtype_setup);
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/machine.h
+@@ -0,0 +1,14 @@
++#include <asm/mips_machine.h>
++
++enum lantiq_mach_type {
++ LANTIQ_MACH_GENERIC,
++
++ /* FALCON */
++ LANTIQ_MACH_EASY98000, /* Falcon Eval Board, NOR Flash */
++ LANTIQ_MACH_EASY98020, /* Falcon Reference Board */
++
++ /* XWAY */
++ LANTIQ_MACH_EASY4010, /* Twinpass evalkit */
++ LANTIQ_MACH_EASY50712, /* Danube evalkit */
++ LANTIQ_MACH_EASY50812, /* AR9 eval board */
++};
diff --git a/target/linux/lantiq/patches/200-serial.patch b/target/linux/lantiq/patches/200-serial.patch
new file mode 100644
index 0000000000..a13022786b
--- /dev/null
+++ b/target/linux/lantiq/patches/200-serial.patch
@@ -0,0 +1,799 @@
+--- a/drivers/serial/Kconfig
++++ b/drivers/serial/Kconfig
+@@ -1397,6 +1397,14 @@
+ help
+ Support for Console on the NWP serial ports.
+
++config SERIAL_LANTIQ
++ bool "Lantiq serial driver"
++ depends on LANTIQ
++ select SERIAL_CORE
++ select SERIAL_CORE_CONSOLE
++ help
++ Driver for the Lantiq SoC ASC hardware
++
+ config SERIAL_QE
+ tristate "Freescale QUICC Engine serial port support"
+ depends on QUICC_ENGINE
+--- a/drivers/serial/Makefile
++++ b/drivers/serial/Makefile
+@@ -84,3 +84,4 @@
+ obj-$(CONFIG_SERIAL_GRLIB_GAISLER_APBUART) += apbuart.o
+ obj-$(CONFIG_SERIAL_ALTERA_JTAGUART) += altera_jtaguart.o
+ obj-$(CONFIG_SERIAL_ALTERA_UART) += altera_uart.o
++obj-$(CONFIG_SERIAL_LANTIQ) += lantiq.o
+--- /dev/null
++++ b/drivers/serial/lantiq.c
+@@ -0,0 +1,772 @@
++/*
++ * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ *
++ * Copyright (C) 2004 Infineon IFAP DC COM CPE
++ * Copyright (C) 2007 Felix Fietkau <nbd@openwrt.org>
++ * Copyright (C) 2007 John Crispin <blogic@openwrt.org>
++ * Copyright (C) 2010 Thomas Langer, Lantiq Deutschland
++ */
++
++#include <linux/slab.h>
++#include <linux/module.h>
++#include <linux/ioport.h>
++#include <linux/init.h>
++#include <linux/console.h>
++#include <linux/sysrq.h>
++#include <linux/device.h>
++#include <linux/tty.h>
++#include <linux/tty_flip.h>
++#include <linux/serial_core.h>
++#include <linux/serial.h>
++#include <linux/platform_device.h>
++#include <linux/io.h>
++#include <linux/clk.h>
++
++#define lq_r32(reg) __raw_readl(reg)
++#define lq_r8(reg) __raw_readb(reg)
++#define lq_w32(val, reg) __raw_writel(val, reg)
++#define lq_w8(val, reg) __raw_writeb(val, reg)
++#define lq_w32_mask(clear, set, reg) lq_w32((lq_r32(reg) & ~(clear)) | (set), reg)
++
++#define PORT_IFXMIPSASC 111
++#define MAXPORTS 2
++
++#define UART_DUMMY_UER_RX 1
++
++#define DRVNAME "lq_asc"
++
++#ifdef __BIG_ENDIAN
++#define IFXMIPS_ASC_TBUF (0x0020 + 3)
++#define IFXMIPS_ASC_RBUF (0x0024 + 3)
++#else
++#define IFXMIPS_ASC_TBUF 0x0020
++#define IFXMIPS_ASC_RBUF 0x0024
++#endif
++
++#define IFXMIPS_ASC_FSTAT 0x0048
++#define IFXMIPS_ASC_WHBSTATE 0x0018
++#define IFXMIPS_ASC_STATE 0x0014
++#define IFXMIPS_ASC_IRNCR 0x00F8
++#define IFXMIPS_ASC_CLC 0x0000
++#define IFXMIPS_ASC_ID 0x0008
++#define IFXMIPS_ASC_PISEL 0x0004
++#define IFXMIPS_ASC_TXFCON 0x0044
++#define IFXMIPS_ASC_RXFCON 0x0040
++#define IFXMIPS_ASC_CON 0x0010
++#define IFXMIPS_ASC_BG 0x0050
++#define IFXMIPS_ASC_IRNREN 0x00F4
++
++#define ASC_IRNREN_TX 0x1
++#define ASC_IRNREN_RX 0x2
++#define ASC_IRNREN_ERR 0x4
++#define ASC_IRNREN_TX_BUF 0x8
++#define ASC_IRNCR_TIR 0x1
++#define ASC_IRNCR_RIR 0x2
++#define ASC_IRNCR_EIR 0x4
++
++#define ASCOPT_CSIZE 0x3
++#define ASCOPT_CS7 0x1
++#define ASCOPT_CS8 0x2
++#define ASCOPT_PARENB 0x4
++#define ASCOPT_STOPB 0x8
++#define ASCOPT_PARODD 0x0
++#define ASCOPT_CREAD 0x20
++#define TXFIFO_FL 1
++#define RXFIFO_FL 1
++#define ASCCLC_DISS 0x2
++#define ASCCLC_RMCMASK 0x0000FF00
++#define ASCCLC_RMCOFFSET 8
++#define ASCCON_M_8ASYNC 0x0
++#define ASCCON_M_7ASYNC 0x2
++#define ASCCON_ODD 0x00000020
++#define ASCCON_STP 0x00000080
++#define ASCCON_BRS 0x00000100
++#define ASCCON_FDE 0x00000200
++#define ASCCON_R 0x00008000
++#define ASCCON_FEN 0x00020000
++#define ASCCON_ROEN 0x00080000
++#define ASCCON_TOEN 0x00100000
++#define ASCSTATE_PE 0x00010000
++#define ASCSTATE_FE 0x00020000
++#define ASCSTATE_ROE 0x00080000
++#define ASCSTATE_ANY (ASCSTATE_ROE|ASCSTATE_PE|ASCSTATE_FE)
++#define ASCWHBSTATE_CLRREN 0x00000001
++#define ASCWHBSTATE_SETREN 0x00000002
++#define ASCWHBSTATE_CLRPE 0x00000004
++#define ASCWHBSTATE_CLRFE 0x00000008
++#define ASCWHBSTATE_CLRROE 0x00000020
++#define ASCTXFCON_TXFEN 0x0001
++#define ASCTXFCON_TXFFLU 0x0002
++#define ASCTXFCON_TXFITLMASK 0x3F00
++#define ASCTXFCON_TXFITLOFF 8
++#define ASCRXFCON_RXFEN 0x0001
++#define ASCRXFCON_RXFFLU 0x0002
++#define ASCRXFCON_RXFITLMASK 0x3F00
++#define ASCRXFCON_RXFITLOFF 8
++#define ASCFSTAT_RXFFLMASK 0x003F
++#define ASCFSTAT_TXFFLMASK 0x3F00
++#define ASCFSTAT_TXFFLOFF 8
++#define ASCFSTAT_RXFREEMASK 0x003F0000
++#define ASCFSTAT_RXFREEOFF 16
++#define ASCFSTAT_TXFREEMASK 0x3F000000
++#define ASCFSTAT_TXFREEOFF 24
++
++static void lqasc_tx_chars(struct uart_port *port);
++extern void prom_printf(const char *fmt, ...);
++static struct lq_uart_port *lqasc_port[2];
++static struct uart_driver lqasc_reg;
++
++struct lq_uart_port {
++ struct uart_port port;
++ struct clk *clk;
++ unsigned int tx_irq;
++ unsigned int rx_irq;
++ unsigned int err_irq;
++};
++
++static inline struct
++lq_uart_port *to_lq_uart_port(struct uart_port *port)
++{
++ return container_of(port, struct lq_uart_port, port);
++}
++
++static void
++lqasc_stop_tx(struct uart_port *port)
++{
++ return;
++}
++
++static void
++lqasc_start_tx(struct uart_port *port)
++{
++ unsigned long flags;
++ local_irq_save(flags);
++ lqasc_tx_chars(port);
++ local_irq_restore(flags);
++ return;
++}
++
++static void
++lqasc_stop_rx(struct uart_port *port)
++{
++ lq_w32(ASCWHBSTATE_CLRREN, port->membase + IFXMIPS_ASC_WHBSTATE);
++}
++
++static void
++lqasc_enable_ms(struct uart_port *port)
++{
++}
++
++static void
++lqasc_rx_chars(struct uart_port *port)
++{
++ struct tty_struct *tty = port->state->port.tty;
++ unsigned int ch = 0, rsr = 0, fifocnt;
++
++ fifocnt = lq_r32(port->membase + IFXMIPS_ASC_FSTAT) & ASCFSTAT_RXFFLMASK;
++ while (fifocnt--) {
++ u8 flag = TTY_NORMAL;
++ ch = lq_r8(port->membase + IFXMIPS_ASC_RBUF);
++ rsr = (lq_r32(port->membase + IFXMIPS_ASC_STATE)
++ & ASCSTATE_ANY) | UART_DUMMY_UER_RX;
++ tty_flip_buffer_push(tty);
++ port->icount.rx++;
++
++ /*
++ * Note that the error handling code is
++ * out of the main execution path
++ */
++ if (rsr & ASCSTATE_ANY) {
++ if (rsr & ASCSTATE_PE) {
++ port->icount.parity++;
++ lq_w32_mask(0, ASCWHBSTATE_CLRPE,
++ port->membase + IFXMIPS_ASC_WHBSTATE);
++ } else if (rsr & ASCSTATE_FE) {
++ port->icount.frame++;
++ lq_w32_mask(0, ASCWHBSTATE_CLRFE,
++ port->membase + IFXMIPS_ASC_WHBSTATE);
++ }
++ if (rsr & ASCSTATE_ROE) {
++ port->icount.overrun++;
++ lq_w32_mask(0, ASCWHBSTATE_CLRROE,
++ port->membase + IFXMIPS_ASC_WHBSTATE);
++ }
++
++ rsr &= port->read_status_mask;
++
++ if (rsr & ASCSTATE_PE)
++ flag = TTY_PARITY;
++ else if (rsr & ASCSTATE_FE)
++ flag = TTY_FRAME;
++ }
++
++ if ((rsr & port->ignore_status_mask) == 0)
++ tty_insert_flip_char(tty, ch, flag);
++
++ if (rsr & ASCSTATE_ROE)
++ /*
++ * Overrun is special, since it's reported
++ * immediately, and doesn't affect the current
++ * character
++ */
++ tty_insert_flip_char(tty, 0, TTY_OVERRUN);
++ }
++ if (ch != 0)
++ tty_flip_buffer_push(tty);
++ return;
++}
++
++static void
++lqasc_tx_chars(struct uart_port *port)
++{
++ struct circ_buf *xmit = &port->state->xmit;
++ if (uart_tx_stopped(port)) {
++ lqasc_stop_tx(port);
++ return;
++ }
++
++ while (((lq_r32(port->membase + IFXMIPS_ASC_FSTAT) &
++ ASCFSTAT_TXFREEMASK) >> ASCFSTAT_TXFREEOFF) != 0) {
++ if (port->x_char) {
++ lq_w8(port->x_char, port->membase + IFXMIPS_ASC_TBUF);
++ port->icount.tx++;
++ port->x_char = 0;
++ continue;
++ }
++
++ if (uart_circ_empty(xmit))
++ break;
++
++ lq_w8(port->state->xmit.buf[port->state->xmit.tail],
++ port->membase + IFXMIPS_ASC_TBUF);
++ xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
++ port->icount.tx++;
++ }
++
++ if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
++ uart_write_wakeup(port);
++}
++
++static irqreturn_t
++lqasc_tx_int(int irq, void *_port)
++{
++ struct uart_port *port = (struct uart_port *)_port;
++ lq_w32(ASC_IRNCR_TIR, port->membase + IFXMIPS_ASC_IRNCR);
++ lqasc_start_tx(port);
++ return IRQ_HANDLED;
++}
++
++static irqreturn_t
++lqasc_err_int(int irq, void *_port)
++{
++ struct uart_port *port = (struct uart_port *)_port;
++ /* clear any pending interrupts */
++ lq_w32_mask(0, ASCWHBSTATE_CLRPE | ASCWHBSTATE_CLRFE | ASCWHBSTATE_CLRROE,
++ port->membase + IFXMIPS_ASC_WHBSTATE);
++ return IRQ_HANDLED;
++}
++
++static irqreturn_t
++lqasc_rx_int(int irq, void *_port)
++{
++ struct uart_port *port = (struct uart_port *)_port;
++ lq_w32(ASC_IRNCR_RIR, port->membase + IFXMIPS_ASC_IRNCR);
++ lqasc_rx_chars(port);
++ return IRQ_HANDLED;
++}
++
++static unsigned int
++lqasc_tx_empty(struct uart_port *port)
++{
++ int status;
++ status = lq_r32(port->membase + IFXMIPS_ASC_FSTAT) & ASCFSTAT_TXFFLMASK;
++ return status ? 0 : TIOCSER_TEMT;
++}
++
++static unsigned int
++lqasc_get_mctrl(struct uart_port *port)
++{
++ return TIOCM_CTS | TIOCM_CAR | TIOCM_DSR;
++}
++
++static void
++lqasc_set_mctrl(struct uart_port *port, u_int mctrl)
++{
++}
++
++static void
++lqasc_break_ctl(struct uart_port *port, int break_state)
++{
++}
++
++static int
++lqasc_startup(struct uart_port *port)
++{
++ struct lq_uart_port *ifx_port = to_lq_uart_port(port);
++ int retval;
++
++ port->uartclk = clk_get_rate(ifx_port->clk);
++
++ lq_w32_mask(ASCCLC_DISS | ASCCLC_RMCMASK, (1 << ASCCLC_RMCOFFSET),
++ port->membase + IFXMIPS_ASC_CLC);
++
++ lq_w32(0, port->membase + IFXMIPS_ASC_PISEL);
++ lq_w32(
++ ((TXFIFO_FL << ASCTXFCON_TXFITLOFF) & ASCTXFCON_TXFITLMASK) |
++ ASCTXFCON_TXFEN | ASCTXFCON_TXFFLU,
++ port->membase + IFXMIPS_ASC_TXFCON);
++ lq_w32(
++ ((RXFIFO_FL << ASCRXFCON_RXFITLOFF) & ASCRXFCON_RXFITLMASK)
++ | ASCRXFCON_RXFEN | ASCRXFCON_RXFFLU,
++ port->membase + IFXMIPS_ASC_RXFCON);
++ /* make sure other settings are written to hardware before setting enable bits */
++ wmb();
++ lq_w32_mask(0, ASCCON_M_8ASYNC | ASCCON_FEN | ASCCON_TOEN |
++ ASCCON_ROEN, port->membase + IFXMIPS_ASC_CON);
++
++ retval = request_irq(ifx_port->tx_irq, lqasc_tx_int,
++ IRQF_DISABLED, "asc_tx", port);
++ if (retval) {
++ pr_err("failed to request lqasc_tx_int\n");
++ return retval;
++ }
++
++ retval = request_irq(ifx_port->rx_irq, lqasc_rx_int,
++ IRQF_DISABLED, "asc_rx", port);
++ if (retval) {
++ pr_err("failed to request lqasc_rx_int\n");
++ goto err1;
++ }
++
++ retval = request_irq(ifx_port->err_irq, lqasc_err_int,
++ IRQF_DISABLED, "asc_err", port);
++ if (retval) {
++ pr_err("failed to request lqasc_err_int\n");
++ goto err2;
++ }
++
++ lq_w32(ASC_IRNREN_RX | ASC_IRNREN_ERR | ASC_IRNREN_TX,
++ port->membase + IFXMIPS_ASC_IRNREN);
++ return 0;
++
++err2:
++ free_irq(ifx_port->rx_irq, port);
++err1:
++ free_irq(ifx_port->tx_irq, port);
++ return retval;
++}
++
++static void
++lqasc_shutdown(struct uart_port *port)
++{
++ struct lq_uart_port *ifx_port = to_lq_uart_port(port);
++ free_irq(ifx_port->tx_irq, port);
++ free_irq(ifx_port->rx_irq, port);
++ free_irq(ifx_port->err_irq, port);
++
++ lq_w32(0, port->membase + IFXMIPS_ASC_CON);
++ lq_w32_mask(ASCRXFCON_RXFEN, ASCRXFCON_RXFFLU,
++ port->membase + IFXMIPS_ASC_RXFCON);
++ lq_w32_mask(ASCTXFCON_TXFEN, ASCTXFCON_TXFFLU,
++ port->membase + IFXMIPS_ASC_TXFCON);
++}
++
++static void
++lqasc_set_termios(struct uart_port *port,
++ struct ktermios *new, struct ktermios *old)
++{
++ unsigned int cflag;
++ unsigned int iflag;
++ unsigned int quot;
++ unsigned int baud;
++ unsigned int con = 0;
++ unsigned long flags;
++
++ cflag = new->c_cflag;
++ iflag = new->c_iflag;
++
++ switch (cflag & CSIZE) {
++ case CS7:
++ con = ASCCON_M_7ASYNC;
++ break;
++
++ case CS5:
++ case CS6:
++ default:
++ con = ASCCON_M_8ASYNC;
++ break;
++ }
++
++ if (cflag & CSTOPB)
++ con |= ASCCON_STP;
++
++ if (cflag & PARENB) {
++ if (!(cflag & PARODD))
++ con &= ~ASCCON_ODD;
++ else
++ con |= ASCCON_ODD;
++ }
++
++ port->read_status_mask = ASCSTATE_ROE;
++ if (iflag & INPCK)
++ port->read_status_mask |= ASCSTATE_FE | ASCSTATE_PE;
++
++ port->ignore_status_mask = 0;
++ if (iflag & IGNPAR)
++ port->ignore_status_mask |= ASCSTATE_FE | ASCSTATE_PE;
++
++ if (iflag & IGNBRK) {
++ /*
++ * If we're ignoring parity and break indicators,
++ * ignore overruns too (for real raw support).
++ */
++ if (iflag & IGNPAR)
++ port->ignore_status_mask |= ASCSTATE_ROE;
++ }
++
++ if ((cflag & CREAD) == 0)
++ port->ignore_status_mask |= UART_DUMMY_UER_RX;
++
++ /* set error signals - framing, parity and overrun, enable receiver */
++ con |= ASCCON_FEN | ASCCON_TOEN | ASCCON_ROEN;
++
++ local_irq_save(flags);
++
++ /* set up CON */
++ lq_w32_mask(0, con, port->membase + IFXMIPS_ASC_CON);
++
++ /* Set baud rate - take a divider of 2 into account */
++ baud = uart_get_baud_rate(port, new, old, 0, port->uartclk / 16);
++ quot = uart_get_divisor(port, baud);
++ quot = quot / 2 - 1;
++
++ /* disable the baudrate generator */
++ lq_w32_mask(ASCCON_R, 0, port->membase + IFXMIPS_ASC_CON);
++
++ /* make sure the fractional divider is off */
++ lq_w32_mask(ASCCON_FDE, 0, port->membase + IFXMIPS_ASC_CON);
++
++ /* set up to use divisor of 2 */
++ lq_w32_mask(ASCCON_BRS, 0, port->membase + IFXMIPS_ASC_CON);
++
++ /* now we can write the new baudrate into the register */
++ lq_w32(quot, port->membase + IFXMIPS_ASC_BG);
++
++ /* turn the baudrate generator back on */
++ lq_w32_mask(0, ASCCON_R, port->membase + IFXMIPS_ASC_CON);
++
++ /* enable rx */
++ lq_w32(ASCWHBSTATE_SETREN, port->membase + IFXMIPS_ASC_WHBSTATE);
++
++ local_irq_restore(flags);
++}
++
++static const char*
++lqasc_type(struct uart_port *port)
++{
++ if (port->type == PORT_IFXMIPSASC)
++ return DRVNAME;
++ else
++ return NULL;
++}
++
++static void
++lqasc_release_port(struct uart_port *port)
++{
++ if (port->flags & UPF_IOREMAP) {
++ iounmap(port->membase);
++ port->membase = NULL;
++ }
++}
++
++static int
++lqasc_request_port(struct uart_port *port)
++{
++ struct platform_device *pdev = to_platform_device(port->dev);
++ struct resource *mmres;
++ int size;
++
++ mmres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ if (!mmres)
++ return -ENODEV;
++ size = resource_size(mmres);
++
++ if (port->flags & UPF_IOREMAP) {
++ port->membase = ioremap_nocache(port->mapbase, size);
++ if (port->membase == NULL)
++ return -ENOMEM;
++ }
++ return 0;
++}
++
++static void
++lqasc_config_port(struct uart_port *port, int flags)
++{
++ if (flags & UART_CONFIG_TYPE) {
++ port->type = PORT_IFXMIPSASC;
++ lqasc_request_port(port);
++ }
++}
++
++static int
++lqasc_verify_port(struct uart_port *port,
++ struct serial_struct *ser)
++{
++ int ret = 0;
++ if (ser->type != PORT_UNKNOWN && ser->type != PORT_IFXMIPSASC)
++ ret = -EINVAL;
++ if (ser->irq < 0 || ser->irq >= NR_IRQS)
++ ret = -EINVAL;
++ if (ser->baud_base < 9600)
++ ret = -EINVAL;
++ return ret;
++}
++
++static struct uart_ops lqasc_pops = {
++ .tx_empty = lqasc_tx_empty,
++ .set_mctrl = lqasc_set_mctrl,
++ .get_mctrl = lqasc_get_mctrl,
++ .stop_tx = lqasc_stop_tx,
++ .start_tx = lqasc_start_tx,
++ .stop_rx = lqasc_stop_rx,
++ .enable_ms = lqasc_enable_ms,
++ .break_ctl = lqasc_break_ctl,
++ .startup = lqasc_startup,
++ .shutdown = lqasc_shutdown,
++ .set_termios = lqasc_set_termios,
++ .type = lqasc_type,
++ .release_port = lqasc_release_port,
++ .request_port = lqasc_request_port,
++ .config_port = lqasc_config_port,
++ .verify_port = lqasc_verify_port,
++};
++
++static void
++lqasc_console_putchar(struct uart_port *port, int ch)
++{
++ int fifofree;
++
++ if (!port->membase)
++ return;
++
++ do {
++ fifofree = (lq_r32(port->membase + IFXMIPS_ASC_FSTAT)
++ & ASCFSTAT_TXFREEMASK) >> ASCFSTAT_TXFREEOFF;
++ } while (fifofree == 0);
++ lq_w8(ch, port->membase + IFXMIPS_ASC_TBUF);
++}
++
++
++static void
++lqasc_console_write(struct console *co, const char *s, u_int count)
++{
++ struct lq_uart_port *ifx_port;
++ struct uart_port *port;
++ unsigned long flags;
++
++ if (co->index >= MAXPORTS)
++ return;
++
++ ifx_port = lqasc_port[co->index];
++ if (!ifx_port)
++ return;
++
++ port = &ifx_port->port;
++
++ local_irq_save(flags);
++ uart_console_write(port, s, count, lqasc_console_putchar);
++ local_irq_restore(flags);
++}
++
++static int __init
++lqasc_console_setup(struct console *co, char *options)
++{
++ struct lq_uart_port *ifx_port;
++ struct uart_port *port;
++ int baud = 115200;
++ int bits = 8;
++ int parity = 'n';
++ int flow = 'n';
++
++ if (co->index >= MAXPORTS)
++ return -ENODEV;
++
++ ifx_port = lqasc_port[co->index];
++ if (!ifx_port)
++ return -ENODEV;
++
++ port = &ifx_port->port;
++
++ port->uartclk = clk_get_rate(ifx_port->clk);
++
++ if (options)
++ uart_parse_options(options, &baud, &parity, &bits, &flow);
++ return uart_set_options(port, co, baud, parity, bits, flow);
++}
++
++static struct console lqasc_console = {
++ .name = "ttyS",
++ .write = lqasc_console_write,
++ .device = uart_console_device,
++ .setup = lqasc_console_setup,
++ .flags = CON_PRINTBUFFER,
++ .index = -1,
++ .data = &lqasc_reg,
++};
++
++static int __init
++lqasc_console_init(void)
++{
++ register_console(&lqasc_console);
++ return 0;
++}
++console_initcall(lqasc_console_init);
++
++static struct uart_driver lqasc_reg = {
++ .owner = THIS_MODULE,
++ .driver_name = DRVNAME,
++ .dev_name = "ttyS",
++ .major = TTY_MAJOR,
++ .minor = 64,
++ .nr = MAXPORTS,
++ .cons = &lqasc_console,
++};
++
++static int __devinit
++lqasc_probe(struct platform_device *pdev)
++{
++ struct lq_uart_port *ifx_port;
++ struct uart_port *port;
++ struct resource *mmres, *irqres;
++ int tx_irq, rx_irq, err_irq;
++ struct clk *clk;
++ int ret;
++
++ mmres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ irqres = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
++ if (!mmres || !irqres)
++ return -ENODEV;
++
++ if (pdev->id >= MAXPORTS)
++ return -EBUSY;
++
++ if (lqasc_port[pdev->id] != NULL)
++ return -EBUSY;
++
++ clk = clk_get(&pdev->dev, "fpi");
++ if (IS_ERR(clk)) {
++ pr_err("failed to get fpi clk\n");
++ return -ENOENT;
++ }
++
++ tx_irq = platform_get_irq_byname(pdev, "tx");
++ if (tx_irq < 0) {
++ /* without named resources: assume standard irq scheme */
++ tx_irq = irqres->start;
++ rx_irq = irqres->start+2;
++ err_irq = irqres->start+3;
++ } else {
++ /* other irqs must be named also! */
++ rx_irq = platform_get_irq_byname(pdev, "rx");
++ err_irq = platform_get_irq_byname(pdev, "err");
++ if ((rx_irq < 0) | (err_irq < 0))
++ return -ENODEV;
++ }
++
++ ifx_port = kzalloc(sizeof(struct lq_uart_port), GFP_KERNEL);
++ if (!ifx_port)
++ return -ENOMEM;
++
++ port = &ifx_port->port;
++
++ port->iotype = SERIAL_IO_MEM;
++ port->flags = ASYNC_BOOT_AUTOCONF | UPF_IOREMAP;
++ port->ops = &lqasc_pops;
++ port->fifosize = 16;
++ port->type = PORT_IFXMIPSASC,
++ port->line = pdev->id;
++ port->dev = &pdev->dev;
++
++ port->irq = tx_irq; /* unused, just to be backward-compatibe */
++ port->mapbase = mmres->start;
++
++ ifx_port->clk = clk;
++
++ ifx_port->tx_irq = tx_irq;
++ ifx_port->rx_irq = rx_irq;
++ ifx_port->err_irq = err_irq;
++
++ lqasc_port[pdev->id] = ifx_port;
++ platform_set_drvdata(pdev, ifx_port);
++
++ ret = uart_add_one_port(&lqasc_reg, port);
++
++ return ret;
++}
++
++static int __devexit
++lqasc_remove(struct platform_device *pdev)
++{
++ struct lq_uart_port *ifx_port = platform_get_drvdata(pdev);
++ int ret;
++
++ clk_put(ifx_port->clk);
++ platform_set_drvdata(pdev, NULL);
++ lqasc_port[pdev->id] = NULL;
++ ret = uart_remove_one_port(&lqasc_reg, &ifx_port->port);
++ kfree(ifx_port);
++
++ return 0;
++}
++
++static struct platform_driver lqasc_driver = {
++ .probe = lqasc_probe,
++ .remove = __devexit_p(lqasc_remove),
++
++ .driver = {
++ .name = DRVNAME,
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init
++init_lqasc(void)
++{
++ int ret;
++
++ ret = uart_register_driver(&lqasc_reg);
++ if (ret != 0)
++ return ret;
++
++ ret = platform_driver_register(&lqasc_driver);
++ if (ret != 0)
++ uart_unregister_driver(&lqasc_reg);
++
++ return ret;
++}
++
++void __exit
++exit_lqasc(void)
++{
++ platform_driver_unregister(&lqasc_driver);
++ uart_unregister_driver(&lqasc_reg);
++}
++
++module_init(init_lqasc);
++module_exit(exit_lqasc);
++
++MODULE_DESCRIPTION("Lantiq serial port driver");
++MODULE_LICENSE("GPL");
diff --git a/target/linux/lantiq/patches/210-nor.patch b/target/linux/lantiq/patches/210-nor.patch
new file mode 100644
index 0000000000..510ac6bdf3
--- /dev/null
+++ b/target/linux/lantiq/patches/210-nor.patch
@@ -0,0 +1,245 @@
+--- a/drivers/mtd/maps/Kconfig
++++ b/drivers/mtd/maps/Kconfig
+@@ -251,6 +251,12 @@
+ help
+ Support for flash chips on NETtel/SecureEdge/SnapGear boards.
+
++config MTD_LANTIQ
++ bool "Lantiq SoC NOR support"
++ depends on LANTIQ && MTD_PARTITIONS
++ help
++ Support for NOR flsh chips on Lantiq SoC
++
+ config MTD_DILNETPC
+ tristate "CFI Flash device mapped on DIL/Net PC"
+ depends on X86 && MTD_CONCAT && MTD_PARTITIONS && MTD_CFI_INTELEXT && BROKEN
+--- a/drivers/mtd/maps/Makefile
++++ b/drivers/mtd/maps/Makefile
+@@ -59,3 +59,4 @@
+ obj-$(CONFIG_MTD_RBTX4939) += rbtx4939-flash.o
+ obj-$(CONFIG_MTD_VMU) += vmu-flash.o
+ obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o
++obj-$(CONFIG_MTD_LANTIQ) += lantiq.o
+--- /dev/null
++++ b/drivers/mtd/maps/lantiq.c
+@@ -0,0 +1,169 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2004 Liu Peng Infineon IFAP DC COM CPE
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/kernel.h>
++#include <linux/io.h>
++#include <linux/init.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/map.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/cfi.h>
++#include <linux/magic.h>
++#include <linux/platform_device.h>
++#include <linux/mtd/physmap.h>
++
++#include <lantiq.h>
++#include <lantiq_platform.h>
++
++static map_word
++lq_read16(struct map_info *map, unsigned long adr)
++{
++ unsigned long flags;
++ map_word temp;
++ spin_lock_irqsave(&ebu_lock, flags);
++ adr ^= 2;
++ temp.x[0] = *((__u16 *)(map->virt + adr));
++ spin_unlock_irqrestore(&ebu_lock, flags);
++ return temp;
++}
++
++static void
++lq_write16(struct map_info *map, map_word d, unsigned long adr)
++{
++ unsigned long flags;
++ spin_lock_irqsave(&ebu_lock, flags);
++ adr ^= 2;
++ *((__u16 *)(map->virt + adr)) = d.x[0];
++ spin_unlock_irqrestore(&ebu_lock, flags);
++}
++
++void
++lq_copy_from(struct map_info *map, void *to,
++ unsigned long from, ssize_t len)
++{
++ unsigned char *p;
++ unsigned char *to_8;
++ unsigned long flags;
++ spin_lock_irqsave(&ebu_lock, flags);
++ from = (unsigned long)(from + map->virt);
++ p = (unsigned char *) from;
++ to_8 = (unsigned char *) to;
++ while (len--)
++ *to_8++ = *p++;
++ spin_unlock_irqrestore(&ebu_lock, flags);
++}
++
++void
++lq_copy_to(struct map_info *map, unsigned long to,
++ const void *from, ssize_t len)
++{
++ unsigned char *p = (unsigned char *)from;
++ unsigned char *to_8;
++ unsigned long flags;
++ spin_lock_irqsave(&ebu_lock, flags);
++ to += (unsigned long) map->virt;
++ to_8 = (unsigned char *)to;
++ while (len--)
++ *p++ = *to_8++;
++ spin_unlock_irqrestore(&ebu_lock, flags);
++}
++
++static const char *part_probe_types[] = { "cmdlinepart", NULL };
++
++static struct map_info lq_map = {
++ .name = "lq_nor",
++ .bankwidth = 2,
++ .read = lq_read16,
++ .write = lq_write16,
++ .copy_from = lq_copy_from,
++ .copy_to = lq_copy_to,
++};
++
++static int
++lq_mtd_probe(struct platform_device *pdev)
++{
++ struct physmap_flash_data *lq_mtd_data =
++ (struct physmap_flash_data*) dev_get_platdata(&pdev->dev);
++ struct mtd_info *lq_mtd = NULL;
++ struct mtd_partition *parts = NULL;
++ struct resource *res = 0;
++ int nr_parts = 0;
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++ lq_w32(lq_r32(LQ_EBU_BUSCON0) & ~EBU_WRDIS, LQ_EBU_BUSCON0);
++#endif
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ if(!res)
++ {
++ dev_err(&pdev->dev, "failed to get memory resource");
++ return -ENOENT;
++ }
++ res = request_mem_region(res->start, resource_size(res),
++ dev_name(&pdev->dev));
++ if(!res)
++ {
++ dev_err(&pdev->dev, "failed to request mem resource");
++ return -EBUSY;
++ }
++
++ lq_map.phys = res->start;
++ lq_map.size = resource_size(res);
++ lq_map.virt = ioremap_nocache(lq_map.phys, lq_map.size);
++
++ if (!lq_map.virt ) {
++ dev_err(&pdev->dev, "failed to ioremap!\n");
++ return -EIO;
++ }
++
++ lq_mtd = (struct mtd_info *) do_map_probe("cfi_probe", &lq_map);
++ if (!lq_mtd) {
++ iounmap(lq_map.virt);
++ dev_err(&pdev->dev, "probing failed\n");
++ return -ENXIO;
++ }
++
++ lq_mtd->owner = THIS_MODULE;
++
++ nr_parts = parse_mtd_partitions(lq_mtd, part_probe_types, &parts, 0);
++ if (nr_parts > 0) {
++ dev_info(&pdev->dev, "using %d partitions from cmdline", nr_parts);
++ } else {
++ nr_parts = lq_mtd_data->nr_parts;
++ parts = lq_mtd_data->parts;
++ }
++
++ add_mtd_partitions(lq_mtd, parts, nr_parts);
++ return 0;
++}
++
++static struct platform_driver lq_mtd_driver = {
++ .probe = lq_mtd_probe,
++ .driver = {
++ .name = "lq_nor",
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init
++init_lq_mtd(void)
++{
++ int ret = platform_driver_register(&lq_mtd_driver);
++ if (ret)
++ printk(KERN_INFO "lq_nor: error registering platfom driver");
++ return ret;
++}
++
++module_init(init_lq_mtd);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
++MODULE_DESCRIPTION("Lantiq SoC NOR");
+--- a/drivers/mtd/chips/cfi_cmdset_0001.c
++++ b/drivers/mtd/chips/cfi_cmdset_0001.c
+@@ -41,7 +41,11 @@
+ /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
+
+ // debugging, turns off buffer write mode if set to 1
+-#define FORCE_WORD_WRITE 0
++#ifdef CONFIG_LANTIQ
++# define FORCE_WORD_WRITE 1
++#else
++# define FORCE_WORD_WRITE 0
++#endif
+
+ /* Intel chips */
+ #define I82802AB 0x00ad
+@@ -1491,6 +1495,9 @@
+ int ret=0;
+
+ adr += chip->start;
++#ifdef CONFIG_LANTIQ
++ adr ^= 2;
++#endif
+
+ switch (mode) {
+ case FL_WRITING:
+--- a/drivers/mtd/chips/cfi_cmdset_0002.c
++++ b/drivers/mtd/chips/cfi_cmdset_0002.c
+@@ -40,7 +40,11 @@
+ #include <linux/mtd/xip.h>
+
+ #define AMD_BOOTLOC_BUG
+-#define FORCE_WORD_WRITE 0
++#ifdef CONFIG_LANTIQ
++# define FORCE_WORD_WRITE 1
++#else
++# define FORCE_WORD_WRITE 0
++#endif
+
+ #define MAX_WORD_RETRIES 3
+
+@@ -1156,6 +1160,10 @@
+
+ adr += chip->start;
+
++#ifdef CONFIG_LANTIQ
++ adr ^= 2;
++#endif
++
+ mutex_lock(&chip->mutex);
+ ret = get_chip(map, chip, adr, FL_WRITING);
+ if (ret) {
diff --git a/target/linux/lantiq/patches/211-nor_split.patch b/target/linux/lantiq/patches/211-nor_split.patch
new file mode 100644
index 0000000000..2f77681b8c
--- /dev/null
+++ b/target/linux/lantiq/patches/211-nor_split.patch
@@ -0,0 +1,99 @@
+--- a/drivers/mtd/maps/lantiq.c
++++ b/drivers/mtd/maps/lantiq.c
+@@ -24,6 +24,10 @@
+ #include <lantiq.h>
+ #include <lantiq_platform.h>
+
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++#include <xway.h>
++#endif
++
+ static map_word
+ lq_read16(struct map_info *map, unsigned long adr)
+ {
+@@ -77,6 +81,75 @@ lq_copy_to(struct map_info *map, unsigne
+ spin_unlock_irqrestore(&ebu_lock, flags);
+ }
+
++static unsigned long
++find_uImage_size(struct map_info *map, unsigned long offset)
++{
++#define UBOOT_MAGIC 0x56190527
++ unsigned long magic;
++ unsigned long temp;
++ map->copy_from(map, &magic, offset, 4);
++ if (le32_to_cpu(magic) != UBOOT_MAGIC)
++ return 0;
++ map->copy_from(map, &temp, offset + 12, 4);
++ return temp + 0x40;
++}
++
++static int
++detect_squashfs_partition(struct map_info *map, unsigned long offset)
++{
++ unsigned long temp;
++ map->copy_from(map, &temp, offset, 4);
++ return le32_to_cpu(temp) == SQUASHFS_MAGIC;
++}
++
++static struct mtd_partition split_partitions[] = {
++ {
++ .name = "kernel",
++ .offset = 0x0,
++ .size = 0x0,
++ }, {
++ .name = "rootfs",
++ .offset = 0x0,
++ .size = 0x0,
++ },
++};
++
++static int
++mtd_split_linux(struct map_info *map, struct mtd_info *mtd,
++ struct mtd_partition *parts, int nr_parts)
++{
++ int base_part = 0;
++ int i;
++ for (i = 0; i < nr_parts && !base_part; i++) {
++ if(!strcmp("linux", parts[i].name))
++ base_part = i;
++ }
++ if (!base_part)
++ return 0;
++ split_partitions[0].size = find_uImage_size(map, parts[base_part].offset);
++ if (!split_partitions[0].size) {
++ printk(KERN_INFO "lq_nor: no uImage found in linux partition");
++ return -1;
++ }
++ if (!detect_squashfs_partition(map,
++ parts[base_part].offset + split_partitions[0].size)) {
++ split_partitions[0].size &= ~(mtd->erasesize - 1);
++ split_partitions[0].size += mtd->erasesize;
++ }
++ split_partitions[0].offset = parts[base_part].offset;
++ split_partitions[1].offset =
++ parts[base_part].offset + split_partitions[0].size;
++ split_partitions[1].size =
++ parts[base_part].size - split_partitions[0].size;
++
++ base_part++;
++ add_mtd_partitions(mtd, parts, base_part);
++ add_mtd_partitions(mtd, split_partitions, 2);
++ if(nr_parts != base_part)
++ add_mtd_partitions(mtd, &parts[base_part], nr_parts - base_part);
++ return nr_parts + 2;
++}
++
+ static const char *part_probe_types[] = { "cmdlinepart", NULL };
+
+ static struct map_info lq_map = {
+@@ -142,7 +215,8 @@ lq_mtd_probe(struct platform_device *pde
+ parts = lq_mtd_data->parts;
+ }
+
+- add_mtd_partitions(lq_mtd, parts, nr_parts);
++ if (!mtd_split_linux(&lq_map, lq_mtd, parts, nr_parts))
++ add_mtd_partitions(lq_mtd, parts, nr_parts);
+ return 0;
+ }
+
diff --git a/target/linux/lantiq/patches/230-xway_etop.patch b/target/linux/lantiq/patches/230-xway_etop.patch
new file mode 100644
index 0000000000..28955cf9ad
--- /dev/null
+++ b/target/linux/lantiq/patches/230-xway_etop.patch
@@ -0,0 +1,580 @@
+--- a/drivers/net/Kconfig
++++ b/drivers/net/Kconfig
+@@ -343,6 +343,12 @@ config MACB
+
+ source "drivers/net/arm/Kconfig"
+
++config LANTIQ_ETOP
++ tristate "Lantiq SoC ETOP driver"
++ depends on SOC_LANTIQ_XWAY
++ help
++ Support for the MII0 inside the Lantiq SoC
++
+ config AX88796
+ tristate "ASIX AX88796 NE2000 clone support"
+ depends on ARM || MIPS || SUPERH
+--- a/drivers/net/Makefile
++++ b/drivers/net/Makefile
+@@ -204,6 +204,7 @@ obj-$(CONFIG_SNI_82596) += sni_82596.o
+ obj-$(CONFIG_MVME16x_NET) += 82596.o
+ obj-$(CONFIG_BVME6000_NET) += 82596.o
+ obj-$(CONFIG_SC92031) += sc92031.o
++obj-$(CONFIG_LANTIQ_ETOP) += lantiq_etop.o
+
+ # This is also a 82596 and should probably be merged
+ obj-$(CONFIG_LP486E) += lp486e.o
+--- /dev/null
++++ b/drivers/net/lantiq_etop.c
+@@ -0,0 +1,552 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2005 Wu Qi Ming <Qi-Ming.Wu@infineon.com>
++ * Copyright (C) 2008 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/kernel.h>
++#include <linux/slab.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/interrupt.h>
++#include <linux/uaccess.h>
++#include <linux/in.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/phy.h>
++#include <linux/ip.h>
++#include <linux/tcp.h>
++#include <linux/skbuff.h>
++#include <linux/mm.h>
++#include <linux/platform_device.h>
++#include <linux/ethtool.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++
++#include <asm/checksum.h>
++
++#include <xway.h>
++#include <xway_dma.h>
++#include <lantiq_platform.h>
++
++#define ETHERNET_PACKET_DMA_BUFFER_SIZE 0x600
++#define LQ_PPE32_MEM_MAP ((u32 *)(LQ_PPE32_BASE_ADDR + 0x10000))
++#define LQ_PPE32_SRST ((u32 *)(LQ_PPE32_BASE_ADDR + 0x10080))
++
++/* mdio access */
++#define LQ_PPE32_MDIO_CFG ((u32 *)(LQ_PPE32_BASE_ADDR + 0x11800))
++#define LQ_PPE32_MDIO_ACC ((u32 *)(LQ_PPE32_BASE_ADDR + 0x11804))
++
++#define MDIO_ACC_REQUEST 0x80000000
++#define MDIO_ACC_READ 0x40000000
++#define MDIO_ACC_ADDR_MASK 0x1f
++#define MDIO_ACC_ADDR_OFFSET 0x15
++#define MDIO_ACC_REG_MASK 0x1f
++#define MDIO_ACC_REG_OFFSET 0x10
++#define MDIO_ACC_VAL_MASK 0xffff
++
++/* configuration */
++#define LQ_PPE32_CFG ((u32 *)(LQ_PPE32_MEM_MAP + 0x1808))
++
++#define PPE32_MII_MASK 0xfffffffc
++#define PPE32_MII_NORMAL 0x8
++#define PPE32_MII_REVERSE 0xe
++
++/* packet length */
++#define LQ_PPE32_IG_PLEN_CTRL ((u32 *)(LQ_PPE32_MEM_MAP + 0x1820))
++
++#define PPE32_PLEN_OVER 0x5ee
++#define PPE32_PLEN_UNDER 0x400000
++
++/* enet */
++#define LQ_PPE32_ENET_MAC_CFG ((u32 *)(LQ_PPE32_MEM_MAP + 0x1840))
++
++#define PPE32_CGEN 0x800
++
++struct lq_mii_priv {
++ struct net_device_stats stats;
++ struct dma_device_info *dma_device;
++ struct sk_buff *skb;
++
++ struct mii_bus *mii_bus;
++ struct phy_device *phydev;
++ int oldlink, oldspeed, oldduplex;
++};
++
++static struct net_device *lq_etop_dev;
++static unsigned char mac_addr[MAX_ADDR_LEN];
++
++static int lq_mdiobus_write(struct mii_bus *bus, int phy_addr,
++ int phy_reg, u16 phy_data)
++{
++ u32 val = MDIO_ACC_REQUEST |
++ ((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
++ ((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET) |
++ phy_data;
++
++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST)
++ ;
++ lq_w32(val, LQ_PPE32_MDIO_ACC);
++
++ return 0;
++}
++
++static int lq_mdiobus_read(struct mii_bus *bus, int phy_addr, int phy_reg)
++{
++ u32 val = MDIO_ACC_REQUEST | MDIO_ACC_READ |
++ ((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) |
++ ((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET);
++
++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST)
++ ;
++ lq_w32(val, LQ_PPE32_MDIO_ACC);
++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST)
++ ;
++ val = lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_VAL_MASK;
++ return val;
++}
++
++int lq_mii_open(struct net_device *dev)
++{
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev);
++ struct dma_device_info *dma_dev = priv->dma_device;
++ int i;
++
++ for (i = 0; i < dma_dev->max_rx_chan_num; i++) {
++ if ((dma_dev->rx_chan[i])->control == LQ_DMA_CH_ON)
++ (dma_dev->rx_chan[i])->open(dma_dev->rx_chan[i]);
++ }
++ netif_start_queue(dev);
++ return 0;
++}
++
++int lq_mii_release(struct net_device *dev)
++{
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev);
++ struct dma_device_info *dma_dev = priv->dma_device;
++ int i;
++
++ for (i = 0; i < dma_dev->max_rx_chan_num; i++)
++ dma_dev->rx_chan[i]->close(dma_dev->rx_chan[i]);
++ netif_stop_queue(dev);
++ return 0;
++}
++
++int lq_mii_hw_receive(struct net_device *dev, struct dma_device_info *dma_dev)
++{
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev);
++ unsigned char *buf = NULL;
++ struct sk_buff *skb = NULL;
++ int len = 0;
++
++ len = dma_device_read(dma_dev, &buf, (void **)&skb);
++
++ if (len >= ETHERNET_PACKET_DMA_BUFFER_SIZE) {
++ printk(KERN_INFO "lq_etop: packet too large %d\n", len);
++ goto lq_mii_hw_receive_err_exit;
++ }
++
++ /* remove CRC */
++ len -= 4;
++ if (skb == NULL) {
++ printk(KERN_INFO "lq_etop: cannot restore pointer\n");
++ goto lq_mii_hw_receive_err_exit;
++ }
++
++ if (len > (skb->end - skb->tail)) {
++ printk(KERN_INFO "lq_etop: BUG, len:%d end:%p tail:%p\n",
++ (len+4), skb->end, skb->tail);
++ goto lq_mii_hw_receive_err_exit;
++ }
++
++ skb_put(skb, len);
++ skb->dev = dev;
++ skb->protocol = eth_type_trans(skb, dev);
++ netif_rx(skb);
++
++ priv->stats.rx_packets++;
++ priv->stats.rx_bytes += len;
++ return 0;
++
++lq_mii_hw_receive_err_exit:
++ if (len == 0) {
++ if (skb)
++ dev_kfree_skb_any(skb);
++ priv->stats.rx_errors++;
++ priv->stats.rx_dropped++;
++ return -EIO;
++ } else {
++ return len;
++ }
++}
++
++int lq_mii_hw_tx(char *buf, int len, struct net_device *dev)
++{
++ int ret = 0;
++ struct lq_mii_priv *priv = netdev_priv(dev);
++ struct dma_device_info *dma_dev = priv->dma_device;
++ ret = dma_device_write(dma_dev, buf, len, priv->skb);
++ return ret;
++}
++
++int lq_mii_tx(struct sk_buff *skb, struct net_device *dev)
++{
++ int len;
++ char *data;
++ struct lq_mii_priv *priv = netdev_priv(dev);
++ struct dma_device_info *dma_dev = priv->dma_device;
++
++ len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
++ data = skb->data;
++ priv->skb = skb;
++ dev->trans_start = jiffies;
++ /* TODO: we got more than 1 dma channel,
++ so we should do something intelligent here to select one */
++ dma_dev->current_tx_chan = 0;
++
++ wmb();
++
++ if (lq_mii_hw_tx(data, len, dev) != len) {
++ dev_kfree_skb_any(skb);
++ priv->stats.tx_errors++;
++ priv->stats.tx_dropped++;
++ } else {
++ priv->stats.tx_packets++;
++ priv->stats.tx_bytes += len;
++ }
++
++ return 0;
++}
++
++void lq_mii_tx_timeout(struct net_device *dev)
++{
++ int i;
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev);
++
++ priv->stats.tx_errors++;
++ for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
++ priv->dma_device->tx_chan[i]->disable_irq(priv->dma_device->tx_chan[i]);
++ netif_wake_queue(dev);
++ return;
++}
++
++int dma_intr_handler(struct dma_device_info *dma_dev, int status)
++{
++ int i;
++
++ switch (status) {
++ case RCV_INT:
++ lq_mii_hw_receive(lq_etop_dev, dma_dev);
++ break;
++
++ case TX_BUF_FULL_INT:
++ printk(KERN_INFO "lq_etop: tx buffer full\n");
++ netif_stop_queue(lq_etop_dev);
++ for (i = 0; i < dma_dev->max_tx_chan_num; i++) {
++ if ((dma_dev->tx_chan[i])->control == LQ_DMA_CH_ON)
++ dma_dev->tx_chan[i]->enable_irq(dma_dev->tx_chan[i]);
++ }
++ break;
++
++ case TRANSMIT_CPT_INT:
++ for (i = 0; i < dma_dev->max_tx_chan_num; i++)
++ dma_dev->tx_chan[i]->disable_irq(dma_dev->tx_chan[i]);
++
++ netif_wake_queue(lq_etop_dev);
++ break;
++ }
++
++ return 0;
++}
++
++unsigned char *lq_etop_dma_buffer_alloc(int len, int *byte_offset, void **opt)
++{
++ unsigned char *buffer = NULL;
++ struct sk_buff *skb = NULL;
++
++ skb = dev_alloc_skb(ETHERNET_PACKET_DMA_BUFFER_SIZE);
++ if (skb == NULL)
++ return NULL;
++
++ buffer = (unsigned char *)(skb->data);
++ skb_reserve(skb, 2);
++ *(int *)opt = (int)skb;
++ *byte_offset = 2;
++
++ return buffer;
++}
++
++void lq_etop_dma_buffer_free(unsigned char *dataptr, void *opt)
++{
++ struct sk_buff *skb = NULL;
++
++ if (opt == NULL) {
++ kfree(dataptr);
++ } else {
++ skb = (struct sk_buff *)opt;
++ dev_kfree_skb_any(skb);
++ }
++}
++
++static void
++lq_adjust_link(struct net_device *dev)
++{
++ struct lq_mii_priv *priv = netdev_priv(dev);
++ struct phy_device *phydev = priv->phydev;
++ int new_state = 0;
++
++ /* Did anything change? */
++ if (priv->oldlink != phydev->link ||
++ priv->oldduplex != phydev->duplex ||
++ priv->oldspeed != phydev->speed) {
++ /* Yes, so update status and mark as changed */
++ new_state = 1;
++ priv->oldduplex = phydev->duplex;
++ priv->oldspeed = phydev->speed;
++ priv->oldlink = phydev->link;
++ }
++
++ /* If link status changed, show new status */
++ if (new_state)
++ phy_print_status(phydev);
++}
++
++static int mii_probe(struct net_device *dev)
++{
++ struct lq_mii_priv *priv = netdev_priv(dev);
++ struct phy_device *phydev = NULL;
++ int phy_addr;
++
++ priv->oldlink = 0;
++ priv->oldspeed = 0;
++ priv->oldduplex = -1;
++
++ /* find the first (lowest address) PHY on the current MAC's MII bus */
++ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
++ if (priv->mii_bus->phy_map[phy_addr]) {
++ phydev = priv->mii_bus->phy_map[phy_addr];
++ break; /* break out with first one found */
++ }
++ }
++
++ if (!phydev) {
++ printk (KERN_ERR "%s: no PHY found\n", dev->name);
++ return -ENODEV;
++ }
++
++ /* now we are supposed to have a proper phydev, to attach to... */
++ BUG_ON(!phydev);
++ BUG_ON(phydev->attached_dev);
++
++ phydev = phy_connect(dev, dev_name(&phydev->dev), &lq_adjust_link,
++ 0, PHY_INTERFACE_MODE_MII);
++
++ if (IS_ERR(phydev)) {
++ printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
++ return PTR_ERR(phydev);
++ }
++
++ /* mask with MAC supported features */
++ phydev->supported &= (SUPPORTED_10baseT_Half
++ | SUPPORTED_10baseT_Full
++ | SUPPORTED_100baseT_Half
++ | SUPPORTED_100baseT_Full
++ | SUPPORTED_Autoneg
++ /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
++ | SUPPORTED_MII
++ | SUPPORTED_TP);
++
++ phydev->advertising = phydev->supported;
++
++ priv->phydev = phydev;
++
++ printk(KERN_INFO "%s: attached PHY driver [%s] "
++ "(mii_bus:phy_addr=%s, irq=%d)\n",
++ dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
++
++ return 0;
++}
++
++
++static int lq_mii_dev_init(struct net_device *dev)
++{
++ int i;
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev);
++ ether_setup(dev);
++ dev->watchdog_timeo = 10 * HZ;
++ dev->mtu = 1500;
++ memset(priv, 0, sizeof(struct lq_mii_priv));
++ priv->dma_device = dma_device_reserve("PPE");
++ if (!priv->dma_device) {
++ BUG();
++ return -ENODEV;
++ }
++ priv->dma_device->buffer_alloc = &lq_etop_dma_buffer_alloc;
++ priv->dma_device->buffer_free = &lq_etop_dma_buffer_free;
++ priv->dma_device->intr_handler = &dma_intr_handler;
++ priv->dma_device->max_rx_chan_num = 4;
++
++ for (i = 0; i < priv->dma_device->max_rx_chan_num; i++) {
++ priv->dma_device->rx_chan[i]->packet_size = ETHERNET_PACKET_DMA_BUFFER_SIZE;
++ priv->dma_device->rx_chan[i]->control = LQ_DMA_CH_ON;
++ }
++
++ for (i = 0; i < priv->dma_device->max_tx_chan_num; i++)
++ if (i == 0)
++ priv->dma_device->tx_chan[i]->control = LQ_DMA_CH_ON;
++ else
++ priv->dma_device->tx_chan[i]->control = LQ_DMA_CH_OFF;
++
++ dma_device_register(priv->dma_device);
++
++ printk(KERN_INFO "%s: using mac=", dev->name);
++ for (i = 0; i < 6; i++) {
++ dev->dev_addr[i] = mac_addr[i];
++ printk("%02X%c", dev->dev_addr[i], (i == 5) ? ('\n') : (':'));
++ }
++
++ priv->mii_bus = mdiobus_alloc();
++ if (priv->mii_bus == NULL)
++ return -ENOMEM;
++
++ priv->mii_bus->priv = dev;
++ priv->mii_bus->read = lq_mdiobus_read;
++ priv->mii_bus->write = lq_mdiobus_write;
++ priv->mii_bus->name = "lq_mii";
++ snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%x", 0);
++ priv->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
++ for(i = 0; i < PHY_MAX_ADDR; ++i)
++ priv->mii_bus->irq[i] = PHY_POLL;
++
++ mdiobus_register(priv->mii_bus);
++
++ return mii_probe(dev);
++}
++
++static void lq_mii_chip_init(int mode)
++{
++ lq_pmu_enable(PMU_DMA);
++ lq_pmu_enable(PMU_PPE);
++
++ if (mode == REV_MII_MODE)
++ lq_w32_mask(PPE32_MII_MASK, PPE32_MII_REVERSE, LQ_PPE32_CFG);
++ else if (mode == MII_MODE)
++ lq_w32_mask(PPE32_MII_MASK, PPE32_MII_NORMAL, LQ_PPE32_CFG);
++ lq_w32(PPE32_PLEN_UNDER | PPE32_PLEN_OVER, LQ_PPE32_IG_PLEN_CTRL);
++ lq_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG);
++ wmb();
++}
++
++static int lq_mii_eth_mac_addr(struct net_device *dev, void *p)
++{
++ int retcode;
++
++ retcode = eth_mac_addr(dev, p);
++
++ if (retcode)
++ return retcode;
++
++ // set rx_addr for unicast filter
++ lq_w32(((dev->dev_addr[0]<<24)|(dev->dev_addr[1]<<16)|(dev->dev_addr[2]<< 8)|dev->dev_addr[3]), (u32*)(LQ_PPE32_BASE_ADDR|(0x461b<<2)));
++ lq_w32(((dev->dev_addr[4]<<24)|(dev->dev_addr[5]<<16)), (u32*)(LQ_PPE32_BASE_ADDR|(0x461c<<2)));
++
++ return 0;
++}
++
++static void lq_mii_set_rx_mode (struct net_device *dev)
++{
++ // rx_mode promisc: unset unicast filter
++ if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI))
++ lq_w32(lq_r32((u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))) & ~(1<<28), (u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2)));
++ // enable unicast filter
++ else
++ lq_w32(lq_r32((u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))) | (1<<28), (u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2)));
++}
++
++static const struct net_device_ops lq_eth_netdev_ops = {
++ .ndo_init = lq_mii_dev_init,
++ .ndo_open = lq_mii_open,
++ .ndo_stop = lq_mii_release,
++ .ndo_start_xmit = lq_mii_tx,
++ .ndo_tx_timeout = lq_mii_tx_timeout,
++ .ndo_change_mtu = eth_change_mtu,
++ .ndo_set_mac_address = lq_mii_eth_mac_addr,
++ .ndo_validate_addr = eth_validate_addr,
++ .ndo_set_multicast_list = lq_mii_set_rx_mode,
++};
++
++static int
++lq_mii_probe(struct platform_device *dev)
++{
++ int result = 0;
++ struct lq_eth_data *eth = (struct lq_eth_data*)dev->dev.platform_data;
++ lq_etop_dev = alloc_etherdev(sizeof(struct lq_mii_priv));
++ lq_etop_dev->netdev_ops = &lq_eth_netdev_ops;
++ memcpy(mac_addr, eth->mac, 6);
++ strcpy(lq_etop_dev->name, "eth%d");
++ lq_mii_chip_init(eth->mii_mode);
++ result = register_netdev(lq_etop_dev);
++ if (result) {
++ printk(KERN_INFO "lq_etop: error %i registering device \"%s\"\n", result, lq_etop_dev->name);
++ goto out;
++ }
++
++ printk(KERN_INFO "lq_etop: driver loaded!\n");
++
++out:
++ return result;
++}
++
++static int lq_mii_remove(struct platform_device *dev)
++{
++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(lq_etop_dev);
++
++ printk(KERN_INFO "lq_etop: lq_etop cleanup\n");
++
++ dma_device_unregister(priv->dma_device);
++ dma_device_release(priv->dma_device);
++ kfree(priv->dma_device);
++ unregister_netdev(lq_etop_dev);
++ return 0;
++}
++
++static struct platform_driver lq_mii_driver = {
++ .probe = lq_mii_probe,
++ .remove = lq_mii_remove,
++ .driver = {
++ .name = "lq_etop",
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init lq_mii_init(void)
++{
++ int ret = platform_driver_register(&lq_mii_driver);
++ if (ret)
++ printk(KERN_INFO "lq_etop: Error registering platfom driver!");
++ return ret;
++}
++
++static void __exit lq_mii_cleanup(void)
++{
++ platform_driver_unregister(&lq_mii_driver);
++}
++
++module_init(lq_mii_init);
++module_exit(lq_mii_cleanup);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
++MODULE_DESCRIPTION("ethernet driver for IFXMIPS boards");
diff --git a/target/linux/lantiq/patches/250-watchdog.patch b/target/linux/lantiq/patches/250-watchdog.patch
new file mode 100644
index 0000000000..f86ff71868
--- /dev/null
+++ b/target/linux/lantiq/patches/250-watchdog.patch
@@ -0,0 +1,246 @@
+--- a/drivers/watchdog/Kconfig
++++ b/drivers/watchdog/Kconfig
+@@ -840,6 +840,12 @@ config TXX9_WDT
+ help
+ Hardware driver for the built-in watchdog timer on TXx9 MIPS SoCs.
+
++config LANTIQ_WDT
++ bool "Lantiq SoC watchdog"
++ depends on LANTIQ
++ help
++ Hardware driver for the Lantiq SoC Watchdog Timer.
++
+ # PARISC Architecture
+
+ # POWERPC Architecture
+--- a/drivers/watchdog/Makefile
++++ b/drivers/watchdog/Makefile
+@@ -112,6 +112,7 @@ obj-$(CONFIG_PNX833X_WDT) += pnx833x_wdt
+ obj-$(CONFIG_SIBYTE_WDOG) += sb_wdog.o
+ obj-$(CONFIG_AR7_WDT) += ar7_wdt.o
+ obj-$(CONFIG_TXX9_WDT) += txx9wdt.o
++obj-$(CONFIG_LANTIQ_WDT) += lantiq_wdt.o
+
+ # PARISC Architecture
+
+--- /dev/null
++++ b/drivers/watchdog/lantiq_wdt.c
+@@ -0,0 +1,218 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ * Based on EP93xx wdt driver
++ */
++
++#include <linux/module.h>
++#include <linux/fs.h>
++#include <linux/miscdevice.h>
++#include <linux/miscdevice.h>
++#include <linux/watchdog.h>
++#include <linux/platform_device.h>
++#include <linux/uaccess.h>
++#include <linux/clk.h>
++
++#include <lantiq.h>
++
++#define LQ_WDT_PW1 0x00BE0000
++#define LQ_WDT_PW2 0x00DC0000
++
++#define LQ_BIU_WDT_CR 0x3F0
++#define LQ_BIU_WDT_SR 0x3F8
++
++#ifndef CONFIG_WATCHDOG_NOWAYOUT
++static int wdt_ok_to_close;
++#endif
++
++static int wdt_timeout = 30;
++static __iomem void *wdt_membase = NULL;
++static unsigned long io_region_clk = 0;
++
++static int
++lq_wdt_enable(unsigned int timeout)
++{
++/* printk("%s:%s[%d] %08X\n",
++ __FILE__, __func__, __LINE__,
++ lq_r32(wdt_membase + LQ_BIU_WDT_SR));
++ if(!lq_r32(wdt_membase + LQ_BIU_WDT_SR))
++ {
++*/ lq_w32(LQ_WDT_PW1, wdt_membase + LQ_BIU_WDT_CR);
++ lq_w32(LQ_WDT_PW2 |
++ (0x3 << 26) | /* PWL */
++ (0x3 << 24) | /* CLKDIV */
++ (0x1 << 31) | /* enable */
++ ((timeout * (io_region_clk / 0x40000)) + 0x1000), /* reload */
++ wdt_membase + LQ_BIU_WDT_CR);
++// }
++ return 0;
++}
++
++static void
++lq_wdt_disable(void)
++{
++#ifndef CONFIG_WATCHDOG_NOWAYOUT
++ wdt_ok_to_close = 0;
++#endif
++ lq_w32(LQ_WDT_PW1, wdt_membase + LQ_BIU_WDT_CR);
++ lq_w32(LQ_WDT_PW2, wdt_membase+ LQ_BIU_WDT_CR);
++}
++
++static ssize_t
++lq_wdt_write(struct file *file, const char __user *data,
++ size_t len, loff_t *ppos)
++{
++ size_t i;
++
++ if (!len)
++ return 0;
++
++#ifndef CONFIG_WATCHDOG_NOWAYOUT
++ for (i = 0; i != len; i++) {
++ char c;
++ if (get_user(c, data + i))
++ return -EFAULT;
++ if (c == 'V')
++ wdt_ok_to_close = 1;
++ }
++#endif
++ lq_wdt_enable(wdt_timeout);
++ return len;
++}
++
++static struct watchdog_info ident = {
++ .options = WDIOF_MAGICCLOSE,
++ .identity = "lq_wdt",
++};
++
++static int
++lq_wdt_ioctl(struct inode *inode, struct file *file,
++ unsigned int cmd, unsigned long arg)
++{
++ int ret = -ENOTTY;
++
++ switch (cmd) {
++ case WDIOC_GETSUPPORT:
++ ret = copy_to_user((struct watchdog_info __user *)arg, &ident,
++ sizeof(ident)) ? -EFAULT : 0;
++ break;
++
++ case WDIOC_GETTIMEOUT:
++ ret = put_user(wdt_timeout, (int __user *)arg);
++ break;
++
++ case WDIOC_SETTIMEOUT:
++ ret = get_user(wdt_timeout, (int __user *)arg);
++ break;
++
++ case WDIOC_KEEPALIVE:
++ lq_wdt_enable(wdt_timeout);
++ ret = 0;
++ break;
++ }
++ return ret;
++}
++
++static int
++lq_wdt_open(struct inode *inode, struct file *file)
++{
++ lq_wdt_enable(wdt_timeout);
++ return nonseekable_open(inode, file);
++}
++
++static int
++lq_wdt_release(struct inode *inode, struct file *file)
++{
++#ifndef CONFIG_WATCHDOG_NOWAYOUT
++ if (wdt_ok_to_close)
++ lq_wdt_disable();
++ else
++#endif
++ printk(KERN_ERR "lq_wdt: watchdog closed without warning,"
++ " rebooting system\n");
++ return 0;
++}
++
++static const struct file_operations lq_wdt_fops = {
++ .owner = THIS_MODULE,
++ .write = lq_wdt_write,
++ .ioctl = lq_wdt_ioctl,
++ .open = lq_wdt_open,
++ .release = lq_wdt_release,
++};
++
++static struct miscdevice lq_wdt_miscdev = {
++ .minor = WATCHDOG_MINOR,
++ .name = "watchdog",
++ .fops = &lq_wdt_fops,
++};
++
++static int
++lq_wdt_probe(struct platform_device *pdev)
++{
++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ struct clk *clk;
++ int ret = 0;
++ if(!res)
++ return -ENOENT;
++ res = request_mem_region(res->start, resource_size(res),
++ dev_name(&pdev->dev));
++ if(!res)
++ return -EBUSY;
++ wdt_membase = ioremap_nocache(res->start, resource_size(res));
++ if(!wdt_membase)
++ {
++ ret = -ENOMEM;
++ goto err_release_mem_region;
++ }
++ clk = clk_get(&pdev->dev, "io");
++ io_region_clk = clk_get_rate(clk);;
++ ret = misc_register(&lq_wdt_miscdev);
++ if(!ret)
++ return 0;
++
++ iounmap(wdt_membase);
++err_release_mem_region:
++ release_mem_region(res->start, resource_size(res));
++ return ret;
++}
++
++static int
++lq_wdt_remove(struct platform_device *dev)
++{
++ lq_wdt_disable();
++ misc_deregister(&lq_wdt_miscdev);
++ return 0;
++}
++
++static struct platform_driver lq_wdt_driver = {
++ .probe = lq_wdt_probe,
++ .remove = lq_wdt_remove,
++ .driver = {
++ .name = "lq_wdt",
++ .owner = THIS_MODULE,
++ },
++};
++
++static int __init
++init_lq_wdt(void)
++{
++ return platform_driver_register(&lq_wdt_driver);
++}
++
++static void __exit
++exit_lq_wdt(void)
++{
++ platform_driver_unregister(&lq_wdt_driver);
++}
++
++module_init(init_lq_wdt);
++module_exit(exit_lq_wdt);
++
++MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
++MODULE_DESCRIPTION("ifxmips Watchdog");
++MODULE_LICENSE("GPL");
++MODULE_ALIAS_MISCDEV(WATCHDOG_MINOR);
diff --git a/target/linux/lantiq/patches/260-pci.patch b/target/linux/lantiq/patches/260-pci.patch
new file mode 100644
index 0000000000..d086b25e8b
--- /dev/null
+++ b/target/linux/lantiq/patches/260-pci.patch
@@ -0,0 +1,436 @@
+--- a/arch/mips/pci/Makefile
++++ b/arch/mips/pci/Makefile
+@@ -55,6 +55,7 @@ obj-$(CONFIG_ZAO_CAPCELLA) += fixup-capc
+ obj-$(CONFIG_WR_PPMC) += fixup-wrppmc.o
+ obj-$(CONFIG_MIKROTIK_RB532) += pci-rc32434.o ops-rc32434.o fixup-rc32434.o
+ obj-$(CONFIG_CPU_CAVIUM_OCTEON) += pci-octeon.o pcie-octeon.o
++obj-$(CONFIG_LANTIQ) += pci-lantiq.o ops-lantiq.o
+
+ ifdef CONFIG_PCI_MSI
+ obj-$(CONFIG_CPU_CAVIUM_OCTEON) += msi-octeon.o
+--- /dev/null
++++ b/arch/mips/pci/ops-lantiq.c
+@@ -0,0 +1,127 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/types.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++#include <linux/mm.h>
++#include <asm/addrspace.h>
++#include <linux/vmalloc.h>
++
++#include <xway.h>
++
++#define LQ_PCI_CFG_BUSNUM_SHF 16
++#define LQ_PCI_CFG_DEVNUM_SHF 11
++#define LQ_PCI_CFG_FUNNUM_SHF 8
++
++#define PCI_ACCESS_READ 0
++#define PCI_ACCESS_WRITE 1
++
++extern u32 lq_pci_mapped_cfg;
++
++static int
++lq_pci_config_access(unsigned char access_type,
++ struct pci_bus *bus, unsigned int devfn, unsigned int where, u32 *data)
++{
++ unsigned long cfg_base;
++ unsigned long flags;
++
++ u32 temp;
++
++ /* we support slot from 0 to 15 */
++ /* dev_fn 0&0x68 (AD29) is ifxmips itself */
++ if ((bus->number != 0) || ((devfn & 0xf8) > 0x78)
++ || ((devfn & 0xf8) == 0) || ((devfn & 0xf8) == 0x68))
++ return 1;
++
++ spin_lock_irqsave(&ebu_lock, flags);
++
++ cfg_base = lq_pci_mapped_cfg;
++ cfg_base |= (bus->number << LQ_PCI_CFG_BUSNUM_SHF) | (devfn <<
++ LQ_PCI_CFG_FUNNUM_SHF) | (where & ~0x3);
++
++ /* Perform access */
++ if (access_type == PCI_ACCESS_WRITE)
++ {
++#ifdef CONFIG_SWAP_IO_SPACE
++ lq_w32(swab32(*data), ((u32*)cfg_base));
++#else
++ lq_w32(*data, ((u32*)cfg_base));
++#endif
++ } else {
++ *data = lq_r32(((u32*)(cfg_base)));
++#ifdef CONFIG_SWAP_IO_SPACE
++ *data = swab32(*data);
++#endif
++ }
++ wmb();
++
++ /* clean possible Master abort */
++ cfg_base = (lq_pci_mapped_cfg | (0x0 << LQ_PCI_CFG_FUNNUM_SHF)) + 4;
++ temp = lq_r32(((u32*)(cfg_base)));
++#ifdef CONFIG_SWAP_IO_SPACE
++ temp = swab32 (temp);
++#endif
++ cfg_base = (lq_pci_mapped_cfg | (0x68 << LQ_PCI_CFG_FUNNUM_SHF)) + 4;
++ lq_w32(temp, ((u32*)cfg_base));
++
++ spin_unlock_irqrestore(&ebu_lock, flags);
++
++ if (((*data) == 0xffffffff) && (access_type == PCI_ACCESS_READ))
++ return 1;
++
++ return 0;
++}
++
++int
++lq_pci_read_config_dword(struct pci_bus *bus, unsigned int devfn,
++ int where, int size, u32 * val)
++{
++ u32 data = 0;
++
++ if (lq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
++ return PCIBIOS_DEVICE_NOT_FOUND;
++
++ if (size == 1)
++ *val = (data >> ((where & 3) << 3)) & 0xff;
++ else if (size == 2)
++ *val = (data >> ((where & 3) << 3)) & 0xffff;
++ else
++ *val = data;
++
++ return PCIBIOS_SUCCESSFUL;
++}
++
++int
++lq_pci_write_config_dword(struct pci_bus *bus, unsigned int devfn,
++ int where, int size, u32 val)
++{
++ u32 data = 0;
++
++ if (size == 4)
++ {
++ data = val;
++ } else {
++ if (lq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data))
++ return PCIBIOS_DEVICE_NOT_FOUND;
++
++ if (size == 1)
++ data = (data & ~(0xff << ((where & 3) << 3))) |
++ (val << ((where & 3) << 3));
++ else if (size == 2)
++ data = (data & ~(0xffff << ((where & 3) << 3))) |
++ (val << ((where & 3) << 3));
++ }
++
++ if (lq_pci_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data))
++ return PCIBIOS_DEVICE_NOT_FOUND;
++
++ return PCIBIOS_SUCCESSFUL;
++}
+--- /dev/null
++++ b/arch/mips/pci/pci-lantiq.c
+@@ -0,0 +1,293 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/types.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++#include <linux/mm.h>
++#include <linux/vmalloc.h>
++#include <linux/platform_device.h>
++
++#include <asm/gpio.h>
++#include <asm/addrspace.h>
++
++#include <xway.h>
++#include <xway_irq.h>
++#include <lantiq_platform.h>
++
++#define LQ_PCI_CFG_BASE 0x17000000
++#define LQ_PCI_CFG_SIZE 0x00008000
++#define LQ_PCI_MEM_BASE 0x18000000
++#define LQ_PCI_MEM_SIZE 0x02000000
++#define LQ_PCI_IO_BASE 0x1AE00000
++#define LQ_PCI_IO_SIZE 0x00200000
++
++#define PCI_CR_FCI_ADDR_MAP0 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C0))
++#define PCI_CR_FCI_ADDR_MAP1 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C4))
++#define PCI_CR_FCI_ADDR_MAP2 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C8))
++#define PCI_CR_FCI_ADDR_MAP3 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00CC))
++#define PCI_CR_FCI_ADDR_MAP4 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D0))
++#define PCI_CR_FCI_ADDR_MAP5 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D4))
++#define PCI_CR_FCI_ADDR_MAP6 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D8))
++#define PCI_CR_FCI_ADDR_MAP7 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00DC))
++#define PCI_CR_CLK_CTRL ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0000))
++#define PCI_CR_PCI_MOD ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0030))
++#define PCI_CR_PC_ARB ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0080))
++#define PCI_CR_FCI_ADDR_MAP11hg ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00E4))
++#define PCI_CR_BAR11MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0044))
++#define PCI_CR_BAR12MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0048))
++#define PCI_CR_BAR13MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x004C))
++#define PCI_CS_BASE_ADDR1 ((u32 *)(PCI_CS_PR_BASE_ADDR + 0x0010))
++#define PCI_CR_PCI_ADDR_MAP11 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0064))
++#define PCI_CR_FCI_BURST_LENGTH ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00E8))
++#define PCI_CR_PCI_EOI ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x002C))
++
++
++#define PCI_CS_STS_CMD ((u32 *)(PCI_CS_PR_BASE_ADDR + 0x0004))
++
++#define PCI_MASTER0_REQ_MASK_2BITS 8
++#define PCI_MASTER1_REQ_MASK_2BITS 10
++#define PCI_MASTER2_REQ_MASK_2BITS 12
++#define INTERNAL_ARB_ENABLE_BIT 0
++
++#define LQ_CGU_IFCCR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0018))
++#define LQ_CGU_PCICR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0034))
++
++extern int lq_pci_read_config_dword(struct pci_bus *bus,
++ unsigned int devfn, int where, int size, u32 *val);
++extern int lq_pci_write_config_dword(struct pci_bus *bus,
++ unsigned int devfn, int where, int size, u32 val);
++
++u32 lq_pci_mapped_cfg;
++
++/* Since the PCI REQ pins can be reused for other functionality, make it possible
++ to exclude those from interpretation by the PCI controller */
++static int lq_pci_req_mask = 0xf;
++
++struct pci_ops lq_pci_ops =
++{
++ .read = lq_pci_read_config_dword,
++ .write = lq_pci_write_config_dword
++};
++
++static struct resource pci_io_resource =
++{
++ .name = "pci io space",
++ .start = LQ_PCI_IO_BASE,
++ .end = LQ_PCI_IO_BASE + LQ_PCI_IO_SIZE - 1,
++ .flags = IORESOURCE_IO
++};
++
++static struct resource pci_mem_resource =
++{
++ .name = "pci memory space",
++ .start = LQ_PCI_MEM_BASE,
++ .end = LQ_PCI_MEM_BASE + LQ_PCI_MEM_SIZE - 1,
++ .flags = IORESOURCE_MEM
++};
++
++static struct pci_controller lq_pci_controller =
++{
++ .pci_ops = &lq_pci_ops,
++ .mem_resource = &pci_mem_resource,
++ .mem_offset = 0x00000000UL,
++ .io_resource = &pci_io_resource,
++ .io_offset = 0x00000000UL,
++};
++
++int
++pcibios_plat_dev_init(struct pci_dev *dev)
++{
++ u8 pin;
++
++ pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
++ switch(pin)
++ {
++ case 0:
++ break;
++ case 1:
++ //falling edge level triggered:0x4, low level:0xc, rising edge:0x2
++ lq_w32(lq_r32(LQ_EBU_PCC_CON) | 0xc, LQ_EBU_PCC_CON);
++ lq_w32(lq_r32(LQ_EBU_PCC_IEN) | 0x10, LQ_EBU_PCC_IEN);
++ break;
++ case 2:
++ case 3:
++ case 4:
++ printk ("WARNING: interrupt pin %d not supported yet!\n", pin);
++ default:
++ printk ("WARNING: invalid interrupt pin %d\n", pin);
++ return 1;
++ }
++ return 0;
++}
++
++static u32
++lq_calc_bar11mask(void)
++{
++ u32 mem, bar11mask;
++
++ /* BAR11MASK value depends on available memory on system. */
++ mem = num_physpages * PAGE_SIZE;
++ bar11mask = (0x0ffffff0 & ~((1 << (fls(mem) -1)) -1)) | 8;
++
++ return bar11mask;
++}
++
++static void
++lq_pci_setup_clk(int external_clock)
++{
++ /* set clock to 33Mhz */
++ lq_w32(lq_r32(LQ_CGU_IFCCR) & ~0xf00000, LQ_CGU_IFCCR);
++ lq_w32(lq_r32(LQ_CGU_IFCCR) | 0x800000, LQ_CGU_IFCCR);
++ if (external_clock)
++ {
++ lq_w32(lq_r32(LQ_CGU_IFCCR) & ~(1 << 16), LQ_CGU_IFCCR);
++ lq_w32((1 << 30), LQ_CGU_PCICR);
++ } else {
++ lq_w32(lq_r32(LQ_CGU_IFCCR) | (1 << 16), LQ_CGU_IFCCR);
++ lq_w32((1 << 31) | (1 << 30), LQ_CGU_PCICR);
++ }
++}
++
++static void
++lq_pci_setup_gpio(void)
++{
++ /* PCI reset line is gpio driven */
++ lq_gpio_request(21, 0, 0, 1, "pci-reset");
++
++ /* PCI_REQ line */
++ lq_gpio_request(29, 1, 0, 0, "pci-req");
++
++ /* PCI_GNT line */
++ lq_gpio_request(30, 1, 0, 1, "pci-gnt");
++}
++
++static int __init
++lq_pci_startup(void)
++{
++ u32 temp_buffer;
++
++ /* setup pci clock and gpis used by pci */
++ lq_pci_setup_gpio();
++
++ /* enable auto-switching between PCI and EBU */
++ lq_w32(0xa, PCI_CR_CLK_CTRL);
++
++ /* busy, i.e. configuration is not done, PCI access has to be retried */
++ lq_w32(lq_r32(PCI_CR_PCI_MOD) & ~(1 << 24), PCI_CR_PCI_MOD);
++ wmb ();
++ /* BUS Master/IO/MEM access */
++ lq_w32(lq_r32(PCI_CS_STS_CMD) | 7, PCI_CS_STS_CMD);
++
++ /* enable external 2 PCI masters */
++ temp_buffer = lq_r32(PCI_CR_PC_ARB);
++ temp_buffer &= (~(lq_pci_req_mask << 16));
++ /* enable internal arbiter */
++ temp_buffer |= (1 << INTERNAL_ARB_ENABLE_BIT);
++ /* enable internal PCI master reqest */
++ temp_buffer &= (~(3 << PCI_MASTER0_REQ_MASK_2BITS));
++
++ /* enable EBU request */
++ temp_buffer &= (~(3 << PCI_MASTER1_REQ_MASK_2BITS));
++
++ /* enable all external masters request */
++ temp_buffer &= (~(3 << PCI_MASTER2_REQ_MASK_2BITS));
++ lq_w32(temp_buffer, PCI_CR_PC_ARB);
++ wmb ();
++
++ /* setup BAR memory regions */
++ lq_w32(0x18000000, PCI_CR_FCI_ADDR_MAP0);
++ lq_w32(0x18400000, PCI_CR_FCI_ADDR_MAP1);
++ lq_w32(0x18800000, PCI_CR_FCI_ADDR_MAP2);
++ lq_w32(0x18c00000, PCI_CR_FCI_ADDR_MAP3);
++ lq_w32(0x19000000, PCI_CR_FCI_ADDR_MAP4);
++ lq_w32(0x19400000, PCI_CR_FCI_ADDR_MAP5);
++ lq_w32(0x19800000, PCI_CR_FCI_ADDR_MAP6);
++ lq_w32(0x19c00000, PCI_CR_FCI_ADDR_MAP7);
++ lq_w32(0x1ae00000, PCI_CR_FCI_ADDR_MAP11hg);
++ lq_w32(lq_calc_bar11mask(), PCI_CR_BAR11MASK);
++ lq_w32(0, PCI_CR_PCI_ADDR_MAP11);
++ lq_w32(0, PCI_CS_BASE_ADDR1);
++#ifdef CONFIG_SWAP_IO_SPACE
++ /* both TX and RX endian swap are enabled */
++ lq_w32(lq_r32(PCI_CR_PCI_EOI) | 3, PCI_CR_PCI_EOI);
++ wmb ();
++#endif
++ /*TODO: disable BAR2 & BAR3 - why was this in the origianl infineon code */
++ lq_w32(lq_r32(PCI_CR_BAR12MASK) | 0x80000000, PCI_CR_BAR12MASK);
++ lq_w32(lq_r32(PCI_CR_BAR13MASK) | 0x80000000, PCI_CR_BAR13MASK);
++ /*use 8 dw burst length */
++ lq_w32(0x303, PCI_CR_FCI_BURST_LENGTH);
++ lq_w32(lq_r32(PCI_CR_PCI_MOD) | (1 << 24), PCI_CR_PCI_MOD);
++ wmb();
++
++ /* toggle reset pin */
++ __gpio_set_value(21, 0);
++ wmb();
++ mdelay(1);
++ __gpio_set_value(21, 1);
++ return 0;
++}
++
++int __init
++pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin){
++ switch(slot)
++ {
++ case 13:
++ /* IDSEL = AD29 --> USB Host Controller */
++ return (INT_NUM_IM1_IRL0 + 17);
++ case 14:
++ /* IDSEL = AD30 --> mini PCI connector */
++ return (INT_NUM_IM0_IRL0 + 22);
++ default:
++ printk("lq_pci: no IRQ found for slot %d, pin %d\n", slot, pin);
++ return 0;
++ }
++}
++
++static int
++lq_pci_probe(struct platform_device *pdev)
++{
++ struct lq_pci_data *lq_pci_data = (struct lq_pci_data*) pdev->dev.platform_data;
++ extern int pci_probe_only;
++
++ pci_probe_only = 0;
++ lq_pci_req_mask = lq_pci_data->req_mask;
++ lq_pci_setup_clk(lq_pci_data->clock);
++
++ lq_pci_startup();
++ lq_pci_mapped_cfg =
++ (u32)ioremap_nocache(LQ_PCI_CFG_BASE, LQ_PCI_CFG_BASE);
++ lq_pci_controller.io_map_base =
++ (unsigned long)ioremap(LQ_PCI_IO_BASE, LQ_PCI_IO_SIZE - 1);
++
++ register_pci_controller(&lq_pci_controller);
++ return 0;
++}
++
++static struct platform_driver
++lq_pci_driver = {
++ .probe = lq_pci_probe,
++ .driver = {
++ .name = "lq_pci",
++ .owner = THIS_MODULE,
++ },
++};
++
++int __init
++pcibios_init(void)
++{
++ int ret = platform_driver_register(&lq_pci_driver);
++ if(ret)
++ printk(KERN_INFO "lq_pci: Error registering platfom driver!");
++ return ret;
++}
++
++arch_initcall(pcibios_init);
diff --git a/target/linux/lantiq/patches/270-crypto.patch b/target/linux/lantiq/patches/270-crypto.patch
new file mode 100644
index 0000000000..e6ee88585c
--- /dev/null
+++ b/target/linux/lantiq/patches/270-crypto.patch
@@ -0,0 +1,6209 @@
+--- a/drivers/crypto/Kconfig
++++ b/drivers/crypto/Kconfig
+@@ -243,4 +243,75 @@
+ OMAP processors have SHA1/MD5 hw accelerator. Select this if you
+ want to use the OMAP module for SHA1/MD5 algorithms.
+
++config CRYPTO_DEV_LANTIQ
++ bool "Support for Lantiq crypto engine"
++ select CRYPTO_ALGAPI
++ default y
++ help
++ Will support Lantiq crypto hardware
++ If you are unsure, say M.
++
++menuconfig CRYPTO_DEV_LANTIQ_DES
++ bool "Lantiq crypto hardware for DES algorithm"
++ depends on CRYPTO_DEV_LANTIQ
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for DES/3DES algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_AES
++ bool "Lantiq crypto hardware for AES algorithm"
++ depends on CRYPTO_DEV_LANTIQ
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for AES algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_ARC4
++ bool "Lantiq crypto hardware for ARC4 algorithm"
++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9)
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for ARC4 algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_MD5
++ bool "Lantiq crypto hardware for MD5 algorithm"
++ depends on CRYPTO_DEV_LANTIQ
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for MD5 algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_SHA1
++ bool "Lantiq crypto hardware for SHA1 algorithm"
++ depends on CRYPTO_DEV_LANTIQ
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for SHA1 algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_SHA1_HMAC
++ bool "Lantiq crypto hardware for SHA1_HMAC algorithm"
++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9)
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for SHA1_HMAC algorithm.
++ If unsure say N.
++
++menuconfig CRYPTO_DEV_LANTIQ_MD5_HMAC
++ bool "Lantiq crypto hardware for MD5_HMAC algorithms"
++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9)
++ select CRYPTO_BLKCIPHER
++ default y
++ help
++ Use crypto hardware for MD5_HMAC algorithm.
++ If unsure say N.
++
+ endif # CRYPTO_HW
+--- /dev/null
++++ b/drivers/crypto/lantiq/Makefile
+@@ -0,0 +1,11 @@
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_falcon.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_danube.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_ar9.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_DES) += des.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_AES) += aes.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) += arc4.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_SHA1) += sha1.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC) += sha1_hmac.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_MD5) += md5.o
++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC) += md5_hmac.o
+--- /dev/null
++++ b/drivers/crypto/lantiq/aes.c
+@@ -0,0 +1,1029 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file aes.c
++ \ingroup LQ_DEU
++ \brief AES Encryption Driver main file
++*/
++
++/**
++ \defgroup LQ_AES_FUNCTIONS LQ_AES_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq AES driver Functions
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <linux/crypto.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <asm/byteorder.h>
++#include <crypto/algapi.h>
++#include "deu.h"
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++# include "deu_dma.h"
++#endif
++
++static spinlock_t cipher_lock;
++
++/* Definition of constants */
++
++#define AES_MIN_KEY_SIZE 16
++#define AES_MAX_KEY_SIZE 32
++#define AES_BLOCK_SIZE 16
++#define CTR_RFC3686_NONCE_SIZE 4
++#define CTR_RFC3686_IV_SIZE 8
++#define CTR_RFC3686_MAX_KEY_SIZE (AES_MAX_KEY_SIZE \
++ + CTR_RFC3686_NONCE_SIZE)
++
++struct aes_ctx {
++ int key_length;
++ u32 buf[AES_MAX_KEY_SIZE];
++ u8 nonce[CTR_RFC3686_NONCE_SIZE];
++};
++
++/** \fn int aes_set_key(struct crypto_tfm *tfm, const uint8_t *in_key, unsigned int key_len)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets the AES keys
++ * \param tfm linux crypto algo transform
++ * \param in_key input key
++ * \param key_len key lengths of 16, 24 and 32 bytes supported
++ * \return -EINVAL - bad key length, 0 - SUCCESS
++*/
++static int aes_set_key(struct crypto_tfm *tfm,
++ const u8 *in_key,
++ unsigned int key_len)
++{
++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
++ u32 *flags = &tfm->crt_flags;
++
++ DPRINTF(0, "ctx @%p, key_len %d\n", ctx, key_len);
++
++ if (key_len != 16 && key_len != 24 && key_len != 32) {
++ *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
++ return -EINVAL;
++ }
++
++ ctx->key_length = key_len;
++ memcpy((u8 *)(ctx->buf), in_key, key_len);
++
++ return 0;
++}
++
++#ifndef CONFIG_CRYPTO_DEV_DMA
++/** \fn void deu_aes(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, size_t nbytes, int encdec, int mode)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief main interface to AES hardware
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc, ctr
++ *
++*/
++static void deu_aes(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ size_t nbytes,
++ int encdec,
++ int mode)
++#else
++
++/** \fn void deu_aes_core(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, size_t nbytes, int encdec, int mode)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief main interface to AES hardware
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc, ctr
++ *
++*/
++static void deu_aes_core(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ size_t nbytes,
++ int encdec,
++ int mode)
++#endif
++
++{
++ /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
++ volatile struct deu_aes *aes = (volatile struct deu_aes *)AES_START;
++ struct aes_ctx *ctx = (struct aes_ctx *)ctx_arg;
++ u32 *in_key = ctx->buf;
++ ulong flag;
++ /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
++ int key_len = ctx->key_length;
++
++#ifndef CONFIG_CRYPTO_DEV_DMA
++ int i = 0;
++ int byte_cnt = nbytes;
++#else
++ volatile struct deu_dma *dma = (struct deu_dma *)LQ_DEU_DMA_CON;
++ struct dma_device_info *dma_device = lq_deu[0].dma_device;
++ /* struct deu_drv_priv *deu_priv =
++ * (struct deu_drv_priv *)dma_device->priv; */
++ int wlen = 0;
++ u32 *outcopy = NULL;
++ u32 *dword_mem_aligned_in = NULL;
++
++# ifdef CONFIG_CRYPTO_DEV_POLL_DMA
++ u32 timeout = 0;
++ u32 *out_dma = NULL;
++# endif
++#endif
++
++ DPRINTF(0, "ctx @%p, mode %d, encdec %d\n", ctx, mode, encdec);
++
++ CRTCL_SECT_START;
++
++ /* 128, 192 or 256 bit key length */
++ aes->ctrl.K = key_len / 8 - 2;
++ if (key_len == 128 / 8) {
++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0));
++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1));
++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2));
++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3));
++ }
++ else if (key_len == 192 / 8) {
++ aes->K5R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0));
++ aes->K4R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1));
++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2));
++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3));
++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 4));
++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 5));
++ }
++ else if (key_len == 256 / 8) {
++ aes->K7R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0));
++ aes->K6R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1));
++ aes->K5R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2));
++ aes->K4R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3));
++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 4));
++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 5));
++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 6));
++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 7));
++ }
++ else {
++ CRTCL_SECT_END;
++ return; /* -EINVAL; */
++ }
++
++ /* let HW pre-process DEcryption key in any case (even if
++ ENcryption is used). Key Valid (KV) bit is then only
++ checked in decryption routine! */
++ aes->ctrl.PNK = 1;
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++ while (aes->ctrl.BUS) {
++ /* this will not take long */
++ }
++ AES_DMA_MISC_CONFIG();
++#endif
++
++ aes->ctrl.E_D = !encdec; /* encryption */
++ aes->ctrl.O = mode; /* 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */
++ aes->ctrl.SM = 1; /* start after writing input register */
++ aes->ctrl.DAU = 0; /* Disable Automatic Update of init
++ vector */
++ aes->ctrl.ARS = 1; /* Autostart Select - write to IHR */
++
++ /* aes->ctrl.F = 128; */ /* default; only for CFB and OFB modes;
++ change only for
++ customer-specific apps */
++ if (mode > 0) {
++ aes->IV3R = DEU_ENDIAN_SWAP(*(u32 *)iv_arg);
++ aes->IV2R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 1));
++ aes->IV1R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 2));
++ aes->IV0R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 3));
++ };
++
++#ifndef CONFIG_CRYPTO_DEV_DMA
++ i = 0;
++ while (byte_cnt >= 16) {
++ aes->ID3R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 0));
++ aes->ID2R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 1));
++ aes->ID1R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 2));
++ /* start crypto */
++ aes->ID0R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 3));
++
++ while (aes->ctrl.BUS) {
++ /* this will not take long */
++ }
++
++ *((volatile u32 *)out_arg + (i * 4) + 0) = aes->OD3R;
++ *((volatile u32 *)out_arg + (i * 4) + 1) = aes->OD2R;
++ *((volatile u32 *)out_arg + (i * 4) + 2) = aes->OD1R;
++ *((volatile u32 *)out_arg + (i * 4) + 3) = aes->OD0R;
++
++ i++;
++ byte_cnt -= 16;
++ }
++#else /* dma */
++ /* Prepare Rx buf length used in dma psuedo interrupt */
++ /* deu_priv->deu_rx_buf = out_arg; */
++ /* deu_priv->deu_rx_len = nbytes; */
++
++ /* memory alignment issue */
++ dword_mem_aligned_in = (u32 *)DEU_DWORD_REORDERING(in_arg,
++ aes_buff_in,
++ BUFFER_IN, nbytes);
++
++ dma->ctrl.ALGO = 1; /* AES */
++ dma->ctrl.BS = 0;
++ aes->ctrl.DAU = 0;
++ dma->ctrl.EN = 1;
++
++ while (aes->ctrl.BUS) {
++ /* wait for AES to be ready */
++ };
++
++ wlen = dma_device_write(dma_device, (u8 *)dword_mem_aligned_in,
++ nbytes, NULL);
++ if (wlen != nbytes) {
++ dma->ctrl.EN = 0;
++ CRTCL_SECT_END;
++ printk(KERN_ERR "[%s %s %d]: dma_device_write fail!\n",
++ __FILE__, __func__, __LINE__);
++ return; /* -EINVAL; */
++ }
++
++ WAIT_AES_DMA_READY();
++
++# ifdef CONFIG_CRYPTO_DEV_POLL_DMA
++ outcopy = (u32 *)DEU_DWORD_REORDERING(out_arg, aes_buff_out,
++ BUFFER_OUT, nbytes);
++
++ /* polling DMA rx channel */
++ while ((dma_device_read(dma_device, (u8 **)&out_dma, NULL)) == 0) {
++ timeout++;
++
++ if (timeout >= 333000) {
++ dma->ctrl.EN = 0;
++ CRTCL_SECT_END;
++ printk (KERN_ERR "[%s %s %d]: timeout!!\n",
++ __FILE__, __func__, __LINE__);
++ return; /* -EINVAL; */
++ }
++ }
++
++ WAIT_AES_DMA_READY();
++
++ AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes);
++
++# else /* not working at the moment.. */
++ CRTCL_SECT_END;
++
++ /* sleep and wait for Rx finished */
++ DEU_WAIT_EVENT(deu_priv->deu_thread_wait, DEU_EVENT,
++ deu_priv->deu_event_flags);
++
++ CRTCL_SECT_START;
++# endif
++
++#endif /* dma */
++
++ /* tc.chen : copy iv_arg back */
++ if (mode > 0) {
++ *((u32 *)iv_arg) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg));
++ *((u32 *)iv_arg + 1) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 1));
++ *((u32 *)iv_arg + 2) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 2));
++ *((u32 *)iv_arg + 3) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 3));
++ }
++
++ CRTCL_SECT_END;
++}
++
++/** \fn int ctr_rfc3686_aes_set_key(struct crypto_tfm *tfm, const uint8_t *in_key, unsigned int key_len)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets RFC3686 key
++ * \param tfm linux crypto algo transform
++ * \param in_key input key
++ * \param key_len key lengths of 20, 28 and 36 bytes supported; last 4 bytes is nonce
++ * \return 0 - SUCCESS
++ * -EINVAL - bad key length
++*/
++static int ctr_rfc3686_aes_set_key(struct crypto_tfm *tfm,
++ const uint8_t *in_key,
++ unsigned int key_len)
++{
++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
++ u32 *flags = &tfm->crt_flags;
++
++ memcpy(ctx->nonce, in_key + (key_len - CTR_RFC3686_NONCE_SIZE),
++ CTR_RFC3686_NONCE_SIZE);
++
++ key_len -= CTR_RFC3686_NONCE_SIZE; /* remove 4 bytes of nonce */
++
++ if (key_len != 16 && key_len != 24 && key_len != 32) {
++ *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
++ return -EINVAL;
++ }
++
++ ctx->key_length = key_len;
++
++ memcpy((u8 *)(ctx->buf), in_key, key_len);
++
++ return 0;
++}
++
++/** \fn void deu_aes(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief main interface with DEU hardware in DMA mode
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc, ctr
++*/
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++static void deu_aes(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ u32 nbytes,
++ int encdec,
++ int mode)
++{
++ u32 remain = nbytes;
++ u32 inc;
++
++ while (remain > 0) {
++ if (remain >= DEU_MAX_PACKET_SIZE)
++ inc = DEU_MAX_PACKET_SIZE;
++ else
++ inc = remain;
++
++ remain -= inc;
++
++ deu_aes_core(ctx_arg, out_arg, in_arg, iv_arg, inc, encdec,
++ mode);
++
++ out_arg += inc;
++ in_arg += inc;
++ }
++}
++#endif
++
++/* definitions from linux/include/crypto.h:
++#define CRYPTO_TFM_MODE_ECB 0x00000001
++#define CRYPTO_TFM_MODE_CBC 0x00000002
++#define CRYPTO_TFM_MODE_CFB 0x00000004
++#define CRYPTO_TFM_MODE_CTR 0x00000008
++#define CRYPTO_TFM_MODE_OFB 0x00000010
++but hardware definition: 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */
++
++/** \fn void deu_aes_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets AES hardware to ECB mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_aes_ecb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_aes(ctx, dst, src, NULL, nbytes, encdec, 0);
++}
++
++/** \fn void deu_aes_cbc(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets AES hardware to CBC mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_aes_cbc(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 1);
++}
++
++#if 0
++/** \fn void deu_aes_ofb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets AES hardware to OFB mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_aes_ofb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 2);
++}
++
++/** \fn void deu_aes_cfb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets AES hardware to CFB mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_aes_cfb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 3);
++}
++#endif
++
++/** \fn void deu_aes_ctr(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief sets AES hardware to CTR mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_aes_ctr(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 4);
++}
++
++/** \fn void aes_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief encrypt AES_BLOCK_SIZE of data
++ * \param tfm linux crypto algo transform
++ * \param out output bytestream
++ * \param in input bytestream
++*/
++static void aes_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++{
++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
++ deu_aes(ctx, out, in, NULL, AES_BLOCK_SIZE, CRYPTO_DIR_ENCRYPT, 0);
++}
++
++/** \fn void aes_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief decrypt AES_BLOCK_SIZE of data
++ * \param tfm linux crypto algo transform
++ * \param out output bytestream
++ * \param in input bytestream
++*/
++static void aes_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++{
++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
++ deu_aes(ctx, out, in, NULL, AES_BLOCK_SIZE, CRYPTO_DIR_DECRYPT, 0);
++}
++
++/*
++ * \brief AES function mappings
++*/
++static struct crypto_alg aes_alg = {
++ .cra_name = "aes",
++ .cra_driver_name = "lq_deu-aes",
++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
++ .cra_blocksize = AES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct aes_ctx),
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
++ .cra_u = {
++ .cipher = {
++ .cia_min_keysize = AES_MIN_KEY_SIZE,
++ .cia_max_keysize = AES_MAX_KEY_SIZE,
++ .cia_setkey = aes_set_key,
++ .cia_encrypt = aes_encrypt,
++ .cia_decrypt = aes_decrypt,
++ }
++ }
++};
++
++/** \fn int ecb_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief ECB AES encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ecb_aes_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int ecb_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief ECB AES decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ecb_aes_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief AES function mappings
++*/
++static struct crypto_alg ecb_aes_alg = {
++ .cra_name = "ecb(aes)",
++ .cra_driver_name = "lq_deu-ecb(aes)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = AES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct aes_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = AES_MIN_KEY_SIZE,
++ .max_keysize = AES_MAX_KEY_SIZE,
++ .setkey = aes_set_key,
++ .encrypt = ecb_aes_encrypt,
++ .decrypt = ecb_aes_decrypt,
++ }
++ }
++};
++
++/** \fn int cbc_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief CBC AES encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int cbc_aes_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int cbc_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief CBC AES decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int cbc_aes_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief AES function mappings
++*/
++static struct crypto_alg cbc_aes_alg = {
++ .cra_name = "cbc(aes)",
++ .cra_driver_name = "lq_deu-cbc(aes)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = AES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct aes_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = AES_MIN_KEY_SIZE,
++ .max_keysize = AES_MAX_KEY_SIZE,
++ .ivsize = AES_BLOCK_SIZE,
++ .setkey = aes_set_key,
++ .encrypt = cbc_aes_encrypt,
++ .decrypt = cbc_aes_decrypt,
++ }
++ }
++};
++
++/** \fn int ctr_basic_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief Counter mode AES encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ctr_basic_aes_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int ctr_basic_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief Counter mode AES decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ctr_basic_aes_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief AES function mappings
++*/
++static struct crypto_alg ctr_basic_aes_alg = {
++ .cra_name = "ctr(aes)",
++ .cra_driver_name = "lq_deu-ctr(aes)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = AES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct aes_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ctr_basic_aes_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = AES_MIN_KEY_SIZE,
++ .max_keysize = AES_MAX_KEY_SIZE,
++ .ivsize = AES_BLOCK_SIZE,
++ .setkey = aes_set_key,
++ .encrypt = ctr_basic_aes_encrypt,
++ .decrypt = ctr_basic_aes_decrypt,
++ }
++ }
++};
++
++/** \fn int ctr_rfc3686_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief Counter mode AES (rfc3686) encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ctr_rfc3686_aes_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++ u8 rfc3686_iv[16];
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ /* set up counter block */
++ memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
++ memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, walk.iv,
++ CTR_RFC3686_IV_SIZE);
++
++ /* initialize counter portion of counter block */
++ *(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
++ cpu_to_be32(1);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ rfc3686_iv, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int ctr_rfc3686_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief Counter mode AES (rfc3686) decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ctr_rfc3686_aes_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++ u8 rfc3686_iv[16];
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ /* set up counter block */
++ memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
++ memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, walk.iv,
++ CTR_RFC3686_IV_SIZE);
++
++ /* initialize counter portion of counter block */
++ *(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
++ cpu_to_be32(1);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % AES_BLOCK_SIZE);
++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ rfc3686_iv, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= AES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief AES function mappings
++*/
++static struct crypto_alg ctr_rfc3686_aes_alg = {
++ .cra_name = "rfc3686(ctr(aes))",
++ .cra_driver_name = "lq_deu-ctr-rfc3686(aes)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = AES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct aes_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ctr_rfc3686_aes_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = AES_MIN_KEY_SIZE,
++ .max_keysize = CTR_RFC3686_MAX_KEY_SIZE,
++ .ivsize = CTR_RFC3686_IV_SIZE,
++ .setkey = ctr_rfc3686_aes_set_key,
++ .encrypt = ctr_rfc3686_aes_encrypt,
++ .decrypt = ctr_rfc3686_aes_decrypt,
++ }
++ }
++};
++
++/** \fn int lq_deu_init_aes (void)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief function to initialize AES driver
++ * \return ret
++*/
++int lq_deu_init_aes(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_alg(&aes_alg)))
++ goto aes_err;
++
++ if ((ret = crypto_register_alg(&ecb_aes_alg)))
++ goto ecb_aes_err;
++
++ if ((ret = crypto_register_alg(&cbc_aes_alg)))
++ goto cbc_aes_err;
++
++ if ((ret = crypto_register_alg(&ctr_basic_aes_alg)))
++ goto ctr_basic_aes_err;
++
++ if ((ret = crypto_register_alg(&ctr_rfc3686_aes_alg)))
++ goto ctr_rfc3686_aes_err;
++
++ deu_aes_chip_init();
++
++ CRTCL_SECT_INIT;
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++ if (ALLOCATE_MEMORY(BUFFER_IN, AES_ALGO) < 0) {
++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n",
++ __FILE__, __func__, __LINE__);
++ goto ctr_rfc3686_aes_err;
++ }
++ if (ALLOCATE_MEMORY(BUFFER_OUT, AES_ALGO) < 0) {
++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n",
++ __FILE__, __func__, __LINE__);
++ goto ctr_rfc3686_aes_err;
++ }
++#endif
++
++ printk(KERN_NOTICE "Lantiq DEU AES initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++ctr_rfc3686_aes_err:
++ crypto_unregister_alg(&ctr_rfc3686_aes_alg);
++ printk(KERN_ERR "Lantiq ctr_rfc3686_aes initialization failed!\n");
++ return ret;
++ctr_basic_aes_err:
++ crypto_unregister_alg(&ctr_basic_aes_alg);
++ printk(KERN_ERR "Lantiq ctr_basic_aes initialization failed!\n");
++ return ret;
++cbc_aes_err:
++ crypto_unregister_alg(&cbc_aes_alg);
++ printk(KERN_ERR "Lantiq cbc_aes initialization failed!\n");
++ return ret;
++ecb_aes_err:
++ crypto_unregister_alg(&ecb_aes_alg);
++ printk(KERN_ERR "Lantiq aes initialization failed!\n");
++ return ret;
++aes_err:
++ printk(KERN_ERR "Lantiq DEU AES initialization failed!\n");
++ return ret;
++}
++
++/** \fn void lq_deu_fini_aes(void)
++ * \ingroup LQ_AES_FUNCTIONS
++ * \brief unregister aes driver
++*/
++void lq_deu_fini_aes(void)
++{
++ crypto_unregister_alg(&aes_alg);
++ crypto_unregister_alg(&ecb_aes_alg);
++ crypto_unregister_alg(&cbc_aes_alg);
++ crypto_unregister_alg(&ctr_basic_aes_alg);
++ crypto_unregister_alg(&ctr_rfc3686_aes_alg);
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++ FREE_MEMORY(aes_buff_in);
++ FREE_MEMORY(aes_buff_out);
++#endif
++}
+--- /dev/null
++++ b/drivers/crypto/lantiq/arc4.c
+@@ -0,0 +1,397 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file arc4.c
++ \ingroup LQ_DEU
++ \brief ARC4 encryption DEU driver file
++*/
++
++/**
++ \defgroup LQ_ARC4_FUNCTIONS LQ_ARC4_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU driver functions
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <linux/crypto.h>
++#include <crypto/algapi.h>
++#include <linux/interrupt.h>
++#include <asm/byteorder.h>
++#include <linux/delay.h>
++
++#ifdef CONFIG_SOL_LANTIQ_XWAY
++
++#include "deu.h"
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++
++static spinlock_t cipher_lock;
++
++/* Preprocessor declerations */
++#define ARC4_MIN_KEY_SIZE 1
++/* #define ARC4_MAX_KEY_SIZE 256 */
++#define ARC4_MAX_KEY_SIZE 16
++#define ARC4_BLOCK_SIZE 1
++
++/*
++ * \brief arc4 private structure
++*/
++struct arc4_ctx {
++ int key_length;
++ u8 buf[120];
++};
++
++/** \fn static void deu_arc4(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief main interface to AES hardware
++ \param ctx_arg crypto algo context
++ \param out_arg output bytestream
++ \param in_arg input bytestream
++ \param iv_arg initialization vector
++ \param nbytes length of bytestream
++ \param encdec 1 for encrypt; 0 for decrypt
++ \param mode operation mode such as ebc, cbc, ctr
++*/
++static void deu_arc4(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ u32 nbytes,
++ int encdec,
++ int mode)
++{
++ volatile struct deu_arc4 *arc4 = (struct deu_arc4 *) ARC4_START;
++ int i = 0;
++ ulong flag;
++
++#if 1 /* need to handle nbytes not multiple of 16 */
++ volatile u32 tmp_array32[4];
++ volatile u8 *tmp_ptr8;
++ int remaining_bytes, j;
++#endif
++
++ CRTCL_SECT_START;
++
++ arc4->IDLEN = nbytes;
++
++#if 1
++ while (i < nbytes) {
++ arc4->ID3R = *((u32 *) in_arg + (i>>2) + 0);
++ arc4->ID2R = *((u32 *) in_arg + (i>>2) + 1);
++ arc4->ID1R = *((u32 *) in_arg + (i>>2) + 2);
++ arc4->ID0R = *((u32 *) in_arg + (i>>2) + 3);
++
++ arc4->ctrl.GO = 1;
++
++ while (arc4->ctrl.BUS) {
++ /* this will not take long */ }
++
++#if 1
++ /* need to handle nbytes not multiple of 16 */
++ tmp_array32[0] = arc4->OD3R;
++ tmp_array32[1] = arc4->OD2R;
++ tmp_array32[2] = arc4->OD1R;
++ tmp_array32[3] = arc4->OD0R;
++
++ remaining_bytes = nbytes - i;
++ if (remaining_bytes > 16)
++ remaining_bytes = 16;
++
++ tmp_ptr8 = (u8 *)&tmp_array32[0];
++ for (j = 0; j < remaining_bytes; j++)
++ *out_arg++ = *tmp_ptr8++;
++#else
++ *((u32 *) out_arg + (i>>2) + 0) = arc4->OD3R;
++ *((u32 *) out_arg + (i>>2) + 1) = arc4->OD2R;
++ *((u32 *) out_arg + (i>>2) + 2) = arc4->OD1R;
++ *((u32 *) out_arg + (i>>2) + 3) = arc4->OD0R;
++#endif
++
++ i += 16;
++ }
++#else /* dma */
++
++#endif /* dma */
++
++ CRTCL_SECT_END;
++}
++
++/** \fn arc4_chip_init(void)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief initialize arc4 hardware
++*/
++static void arc4_chip_init(void)
++{
++ /* do nothing */
++}
++
++/** \fn static int arc4_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief sets ARC4 key
++ \param tfm linux crypto algo transform
++ \param in_key input key
++ \param key_len key lengths less than or equal to 16 bytes supported
++*/
++static int arc4_set_key(struct crypto_tfm *tfm,
++ const u8 *inkey,
++ unsigned int key_len)
++{
++ /* struct arc4_ctx *ctx = crypto_tfm_ctx(tfm); */
++ volatile struct deu_arc4 *arc4 = (struct deu_arc4 *) ARC4_START;
++
++ u32 *in_key = (u32 *)inkey;
++
++ /* must program all bits at one go?!!! */
++#if 1
++ /* #ifndef CONFIG_CRYPTO_DEV_VR9_DMA */
++ *LQ_ARC4_CON = ( (1<<31) | ((key_len - 1)<<27) | (1<<26) | (3<<16) );
++ /* NDC=1,ENDI=1,GO=0,KSAE=1,SM=0 */
++
++ arc4->K3R = *((u32 *) in_key + 0);
++ arc4->K2R = *((u32 *) in_key + 1);
++ arc4->K1R = *((u32 *) in_key + 2);
++ arc4->K0R = *((u32 *) in_key + 3);
++#else /* dma */
++ *AMAZONS_ARC4_CON = ( (1<<31) | ((key_len - 1)<<27) | (1<<26) | (3<<16) | (1<<4) );
++ /* NDC=1,ENDI=1,GO=0,KSAE=1,SM=1 */
++
++ arc4->K3R = *((u32 *) in_key + 0);
++ arc4->K2R = *((u32 *) in_key + 1);
++ arc4->K1R = *((u32 *) in_key + 2);
++ arc4->K0R = *((u32 *) in_key + 3);
++
++#if 0
++ arc4->K3R = deu_endian_swap(*((u32 *) in_key + 0));
++ arc4->K2R = deu_endian_swap(*((u32 *) in_key + 1));
++ arc4->K1R = deu_endian_swap(*((u32 *) in_key + 2));
++ arc4->K0R = deu_endian_swap(*((u32 *) in_key + 3));
++#endif
++
++#endif
++
++#if 0 /* arc4 is a ugly state machine, KSAE can only be set once per session */
++ ctx->key_length = key_len;
++
++ memcpy((u8 *)(ctx->buf), in_key, key_len);
++#endif
++
++ return 0;
++}
++
++/** \fn static void deu_arc4_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief sets ARC4 hardware to ECB mode
++ \param ctx crypto algo context
++ \param dst output bytestream
++ \param src input bytestream
++ \param iv initialization vector
++ \param nbytes length of bytestream
++ \param encdec 1 for encrypt; 0 for decrypt
++ \param inplace not used
++*/
++static void deu_arc4_ecb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ deu_arc4(ctx, dst, src, NULL, nbytes, encdec, 0);
++}
++
++/** \fn static void arc4_crypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief encrypt/decrypt ARC4_BLOCK_SIZE of data
++ \param tfm linux crypto algo transform
++ \param out output bytestream
++ \param in input bytestream
++*/
++static void arc4_crypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
++{
++ struct arc4_ctx *ctx = crypto_tfm_ctx(tfm);
++
++ deu_arc4(ctx, out, in, NULL, ARC4_BLOCK_SIZE,
++ CRYPTO_DIR_DECRYPT, CRYPTO_TFM_MODE_ECB);
++}
++
++/*
++ * \brief ARC4 function mappings
++*/
++static struct crypto_alg arc4_alg = {
++ .cra_name = "arc4",
++ .cra_driver_name = "lq_deu-arc4",
++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
++ .cra_blocksize = ARC4_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct arc4_ctx),
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(arc4_alg.cra_list),
++ .cra_u = {
++ .cipher = {
++ .cia_min_keysize = ARC4_MIN_KEY_SIZE,
++ .cia_max_keysize = ARC4_MAX_KEY_SIZE,
++ .cia_setkey = arc4_set_key,
++ .cia_encrypt = arc4_crypt,
++ .cia_decrypt = arc4_crypt,
++ }
++ }
++};
++
++/** \fn static int ecb_arc4_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief ECB ARC4 encrypt using linux crypto blkcipher
++ \param desc blkcipher descriptor
++ \param dst output scatterlist
++ \param src input scatterlist
++ \param nbytes data size in bytes
++*/
++static int ecb_arc4_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct arc4_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(1, "\n");
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ deu_arc4_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= ARC4_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn static int ecb_arc4_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief ECB ARC4 decrypt using linux crypto blkcipher
++ \param desc blkcipher descriptor
++ \param dst output scatterlist
++ \param src input scatterlist
++ \param nbytes data size in bytes
++*/
++static int ecb_arc4_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct arc4_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(1, "\n");
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ deu_arc4_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= ARC4_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief ARC4 function mappings
++*/
++static struct crypto_alg ecb_arc4_alg = {
++ .cra_name = "ecb(arc4)",
++ .cra_driver_name = "lq_deu-ecb(arc4)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = ARC4_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct arc4_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ecb_arc4_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = ARC4_MIN_KEY_SIZE,
++ .max_keysize = ARC4_MAX_KEY_SIZE,
++ .setkey = arc4_set_key,
++ .encrypt = ecb_arc4_encrypt,
++ .decrypt = ecb_arc4_decrypt,
++ }
++ }
++};
++
++/** \fn int lq_deu_init_arc4(void)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief initialize arc4 driver
++*/
++int lq_deu_init_arc4(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_alg(&arc4_alg)))
++ goto arc4_err;
++
++ if ((ret = crypto_register_alg(&ecb_arc4_alg)))
++ goto ecb_arc4_err;
++
++ arc4_chip_init();
++
++ CRTCL_SECT_INIT;
++
++ printk(KERN_NOTICE "Lantiq DEU ARC4 initialized %s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++arc4_err:
++ crypto_unregister_alg(&arc4_alg);
++ printk(KERN_ERR "Lantiq arc4 initialization failed!\n");
++ return ret;
++ecb_arc4_err:
++ crypto_unregister_alg(&ecb_arc4_alg);
++ printk(KERN_ERR "Lantiq ecb_arc4 initialization failed!\n");
++
++ return ret;
++}
++
++/** \fn void lq_deu_fini_arc4(void)
++ \ingroup LQ_ARC4_FUNCTIONS
++ \brief unregister arc4 driver
++*/
++void lq_deu_fini_arc4(void)
++{
++ crypto_unregister_alg(&arc4_alg);
++ crypto_unregister_alg(&ecb_arc4_alg);
++}
++
++#endif
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/des.c
+@@ -0,0 +1,929 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver
++*/
++
++/**
++ \file des.c
++ \ingroup LQ_DEU
++ \brief DES encryption DEU driver file
++*/
++
++/**
++ \defgroup LQ_DES_FUNCTIONS LQ_DES_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DES Encryption functions
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <linux/crypto.h>
++#include <linux/interrupt.h>
++#include <linux/delay.h>
++#include <asm/byteorder.h>
++#include <crypto/algapi.h>
++
++#ifdef CONFIG_SOL_LANTIQ_XWAY
++
++#include "deu.h"
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++# include "deu_dma.h"
++#endif
++
++static spinlock_t cipher_lock;
++
++/* Preprocessor declarations */
++#define DES_KEY_SIZE 8
++#define DES_EXPKEY_WORDS 32
++#define DES_BLOCK_SIZE 8
++#define DES3_EDE_KEY_SIZE (3 * DES_KEY_SIZE)
++#define DES3_EDE_EXPKEY_WORDS (3 * DES_EXPKEY_WORDS)
++#define DES3_EDE_BLOCK_SIZE DES_BLOCK_SIZE
++
++struct des_ctx {
++ int controlr_M;
++ int key_length;
++ u8 iv[DES_BLOCK_SIZE];
++ u32 expkey[DES3_EDE_EXPKEY_WORDS];
++};
++
++/** \fn int des_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets DES key
++ * \param tfm linux crypto algo transform
++ * \param key input key
++ * \param key_len key length
++*/
++static int des_setkey(struct crypto_tfm *tfm,
++ const u8 *key,
++ unsigned int key_len)
++{
++ struct des_ctx *ctx = crypto_tfm_ctx(tfm);
++
++ DPRINTF(0, "ctx @%p, key_len %d %d\n", ctx, key_len);
++
++ ctx->controlr_M = 0; /* des */
++ ctx->key_length = key_len;
++
++ memcpy((u8 *)(ctx->expkey), key, key_len);
++
++ return 0;
++}
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++/** \fn void deu_des(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief main interface to DES hardware
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc
++*/
++
++static void deu_des(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ u32 nbytes,
++ int encdec,
++ int mode)
++#else
++/** \fn void deu_des_core(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief main interface to DES hardware
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc
++*/
++static void deu_des_core(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ u32 nbytes,
++ int encdec,
++ int mode)
++#endif
++{
++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START;
++ struct des_ctx *dctx = ctx_arg;
++ u32 *key = dctx->expkey;
++ ulong flag;
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ int i = 0;
++ int nblocks = 0;
++#else
++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON;
++ struct dma_device_info *dma_device = lq_deu[0].dma_device;
++ /* struct deu_drv_priv *deu_priv =
++ * (struct deu_drv_priv *)dma_device->priv; */
++ int wlen = 0;
++ u32 *outcopy = NULL;
++ u32 *dword_mem_aligned_in = NULL;
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_POLL_DMA
++ u32 timeout = 0;
++ u32 *out_dma = NULL;
++#endif
++
++#endif
++
++ DPRINTF(0, "ctx @%p, mode %d, encdec %d\n", dctx, mode, encdec);
++
++ CRTCL_SECT_START;
++
++ des->ctrl.E_D = !encdec; /* encryption */
++ des->ctrl.O = mode; /* 0 ECB, 1 CBC, 2 OFB, 3 CFB, 4 CTR */
++ des->ctrl.SM = 1; /* start after writing input register */
++ des->ctrl.DAU = 0; /* Disable Automatic Update of init vect */
++ des->ctrl.ARS = 1; /* Autostart Select - write to IHR */
++
++ des->ctrl.M = dctx->controlr_M;
++ /* write keys */
++ if (dctx->controlr_M == 0) {
++ /* DES mode */
++ des->K1HR = DEU_ENDIAN_SWAP(*((u32 *) key + 0));
++ des->K1LR = DEU_ENDIAN_SWAP(*((u32 *) key + 1));
++#ifdef CRYPTO_DEBUG
++ printk("key1: %x\n", (*((u32 *) key + 0)));
++ printk("key2: %x\n", (*((u32 *) key + 1)));
++#endif
++ } else {
++ /* 3DES mode (EDE-x) */
++ switch (dctx->key_length) {
++ case 24:
++ des->K3HR = DEU_ENDIAN_SWAP(*((u32 *) key + 4));
++ des->K3LR = DEU_ENDIAN_SWAP(*((u32 *) key + 5));
++ /* no break; */
++ case 16:
++ des->K2HR = DEU_ENDIAN_SWAP(*((u32 *) key + 2));
++ des->K2LR = DEU_ENDIAN_SWAP(*((u32 *) key + 3));
++ /* no break; */
++ case 8:
++ des->K1HR = DEU_ENDIAN_SWAP(*((u32 *) key + 0));
++ des->K1LR = DEU_ENDIAN_SWAP(*((u32 *) key + 1));
++ break;
++ default:
++ CRTCL_SECT_END;
++ return;
++ }
++ }
++
++ /* write init vector (not required for ECB mode) */
++ if (mode > 0) {
++ des->IVHR = DEU_ENDIAN_SWAP(*(u32 *) iv_arg);
++ des->IVLR = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 1));
++ }
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ nblocks = nbytes / 4;
++
++ for (i = 0; i < nblocks; i += 2) {
++ /* wait for busy bit to clear */
++
++ /*--- Workaround ---------------------------------------------
++ do a dummy read to the busy flag because it is not raised
++ early enough in CFB/OFB 3DES modes */
++#ifdef CRYPTO_DEBUG
++ printk("ihr: %x\n", (*((u32 *) in_arg + i)));
++ printk("ilr: %x\n", (*((u32 *) in_arg + 1 + i)));
++#endif
++ des->IHR = INPUT_ENDIAN_SWAP(*((u32 *) in_arg + i));
++ /* start crypto */
++ des->ILR = INPUT_ENDIAN_SWAP(*((u32 *) in_arg + 1 + i));
++
++ while (des->ctrl.BUS) {
++ /* this will not take long */
++ }
++
++ *((u32 *) out_arg + 0 + i) = des->OHR;
++ *((u32 *) out_arg + 1 + i) = des->OLR;
++
++#ifdef CRYPTO_DEBUG
++ printk("ohr: %x\n", (*((u32 *) out_arg + i)));
++ printk("olr: %x\n", (*((u32 *) out_arg + 1 + i)));
++#endif
++ }
++
++#else /* dma mode */
++
++ /* Prepare Rx buf length used in dma psuedo interrupt */
++ /* deu_priv->deu_rx_buf = out_arg; */
++ /* deu_priv->deu_rx_len = nbytes; */
++
++ /* memory alignment issue */
++ dword_mem_aligned_in = (u32 *) DEU_DWORD_REORDERING(in_arg, des_buff_in,
++ BUFFER_IN, nbytes);
++
++ dma->ctrl.ALGO = 0; /* DES */
++ des->ctrl.DAU = 0;
++ dma->ctrl.BS = 0;
++ dma->ctrl.EN = 1;
++
++ while (des->ctrl.BUS) {
++ /* wait for AES to be ready */
++ };
++
++ wlen = dma_device_write(dma_device, (u8 *) dword_mem_aligned_in, nbytes,
++ NULL);
++ if (wlen != nbytes) {
++ dma->ctrl.EN = 0;
++ CRTCL_SECT_END;
++ printk(KERN_ERR "[%s %s %d]: dma_device_write fail!\n",
++ __FILE__, __func__, __LINE__);
++ return; /* -EINVAL; */
++ }
++
++ WAIT_DES_DMA_READY();
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_POLL_DMA
++ outcopy = (u32 *) DEU_DWORD_REORDERING(out_arg, des_buff_out,
++ BUFFER_OUT, nbytes);
++
++ /* polling DMA rx channel */
++ while ((dma_device_read(dma_device, (u8 **) &out_dma, NULL)) == 0) {
++ timeout++;
++
++ if (timeout >= 333000) {
++ dma->ctrl.EN = 0;
++ CRTCL_SECT_END;
++ printk(KERN_ERR "[%s %s %d]: timeout!!\n",
++ __FILE__, __func__, __LINE__);
++ return; /* -EINVAL; */
++ }
++ }
++
++ WAIT_DES_DMA_READY();
++
++ DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes);
++#else
++ CRTCL_SECT_END; /* Sleep and wait for Rx finished */
++ DEU_WAIT_EVENT(deu_priv->deu_thread_wait, DEU_EVENT,
++ deu_priv->deu_event_flags);
++ CRTCL_SECT_START;
++#endif
++
++#endif /* dma mode */
++
++ if (mode > 0) {
++ *(u32 *) iv_arg = DEU_ENDIAN_SWAP(des->IVHR);
++ *((u32 *) iv_arg + 1) = DEU_ENDIAN_SWAP(des->IVLR);
++ };
++
++ CRTCL_SECT_END;
++}
++
++/* definitions from linux/include/crypto.h:
++#define CRYPTO_TFM_MODE_ECB 0x00000001
++#define CRYPTO_TFM_MODE_CBC 0x00000002
++#define CRYPTO_TFM_MODE_CFB 0x00000004
++#define CRYPTO_TFM_MODE_CTR 0x00000008
++#define CRYPTO_TFM_MODE_OFB 0x00000010
++but hardware definition: 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */
++
++/** \fn void deu_des(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief main interface to DES hardware
++ * \param ctx_arg crypto algo context
++ * \param out_arg output bytestream
++ * \param in_arg input bytestream
++ * \param iv_arg initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param mode operation mode such as ebc, cbc
++*/
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++static void deu_des(void *ctx_arg,
++ u8 *out_arg,
++ const u8 *in_arg,
++ u8 *iv_arg,
++ u32 nbytes,
++ int encdec,
++ int mode)
++{
++ u32 remain = nbytes;
++ u32 inc;
++
++ DPRINTF(0, "\n");
++
++ while (remain > 0) {
++ if (remain >= DEU_MAX_PACKET_SIZE)
++ inc = DEU_MAX_PACKET_SIZE;
++ else
++ inc = remain;
++
++ remain -= inc;
++
++ deu_des_core(ctx_arg, out_arg, in_arg, iv_arg, inc, encdec,
++ mode);
++
++ out_arg += inc;
++ in_arg += inc;
++ }
++}
++#endif
++
++/** \fn void deu_des_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets DES hardware to ECB mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++
++static void deu_des_ecb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, dst, src, NULL, nbytes, encdec, 0);
++}
++
++/** \fn void deu_des_cbc(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets DES hardware to CBC mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_des_cbc(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, dst, src, iv, nbytes, encdec, 1);
++}
++
++#if 0
++/** \fn void deu_des_ofb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets DES hardware to OFB mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_des_ofb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, dst, src, iv, nbytes, encdec, 2);
++}
++
++/** \fn void deu_des_cfb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ \ingroup LQ_DES_FUNCTIONS
++ \brief sets DES hardware to CFB mode
++ \param ctx crypto algo context
++ \param dst output bytestream
++ \param src input bytestream
++ \param iv initialization vector
++ \param nbytes length of bytestream
++ \param encdec 1 for encrypt; 0 for decrypt
++ \param inplace not used
++*/
++static void deu_des_cfb(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, dst, src, iv, nbytes, encdec, 3);
++}
++
++/** \fn void deu_des_ctr(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets DES hardware to CTR mode
++ * \param ctx crypto algo context
++ * \param dst output bytestream
++ * \param src input bytestream
++ * \param iv initialization vector
++ * \param nbytes length of bytestream
++ * \param encdec 1 for encrypt; 0 for decrypt
++ * \param inplace not used
++*/
++static void deu_des_ctr(void *ctx,
++ uint8_t *dst,
++ const uint8_t *src,
++ uint8_t *iv,
++ size_t nbytes,
++ int encdec,
++ int inplace)
++{
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, dst, src, iv, nbytes, encdec, 4);
++}
++#endif
++
++/** \fn void des_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief encrypt DES_BLOCK_SIZE of data
++ * \param tfm linux crypto algo transform
++ * \param out output bytestream
++ * \param in input bytestream
++*/
++static void des_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++{
++ struct des_ctx *ctx = crypto_tfm_ctx(tfm);
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, out, in, NULL, DES_BLOCK_SIZE, CRYPTO_DIR_ENCRYPT, 0);
++}
++
++/** \fn void des_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief encrypt DES_BLOCK_SIZE of data
++ * \param tfm linux crypto algo transform
++ * \param out output bytestream
++ * \param in input bytestream
++*/
++static void des_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in)
++{
++ struct des_ctx *ctx = crypto_tfm_ctx(tfm);
++ DPRINTF(0, "ctx @%p\n", ctx);
++ deu_des(ctx, out, in, NULL, DES_BLOCK_SIZE, CRYPTO_DIR_DECRYPT, 0);
++}
++
++/*
++ * \brief RFC2451:
++ *
++ * For DES-EDE3, there is no known need to reject weak or
++ * complementation keys. Any weakness is obviated by the use of
++ * multiple keys.
++ *
++ * However, if the first two or last two independent 64-bit keys are
++ * equal (k1 == k2 or k2 == k3), then the DES3 operation is simply the
++ * same as DES. Implementers MUST reject keys that exhibit this
++ * property.
++ *
++ */
++
++/** \fn int des3_ede_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief sets 3DES key
++ * \param tfm linux crypto algo transform
++ * \param key input key
++ * \param keylen key length
++*/
++static int des3_ede_setkey(struct crypto_tfm *tfm,
++ const u8 *key,
++ unsigned int key_len)
++{
++ struct des_ctx *ctx = crypto_tfm_ctx(tfm);
++
++ DPRINTF(0, "ctx @%p, key_len %d\n", ctx, key_len);
++
++ ctx->controlr_M = key_len / 8 + 1; /* 3DES EDE1 / EDE2 / EDE3 Mode */
++ ctx->key_length = key_len;
++
++ memcpy((u8 *)(ctx->expkey), key, key_len);
++
++ return 0;
++}
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg des_alg = {
++ .cra_name = "des",
++ .cra_driver_name = "lq_deu-des",
++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
++ .cra_blocksize = DES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_module = THIS_MODULE,
++ .cra_alignmask = 3,
++ .cra_list = LIST_HEAD_INIT(des_alg.cra_list),
++ .cra_u = {
++ .cipher = {
++ .cia_min_keysize = DES_KEY_SIZE,
++ .cia_max_keysize = DES_KEY_SIZE,
++ .cia_setkey = des_setkey,
++ .cia_encrypt = des_encrypt,
++ .cia_decrypt = des_decrypt
++ }
++ }
++};
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg des3_ede_alg = {
++ .cra_name = "des3_ede",
++ .cra_driver_name = "lq_deu-des3_ede",
++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
++ .cra_blocksize = DES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_module = THIS_MODULE,
++ .cra_alignmask = 3,
++ .cra_list = LIST_HEAD_INIT(des3_ede_alg.cra_list),
++ .cra_u = {
++ .cipher = {
++ .cia_min_keysize = DES_KEY_SIZE,
++ .cia_max_keysize = DES_KEY_SIZE,
++ .cia_setkey = des3_ede_setkey,
++ .cia_encrypt = des_encrypt,
++ .cia_decrypt = des_decrypt
++ }
++ }
++};
++
++/** \fn int ecb_des_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief ECB DES encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++*/
++static int ecb_des_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(0, "ctx @%p\n", ctx);
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % DES_BLOCK_SIZE);
++ deu_des_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= DES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int ecb_des_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief ECB DES decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int ecb_des_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(0, "ctx @%p\n", ctx);
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ nbytes -= (nbytes % DES_BLOCK_SIZE);
++ deu_des_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= DES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg ecb_des_alg = {
++ .cra_name = "ecb(des)",
++ .cra_driver_name = "lq_deu-ecb(des)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = DES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = DES_KEY_SIZE,
++ .max_keysize = DES_KEY_SIZE,
++ .setkey = des_setkey,
++ .encrypt = ecb_des_encrypt,
++ .decrypt = ecb_des_decrypt,
++ }
++ }
++};
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg ecb_des3_ede_alg = {
++ .cra_name = "ecb(des3_ede)",
++ .cra_driver_name = "lq_deu-ecb(des3_ede)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = DES3_EDE_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(ecb_des3_ede_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = DES3_EDE_KEY_SIZE,
++ .max_keysize = DES3_EDE_KEY_SIZE,
++ .setkey = des3_ede_setkey,
++ .encrypt = ecb_des_encrypt,
++ .decrypt = ecb_des_decrypt,
++ }
++ }
++};
++
++/** \fn int cbc_des_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief CBC DES encrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int cbc_des_encrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(0, "ctx @%p\n", ctx);
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ /* printk("iv = %08x\n", *(u32 *)iv); */
++ nbytes -= (nbytes % DES_BLOCK_SIZE);
++ deu_des_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0);
++ nbytes &= DES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/** \fn int cbc_des_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief CBC DES decrypt using linux crypto blkcipher
++ * \param desc blkcipher descriptor
++ * \param dst output scatterlist
++ * \param src input scatterlist
++ * \param nbytes data size in bytes
++ * \return err
++*/
++static int cbc_des_decrypt(struct blkcipher_desc *desc,
++ struct scatterlist *dst,
++ struct scatterlist *src,
++ unsigned int nbytes)
++{
++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
++ struct blkcipher_walk walk;
++ int err;
++
++ DPRINTF(0, "ctx @%p\n", ctx);
++
++ blkcipher_walk_init(&walk, dst, src, nbytes);
++ err = blkcipher_walk_virt(desc, &walk);
++
++ while ((nbytes = walk.nbytes)) {
++ u8 *iv = walk.iv;
++ /* printk("iv = %08x\n", *(u32 *)iv); */
++ nbytes -= (nbytes % DES_BLOCK_SIZE);
++ deu_des_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0);
++ nbytes &= DES_BLOCK_SIZE - 1;
++ err = blkcipher_walk_done(desc, &walk, nbytes);
++ }
++
++ return err;
++}
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg cbc_des_alg = {
++ .cra_name = "cbc(des)",
++ .cra_driver_name = "lq_deu-cbc(des)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = DES_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = DES_KEY_SIZE,
++ .max_keysize = DES_KEY_SIZE,
++ .ivsize = DES_BLOCK_SIZE,
++ .setkey = des_setkey,
++ .encrypt = cbc_des_encrypt,
++ .decrypt = cbc_des_decrypt,
++ }
++ }
++};
++
++/*
++ * \brief DES function mappings
++*/
++static struct crypto_alg cbc_des3_ede_alg = {
++ .cra_name = "cbc(des3_ede)",
++ .cra_driver_name = "lq_deu-cbc(des3_ede)",
++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
++ .cra_blocksize = DES3_EDE_BLOCK_SIZE,
++ .cra_ctxsize = sizeof(struct des_ctx),
++ .cra_type = &crypto_blkcipher_type,
++ .cra_module = THIS_MODULE,
++ .cra_list = LIST_HEAD_INIT(cbc_des3_ede_alg.cra_list),
++ .cra_u = {
++ .blkcipher = {
++ .min_keysize = DES3_EDE_KEY_SIZE,
++ .max_keysize = DES3_EDE_KEY_SIZE,
++ .ivsize = DES_BLOCK_SIZE,
++ .setkey = des3_ede_setkey,
++ .encrypt = cbc_des_encrypt,
++ .decrypt = cbc_des_decrypt,
++ }
++ }
++};
++
++/** \fn int lq_deu_init_des(void)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief initialize des driver
++*/
++int lq_deu_init_des(void)
++{
++ int ret = 0;
++
++ ret = crypto_register_alg(&des_alg);
++ if (ret < 0)
++ goto des_err;
++
++ ret = crypto_register_alg(&ecb_des_alg);
++ if (ret < 0)
++ goto ecb_des_err;
++
++ ret = crypto_register_alg(&cbc_des_alg);
++ if (ret < 0)
++ goto cbc_des_err;
++
++ ret = crypto_register_alg(&des3_ede_alg);
++ if (ret < 0)
++ goto des3_ede_err;
++
++ ret = crypto_register_alg(&ecb_des3_ede_alg);
++ if (ret < 0)
++ goto ecb_des3_ede_err;
++
++ ret = crypto_register_alg(&cbc_des3_ede_alg);
++ if (ret < 0)
++ goto cbc_des3_ede_err;
++
++ deu_des_chip_init();
++
++ CRTCL_SECT_INIT;
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ if (ALLOCATE_MEMORY(BUFFER_IN, DES_ALGO) < 0) {
++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n",
++ __FILE__, __func__, __LINE__);
++ goto cbc_des3_ede_err;
++ }
++ if (ALLOCATE_MEMORY(BUFFER_OUT, DES_ALGO) < 0) {
++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n",
++ __FILE__, __func__, __LINE__);
++ goto cbc_des3_ede_err;
++ }
++#endif
++
++ printk(KERN_NOTICE "Lantiq DEU DES initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++des_err:
++ crypto_unregister_alg(&des_alg);
++ printk(KERN_ERR "Lantiq des initialization failed!\n");
++
++ return ret;
++
++ecb_des_err:
++ crypto_unregister_alg(&ecb_des_alg);
++ printk(KERN_ERR "Lantiq ecb_des initialization failed!\n");
++
++ return ret;
++
++cbc_des_err:
++ crypto_unregister_alg(&cbc_des_alg);
++ printk(KERN_ERR "Lantiq cbc_des initialization failed!\n");
++
++ return ret;
++
++des3_ede_err:
++ crypto_unregister_alg(&des3_ede_alg);
++ printk(KERN_ERR "Lantiq des3_ede initialization failed!\n");
++
++ return ret;
++
++ecb_des3_ede_err:
++ crypto_unregister_alg(&ecb_des3_ede_alg);
++ printk(KERN_ERR "Lantiq ecb_des3_ede initialization failed!\n");
++
++ return ret;
++
++cbc_des3_ede_err:
++ crypto_unregister_alg(&cbc_des3_ede_alg);
++ printk(KERN_ERR "Lantiq cbc_des3_ede initialization failed!\n");
++
++ return ret;
++}
++
++/** \fn void lq_deu_fini_des(void)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief unregister des driver
++*/
++void lq_deu_fini_des(void)
++{
++ crypto_unregister_alg(&des_alg);
++ crypto_unregister_alg(&ecb_des_alg);
++ crypto_unregister_alg(&cbc_des_alg);
++ crypto_unregister_alg(&des3_ede_alg);
++ crypto_unregister_alg(&ecb_des3_ede_alg);
++ crypto_unregister_alg(&cbc_des3_ede_alg);
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ FREE_MEMORY(des_buff_in);
++ FREE_MEMORY(des_buff_out);
++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA_DANUBE */
++}
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu.c
+@@ -0,0 +1,195 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu.c
++ \ingroup LQ_DEU
++ \brief main DEU driver file
++*/
++
++/**
++ \defgroup LQ_DEU_FUNCTIONS LQ_DEU_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU functions
++*/
++
++#include <linux/version.h>
++#if defined(CONFIG_MODVERSIONS)
++#define MODVERSIONS
++#include <linux/modversions.h>
++#endif
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <linux/crypto.h>
++#include <linux/proc_fs.h>
++#include <linux/fs.h> /* Stuff about file systems that we need */
++#include <asm/byteorder.h>
++
++#if 0
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++# include <lq_pmu.h>
++#endif
++#endif
++
++#include "deu.h"
++
++struct lq_crypto_priv lq_crypto_ops;
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++int disable_deudma = 0;
++#else
++int disable_deudma = 1;
++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */
++
++#ifdef CRYPTO_DEBUG
++char deu_debug_level = 3;
++#endif
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_MODULE
++# define STATIC static
++#else
++# define STATIC
++#endif
++
++/** \fn static int lq_deu_init(void)
++ * \ingroup LQ_DEU_FUNCTIONS
++ * \brief link all modules that have been selected in kernel config for Lantiq HW crypto support
++ * \return ret
++*/
++int lq_deu_init(void)
++{
++ int ret = -ENOSYS;
++ u32 config;
++
++ printk(KERN_INFO "Lantiq crypto hardware driver version %s\n",
++ LQ_DEU_DRV_VERSION);
++
++ config = deu_chip_init();
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ deu_dma_init();
++#endif
++
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_AES)
++ if(config & LQ_DEU_ID_AES) {
++ if ((ret = lq_deu_init_aes())) {
++ printk(KERN_ERR "Lantiq AES initialization failed!\n");
++ }
++ } else {
++ printk(KERN_ERR "Lantiq AES not supported!\n");
++ }
++#endif
++
++#ifdef CONFIG_SOL_LANTIQ_XWAY
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DES)
++ if(config & LQ_DEU_ID_DES) {
++ if ((ret = lq_deu_init_des())) {
++ printk(KERN_ERR "Lantiq DES initialization failed!\n");
++ }
++ } else {
++ printk(KERN_ERR "Lantiq DES not supported!\n");
++ }
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) && defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA)
++ if ((ret = lq_deu_init_arc4())) {
++ printk(KERN_ERR "Lantiq ARC4 initialization failed!\n");
++ }
++#endif
++#endif
++
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1)
++ if(config & LQ_DEU_ID_HASH) {
++ if ((ret = lq_deu_init_sha1())) {
++ printk(KERN_ERR "Lantiq SHA1 initialization failed!\n");
++ }
++ } else {
++ printk(KERN_ERR "Lantiq SHA1 not supported!\n");
++ }
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5)
++ if(config & LQ_DEU_ID_HASH) {
++ if ((ret = lq_deu_init_md5())) {
++ printk(KERN_ERR "Lantiq MD5 initialization failed!\n");
++ }
++ } else {
++ printk(KERN_ERR "Lantiq MD5 not supported!\n");
++ }
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC)
++ if ((ret = lq_deu_init_sha1_hmac())) {
++ printk(KERN_ERR "Lantiq SHA1_HMAC initialization failed!\n");
++ }
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC)
++ if ((ret = lq_deu_init_md5_hmac())) {
++ printk(KERN_ERR "Lantiq MD5_HMAC initialization failed!\n");
++ }
++#endif
++ return ret;
++}
++
++/** \fn static void lq_deu_fini(void)
++ * \ingroup LQ_DEU_FUNCTIONS
++ * \brief remove the loaded crypto algorithms
++*/
++void lq_deu_exit(void)
++{
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_AES)
++ lq_deu_fini_aes();
++#endif
++#ifdef CONFIG_SOL_LANTIQ_XWAY
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DES)
++ lq_deu_fini_des();
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) \
++ && defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA)
++ lq_deu_fini_arc4();
++#endif
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1)
++ lq_deu_fini_sha1();
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5)
++ lq_deu_fini_md5();
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC)
++ lq_deu_fini_sha1_hmac();
++#endif
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC)
++ lq_deu_fini_md5_hmac();
++#endif
++
++ printk("DEU has exited successfully\n");
++
++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA)
++ deu_dma_exit();
++ printk("DMA has deregistered successfully\n");
++#endif
++}
++
++EXPORT_SYMBOL(lq_deu_init);
++EXPORT_SYMBOL(lq_deu_exit);
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu.h
+@@ -0,0 +1,248 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu.h
++ \brief Main DEU driver header file
++*/
++
++/**
++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU definitions
++*/
++
++
++#ifndef DEU_H
++#define DEU_H
++
++#undef CRYPTO_DEBUG
++
++#define LQ_DEU_DRV_VERSION "1.0.1"
++
++#if defined(CONFIG_LANTIQ_DANUBE)
++# include "deu_danube.h"
++#elif defined(CONFIG_LANTIQ_AR9)
++# include "deu_ar9.h"
++#elif defined(CONFIG_SOC_LANTIQ_FALCON)
++# include "deu_falcon.h"
++#else
++//# error "Unknown platform"
++# include "deu_danube.h"
++#endif
++
++struct lq_crypto_priv {
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ u32 *des_buff_in;
++ u32 *des_buff_out;
++ u32 *aes_buff_in;
++ u32 *aes_buff_out;
++
++ int (*dma_init)(void);
++ void (*dma_exit)(void);
++ u32 (*dma_align)(const u8 *, u32 *, int, int);
++ void (*aes_dma_memcpy)(u32 *, u32 *, u8 *, int);
++ void (*des_dma_memcpy)(u32 *, u32 *, u8 *, int);
++ int (*aes_dma_malloc)(int);
++ int (*des_dma_malloc)(int);
++ void (*dma_free)(u32 *);
++#endif
++
++ u32 (*endian_swap)(u32);
++ u32 (*input_swap)(u32);
++ void (*aes_chip_init)(void);
++ void (*des_chip_init)(void);
++ u32 (*chip_init)(void);
++};
++
++extern struct lq_crypto_priv lq_crypto_ops;
++
++#define LQ_DEU_ALIGNMENT 16
++
++#define PFX "lq_deu: "
++
++#define LQ_DEU_CRA_PRIORITY 300
++#define LQ_DEU_COMPOSITE_PRIORITY 400
++
++#define CRYPTO_DIR_ENCRYPT 1
++#define CRYPTO_DIR_DECRYPT 0
++
++#define CRTCL_SECT_INIT spin_lock_init(&cipher_lock)
++#define CRTCL_SECT_START spin_lock_irqsave(&cipher_lock, flag)
++#define CRTCL_SECT_END spin_unlock_irqrestore(&cipher_lock, flag)
++
++#define LQ_DEU_ID_REV 0x00001F
++#define LQ_DEU_ID_ID 0x00FF00
++#define LQ_DEU_ID_DMA 0x010000
++#define LQ_DEU_ID_HASH 0x020000
++#define LQ_DEU_ID_AES 0x040000
++#define LQ_DEU_ID_3DES 0x080000
++#define LQ_DEU_ID_DES 0x100000
++
++extern int disable_deudma;
++
++int lq_deu_init(void);
++void lq_deu_exit(void);
++
++int lq_deu_init_des(void);
++int lq_deu_init_aes(void);
++int lq_deu_init_arc4(void);
++int lq_deu_init_sha1(void);
++int lq_deu_init_md5(void);
++int lq_deu_init_sha1_hmac(void);
++int lq_deu_init_md5_hmac(void);
++
++void lq_deu_fini_des(void);
++void lq_deu_fini_aes(void);
++void lq_deu_fini_arc4(void);
++void lq_deu_fini_sha1(void);
++void lq_deu_fini_md5(void);
++void lq_deu_fini_sha1_hmac(void);
++void lq_deu_fini_md5_hmac(void);
++
++/* board specific functions */
++/* { */
++static inline u32 deu_chip_init(void)
++{
++ return lq_crypto_ops.chip_init();
++}
++
++static inline void deu_des_chip_init(void)
++{
++ lq_crypto_ops.des_chip_init();
++}
++
++static inline void deu_aes_chip_init(void)
++{
++ lq_crypto_ops.aes_chip_init();
++}
++
++static inline u32 deu_input_swap(u32 input)
++{
++ return lq_crypto_ops.input_swap(input);
++}
++
++static inline u32 deu_endian_swap(u32 input)
++{
++ return lq_crypto_ops.endian_swap(input);
++}
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++static inline int deu_aes_dma_malloc(int value)
++{
++ return lq_crypto_ops.aes_dma_malloc(value);
++}
++
++static inline int deu_des_dma_malloc(int value)
++{
++ return lq_crypto_ops.des_dma_malloc(value);
++}
++
++static inline u32 *deu_dma_align(const u8 *arg,
++ u32 *buff_alloc,
++ int in_out,
++ int nbytes)
++{
++ return lq_crypto_ops.dma_align(arg, buff_alloc, in_out, nbytes);
++}
++
++static inline void deu_aes_dma_memcpy(u32 *outcopy,
++ u32 *out_dma,
++ u8 *out_arg,
++ int nbytes)
++{
++ lq_crypto_ops.aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes);
++}
++
++static inline void deu_des_dma_memcpy(u32 *outcopy,
++ u32 *out_dma,
++ u8 *out_arg,
++ int nbytes)
++{
++ lq_crypto_ops.des_dma_memcpy(outcopy, out_dma, out_arg, nbytes);
++}
++
++static inline void deu_dma_free(u32 *addr)
++{
++ lq_crypto_ops.dma_free(addr);
++}
++
++static inline int deu_dma_init(void)
++{
++ lq_crypto_ops.dma_init();
++}
++
++static inline void deu_dma_exit(void)
++{
++ lq_crypto_ops.dma_exit();
++}
++#endif
++
++/* } */
++
++#define DEU_WAKELIST_INIT(queue) \
++ init_waitqueue_head(&queue)
++
++#define DEU_WAIT_EVENT_TIMEOUT(queue, event, flags, timeout) \
++ do { \
++ wait_event_interruptible_timeout((queue), \
++ test_bit((event), \
++ &(flags)), (timeout)); \
++ clear_bit((event), &(flags)); \
++ }while (0)
++
++
++#define DEU_WAKEUP_EVENT(queue, event, flags) \
++ do { \
++ set_bit((event), &(flags)); \
++ wake_up_interruptible(&(queue)); \
++ }while (0)
++
++#define DEU_WAIT_EVENT(queue, event, flags) \
++ do { \
++ wait_event_interruptible(queue, \
++ test_bit((event), &(flags))); \
++ clear_bit((event), &(flags)); \
++ }while (0)
++
++struct deu_drv_priv {
++ wait_queue_head_t deu_thread_wait;
++#define DEU_EVENT 1
++ volatile long deu_event_flags;
++ u8 *deu_rx_buf;
++ u32 deu_rx_len;
++};
++
++#ifdef CRYPTO_DEBUG
++extern char deu_debug_level;
++# define DPRINTF(level, format, args...) \
++ if (level < deu_debug_level) \
++ printk(KERN_INFO "[%s %s %d]: " format, \
++ __FILE__, __func__, __LINE__, ##args)
++#else
++# define DPRINTF(level, format, args...) do { } while(0)
++#endif
++
++#endif /* DEU_H */
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_ar9.c
+@@ -0,0 +1,327 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <asm/io.h> /* dma_cache_inv */
++#include <linux/platform_device.h>
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++
++#include "deu.h"
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu_ar9.c
++ \brief Lantiq DEU board specific driver file for ar9
++*/
++
++/**
++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief board specific functions
++*/
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++struct lq_deu_device lq_deu[1];
++
++static u8 *g_dma_page_ptr = NULL;
++static u8 *g_dma_block = NULL;
++static u8 *g_dma_block2 = NULL;
++
++/** \fn int dma_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Initialize DMA for DEU usage. DMA specific registers are
++ * intialized here, including a pointer to the device, memory
++ * space for the device and DEU-DMA descriptors
++ * \return -1: fail, 0: SUCCESS
++*/
++static int dma_init(void)
++{
++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON;
++ struct dma_device_info *dma_device = NULL;
++ int i = 0;
++
++ struct dma_device_info *deu_dma_device_ptr;
++
++ /* get one free page and share between g_dma_block and g_dma_block2 */
++ printk("PAGE_SIZE = %ld\n", PAGE_SIZE);
++ /* need 16-byte alignment memory block */
++ g_dma_page_ptr = (u8 *)__get_free_page(GFP_KERNEL);
++ /* need 16-byte alignment memory block */
++ g_dma_block = g_dma_page_ptr;
++ /* need 16-byte alignment memory block */
++ g_dma_block2 = (u8 *)(g_dma_page_ptr + (PAGE_SIZE >> 1));
++
++ /* deu_dma_priv_init(); */
++
++ deu_dma_device_ptr = dma_device_reserve("DEU");
++ if (!deu_dma_device_ptr) {
++ printk("DEU: reserve DMA fail!\n");
++ return -1;
++ }
++ lq_deu[0].dma_device = deu_dma_device_ptr;
++
++ dma_device = deu_dma_device_ptr;
++ /* dma_device->priv = &deu_dma_priv; */
++ dma_device->buffer_alloc = &deu_dma_buffer_alloc;
++ dma_device->buffer_free = &deu_dma_buffer_free;
++ dma_device->intr_handler = &deu_dma_intr_handler;
++
++ dma_device->tx_endianness_mode = LQ_DMA_ENDIAN_TYPE3;
++ dma_device->rx_endianness_mode = LQ_DMA_ENDIAN_TYPE3;
++ dma_device->port_num = 1;
++ dma_device->tx_burst_len = 2;
++ dma_device->rx_burst_len = 2;
++ dma_device->max_rx_chan_num = 1;
++ dma_device->max_tx_chan_num = 1;
++ dma_device->port_packet_drop_enable = 0;
++
++ for (i = 0; i < dma_device->max_rx_chan_num; i++) {
++ dma_device->rx_chan[i]->packet_size = DEU_MAX_PACKET_SIZE;
++ dma_device->rx_chan[i]->desc_len = 1;
++ dma_device->rx_chan[i]->control = LQ_DMA_CH_ON;
++ dma_device->rx_chan[i]->byte_offset = 0;
++ dma_device->rx_chan[i]->chan_poll_enable = 1;
++ }
++
++ for (i = 0; i < dma_device->max_tx_chan_num; i++) {
++ dma_device->tx_chan[i]->control = LQ_DMA_CH_ON;
++ dma_device->tx_chan[i]->desc_len = 1;
++ dma_device->tx_chan[i]->chan_poll_enable = 1;
++ }
++
++ dma_device->current_tx_chan = 0;
++ dma_device->current_rx_chan = 0;
++
++ i = dma_device_register(dma_device);
++ for (i = 0; i < dma_device->max_rx_chan_num; i++) {
++ (dma_device->rx_chan[i])->open(dma_device->rx_chan[i]);
++ }
++
++ dma->ctrl.BS = 0;
++ dma->ctrl.RXCLS = 0;
++ dma->ctrl.EN = 1;
++
++ return 0;
++}
++
++/** \fn u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Not used for AR9
++ * \param arg Pointer to the input / output memory address
++ * \param buffer_alloc A pointer to the buffer
++ * \param in_buff Input (if == 1) or Output (if == 0) buffer
++ * \param nbytes Number of bytes of data
++*/
++static u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes)
++{
++ return (u32 *) arg;
++}
++
++/** \fn void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief copy the DMA data to the memory address space for AES
++ * \param outcopy Not used
++ * \param out_dma A pointer to the memory address that stores the DMA data
++ * \param out_arg The pointer to the memory address that needs to be copied to]
++ * \param nbytes Number of bytes of data
++*/
++static void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++{
++ memcpy(out_arg, out_dma, nbytes);
++}
++
++/** \fn void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief copy the DMA data to the memory address space for DES
++ * \param outcopy Not used
++ * \param out_dma A pointer to the memory address that stores the DMA data
++ * \param out_arg The pointer to the memory address that needs to be copied to]
++ * \param nbytes Number of bytes of data
++*/
++static void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++{
++ memcpy(out_arg, out_dma, nbytes);
++}
++
++/** \fn dma_exit(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief unregister dma devices after exit
++*/
++static void dma_exit(void)
++{
++ if (g_dma_page_ptr)
++ free_page((u32) g_dma_page_ptr);
++ dma_device_release(lq_deu[0].dma_device);
++ dma_device_unregister(lq_deu[0].dma_device);
++}
++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */
++
++/** \fn u32 endian_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Swap data given to the function
++ * \param input Data input to be swapped
++ * \return either the swapped data or the input data depending on whether it is in DMA mode or FPI mode
++*/
++static u32 endian_swap(u32 input)
++{
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ u8 *ptr = (u8 *)&input;
++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]);
++#else
++ return input;
++#endif
++}
++
++/** \fn u32 input_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Not used
++ * \return input
++*/
++static u32 input_swap(u32 input)
++{
++ return input;
++}
++
++/** \fn void aes_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize AES hardware
++*/
++static void aes_chip_init(void)
++{
++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START;
++
++ aes->ctrl.SM = 1;
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ aes->ctrl.ARS = 1;
++#else
++ aes->ctrl.NDC = 1; /* to write to ENDI */
++ asm("sync");
++ aes->ctrl.ENDI = 0;
++ asm("sync");
++ aes->ctrl.ARS = 0; /* 0 for dma */
++ asm("sync");
++#endif
++}
++
++/** \fn void des_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize DES hardware
++*/
++static void des_chip_init(void)
++{
++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START;
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ /* start crypto engine with write to ILR */
++ des->ctrl.SM = 1;
++ asm("sync");
++ des->ctrl.ARS = 1;
++#else
++ des->ctrl.SM = 1;
++ des->ctrl.NDC = 1;
++ asm("sync");
++ des->ctrl.ENDI = 0;
++ asm("sync");
++ des->ctrl.ARS = 0; /* 0 for dma */
++
++#endif
++}
++
++static u32 chip_init(void)
++{
++ volatile struct deu_clk_ctrl *clc = (struct deu_clk_ctrl *) LQ_DEU_CLK;
++
++#if 0
++ lq_pmu_enable(1<<20);
++#endif
++
++ clc->FSOE = 0;
++ clc->SBWE = 0;
++ clc->SPEN = 0;
++ clc->SBWE = 0;
++ clc->DISS = 0;
++ clc->DISR = 0;
++
++ return *LQ_DEU_ID;
++}
++
++static int lq_crypto_probe(struct platform_device *pdev)
++{
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ lq_crypto_ops.dma_init = dma_init;
++ lq_crypto_ops.dma_exit = dma_exit;
++ lq_crypto_ops.aes_dma_memcpy = aes_dma_memcpy;
++ lq_crypto_ops.des_dma_memcpy = des_dma_memcpy;
++ lq_crypto_ops.aes_dma_malloc = aes_dma_malloc;
++ lq_crypto_ops.des_dma_malloc = des_dma_malloc;
++ lq_crypto_ops.dma_align = dma_align;
++ lq_crypto_ops.dma_free = dma_free;
++#endif
++
++ lq_crypto_ops.endian_swap = endian_swap;
++ lq_crypto_ops.input_swap = input_swap;
++ lq_crypto_ops.aes_chip_init = aes_chip_init;
++ lq_crypto_ops.des_chip_init = des_chip_init;
++ lq_crypto_ops.chip_init = chip_init;
++
++ printk("lq_ar9_deu: driver loaded!\n");
++
++ lq_deu_init();
++
++ return 0;
++}
++
++static int lq_crypto_remove(struct platform_device *pdev)
++{
++ lq_deu_exit();
++
++ return 0;
++}
++
++static struct platform_driver lq_crypto = {
++ .probe = lq_crypto_probe,
++ .remove = lq_crypto_remove,
++ .driver = {
++ .owner = THIS_MODULE,
++ .name = "lq_ar9_deu"
++ }
++};
++
++static int __init lq_crypto_init(void)
++{
++ return platform_driver_register(&lq_crypto);
++}
++module_init(lq_crypto_init);
++
++static void __exit lq_crypto_exit(void)
++{
++ platform_driver_unregister(&lq_crypto);
++}
++module_exit(lq_crypto_exit);
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_ar9.h
+@@ -0,0 +1,291 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief DEU driver module
++*/
++
++/**
++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU definitions
++*/
++
++/**
++ \file deu_ar9.h
++ \brief DEU driver header file
++*/
++
++
++#ifndef DEU_AR9_H
++#define DEU_AR9_H
++
++#define LQ_DEU_BASE_ADDR (KSEG1 | 0x1E103100)
++#define LQ_DEU_CLK ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0000))
++#define LQ_DEU_ID ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0008))
++#define LQ_DES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0010))
++#define LQ_AES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0050))
++#define LQ_HASH_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x00B0))
++#define LQ_ARC4_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0100))
++
++#define ARC4_START LQ_ARC4_CON
++#define DES_3DES_START LQ_DES_CON
++#define HASH_START LQ_HASH_CON
++#define AES_START LQ_AES_CON
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++# include "deu_dma.h"
++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \
++ deu_dma_align(ptr, buffer, in_out, bytes)
++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define BUFFER_IN 1
++# define BUFFER_OUT 0
++# define AES_ALGO 1
++# define DES_ALGO 0
++# define ALLOCATE_MEMORY(val, type) 1
++# define FREE_MEMORY(buff)
++extern struct lq_deu_device lq_deu[1];
++#endif /* CONFIG_CRYPTO_DEV_DMA */
++
++/* SHA CONSTANTS */
++#define HASH_CON_VALUE 0x0700002C
++
++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input)
++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input)
++#define DELAY_PERIOD 10
++#define FIND_DEU_CHIP_VERSION chip_version()
++
++#define WAIT_AES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_aes *aes = \
++ (volatile struct deu_aes *) AES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (aes->ctrl.BUS) {}; \
++ } while (0)
++
++#define WAIT_DES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_des *des = \
++ (struct deu_des *) DES_3DES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (des->ctrl.BUS) {}; \
++ } while (0)
++
++#define AES_DMA_MISC_CONFIG() \
++ do { \
++ volatile struct deu_aes *aes = \
++ (volatile struct deu_aes *) AES_START; \
++ aes->ctrl.KRE = 1; \
++ aes->ctrl.GO = 1; \
++ } while(0)
++
++#define SHA_HASH_INIT \
++ do { \
++ volatile struct deu_hash *hash = \
++ (struct deu_hash *) HASH_START; \
++ hash->ctrl.SM = 1; \
++ hash->ctrl.ALGO = 0; \
++ hash->ctrl.INIT = 1; \
++ } while(0)
++
++/* DEU Common Structures for AR9*/
++
++struct deu_clk_ctrl {
++ u32 Res:26;
++ u32 FSOE:1;
++ u32 SBWE:1;
++ u32 EDIS:1;
++ u32 SPEN:1;
++ u32 DISS:1;
++ u32 DISR:1;
++};
++
++struct deu_des {
++ struct deu_des_ctrl { /* 10h */
++ u32 KRE:1;
++ u32 reserved1:5;
++ u32 GO:1;
++ u32 STP:1;
++ u32 Res2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 Res3:2;
++ u32 F:3;
++ u32 O:3;
++ u32 BUS:1;
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 M:3;
++ } ctrl;
++
++ u32 IHR; /* 14h */
++ u32 ILR; /* 18h */
++ u32 K1HR; /* 1c */
++ u32 K1LR;
++ u32 K2HR;
++ u32 K2LR;
++ u32 K3HR;
++ u32 K3LR; /* 30h */
++ u32 IVHR; /* 34h */
++ u32 IVLR; /* 38 */
++ u32 OHR; /* 3c */
++ u32 OLR; /* 40 */
++};
++
++struct deu_aes {
++ struct deu_aes_ctrl {
++ u32 KRE:1;
++ u32 reserved1:4;
++ u32 PNK:1;
++ u32 GO:1;
++ u32 STP:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:2;
++ u32 F:3; /* fbs */
++ u32 O:3; /* om */
++ u32 BUS:1; /* bsy */
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 KV:1;
++ u32 K:2; /* KL */
++ } ctrl;
++
++ u32 ID3R; /* 80h */
++ u32 ID2R; /* 84h */
++ u32 ID1R; /* 88h */
++ u32 ID0R; /* 8Ch */
++ u32 K7R; /* 90h */
++ u32 K6R; /* 94h */
++ u32 K5R; /* 98h */
++ u32 K4R; /* 9Ch */
++ u32 K3R; /* A0h */
++ u32 K2R; /* A4h */
++ u32 K1R; /* A8h */
++ u32 K0R; /* ACh */
++ u32 IV3R; /* B0h */
++ u32 IV2R; /* B4h */
++ u32 IV1R; /* B8h */
++ u32 IV0R; /* BCh */
++ u32 OD3R; /* D4h */
++ u32 OD2R; /* D8h */
++ u32 OD1R; /* DCh */
++ u32 OD0R; /* E0h */
++};
++
++struct deu_arc4 {
++ struct arc4_controlr {
++ u32 KRE:1;
++ u32 KLEN:4;
++ u32 KSAE:1;
++ u32 GO:1;
++ u32 STP:1;
++ u32 reserved1:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved2:8;
++ u32 BUS:1; /* bsy */
++ u32 reserved3:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 reserved4:4;
++ } ctrl;
++
++ u32 K3R; /* 104h */
++ u32 K2R; /* 108h */
++ u32 K1R; /* 10Ch */
++ u32 K0R; /* 110h */
++ u32 IDLEN; /* 114h */
++ u32 ID3R; /* 118h */
++ u32 ID2R; /* 11Ch */
++ u32 ID1R; /* 120h */
++ u32 ID0R; /* 124h */
++ u32 OD3R; /* 128h */
++ u32 OD2R; /* 12Ch */
++ u32 OD1R; /* 130h */
++ u32 OD0R; /* 134h */
++};
++
++struct deu_hash {
++ struct deu_hash_ctrl {
++ u32 reserved1:5;
++ u32 KHS:1;
++ u32 GO:1;
++ u32 INIT:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:7;
++ u32 DGRY:1;
++ u32 BSY:1;
++ u32 reserved4:1;
++ u32 IRCL:1;
++ u32 SM:1;
++ u32 KYUE:1;
++ u32 HMEN:1;
++ u32 SSEN:1;
++ u32 ALGO:1;
++ } ctrl;
++
++ u32 MR; /* B4h */
++ u32 D1R; /* B8h */
++ u32 D2R; /* BCh */
++ u32 D3R; /* C0h */
++ u32 D4R; /* C4h */
++ u32 D5R; /* C8h */
++ u32 dummy; /* CCh */
++ u32 KIDX; /* D0h */
++ u32 KEY; /* D4h */
++ u32 DBN; /* D8h */
++};
++
++struct deu_dma {
++ struct deu_dma_ctrl {
++ u32 reserved1:22;
++ u32 BS:2;
++ u32 BSY:1;
++ u32 reserved2:1;
++ u32 ALGO:2;
++ u32 RXCLS:2;
++ u32 reserved3:1;
++ u32 EN:1;
++ } ctrl;
++};
++
++#endif /* DEU_AR9_H */
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_danube.c
+@@ -0,0 +1,484 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <asm/io.h> /* dma_cache_inv */
++#include <linux/platform_device.h>
++
++#ifdef CONFIG_SOC_LANTIQ_XWAY
++
++#include "deu.h"
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief DEU driver module
++*/
++
++/**
++ \file deu_danube.c
++ \ingroup LQ_DEU
++ \brief board specific DEU driver file for danube
++*/
++
++/**
++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief board specific DEU functions
++*/
++
++static int danube_pre_1_4;
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++u32 *des_buff_in = NULL;
++u32 *des_buff_out = NULL;
++u32 *aes_buff_in = NULL;
++u32 *aes_buff_out = NULL;
++
++struct lq_deu_device lq_deu[1];
++
++static u8 *g_dma_page_ptr = NULL;
++static u8 *g_dma_block = NULL;
++static u8 *g_dma_block2 = NULL;
++
++/** \fn int dma_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Initialize DMA for DEU usage. DMA specific registers are
++ * intialized here, including a pointer to the device, memory
++ * space for the device and DEU-DMA descriptors
++ * \return -1 if fail, otherwise return 0
++*/
++static int dma_init(void)
++{
++ struct dma_device_info *dma_device = NULL;
++ int i = 0;
++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON;
++ struct dma_device_info *deu_dma_device_ptr;
++
++ /* get one free page and share between g_dma_block and g_dma_block2 */
++ printk("PAGE_SIZE = %ld\n", PAGE_SIZE);
++ /* need 16-byte alignment memory block */
++ g_dma_page_ptr = (u8 *)__get_free_page(GFP_KERNEL);
++ /* need 16-byte alignment memory block */
++ g_dma_block = g_dma_page_ptr;
++ /* need 16-byte alignment memory block */
++ g_dma_block2 = (u8 *)(g_dma_page_ptr + (PAGE_SIZE >> 1));
++
++ deu_dma_device_ptr = dma_device_reserve("DEU");
++ if (!deu_dma_device_ptr) {
++ printk("DEU: reserve DMA fail!\n");
++ return -1;
++ }
++ lq_deu[0].dma_device = deu_dma_device_ptr;
++ dma_device = deu_dma_device_ptr;
++ /* dma_device->priv = &deu_dma_priv; */
++ dma_device->buffer_alloc = &deu_dma_buffer_alloc;
++ dma_device->buffer_free = &deu_dma_buffer_free;
++ dma_device->intr_handler = &deu_dma_intr_handler;
++ dma_device->tx_endianness_mode = LQ_DMA_ENDIAN_TYPE3;
++ dma_device->rx_endianness_mode = LQ_DMA_ENDIAN_TYPE3;
++ dma_device->port_num = 1;
++ dma_device->tx_burst_len = 4;
++ dma_device->max_rx_chan_num = 1;
++ dma_device->max_tx_chan_num = 1;
++ dma_device->port_packet_drop_enable = 0;
++
++ for (i = 0; i < dma_device->max_rx_chan_num; i++) {
++ dma_device->rx_chan[i]->packet_size = DEU_MAX_PACKET_SIZE;
++ dma_device->rx_chan[i]->desc_len = 1;
++ dma_device->rx_chan[i]->control = LQ_DMA_CH_ON;
++ dma_device->rx_chan[i]->byte_offset = 0;
++ dma_device->rx_chan[i]->chan_poll_enable = 1;
++
++ }
++
++ for (i = 0; i < dma_device->max_tx_chan_num; i++) {
++ dma_device->tx_chan[i]->control = LQ_DMA_CH_ON;
++ dma_device->tx_chan[i]->desc_len = 1;
++ dma_device->tx_chan[i]->chan_poll_enable = 1;
++ }
++
++ dma_device->current_tx_chan = 0;
++ dma_device->current_rx_chan = 0;
++
++ dma_device_register(dma_device);
++ for (i = 0; i < dma_device->max_rx_chan_num; i++) {
++ (dma_device->rx_chan[i])->open(dma_device->rx_chan[i]);
++ }
++
++ dma->ctrl.BS = 0;
++ dma->ctrl.RXCLS = 0;
++ dma->ctrl.EN = 1;
++
++
++ *LQ_DMA_PS = 1;
++
++ /* DANUBE PRE 1.4 SOFTWARE FIX */
++ if (danube_pre_1_4)
++ *LQ_DMA_PCTRL = 0x14;
++ else
++ *LQ_DMA_PCTRL = 0xF14;
++
++ return 0;
++}
++
++/** \fn u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief A fix to align mis-aligned address for Danube version 1.3 chips
++ * which has memory alignment issues.
++ * \param arg Pointer to the input / output memory address
++ * \param buffer_alloc A pointer to the buffer
++ * \param in_buff Input (if == 1) or Output (if == 0) buffer
++ * \param nbytes Number of bytes of data
++ * \return returns arg: if address is aligned, buffer_alloc: if memory address is not aligned
++*/
++static u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes)
++{
++ if (danube_pre_1_4) {
++ /* for input buffer */
++ if (in_buff) {
++ if (((u32) arg) & 0xF) {
++ memcpy(buffer_alloc, arg, nbytes);
++ return (u32 *) buffer_alloc;
++ } else {
++ return (u32 *) arg;
++ }
++ }
++ else {
++ /* for output buffer */
++ if (((u32) arg) & 0x3)
++ return buffer_alloc;
++ else
++ return (u32 *) arg;
++ }
++ }
++
++ return (u32 *) arg;
++}
++
++/** \fn void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief copy the DMA data to the memory address space for AES. The swaping
++ * of the 4 bytes is done only for Danube version 1.3 (FIX). Otherwise,
++ * it is a direct memory copy to out_arg pointer
++ * \param outcopy Pointer to the address to store swapped copy
++ * \param out_dma A pointer to the memory address that stores the DMA data
++ * \param out_arg The pointer to the memory address that needs to be copied to
++ * \param nbytes Number of bytes of data
++*/
++static void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++{
++ int i = 0;
++ int x = 0;
++
++ /* DANUBE PRE 1.4 SOFTWARE FIX */
++ if (danube_pre_1_4) {
++ for (i = 0; i < (nbytes / 4); i++) {
++ x = i ^ 0x3;
++ outcopy[i] = out_dma[x];
++
++ }
++ if (((u32) out_arg) & 0x3) {
++ memcpy((u8 *)out_arg, outcopy, nbytes);
++ }
++ } else {
++ memcpy(out_arg, out_dma, nbytes);
++ }
++}
++
++/** \fn void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief copy the DMA data to the memory address space for DES. The swaping
++ * of the 4 bytes is done only for Danube version 1.3 (FIX). Otherwise,
++ * it is a direct memory copy to out_arg pointer
++ * \param outcopy Pointer to the address to store swapped copy
++ * \param out_dma A pointer to the memory address that stores the DMA data
++ * \param out_arg The pointer to the memory address that needs to be copied to
++ * \param nbytes Number of bytes of data
++*/
++static void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes)
++{
++ int i = 0;
++ int x = 0;
++
++ /* DANUBE PRE 1.4 SOFTWARE FIX */
++ if (danube_pre_1_4) {
++ for (i = 0; i < (nbytes / 4); i++) {
++ x = i ^ 1;
++ outcopy[i] = out_dma[x];
++
++ }
++ if (((u32) out_arg) & 0x3) {
++ memcpy((u8 *)out_arg, outcopy, nbytes);
++ }
++ } else {
++ memcpy(out_arg, out_dma, nbytes);
++ }
++}
++
++/** \fn int des_dma_malloc(int value)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief allocates memory to the necessary memory input/output buffer
++ * location, used during the DES algorithm DMA transfer (memory
++ * alignment issues)
++ * \param value value determinds whether the calling of the function is for a
++ * input buffer or for an output buffer memory allocation
++*/
++static int des_dma_malloc(int value)
++{
++ if (danube_pre_1_4) {
++ if (value == BUFFER_IN) {
++ des_buff_in = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC);
++ if (!des_buff_in)
++ return -1;
++ else
++ return 0;
++ }
++ else {
++ des_buff_out = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC);
++ if (!des_buff_out)
++ return -1;
++ else
++ return 0;
++ }
++ } else {
++ return 0;
++ }
++}
++
++/** \fn int aes_dma_malloc(int value)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief allocates memory to the necessary memory input/output buffer
++ * location, used during the AES algorithm DMA transfer (memory
++ * alignment issues)
++ * \param value value determinds whether the calling of the function is for a
++ * input buffer or for an output buffer memory allocation
++*/
++static int aes_dma_malloc(int value)
++{
++ if (danube_pre_1_4) {
++ if (value == BUFFER_IN) {
++ aes_buff_in = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC);
++ if (!aes_buff_in)
++ return -1;
++ else
++ return 0;
++ }
++ else {
++ aes_buff_out = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC);
++ if (!aes_buff_out)
++ return -1;
++ else
++ return 0;
++ }
++ } else {
++ return 0;
++ }
++}
++
++/** \fn void dma_free(u32 *addr)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief frees previously allocated memory
++ * \param addr memory address of the buffer that needs to be freed
++*/
++static void dma_free(u32 *addr)
++{
++ if (addr)
++ kfree(addr);
++ return;
++}
++
++/** \fn dma_exit(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief unregister dma devices after exit
++*/
++static void dma_exit(void)
++{
++ if (g_dma_page_ptr)
++ free_page((u32) g_dma_page_ptr);
++ dma_device_release(lq_deu[0].dma_device);
++ dma_device_unregister(lq_deu[0].dma_device);
++}
++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */
++
++/** \fn u32 endian_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief function is not used
++ * \param input Data input to be swapped
++ * \return input
++*/
++static u32 endian_swap(u32 input)
++{
++ return input;
++}
++
++/** \fn u32 input_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Swap the input data if the current chip is Danube version
++ * 1.4 and do nothing to the data if the current chip is
++ * Danube version 1.3
++ * \param input data that needs to be swapped
++ * \return input or swapped input
++*/
++static u32 input_swap(u32 input)
++{
++ if (!danube_pre_1_4) {
++ u8 *ptr = (u8 *)&input;
++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]);
++ } else {
++ return input;
++ }
++}
++
++/** \fn void aes_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize AES hardware
++*/
++static void aes_chip_init(void)
++{
++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START;
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ /* start crypto engine with write to ILR */
++ aes->ctrl.SM = 1;
++ aes->ctrl.ARS = 1;
++#else
++ aes->ctrl.SM = 1;
++ aes->ctrl.ARS = 1; /* 0 for dma */
++#endif
++}
++
++/** \fn void des_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize DES hardware
++*/
++static void des_chip_init(void)
++{
++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START;
++
++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ /* start crypto engine with write to ILR */
++ des->ctrl.SM = 1;
++ des->ctrl.ARS = 1;
++#else
++ des->ctrl.SM = 1;
++ des->ctrl.ARS = 1; /* 0 for dma */
++#endif
++}
++
++/** \fn void deu_chip_version(void)
++ * \ingroup LQ_DES_FUNCTIONS
++ * \brief To find the version of the chip by looking at the chip ID
++ * \param danube_pre_1_4 (sets to 1 if Chip is Danube less than v1.4)
++*/
++static void deu_chip_version(void)
++{
++ /* DANUBE PRE 1.4 SOFTWARE FIX */
++ int chip_id = 0;
++ chip_id = *LQ_MPS_CHIPID;
++ chip_id >>= 28;
++
++ if (chip_id >= 4) {
++ danube_pre_1_4 = 0;
++ printk("Danube Chip ver. 1.4 detected. \n");
++ }
++ else {
++ danube_pre_1_4 = 1;
++ printk("Danube Chip ver. 1.3 or below detected. \n");
++ }
++}
++
++static u32 chip_init(void)
++{
++ volatile struct deu_clk_ctrl *clc = (struct deu_clk_ctrl *) LQ_DEU_CLK;
++
++#if 0
++ lq_pmu_enable(1<<20);
++#endif
++
++ deu_chip_version();
++
++ clc->FSOE = 0;
++ clc->SBWE = 0;
++ clc->SPEN = 0;
++ clc->SBWE = 0;
++ clc->DISS = 0;
++ clc->DISR = 0;
++
++ return *LQ_DEU_ID;
++}
++
++static int lq_crypto_probe(struct platform_device *pdev)
++{
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ lq_crypto_ops.dma_init = dma_init;
++ lq_crypto_ops.dma_exit = dma_exit;
++ lq_crypto_ops.aes_dma_memcpy = aes_dma_memcpy;
++ lq_crypto_ops.des_dma_memcpy = des_dma_memcpy;
++ lq_crypto_ops.aes_dma_malloc = aes_dma_malloc;
++ lq_crypto_ops.des_dma_malloc = des_dma_malloc;
++ lq_crypto_ops.dma_align = dma_align;
++ lq_crypto_ops.dma_free = dma_free;
++#endif
++
++ lq_crypto_ops.endian_swap = endian_swap;
++ lq_crypto_ops.input_swap = input_swap;
++ lq_crypto_ops.aes_chip_init = aes_chip_init;
++ lq_crypto_ops.des_chip_init = des_chip_init;
++ lq_crypto_ops.chip_init = chip_init;
++
++ printk("lq_danube_deu: driver loaded!\n");
++
++ lq_deu_init();
++
++ return 0;
++}
++
++static int lq_crypto_remove(struct platform_device *pdev)
++{
++ lq_deu_exit();
++
++ return 0;
++}
++
++static struct platform_driver lq_crypto = {
++ .probe = lq_crypto_probe,
++ .remove = lq_crypto_remove,
++ .driver = {
++ .owner = THIS_MODULE,
++ .name = "lq_danube_deu"
++ }
++};
++
++static int __init lq_crypto_init(void)
++{
++ return platform_driver_register(&lq_crypto);
++}
++module_init(lq_crypto_init);
++
++static void __exit lq_crypto_exit(void)
++{
++ platform_driver_unregister(&lq_crypto);
++}
++module_exit(lq_crypto_exit);
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_danube.h
+@@ -0,0 +1,255 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief DEU driver module
++*/
++
++/**
++ \file deu_danube.h
++ \brief board specific driver header file for danube
++*/
++
++/**
++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief board specific DEU header files
++*/
++
++#ifndef DEU_DANUBE_H
++#define DEU_DANUBE_H
++
++#define LQ_DEU_BASE_ADDR (KSEG1 | 0x1E103100)
++#define LQ_DEU_CLK ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0000))
++#define LQ_DEU_ID ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0008))
++#define LQ_DES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0010))
++#define LQ_AES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0050))
++#define LQ_HASH_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x00B0))
++#define LQ_ARC4_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0100))
++
++#define ARC4_START LQ_ARC4_CON
++#define DES_3DES_START LQ_DES_CON
++#define HASH_START LQ_HASH_CON
++#define AES_START LQ_AES_CON
++
++#define LQ_MPS (KSEG1 | 0x1F107000)
++#define LQ_MPS_CHIPID ((volatile u32*)(LQ_MPS + 0x0344))
++#define LQ_MPS_CHIPID_VERSION_GET(value) (((value) >> 28) & 0xF)
++#define LQ_MPS_CHIPID_VERSION_SET(value) (((value) & 0xF) << 28)
++#define LQ_MPS_CHIPID_PARTNUM_GET(value) (((value) >> 12) & 0xFFFF)
++#define LQ_MPS_CHIPID_PARTNUM_SET(value) (((value) & 0xFFFF) << 12)
++#define LQ_MPS_CHIPID_MANID_GET(value) (((value) >> 1) & 0x7FF)
++#define LQ_MPS_CHIPID_MANID_SET(value) (((value) & 0x7FF) << 1)
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \
++ deu_dma_align(ptr, buffer, in_out, bytes)
++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define BUFFER_IN 1
++# define BUFFER_OUT 0
++# define DELAY_PERIOD 9
++# define AES_ALGO 1
++# define DES_ALGO 0
++# define FREE_MEMORY(buff) deu_dma_free(buff)
++# define ALLOCATE_MEMORY(val, type) type ? \
++ deu_aes_dma_malloc(val) : \
++ deu_des_dma_malloc(val)
++#endif /* CONFIG_CRYPTO_DEV_DMA */
++
++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input)
++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input)
++#define AES_DMA_MISC_CONFIG()
++
++#define WAIT_AES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_aes *aes = \
++ (volatile struct deu_aes *) AES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (aes->ctrl.BUS) {}; \
++ } while (0)
++
++#define WAIT_DES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_des *des = \
++ (struct deu_des *) DES_3DES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (des->ctrl.BUS) {}; \
++ } while (0)
++
++#define SHA_HASH_INIT \
++ do { \
++ volatile struct deu_hash *hash = \
++ (struct deu_hash *) HASH_START; \
++ hash->ctrl.SM = 1; \
++ hash->ctrl.ALGO = 0; \
++ hash->ctrl.INIT = 1; \
++ } while(0)
++
++/* DEU STRUCTURES */
++
++struct deu_clk_ctrl {
++ u32 Res:26;
++ u32 FSOE:1;
++ u32 SBWE:1;
++ u32 EDIS:1;
++ u32 SPEN:1;
++ u32 DISS:1;
++ u32 DISR:1;
++};
++
++struct deu_des {
++ struct deu_des_ctrl {
++ u32 KRE:1;
++ u32 reserved1:5;
++ u32 GO:1;
++ u32 STP:1;
++ u32 Res2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 Res3:2;
++ u32 F:3;
++ u32 O:3;
++ u32 BUS:1;
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 M:3;
++ } ctrl;
++
++ u32 IHR;
++ u32 ILR;
++ u32 K1HR;
++ u32 K1LR;
++ u32 K2HR;
++ u32 K2LR;
++ u32 K3HR;
++ u32 K3LR;
++ u32 IVHR;
++ u32 IVLR;
++ u32 OHR;
++ u32 OLR;
++};
++
++struct deu_aes {
++ struct deu_aes_ctrl {
++ u32 KRE:1;
++ u32 reserved1:4;
++ u32 PNK:1;
++ u32 GO:1;
++ u32 STP:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:2;
++ u32 F:3; /* fbs */
++ u32 O:3; /* om */
++ u32 BUS:1; /* bsy */
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 KV:1;
++ u32 K:2; /* KL */
++ } ctrl;
++
++ u32 ID3R; /* 80h */
++ u32 ID2R; /* 84h */
++ u32 ID1R; /* 88h */
++ u32 ID0R; /* 8Ch */
++ u32 K7R; /* 90h */
++ u32 K6R; /* 94h */
++ u32 K5R; /* 98h */
++ u32 K4R; /* 9Ch */
++ u32 K3R; /* A0h */
++ u32 K2R; /* A4h */
++ u32 K1R; /* A8h */
++ u32 K0R; /* ACh */
++ u32 IV3R; /* B0h */
++ u32 IV2R; /* B4h */
++ u32 IV1R; /* B8h */
++ u32 IV0R; /* BCh */
++ u32 OD3R; /* D4h */
++ u32 OD2R; /* D8h */
++ u32 OD1R; /* DCh */
++ u32 OD0R; /* E0h */
++};
++
++struct deu_hash {
++ struct deu_hash_ctrl {
++ u32 reserved1:5;
++ u32 KHS:1;
++ u32 GO:1;
++ u32 INIT:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:7;
++ u32 DGRY:1;
++ u32 BSY:1;
++ u32 reserved4:1;
++ u32 IRCL:1;
++ u32 SM:1;
++ u32 KYUE:1;
++ u32 HMEN:1;
++ u32 SSEN:1;
++ u32 ALGO:1;
++ } ctrl;
++
++ u32 MR; /* B4h */
++ u32 D1R; /* B8h */
++ u32 D2R; /* BCh */
++ u32 D3R; /* C0h */
++ u32 D4R; /* C4h */
++ u32 D5R; /* C8h */
++ u32 dummy; /* CCh */
++ u32 KIDX; /* D0h */
++ u32 KEY; /* D4h */
++ u32 DBN; /* D8h */
++};
++
++struct deu_dma {
++ struct deu_dma_ctrl {
++ u32 reserved1:22;
++ u32 BS:2;
++ u32 BSY:1;
++ u32 reserved2:1;
++ u32 ALGO:2;
++ u32 RXCLS:2;
++ u32 reserved3:1;
++ u32 EN:1;
++ } ctrl;
++};
++
++#endif /* DEU_DANUBE_H */
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_dma.c
+@@ -0,0 +1,147 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup LQ_API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu_dma.c
++ \ingroup LQ_DEU
++ \brief DMA DEU driver file
++*/
++
++/**
++ \defgroup LQ_DMA_FUNCTIONS LQ_DMA_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief DMA DEU driver functions
++*/
++
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <linux/delay.h>
++#include <asm/io.h>
++#include "deu.h"
++#include "deu_dma.h"
++
++/* extern struct deu_drv_priv deu_dma_priv; */
++
++/** \fn int deu_dma_intr_handler(struct dma_device_info *dma_dev, int status)
++ * \ingroup LQ_DMA_FUNCTIONS
++ * \brief callback function for DEU DMA interrupt
++ * \param dma_dev dma device
++ * \param status not used
++*/
++int deu_dma_intr_handler(struct dma_device_info *dma_dev, int status)
++{
++#if 0
++ int len = 0;
++ while (len <= 20000) { len++; }
++ u8 *buf;
++ int len = 0;
++
++ struct deu_drv_priv *deu_priv = (struct deu_drv_priv *)dma_dev->priv;
++ /* printk("status:%d \n",status); */
++ switch(status) {
++ case RCV_INT:
++ len = dma_device_read(dma_dev, (u8 **)&buf, NULL);
++ if ( len != deu_priv->deu_rx_len) {
++ printk(KERN_ERR "%s packet length %d is not "
++ "equal to expect %d\n",
++ __func__, len, deu_priv->deu_rx_len);
++ return -1;
++ }
++ memcpy(deu_priv->deu_rx_buf, buf, deu_priv->deu_rx_len);
++ /* Reset for next usage */
++ deu_priv->deu_rx_buf = NULL;
++ deu_priv->deu_rx_len = 0;
++ DEU_WAKEUP_EVENT(deu_priv->deu_thread_wait, DEU_EVENT,
++ deu_priv->deu_event_flags);
++ break;
++ case TX_BUF_FULL_INT:
++ /* delay for buffer to be cleared */
++ while (len <= 20000) { len++; }
++ break;
++
++ case TRANSMIT_CPT_INT:
++ break;
++ default:
++ break;
++ }
++#endif
++ return 0;
++}
++
++extern u8 *g_dma_block;
++extern u8 *g_dma_block2;
++
++/** \fn u8 *deu_dma_buffer_alloc(int len, int *byte_offset, void **opt)
++ * \ingroup LQ_DMA_FUNCTIONS
++ * \brief callback function for allocating buffers for dma receive descriptors
++ * \param len not used
++ * \param byte_offset dma byte offset
++ * \param *opt not used
++ *
++*/
++u8 *deu_dma_buffer_alloc(int len, int *byte_offset, void **opt)
++{
++ u8 *swap = NULL;
++
++ /* dma-core needs at least 2 blocks of memory */
++ swap = g_dma_block;
++ g_dma_block = g_dma_block2;
++ g_dma_block2 = swap;
++
++ /* dma_cache_wback_inv((unsigned long) g_dma_block,(PAGE_SIZE >> 1)); */
++ *byte_offset = 0;
++
++ return g_dma_block;
++}
++
++/** \fn int deu_dma_buffer_free(u8 * dataptr, void *opt)
++ * \ingroup LQ_DMA_FUNCTIONS
++ * \brief callback function for freeing dma transmit descriptors
++ * \param dataptr data pointer to be freed
++ * \param opt not used
++*/
++int deu_dma_buffer_free(u8 *dataptr, void *opt)
++{
++#if 0
++ printk("Trying to free memory buffer\n");
++ if (dataptr == NULL && opt == NULL)
++ return 0;
++ else if (opt == NULL) {
++ kfree(dataptr);
++ return 1;
++ }
++ else if (dataptr == NULL) {
++ kfree(opt);
++ return 1;
++ }
++ else {
++ kfree(opt);
++ kfree(dataptr);
++ }
++#endif
++ return 0;
++}
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_dma.h
+@@ -0,0 +1,78 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \addtogroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu_dma.h
++ \ingroup LQ_DEU
++ \brief DMA DEU driver header file
++*/
++
++#ifndef DEU_DMA_H
++#define DEU_DMA_H
++
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/mm.h>
++#include <linux/crypto.h>
++#include <asm/scatterlist.h>
++#include <asm/byteorder.h>
++#include <linux/skbuff.h>
++#include <linux/netdevice.h>
++
++#include <asm/ifx/irq.h>
++#include <asm/ifx/ifx_dma_core.h>
++#ifndef CONFIG_CRYPTO_DEV_POLL_DMA
++# define CONFIG_CRYPTO_DEV_POLL_DMA
++#endif
++
++/* must match the size of memory block allocated for
++ * g_dma_block and g_dma_block2 */
++#define DEU_MAX_PACKET_SIZE (PAGE_SIZE >> 1)
++
++struct lq_deu_device {
++ struct dma_device_info *dma_device;
++ u8 *dst;
++ u8 *src;
++ int len;
++ int dst_count;
++ int src_count;
++ int recv_count;
++ int packet_size;
++ int packet_num;
++ wait_queue_t wait;
++};
++
++extern struct lq_deu_device lq_deu[1];
++
++extern int deu_dma_intr_handler(struct dma_device_info *, int);
++extern u8 *deu_dma_buffer_alloc(int, int *, void **);
++extern int deu_dma_buffer_free(u8 *, void *);
++extern void deu_dma_inactivate_poll(struct dma_device_info* dma_dev);
++extern void deu_dma_activate_poll(struct dma_device_info* dma_dev);
++extern struct dma_device_info* deu_dma_reserve(struct dma_device_info**
++ dma_device);
++extern int deu_dma_release(struct dma_device_info** dma_device);
++
++#endif /* IFMIPS_DEU_DMA_H */
+--- /dev/null
++++ b/drivers/crypto/lantiq/md5.c
+@@ -0,0 +1,285 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file md5.c
++ \ingroup LQ_DEU
++ \brief MD5 encryption DEU driver file
++*/
++
++/**
++ \defgroup LQ_MD5_FUNCTIONS LQ_MD5_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU MD5 functions
++*/
++
++#include <crypto/internal/hash.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/string.h>
++#include <linux/crypto.h>
++#include <linux/types.h>
++#include <asm/byteorder.h>
++#include "deu.h"
++
++#define MD5_DIGEST_SIZE 16
++#define MD5_HMAC_BLOCK_SIZE 64
++#define MD5_BLOCK_WORDS 16
++#define MD5_HASH_WORDS 4
++
++static spinlock_t cipher_lock;
++
++struct md5_ctx {
++ u32 hash[MD5_HASH_WORDS];
++ u32 block[MD5_BLOCK_WORDS];
++ u64 byte_count;
++};
++
++/** \fn static u32 md5_endian_swap(u32 input)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief perform dword level endian swap
++ * \param input value of dword that requires to be swapped
++*/
++static u32 md5_endian_swap(u32 input)
++{
++ u8 *ptr = (u8 *)&input;
++
++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]);
++}
++
++/** \fn static void md5_transform(u32 *hash, u32 const *in)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief main interface to md5 hardware
++ * \param hash current hash value
++ * \param in 64-byte block of input
++*/
++static void md5_transform(u32 *hash, u32 const *in)
++{
++ int i;
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ ulong flag;
++
++ CRTCL_SECT_START;
++
++ for (i = 0; i < 16; i++) {
++ hashs->MR = md5_endian_swap(in[i]);
++ };
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ CRTCL_SECT_END;
++}
++
++/** \fn static inline void md5_transform_helper(struct md5_ctx *ctx)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief interfacing function for md5_transform()
++ * \param ctx crypto context
++*/
++static inline void md5_transform_helper(struct md5_ctx *ctx)
++{
++ /* le32_to_cpu_array(ctx->block, sizeof(ctx->block) / sizeof(u32)); */
++ md5_transform(ctx->hash, ctx->block);
++}
++
++/** \fn static void md5_init(struct crypto_tfm *tfm)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief initialize md5 hardware
++ * \param tfm linux crypto algo transform
++*/
++static int md5_init(struct shash_desc *desc)
++{
++ struct md5_ctx *mctx = shash_desc_ctx(desc);
++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START;
++
++ hash->ctrl.SM = 1;
++ hash->ctrl.ALGO = 1; /* 1 = md5 0 = sha1 */
++ hash->ctrl.INIT = 1; /* Initialize the hash operation by writing
++ a '1' to the INIT bit. */
++
++ mctx->byte_count = 0;
++
++ return 0;
++}
++
++/** \fn static void md5_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief on-the-fly md5 computation
++ * \param tfm linux crypto algo transform
++ * \param data input data
++ * \param len size of input data
++*/
++static int md5_update(struct shash_desc *desc, const u8 *data, unsigned int len)
++{
++ struct md5_ctx *mctx = shash_desc_ctx(desc);
++ const u32 avail = sizeof(mctx->block) - (mctx->byte_count & 0x3f);
++
++ mctx->byte_count += len;
++
++ if (avail > len) {
++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail),
++ data, len);
++ return 0;
++ }
++
++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail),
++ data, avail);
++
++ md5_transform_helper(mctx);
++ data += avail;
++ len -= avail;
++
++ while (len >= sizeof(mctx->block)) {
++ memcpy(mctx->block, data, sizeof(mctx->block));
++ md5_transform_helper(mctx);
++ data += sizeof(mctx->block);
++ len -= sizeof(mctx->block);
++ }
++
++ memcpy(mctx->block, data, len);
++
++ return 0;
++}
++
++/** \fn static void md5_final(struct crypto_tfm *tfm, u8 *out)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief compute final md5 value
++ * \param tfm linux crypto algo transform
++ * \param out final md5 output value
++*/
++static int md5_final(struct shash_desc *desc, u8 *out)
++{
++ struct md5_ctx *mctx = shash_desc_ctx(desc);
++ const unsigned int offset = mctx->byte_count & 0x3f;
++ char *p = (char *)mctx->block + offset;
++ int padding = 56 - (offset + 1);
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ unsigned long flag;
++
++ *p++ = 0x80;
++ if (padding < 0) {
++ memset(p, 0x00, padding + sizeof (u64));
++ md5_transform_helper(mctx);
++ p = (char *)mctx->block;
++ padding = 56;
++ }
++
++ memset(p, 0, padding);
++ mctx->block[14] = md5_endian_swap(mctx->byte_count << 3);
++ mctx->block[15] = md5_endian_swap(mctx->byte_count >> 29);
++
++#if 0
++ le32_to_cpu_array(mctx->block, (sizeof(mctx->block) -
++ sizeof(u64)) / sizeof(u32));
++#endif
++
++ md5_transform(mctx->hash, mctx->block);
++
++ CRTCL_SECT_START;
++
++ *((u32 *) out + 0) = md5_endian_swap(hashs->D1R);
++ *((u32 *) out + 1) = md5_endian_swap(hashs->D2R);
++ *((u32 *) out + 2) = md5_endian_swap(hashs->D3R);
++ *((u32 *) out + 3) = md5_endian_swap(hashs->D4R);
++
++ CRTCL_SECT_END;
++
++ /* Wipe context */
++ memset(mctx, 0, sizeof(*mctx));
++
++ return 0;
++}
++
++static int md5_export(struct shash_desc *desc, void *out)
++{
++ struct md5_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(out, sctx, sizeof(*sctx));
++ return 0;
++}
++
++static int md5_import(struct shash_desc *desc, const void *in)
++{
++ struct md5_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(sctx, in, sizeof(*sctx));
++ return 0;
++}
++
++/*
++ * \brief MD5 function mappings
++*/
++static struct shash_alg md5_alg = {
++ .digestsize = MD5_DIGEST_SIZE,
++ .init = md5_init,
++ .update = md5_update,
++ .final = md5_final,
++ .export = md5_export,
++ .import = md5_import,
++ .descsize = sizeof(struct md5_ctx),
++ .statesize = sizeof(struct md5_ctx),
++ .base = {
++ .cra_name = "md5",
++ .cra_driver_name = "lq_deu-md5",
++ .cra_flags = CRYPTO_ALG_TYPE_SHASH,
++ .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
++ .cra_module = THIS_MODULE,
++ }
++};
++
++/** \fn int lq_deu_init_md5(void)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief initialize md5 driver
++*/
++int lq_deu_init_md5(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_shash(&md5_alg)))
++ goto md5_err;
++
++ CRTCL_SECT_INIT;
++
++ printk(KERN_NOTICE "Lantiq DEU MD5 initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++md5_err:
++ printk(KERN_ERR "Lantiq DEU MD5 initialization failed!\n");
++ return ret;
++}
++
++/** \fn void lq_deu_fini_md5(void)
++ * \ingroup LQ_MD5_FUNCTIONS
++ * \brief unregister md5 driver
++*/
++
++void lq_deu_fini_md5(void)
++{
++ crypto_unregister_shash(&md5_alg);
++}
++
+--- /dev/null
++++ b/drivers/crypto/lantiq/md5_hmac.c
+@@ -0,0 +1,329 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file md5_hmac.c
++ \ingroup LQ_DEU
++ \brief MD5-HMAC encryption DEU driver file
++*/
++
++/**
++ \defgroup LQ_MD5_HMAC_FUNCTIONS LQ_MD5_HMAC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq md5-hmac driver functions
++*/
++
++#include <crypto/internal/hash.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/string.h>
++#include <linux/crypto.h>
++#include <linux/types.h>
++#include <asm/byteorder.h>
++#include "deu.h"
++
++#define MD5_DIGEST_SIZE 16
++#define MD5_HMAC_BLOCK_SIZE 64
++#define MD5_BLOCK_WORDS 16
++#define MD5_HASH_WORDS 4
++#define MD5_HMAC_DBN_TEMP_SIZE 1024 /* size in dword,
++ needed for dbn workaround */
++
++static spinlock_t cipher_lock;
++
++struct md5_hmac_ctx {
++ u32 hash[MD5_HASH_WORDS];
++ u32 block[MD5_BLOCK_WORDS];
++ u64 byte_count;
++ u32 dbn;
++ u32 temp[MD5_HMAC_DBN_TEMP_SIZE];
++};
++
++/** \fn static u32 md5_endian_swap(u32 input)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief perform dword level endian swap
++ * \param input value of dword that requires to be swapped
++*/
++static u32 md5_endian_swap(u32 input)
++{
++ u8 *ptr = (u8 *)&input;
++
++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]);
++}
++
++/** \fn static void md5_hmac_transform(struct crypto_tfm *tfm, u32 const *in)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief save input block to context
++ * \param tfm linux crypto algo transform
++ * \param in 64-byte block of input
++*/
++static void md5_hmac_transform(struct shash_desc *desc, u32 const *in)
++{
++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc);
++
++ memcpy(&mctx->temp[mctx->dbn<<4], in, 64); /* dbn workaround */
++ mctx->dbn += 1;
++
++ if ( (mctx->dbn<<4) > MD5_HMAC_DBN_TEMP_SIZE )
++ {
++ printk("MD5_HMAC_DBN_TEMP_SIZE exceeded\n");
++ }
++}
++
++/** \fn int md5_hmac_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief sets md5 hmac key
++ * \param tfm linux crypto algo transform
++ * \param key input key
++ * \param keylen key length greater than 64 bytes IS NOT SUPPORTED
++*/
++static int md5_hmac_setkey(struct crypto_shash *tfm,
++ const u8 *key,
++ unsigned int keylen)
++{
++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START;
++ int i, j;
++ u32 *in_key = (u32 *)key;
++
++ hash->KIDX = 0x80000000; /* reset all 16 words of the key to '0' */
++ asm("sync");
++
++ j = 0;
++ for (i = 0; i < keylen; i+=4)
++ {
++ hash->KIDX = j;
++ asm("sync");
++ hash->KEY = *((u32 *) in_key + j);
++ j++;
++ }
++
++ return 0;
++}
++
++/** \fn void md5_hmac_init(struct crypto_tfm *tfm)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief initialize md5 hmac context
++ * \param tfm linux crypto algo transform
++*/
++static int md5_hmac_init(struct shash_desc *desc)
++{
++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc);
++
++ memset(mctx, 0, sizeof(struct md5_hmac_ctx));
++ mctx->dbn = 0; /* dbn workaround */
++ return 0;
++}
++
++/** \fn void md5_hmac_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief on-the-fly md5 hmac computation
++ * \param tfm linux crypto algo transform
++ * \param data input data
++ * \param len size of input data
++*/
++static int md5_hmac_update(struct shash_desc *desc,
++ const u8 *data,
++ unsigned int len)
++{
++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc);
++ const u32 avail = sizeof(mctx->block) - (mctx->byte_count & 0x3f);
++
++ mctx->byte_count += len;
++
++ if (avail > len) {
++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail),
++ data, len);
++ return 0;
++ }
++
++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail),
++ data, avail);
++
++ md5_hmac_transform(desc, mctx->block);
++ data += avail;
++ len -= avail;
++
++ while (len >= sizeof(mctx->block)) {
++ memcpy(mctx->block, data, sizeof(mctx->block));
++ md5_hmac_transform(desc, mctx->block);
++ data += sizeof(mctx->block);
++ len -= sizeof(mctx->block);
++ }
++
++ memcpy(mctx->block, data, len);
++
++ return 0;
++}
++
++/** \fn void md5_hmac_final(struct crypto_tfm *tfm, u8 *out)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief compute final md5 hmac value
++ * \param tfm linux crypto algo transform
++ * \param out final md5 hmac output value
++*/
++static int md5_hmac_final(struct shash_desc *desc, u8 *out)
++{
++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc);
++ const unsigned int offset = mctx->byte_count & 0x3f;
++ char *p = (char *)mctx->block + offset;
++ int padding = 56 - (offset + 1);
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ u32 flag;
++ int i = 0;
++ int dbn;
++ u32 *in = &mctx->temp[0];
++
++ *p++ = 0x80;
++ if (padding < 0) {
++ memset(p, 0x00, padding + sizeof (u64));
++ md5_hmac_transform(desc, mctx->block);
++ p = (char *)mctx->block;
++ padding = 56;
++ }
++
++ memset(p, 0, padding);
++ /* need to add 512 bit of the IPAD operation */
++ mctx->block[14] = md5_endian_swap((mctx->byte_count + 64) << 3);
++ mctx->block[15] = 0x00000000;
++
++ md5_hmac_transform(desc, mctx->block);
++
++ CRTCL_SECT_START;
++
++ printk("dbn = %d\n", mctx->dbn);
++ hashs->DBN = mctx->dbn;
++
++ /* khs, go, init, ndc, endi, kyue, hmen, md5 */
++ *LQ_HASH_CON = 0x0703002D;
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ for (dbn = 0; dbn < mctx->dbn; dbn++)
++ {
++ for (i = 0; i < 16; i++) {
++ hashs->MR = in[i];
++ };
++
++ hashs->ctrl.GO = 1;
++ asm("sync");
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ in += 16;
++ }
++
++#if 1
++ /* wait for digest ready */
++ while (! hashs->ctrl.DGRY) {
++ /* this will not take long */
++ }
++#endif
++
++ *((u32 *) out + 0) = hashs->D1R;
++ *((u32 *) out + 1) = hashs->D2R;
++ *((u32 *) out + 2) = hashs->D3R;
++ *((u32 *) out + 3) = hashs->D4R;
++ *((u32 *) out + 4) = hashs->D5R;
++
++ CRTCL_SECT_END;
++
++ return 0;
++}
++
++static int md5_hmac_export(struct shash_desc *desc, void *out)
++{
++ struct md5_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(out, sctx, sizeof(*sctx));
++ return 0;
++}
++
++static int md5_hmac_import(struct shash_desc *desc, const void *in)
++{
++ struct md5_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(sctx, in, sizeof(*sctx));
++ return 0;
++}
++
++/*
++ * \brief MD5_HMAC function mappings
++*/
++static struct shash_alg md5_hmac_alg = {
++ .digestsize = MD5_DIGEST_SIZE,
++ .init = md5_hmac_init,
++ .update = md5_hmac_update,
++ .final = md5_hmac_final,
++ .setkey = md5_hmac_setkey,
++ .export = md5_hmac_export,
++ .import = md5_hmac_import,
++ .descsize = sizeof(struct md5_hmac_ctx),
++ .statesize = sizeof(struct md5_hmac_ctx),
++ .base = {
++ .cra_name = "hmac(md5)",
++ .cra_driver_name = "lq_deu-md5_hmac",
++ .cra_flags = CRYPTO_ALG_TYPE_SHASH,
++ .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
++ .cra_module = THIS_MODULE,
++ }
++};
++
++/** \fn int lq_deu_init_md5_hmac(void)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief initialize md5 hmac driver
++*/
++int lq_deu_init_md5_hmac(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_shash(&md5_hmac_alg)))
++ goto md5_hmac_err;
++
++ CRTCL_SECT_INIT;
++
++ printk(KERN_NOTICE "Lantiq DEU MD5_HMAC initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++md5_hmac_err:
++ printk(KERN_ERR "Lantiq DEU MD5_HMAC initialization failed!\n");
++ return ret;
++}
++
++/** \fn void lq_deu_fini_md5_hmac(void)
++ * \ingroup LQ_MD5_HMAC_FUNCTIONS
++ * \brief unregister md5 hmac driver
++*/
++void lq_deu_fini_md5_hmac(void)
++{
++ crypto_unregister_shash(&md5_hmac_alg);
++}
++
+--- /dev/null
++++ b/drivers/crypto/lantiq/sha1.c
+@@ -0,0 +1,262 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file sha1.c
++ \ingroup LQ_DEU
++ \brief SHA1 encryption DEU driver file
++*/
++
++/**
++ \defgroup LQ_SHA1_FUNCTIONS LQ_SHA1_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU sha1 functions
++*/
++
++
++#include <crypto/internal/hash.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/mm.h>
++#include <linux/crypto.h>
++#include <linux/cryptohash.h>
++#include <crypto/sha.h>
++#include <linux/types.h>
++#include <asm/scatterlist.h>
++#include <asm/byteorder.h>
++#include "deu.h"
++
++#define SHA1_DIGEST_SIZE 20
++#define SHA1_HMAC_BLOCK_SIZE 64
++
++static spinlock_t cipher_lock;
++
++/*
++ * \brief SHA1 private structure
++*/
++struct sha1_ctx {
++ u64 count;
++ u32 state[5];
++ u8 buffer[64];
++};
++
++/** \fn static void sha1_transform(u32 *state, const u32 *in)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief main interface to sha1 hardware
++ * \param state current state
++ * \param in 64-byte block of input
++*/
++static void sha1_transform(u32 *state, const u32 *in)
++{
++ int i = 0;
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ unsigned long flag;
++
++ CRTCL_SECT_START;
++
++ for (i = 0; i < 16; i++) {
++ hashs->MR = in[i];
++ };
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ CRTCL_SECT_END;
++}
++
++/** \fn static void sha1_init(struct crypto_tfm *tfm)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief initialize sha1 hardware
++ * \param tfm linux crypto algo transform
++*/
++static int sha1_init(struct shash_desc *desc)
++{
++ struct sha1_ctx *sctx = shash_desc_ctx(desc);
++
++ SHA_HASH_INIT;
++
++ sctx->count = 0;
++
++ return 0;
++}
++
++/** \fn static void sha1_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief on-the-fly sha1 computation
++ * \param tfm linux crypto algo transform
++ * \param data input data
++ * \param len size of input data
++*/
++static int sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len)
++{
++ struct sha1_ctx *sctx = shash_desc_ctx(desc);
++ unsigned int i, j;
++
++ j = (sctx->count >> 3) & 0x3f;
++ sctx->count += len << 3;
++
++ if ((j + len) > 63) {
++ memcpy(&sctx->buffer[j], data, (i = 64 - j));
++ sha1_transform(sctx->state, (const u32 *)sctx->buffer);
++ for (; i + 63 < len; i += 64) {
++ sha1_transform(sctx->state, (const u32 *)&data[i]);
++ }
++
++ j = 0;
++ } else {
++ i = 0;
++ }
++
++ memcpy(&sctx->buffer[j], &data[i], len - i);
++
++ return 0;
++}
++
++/** \fn static void sha1_final(struct crypto_tfm *tfm, u8 *out)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief compute final sha1 value
++ * \param tfm linux crypto algo transform
++ * \param out final md5 output value
++*/
++static int sha1_final(struct shash_desc *desc, u8 *out)
++{
++ struct sha1_ctx *sctx = shash_desc_ctx(desc);
++ u32 index, padlen;
++ u64 t;
++ u8 bits[8] = { 0, };
++ static const u8 padding[64] = { 0x80, };
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ ulong flag;
++
++ t = sctx->count;
++ bits[7] = 0xff & t;
++ t >>= 8;
++ bits[6] = 0xff & t;
++ t >>= 8;
++ bits[5] = 0xff & t;
++ t >>= 8;
++ bits[4] = 0xff & t;
++ t >>= 8;
++ bits[3] = 0xff & t;
++ t >>= 8;
++ bits[2] = 0xff & t;
++ t >>= 8;
++ bits[1] = 0xff & t;
++ t >>= 8;
++ bits[0] = 0xff & t;
++
++ /* Pad out to 56 mod 64 */
++ index = (sctx->count >> 3) & 0x3f;
++ padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
++ sha1_update(desc, padding, padlen);
++
++ /* Append length */
++ sha1_update(desc, bits, sizeof bits);
++
++ CRTCL_SECT_START;
++
++ *((u32 *) out + 0) = hashs->D1R;
++ *((u32 *) out + 1) = hashs->D2R;
++ *((u32 *) out + 2) = hashs->D3R;
++ *((u32 *) out + 3) = hashs->D4R;
++ *((u32 *) out + 4) = hashs->D5R;
++
++ CRTCL_SECT_END;
++
++ /* Wipe context*/
++ memset(sctx, 0, sizeof *sctx);
++
++ return 0;
++}
++
++static int sha1_export(struct shash_desc *desc, void *out)
++{
++ struct sha1_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(out, sctx, sizeof(*sctx));
++ return 0;
++}
++
++static int sha1_import(struct shash_desc *desc, const void *in)
++{
++ struct sha1_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(sctx, in, sizeof(*sctx));
++ return 0;
++}
++
++/*
++ * \brief SHA1 function mappings
++*/
++static struct shash_alg deu_sha1_alg = {
++ .digestsize = SHA1_DIGEST_SIZE,
++ .init = sha1_init,
++ .update = sha1_update,
++ .final = sha1_final,
++ .export = sha1_export,
++ .import = sha1_import,
++ .descsize = sizeof(struct sha1_ctx),
++ .statesize = sizeof(struct sha1_ctx),
++ .base = {
++ .cra_name = "sha1",
++ .cra_driver_name = "lq_deu-sha1",
++ .cra_flags = CRYPTO_ALG_TYPE_SHASH,
++ .cra_blocksize = SHA1_HMAC_BLOCK_SIZE,
++ .cra_module = THIS_MODULE,
++ }
++};
++
++/** \fn int lq_deu_init_sha1(void)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief initialize sha1 driver
++*/
++int lq_deu_init_sha1(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_shash(&deu_sha1_alg)))
++ goto sha1_err;
++
++ CRTCL_SECT_INIT;
++
++ printk(KERN_NOTICE "Lantiq DEU SHA1 initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++sha1_err:
++ printk(KERN_ERR "Lantiq DEU SHA1 initialization failed!\n");
++ return ret;
++}
++
++/** \fn void lq_deu_fini_sha1(void)
++ * \ingroup LQ_SHA1_FUNCTIONS
++ * \brief unregister sha1 driver
++*/
++void lq_deu_fini_sha1(void)
++{
++ crypto_unregister_shash(&deu_sha1_alg);
++}
+--- /dev/null
++++ b/drivers/crypto/lantiq/sha1_hmac.c
+@@ -0,0 +1,325 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file sha1_hmac.c
++ \ingroup LQ_DEU
++ \brief SHA1-HMAC DEU driver file
++*/
++
++/**
++ \defgroup LQ_SHA1_HMAC_FUNCTIONS LQ_SHA1_HMAC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief Lantiq sha1 hmac functions
++*/
++
++
++#include <crypto/internal/hash.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/mm.h>
++#include <linux/crypto.h>
++#include <linux/cryptohash.h>
++#include <linux/types.h>
++#include <asm/scatterlist.h>
++#include <asm/byteorder.h>
++#include <linux/delay.h>
++#include "deu.h"
++
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC
++
++#define SHA1_DIGEST_SIZE 20
++#define SHA1_HMAC_BLOCK_SIZE 64
++/* size in dword, needed for dbn workaround */
++#define SHA1_HMAC_DBN_TEMP_SIZE 1024
++
++static spinlock_t cipher_lock;
++
++struct sha1_hmac_ctx {
++ u64 count;
++ u32 state[5];
++ u8 buffer[64];
++ u32 dbn;
++ u32 temp[SHA1_HMAC_DBN_TEMP_SIZE];
++};
++
++/** \fn static void sha1_hmac_transform(struct crypto_tfm *tfm, u32 const *in)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief save input block to context
++ * \param tfm linux crypto algo transform
++ * \param in 64-byte block of input
++*/
++static void sha1_hmac_transform(struct shash_desc *desc, u32 const *in)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(&sctx->temp[sctx->dbn<<4], in, 64); /* dbn workaround */
++ sctx->dbn += 1;
++
++ if ((sctx->dbn<<4) > SHA1_HMAC_DBN_TEMP_SIZE) {
++ printk("SHA1_HMAC_DBN_TEMP_SIZE exceeded\n");
++ }
++}
++
++/** \fn int sha1_hmac_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief sets sha1 hmac key
++ * \param tfm linux crypto algo transform
++ * \param key input key
++ * \param keylen key length greater than 64 bytes IS NOT SUPPORTED
++*/
++static int sha1_hmac_setkey(struct crypto_shash *tfm,
++ const u8 *key,
++ unsigned int keylen)
++{
++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START;
++ int i, j;
++ u32 *in_key = (u32 *)key;
++
++ hash->KIDX = 0x80000000; /* reset all 16 words of the key to '0' */
++ asm("sync");
++
++ j = 0;
++ for (i = 0; i < keylen; i+=4)
++ {
++ hash->KIDX = j;
++ asm("sync");
++ hash->KEY = *((u32 *) in_key + j);
++ j++;
++ }
++
++ return 0;
++}
++
++static int sha1_hmac_export(struct shash_desc *desc, void *out)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(out, sctx, sizeof(*sctx));
++ return 0;
++}
++
++static int sha1_hmac_import(struct shash_desc *desc, const void *in)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memcpy(sctx, in, sizeof(*sctx));
++ return 0;
++}
++
++/** \fn void sha1_hmac_init(struct crypto_tfm *tfm)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief initialize sha1 hmac context
++ * \param tfm linux crypto algo transform
++*/
++static int sha1_hmac_init(struct shash_desc *desc)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++
++ memset(sctx, 0, sizeof(struct sha1_hmac_ctx));
++ sctx->dbn = 0; /* dbn workaround */
++
++ return 0;
++}
++
++/** \fn static void sha1_hmac_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief on-the-fly sha1 hmac computation
++ * \param tfm linux crypto algo transform
++ * \param data input data
++ * \param len size of input data
++*/
++static int sha1_hmac_update(struct shash_desc *desc, const u8 *data,
++ unsigned int len)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++ unsigned int i, j;
++
++ j = (sctx->count >> 3) & 0x3f;
++ sctx->count += len << 3;
++ /* printk("sctx->count = %d\n", (sctx->count >> 3)); */
++
++ if ((j + len) > 63) {
++ memcpy(&sctx->buffer[j], data, (i = 64 - j));
++ sha1_hmac_transform(desc, (const u32 *)sctx->buffer);
++ for (; i + 63 < len; i += 64) {
++ sha1_hmac_transform(desc, (const u32 *)&data[i]);
++ }
++
++ j = 0;
++ } else {
++ i = 0;
++ }
++
++ memcpy(&sctx->buffer[j], &data[i], len - i);
++
++ return 0;
++}
++
++/** \fn static void sha1_hmac_final(struct crypto_tfm *tfm, u8 *out)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief ompute final sha1 hmac value
++ * \param tfm linux crypto algo transform
++ * \param out final sha1 hmac output value
++*/
++static int sha1_hmac_final(struct shash_desc *desc, u8 *out)
++{
++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc);
++ u32 index, padlen;
++ u64 t;
++ u8 bits[8] = { 0, };
++ static const u8 padding[64] = { 0x80, };
++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START;
++ ulong flag;
++ int i = 0;
++ int dbn;
++ u32 *in = &sctx->temp[0];
++
++ t = sctx->count + 512; /* need to add 512 bit of the IPAD operation */
++ bits[7] = 0xff & t;
++ t >>= 8;
++ bits[6] = 0xff & t;
++ t >>= 8;
++ bits[5] = 0xff & t;
++ t >>= 8;
++ bits[4] = 0xff & t;
++ t >>= 8;
++ bits[3] = 0xff & t;
++ t >>= 8;
++ bits[2] = 0xff & t;
++ t >>= 8;
++ bits[1] = 0xff & t;
++ t >>= 8;
++ bits[0] = 0xff & t;
++
++ /* Pad out to 56 mod 64 */
++ index = (sctx->count >> 3) & 0x3f;
++ padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
++ sha1_hmac_update(desc, padding, padlen);
++
++ /* Append length */
++ sha1_hmac_update(desc, bits, sizeof bits);
++
++ CRTCL_SECT_START;
++
++ hashs->DBN = sctx->dbn;
++
++ /* for vr9 change, ENDI = 1 */
++ *LQ_HASH_CON = HASH_CON_VALUE;
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ for (dbn = 0; dbn < sctx->dbn; dbn++)
++ {
++ for (i = 0; i < 16; i++) {
++ hashs->MR = in[i];
++ };
++
++ hashs->ctrl.GO = 1;
++ asm("sync");
++
++ /* wait for processing */
++ while (hashs->ctrl.BSY) {
++ /* this will not take long */
++ }
++
++ in += 16;
++
++ return 0;
++ }
++
++#if 1
++ /* wait for digest ready */
++ while (! hashs->ctrl.DGRY) {
++ /* this will not take long */
++ }
++#endif
++
++ *((u32 *) out + 0) = hashs->D1R;
++ *((u32 *) out + 1) = hashs->D2R;
++ *((u32 *) out + 2) = hashs->D3R;
++ *((u32 *) out + 3) = hashs->D4R;
++ *((u32 *) out + 4) = hashs->D5R;
++
++ CRTCL_SECT_END;
++}
++
++/*
++ * \brief SHA1-HMAC function mappings
++*/
++static struct shash_alg sha1_hmac_alg = {
++ .digestsize = SHA1_DIGEST_SIZE,
++ .init = sha1_hmac_init,
++ .update = sha1_hmac_update,
++ .final = sha1_hmac_final,
++ .export = sha1_hmac_export,
++ .import = sha1_hmac_import,
++ .setkey = sha1_hmac_setkey,
++ .descsize = sizeof(struct sha1_hmac_ctx),
++ .statesize = sizeof(struct sha1_hmac_ctx),
++ .base = {
++ .cra_name = "hmac(sha1)",
++ .cra_driver_name = "lq_deu-sha1_hmac",
++ .cra_flags = CRYPTO_ALG_TYPE_SHASH,
++ .cra_blocksize = SHA1_HMAC_BLOCK_SIZE,
++ .cra_module = THIS_MODULE,
++ }
++};
++
++/** \fn int lq_deu_init_sha1_hmac(void)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief initialize sha1 hmac driver
++*/
++int lq_deu_init_sha1_hmac(void)
++{
++ int ret;
++
++ if ((ret = crypto_register_shash(&sha1_hmac_alg)))
++ goto sha1_err;
++
++ CRTCL_SECT_INIT;
++
++ printk(KERN_NOTICE "Lantiq DEU SHA1_HMAC initialized%s.\n",
++ disable_deudma ? "" : " (DMA)");
++ return ret;
++
++sha1_err:
++ printk(KERN_ERR "Lantiq DEU SHA1_HMAC initialization failed!\n");
++ return ret;
++}
++
++/** \fn void lq_deu_fini_sha1_hmac(void)
++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS
++ * \brief unregister sha1 hmac driver
++*/
++void lq_deu_fini_sha1_hmac(void)
++{
++ crypto_unregister_shash(&sha1_hmac_alg);
++}
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_falcon.c
+@@ -0,0 +1,163 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus
++ */
++
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++#include <asm/io.h> /* dma_cache_inv */
++#include <linux/platform_device.h>
++
++#ifdef CONFIG_SOC_LANTIQ_FALCON
++
++#include "deu.h"
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief Lantiq DEU driver module
++*/
++
++/**
++ \file deu_falcon.c
++ \brief Lantiq DEU board specific driver file for ar9
++*/
++
++/**
++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS
++ \ingroup LQ_DEU
++ \brief board specific functions
++*/
++
++#include <falcon/gpon_reg_base.h>
++#include <falcon/sys1_reg.h>
++#include <falcon/status_reg.h>
++#include <falcon/sysctrl.h>
++
++#define reg_r32(reg) __raw_readl(reg)
++#define reg_w32(val, reg) __raw_writel(val, reg)
++#define reg_w32_mask(clear, set, reg) reg_w32((reg_r32(reg) & ~(clear)) | (set), reg)
++
++static gpon_sys1_t * const sys1 = (gpon_sys1_t *)GPON_SYS1_BASE;
++static gpon_status_t * const status = (gpon_status_t *)GPON_STATUS_BASE;
++
++/** \fn u32 endian_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Swap data given to the function
++ * \param input Data input to be swapped
++ * \return either the swapped data or the input data depending on whether it is in DMA mode or FPI mode
++*/
++static u32 endian_swap(u32 input)
++{
++ return input;
++}
++
++/** \fn u32 input_swap(u32 input)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief Not used
++ * \return input
++*/
++static u32 input_swap(u32 input)
++{
++ return input;
++}
++
++/** \fn void aes_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize AES hardware
++*/
++static void aes_chip_init(void)
++{
++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START;
++
++ aes->ctrl.SM = 1;
++ aes->ctrl.ARS = 1;
++}
++
++/** \fn void des_chip_init(void)
++ * \ingroup BOARD_SPECIFIC_FUNCTIONS
++ * \brief initialize DES hardware
++*/
++static void des_chip_init(void)
++{
++}
++
++static u32 chip_init(void)
++{
++ sys1_hw_clk_enable(CLKEN_SHA1_SET | CLKEN_AES_SET);
++ sys1_hw_activate(ACT_SHA1_SET | ACT_AES_SET);
++
++ return LQ_DEU_ID_AES | LQ_DEU_ID_HASH;
++}
++
++static int lq_crypto_probe(struct platform_device *pdev)
++{
++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA
++ lq_crypto_ops.dma_init = NULL;
++ lq_crypto_ops.dma_exit = NULL;
++ lq_crypto_ops.aes_dma_memcpy = NULL;
++ lq_crypto_ops.des_dma_memcpy = NULL;
++ lq_crypto_ops.aes_dma_malloc = NULL;
++ lq_crypto_ops.des_dma_malloc = NULL;
++ lq_crypto_ops.dma_align = NULL;
++ lq_crypto_ops.dma_free = NULL;
++#endif
++
++ lq_crypto_ops.endian_swap = endian_swap;
++ lq_crypto_ops.input_swap = input_swap;
++ lq_crypto_ops.aes_chip_init = aes_chip_init;
++ lq_crypto_ops.des_chip_init = des_chip_init;
++ lq_crypto_ops.chip_init = chip_init;
++
++ printk("lq_falcon_deu: driver loaded!\n");
++
++ lq_deu_init();
++
++ return 0;
++}
++
++static int lq_crypto_remove(struct platform_device *pdev)
++{
++ lq_deu_exit();
++
++ return 0;
++}
++
++static struct platform_driver lq_crypto = {
++ .probe = lq_crypto_probe,
++ .remove = lq_crypto_remove,
++ .driver = {
++ .owner = THIS_MODULE,
++ .name = "lq_falcon_deu"
++ }
++};
++
++static int __init lq_crypto_init(void)
++{
++ return platform_driver_register(&lq_crypto);
++}
++module_init(lq_crypto_init);
++
++static void __exit lq_crypto_exit(void)
++{
++ platform_driver_unregister(&lq_crypto);
++}
++module_exit(lq_crypto_exit);
++
++#endif
+--- /dev/null
++++ b/drivers/crypto/lantiq/deu_falcon.h
+@@ -0,0 +1,281 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
++ *
++ * Copyright (C) 2010 Ralph Hempel <ralph.hempel@lantiq.com>
++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies
++ */
++
++/**
++ \defgroup LQ_DEU LQ_DEU_DRIVERS
++ \ingroup API
++ \brief DEU driver module
++*/
++
++/**
++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS
++ \ingroup LQ_DEU
++ \brief Lantiq DEU definitions
++*/
++
++/**
++ \file deu_falcon.h
++ \brief DEU driver header file
++*/
++
++
++#ifndef DEU_FALCON_H
++#define DEU_FALCON_H
++
++#define HASH_START 0xbd008100
++#define AES_START 0xbd008000
++
++#ifdef CONFIG_CRYPTO_DEV_DMA
++# include "deu_dma.h"
++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \
++ deu_dma_align(ptr, buffer, in_out, bytes)
++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \
++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes)
++# define BUFFER_IN 1
++# define BUFFER_OUT 0
++# define AES_ALGO 1
++# define DES_ALGO 0
++# define ALLOCATE_MEMORY(val, type) 1
++# define FREE_MEMORY(buff)
++extern struct lq_deu_device lq_deu[1];
++#endif /* CONFIG_CRYPTO_DEV_DMA */
++
++/* SHA CONSTANTS */
++#define HASH_CON_VALUE 0x0700002C
++
++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input)
++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input)
++#define DELAY_PERIOD 10
++#define FIND_DEU_CHIP_VERSION chip_version()
++
++#define WAIT_AES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_aes *aes = \
++ (volatile struct deu_aes *) AES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (aes->ctrl.BUS) {}; \
++ } while (0)
++
++#define WAIT_DES_DMA_READY() \
++ do { \
++ int i; \
++ volatile struct deu_dma *dma = \
++ (struct deu_dma *) LQ_DEU_DMA_CON; \
++ volatile struct deu_des *des = \
++ (struct deu_des *) DES_3DES_START; \
++ for (i = 0; i < 10; i++) \
++ udelay(DELAY_PERIOD); \
++ while (dma->ctrl.BSY) {}; \
++ while (des->ctrl.BUS) {}; \
++ } while (0)
++
++#define AES_DMA_MISC_CONFIG() \
++ do { \
++ volatile struct deu_aes *aes = \
++ (volatile struct deu_aes *) AES_START; \
++ aes->ctrl.KRE = 1; \
++ aes->ctrl.GO = 1; \
++ } while(0)
++
++#define SHA_HASH_INIT \
++ do { \
++ volatile struct deu_hash *hash = \
++ (struct deu_hash *) HASH_START; \
++ hash->ctrl.SM = 1; \
++ hash->ctrl.ALGO = 0; \
++ hash->ctrl.INIT = 1; \
++ } while(0)
++
++/* DEU Common Structures for Falcon*/
++
++struct deu_clk_ctrl {
++ u32 Res:26;
++ u32 FSOE:1;
++ u32 SBWE:1;
++ u32 EDIS:1;
++ u32 SPEN:1;
++ u32 DISS:1;
++ u32 DISR:1;
++};
++
++struct deu_des {
++ struct deu_des_ctrl { /* 10h */
++ u32 KRE:1;
++ u32 reserved1:5;
++ u32 GO:1;
++ u32 STP:1;
++ u32 Res2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 Res3:2;
++ u32 F:3;
++ u32 O:3;
++ u32 BUS:1;
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 M:3;
++ } ctrl;
++
++ u32 IHR; /* 14h */
++ u32 ILR; /* 18h */
++ u32 K1HR; /* 1c */
++ u32 K1LR;
++ u32 K2HR;
++ u32 K2LR;
++ u32 K3HR;
++ u32 K3LR; /* 30h */
++ u32 IVHR; /* 34h */
++ u32 IVLR; /* 38 */
++ u32 OHR; /* 3c */
++ u32 OLR; /* 40 */
++};
++
++struct deu_aes {
++ struct deu_aes_ctrl {
++ u32 KRE:1;
++ u32 reserved1:4;
++ u32 PNK:1;
++ u32 GO:1;
++ u32 STP:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:2;
++ u32 F:3; /* fbs */
++ u32 O:3; /* om */
++ u32 BUS:1; /* bsy */
++ u32 DAU:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 E_D:1;
++ u32 KV:1;
++ u32 K:2; /* KL */
++ } ctrl;
++
++ u32 ID3R; /* 80h */
++ u32 ID2R; /* 84h */
++ u32 ID1R; /* 88h */
++ u32 ID0R; /* 8Ch */
++ u32 K7R; /* 90h */
++ u32 K6R; /* 94h */
++ u32 K5R; /* 98h */
++ u32 K4R; /* 9Ch */
++ u32 K3R; /* A0h */
++ u32 K2R; /* A4h */
++ u32 K1R; /* A8h */
++ u32 K0R; /* ACh */
++ u32 IV3R; /* B0h */
++ u32 IV2R; /* B4h */
++ u32 IV1R; /* B8h */
++ u32 IV0R; /* BCh */
++ u32 OD3R; /* D4h */
++ u32 OD2R; /* D8h */
++ u32 OD1R; /* DCh */
++ u32 OD0R; /* E0h */
++};
++
++struct deu_arc4 {
++ struct arc4_controlr {
++ u32 KRE:1;
++ u32 KLEN:4;
++ u32 KSAE:1;
++ u32 GO:1;
++ u32 STP:1;
++ u32 reserved1:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved2:8;
++ u32 BUS:1; /* bsy */
++ u32 reserved3:1;
++ u32 ARS:1;
++ u32 SM:1;
++ u32 reserved4:4;
++ } ctrl;
++
++ u32 K3R; /* 104h */
++ u32 K2R; /* 108h */
++ u32 K1R; /* 10Ch */
++ u32 K0R; /* 110h */
++ u32 IDLEN; /* 114h */
++ u32 ID3R; /* 118h */
++ u32 ID2R; /* 11Ch */
++ u32 ID1R; /* 120h */
++ u32 ID0R; /* 124h */
++ u32 OD3R; /* 128h */
++ u32 OD2R; /* 12Ch */
++ u32 OD1R; /* 130h */
++ u32 OD0R; /* 134h */
++};
++
++struct deu_hash {
++ struct deu_hash_ctrl {
++ u32 reserved1:5;
++ u32 KHS:1;
++ u32 GO:1;
++ u32 INIT:1;
++ u32 reserved2:6;
++ u32 NDC:1;
++ u32 ENDI:1;
++ u32 reserved3:7;
++ u32 DGRY:1;
++ u32 BSY:1;
++ u32 reserved4:1;
++ u32 IRCL:1;
++ u32 SM:1;
++ u32 KYUE:1;
++ u32 HMEN:1;
++ u32 SSEN:1;
++ u32 ALGO:1;
++ } ctrl;
++
++ u32 MR; /* B4h */
++ u32 D1R; /* B8h */
++ u32 D2R; /* BCh */
++ u32 D3R; /* C0h */
++ u32 D4R; /* C4h */
++ u32 D5R; /* C8h */
++ u32 dummy; /* CCh */
++ u32 KIDX; /* D0h */
++ u32 KEY; /* D4h */
++ u32 DBN; /* D8h */
++};
++
++struct deu_dma {
++ struct deu_dma_ctrl {
++ u32 reserved1:22;
++ u32 BS:2;
++ u32 BSY:1;
++ u32 reserved2:1;
++ u32 ALGO:2;
++ u32 RXCLS:2;
++ u32 reserved3:1;
++ u32 EN:1;
++ } ctrl;
++};
++
++#endif /* DEU_FALCON_H */
+--- a/arch/mips/lantiq/xway/devices.c
++++ b/arch/mips/lantiq/xway/devices.c
+@@ -277,3 +277,9 @@
+ break;
+ }
+ }
++
++void __init
++lq_register_crypto(const char *name)
++{
++ platform_device_register_simple(name, 0, 0, 0);
++}
+--- a/arch/mips/lantiq/xway/devices.h
++++ b/arch/mips/lantiq/xway/devices.h
+@@ -21,5 +21,6 @@
+ extern void __init lq_register_wdt(void);
+ extern void __init lq_register_ethernet(struct lq_eth_data *eth);
+ extern void __init lq_register_asc(int port);
++extern void __init lq_register_crypto(const char *name);
+
+ #endif
+--- a/arch/mips/lantiq/xway/mach-easy50712.c
++++ b/arch/mips/lantiq/xway/mach-easy50712.c
+@@ -72,6 +72,7 @@
+ lq_register_wdt();
+ lq_register_pci(&lq_pci_data);
+ lq_register_ethernet(&lq_eth_data);
++ lq_register_crypto("lq_danube_deu");
+ }
+
+ MIPS_MACHINE(LANTIQ_MACH_EASY50712,
+--- a/arch/mips/lantiq/xway/mach-easy50812.c
++++ b/arch/mips/lantiq/xway/mach-easy50812.c
+@@ -71,6 +71,7 @@
+ lq_register_wdt();
+ lq_register_pci(&lq_pci_data);
+ lq_register_ethernet(&lq_eth_data);
++ lq_register_crypto("lq_ar9_deu");
+ }
+
+ MIPS_MACHINE(LANTIQ_MACH_EASY50812,
diff --git a/target/linux/lantiq/patches/300-udp_redirect.patch b/target/linux/lantiq/patches/300-udp_redirect.patch
new file mode 100644
index 0000000000..7425a3108f
--- /dev/null
+++ b/target/linux/lantiq/patches/300-udp_redirect.patch
@@ -0,0 +1,346 @@
+--- /dev/null
++++ b/include/linux/udp_redirect.h
+@@ -0,0 +1,57 @@
++#ifndef _UDP_REDIRECT_H
++#define _UDP_REDIRECT_H
++
++/******************************************************************************
++
++ Copyright (c) 2006
++ Infineon Technologies AG
++ Am Campeon 1-12; 81726 Munich, Germany
++
++ THE DELIVERY OF THIS SOFTWARE AS WELL AS THE HEREBY GRANTED NON-EXCLUSIVE,
++ WORLDWIDE LICENSE TO USE, COPY, MODIFY, DISTRIBUTE AND SUBLICENSE THIS
++ SOFTWARE IS FREE OF CHARGE.
++
++ THE LICENSED SOFTWARE IS PROVIDED "AS IS" AND INFINEON EXPRESSLY DISCLAIMS
++ ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING
++ WITHOUT LIMITATION, WARRANTIES OR REPRESENTATIONS OF WORKMANSHIP,
++ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, DURABILITY, THAT THE
++ OPERATING OF THE LICENSED SOFTWARE WILL BE ERROR FREE OR FREE OF ANY THIRD
++ PARTY CLAIMS, INCLUDING WITHOUT LIMITATION CLAIMS OF THIRD PARTY INTELLECTUAL
++ PROPERTY INFRINGEMENT.
++
++ EXCEPT FOR ANY LIABILITY DUE TO WILFUL ACTS OR GROSS NEGLIGENCE AND EXCEPT
++ FOR ANY PERSONAL INJURY INFINEON SHALL IN NO EVENT BE LIABLE FOR ANY CLAIM
++ OR DAMAGES OF ANY KIND, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
++ DEALINGS IN THE SOFTWARE.
++
++******************************************************************************/
++
++/* ============================= */
++/* Includes */
++/* ============================= */
++#ifndef _LINUX_TYPES_H
++#include <linux/types.h>
++#endif
++
++
++/* ============================= */
++/* Definitions */
++/* ============================= */
++#define UDP_REDIRECT_MAGIC (void*)0x55445052L
++
++
++/* ============================= */
++/* Global variable declaration */
++/* ============================= */
++extern int (*udp_do_redirect_fn)(struct sock *sk, struct sk_buff *skb);
++extern int (*udpredirect_getfrag_fn)(void *p, char * to,
++ int offset, int fraglen, int odd,
++ struct sk_buff *skb);
++/* ============================= */
++/* Global function declaration */
++/* ============================= */
++
++extern int udpredirect_getfrag(void *p, char * to, int offset,
++ int fraglen, int odd, struct sk_buff *skb);
++#endif
+--- /dev/null
++++ b/net/ipv4/udp_redirect_symb.c
+@@ -0,0 +1,186 @@
++/******************************************************************************
++
++ Copyright (c) 2006
++ Infineon Technologies AG
++ Am Campeon 1-12; 81726 Munich, Germany
++
++ THE DELIVERY OF THIS SOFTWARE AS WELL AS THE HEREBY GRANTED NON-EXCLUSIVE,
++ WORLDWIDE LICENSE TO USE, COPY, MODIFY, DISTRIBUTE AND SUBLICENSE THIS
++ SOFTWARE IS FREE OF CHARGE.
++
++ THE LICENSED SOFTWARE IS PROVIDED "AS IS" AND INFINEON EXPRESSLY DISCLAIMS
++ ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING
++ WITHOUT LIMITATION, WARRANTIES OR REPRESENTATIONS OF WORKMANSHIP,
++ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, DURABILITY, THAT THE
++ OPERATING OF THE LICENSED SOFTWARE WILL BE ERROR FREE OR FREE OF ANY THIRD
++ PARTY CLAIMS, INCLUDING WITHOUT LIMITATION CLAIMS OF THIRD PARTY INTELLECTUAL
++ PROPERTY INFRINGEMENT.
++
++ EXCEPT FOR ANY LIABILITY DUE TO WILFUL ACTS OR GROSS NEGLIGENCE AND EXCEPT
++ FOR ANY PERSONAL INJURY INFINEON SHALL IN NO EVENT BE LIABLE FOR ANY CLAIM
++ OR DAMAGES OF ANY KIND, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
++ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
++ DEALINGS IN THE SOFTWARE.
++
++******************************************************************************/
++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE)
++/* ============================= */
++/* Includes */
++/* ============================= */
++#include <net/checksum.h>
++#include <net/udp.h>
++#include <linux/module.h>
++#include <linux/skbuff.h>
++#include <linux/udp_redirect.h>
++
++/* ============================= */
++/* Global variable definition */
++/* ============================= */
++int (*udpredirect_getfrag_fn) (void *p, char * to, int offset,
++ int fraglen, int odd, struct sk_buff *skb) = NULL;
++int (*udp_do_redirect_fn)(struct sock *sk, struct sk_buff *skb) = NULL;
++
++/* ============================= */
++/* Local type definitions */
++/* ============================= */
++struct udpfakehdr
++{
++ struct udphdr uh;
++ u32 saddr;
++ u32 daddr;
++ struct iovec *iov;
++ u32 wcheck;
++};
++
++/* ============================= */
++/* Local function declaration */
++/* ============================= */
++static int udpredirect_csum_partial_copy_fromiovecend(unsigned char *kdata,
++ struct iovec *iov, int offset, unsigned int len, __wsum *csump);
++
++static int udpredirect_memcpy_fromiovecend(unsigned char *kdata, struct iovec *iov, int offset,
++ int len);
++
++/* ============================= */
++/* Global function definition */
++/* ============================= */
++
++/*
++ Copy of udp_getfrag() from udp.c
++ This function exists because no copy_from_user() is needed for udpredirect.
++*/
++
++int
++udpredirect_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
++{
++ struct iovec *iov = from;
++
++ if (skb->ip_summed == CHECKSUM_PARTIAL) {
++ if (udpredirect_memcpy_fromiovecend(to, iov, offset, len) < 0)
++ return -EFAULT;
++ } else {
++ __wsum csum = 0;
++ if (udpredirect_csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
++ return -EFAULT;
++ skb->csum = csum_block_add(skb->csum, csum, odd);
++ }
++ return 0;
++}
++
++static int udpredirect_memcpy_fromiovecend(unsigned char *kdata, struct iovec *iov, int offset,
++ int len)
++{
++ /* Skip over the finished iovecs */
++ while (offset >= iov->iov_len) {
++ offset -= iov->iov_len;
++ iov++;
++ }
++
++ while (len > 0) {
++ u8 __user *base = iov->iov_base + offset;
++ int copy = min_t(unsigned int, len, iov->iov_len - offset);
++
++ offset = 0;
++ memcpy(kdata, base, copy);
++ len -= copy;
++ kdata += copy;
++ iov++;
++ }
++
++ return 0;
++}
++
++/*
++ Copy of csum_partial_copy_fromiovecend() from iovec.c
++ This function exists because no copy_from_user() is needed for udpredirect.
++*/
++
++int udpredirect_csum_partial_copy_fromiovecend(unsigned char *kdata, struct iovec *iov,
++ int offset, unsigned int len, __wsum *csump)
++{
++ __wsum csum = *csump;
++ int partial_cnt = 0, err = 0;
++
++ /* Skip over the finished iovecs */
++ while (offset >= iov->iov_len) {
++ offset -= iov->iov_len;
++ iov++;
++ }
++
++ while (len > 0) {
++ u8 __user *base = iov->iov_base + offset;
++ int copy = min_t(unsigned int, len, iov->iov_len - offset);
++
++ offset = 0;
++
++ /* There is a remnant from previous iov. */
++ if (partial_cnt) {
++ int par_len = 4 - partial_cnt;
++
++ /* iov component is too short ... */
++ if (par_len > copy) {
++ memcpy(kdata, base, copy);
++ kdata += copy;
++ base += copy;
++ partial_cnt += copy;
++ len -= copy;
++ iov++;
++ if (len)
++ continue;
++ *csump = csum_partial(kdata - partial_cnt,
++ partial_cnt, csum);
++ goto out;
++ }
++ memcpy(kdata, base, par_len);
++ csum = csum_partial(kdata - partial_cnt, 4, csum);
++ kdata += par_len;
++ base += par_len;
++ copy -= par_len;
++ len -= par_len;
++ partial_cnt = 0;
++ }
++
++ if (len > copy) {
++ partial_cnt = copy % 4;
++ if (partial_cnt) {
++ copy -= partial_cnt;
++ memcpy(kdata + copy, base + copy, partial_cnt);
++ }
++ }
++
++ if (copy) {
++ csum = csum_partial_copy_nocheck(base, kdata, copy, csum);
++ }
++ len -= copy + partial_cnt;
++ kdata += copy + partial_cnt;
++ iov++;
++ }
++ *csump = csum;
++out:
++ return err;
++}
++
++EXPORT_SYMBOL(udpredirect_getfrag);
++EXPORT_SYMBOL(udp_do_redirect_fn);
++EXPORT_SYMBOL(udpredirect_getfrag_fn);
++#endif /* CONFIG_IFX_UDP_REDIRECT* */
+--- a/net/ipv4/Makefile
++++ b/net/ipv4/Makefile
+@@ -14,6 +14,9 @@ obj-y := route.o inetpeer.o protocol
+ inet_fragment.o
+
+ obj-$(CONFIG_SYSCTL) += sysctl_net_ipv4.o
++ifneq ($(CONFIG_IFX_UDP_REDIRECT),)
++obj-$(CONFIG_IFX_UDP_REDIRECT) += udp_redirect_symb.o
++endif
+ obj-$(CONFIG_IP_FIB_HASH) += fib_hash.o
+ obj-$(CONFIG_IP_FIB_TRIE) += fib_trie.o
+ obj-$(CONFIG_PROC_FS) += proc.o
+--- a/net/ipv4/udp.c
++++ b/net/ipv4/udp.c
+@@ -106,6 +106,10 @@
+ #include <net/xfrm.h>
+ #include "udp_impl.h"
+
++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE)
++#include <linux/udp_redirect.h>
++#endif
++
+ struct udp_table udp_table __read_mostly;
+ EXPORT_SYMBOL(udp_table);
+
+@@ -782,7 +786,7 @@ int udp_sendmsg(struct kiocb *iocb, stru
+ u8 tos;
+ int err, is_udplite = IS_UDPLITE(sk);
+ int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
+- int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
++ int (*getfrag)(void *, char *, int, int, int, struct sk_buff *) = NULL;
+
+ if (len > 0xFFFF)
+ return -EMSGSIZE;
+@@ -944,6 +948,12 @@ back_from_confirm:
+
+ do_append_data:
+ up->len += ulen;
++ /* UDPREDIRECT */
++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE)
++ if(udpredirect_getfrag_fn && sk->sk_user_data == UDP_REDIRECT_MAGIC)
++ getfrag = udpredirect_getfrag_fn;
++ else
++#endif /* IFX_UDP_REDIRECT */
+ getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
+ err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
+ sizeof(struct udphdr), &ipc, &rt,
+@@ -1518,6 +1528,7 @@ int __udp4_lib_rcv(struct sk_buff *skb,
+ struct rtable *rt = skb_rtable(skb);
+ __be32 saddr, daddr;
+ struct net *net = dev_net(skb->dev);
++ int ret = 0;
+
+ /*
+ * Validate the packet.
+@@ -1550,7 +1561,16 @@ int __udp4_lib_rcv(struct sk_buff *skb,
+ sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
+
+ if (sk != NULL) {
+- int ret = udp_queue_rcv_skb(sk, skb);
++ /* UDPREDIRECT */
++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE)
++ if(udp_do_redirect_fn && sk->sk_user_data == UDP_REDIRECT_MAGIC)
++ {
++ udp_do_redirect_fn(sk,skb);
++ kfree_skb(skb);
++ return(0);
++ }
++#endif
++ ret = udp_queue_rcv_skb(sk, skb);
+ sock_put(sk);
+
+ /* a return value > 0 means to resubmit the input, but
+@@ -1845,7 +1865,7 @@ struct proto udp_prot = {
+ #endif
+ };
+ EXPORT_SYMBOL(udp_prot);
+-
++EXPORT_SYMBOL(udp_rcv);
+ /* ------------------------------------------------------------------------ */
+ #ifdef CONFIG_PROC_FS
+
+--- a/net/Kconfig
++++ b/net/Kconfig
+@@ -72,6 +72,12 @@ config INET
+
+ Short answer: say Y.
+
++config IFX_UDP_REDIRECT
++ bool "IFX Kernel Packet Interface for UDP redirection"
++ help
++ You can say Y here if you want to use hooks from kernel for
++ UDP redirection.
++
+ if INET
+ source "net/ipv4/Kconfig"
+ source "net/ipv6/Kconfig"
diff --git a/target/linux/lantiq/patches/310-atm_hack.patch b/target/linux/lantiq/patches/310-atm_hack.patch
new file mode 100644
index 0000000000..55e75ce546
--- /dev/null
+++ b/target/linux/lantiq/patches/310-atm_hack.patch
@@ -0,0 +1,42 @@
+--- a/arch/mips/mm/cache.c
++++ b/arch/mips/mm/cache.c
+@@ -52,6 +52,8 @@
+ void (*_dma_cache_inv)(unsigned long start, unsigned long size);
+
+ EXPORT_SYMBOL(_dma_cache_wback_inv);
++EXPORT_SYMBOL(_dma_cache_wback);
++EXPORT_SYMBOL(_dma_cache_inv);
+
+ #endif /* CONFIG_DMA_NONCOHERENT */
+
+--- a/net/atm/proc.c
++++ b/net/atm/proc.c
+@@ -153,7 +153,7 @@
+ static void pvc_info(struct seq_file *seq, struct atm_vcc *vcc)
+ {
+ static const char *const class_name[] = {
+- "off", "UBR", "CBR", "VBR", "ABR"};
++ "off","UBR","CBR","NTR-VBR","ABR","ANY","RT-VBR","UBR+","GFR"};
+ static const char *const aal_name[] = {
+ "---", "1", "2", "3/4", /* 0- 3 */
+ "???", "5", "???", "???", /* 4- 7 */
+--- a/net/atm/common.c
++++ b/net/atm/common.c
+@@ -60,11 +60,17 @@
+ write_unlock_irq(&vcc_sklist_lock);
+ }
+
++struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
++EXPORT_SYMBOL(ifx_atm_alloc_tx);
++
+ static struct sk_buff *alloc_tx(struct atm_vcc *vcc, unsigned int size)
+ {
+ struct sk_buff *skb;
+ struct sock *sk = sk_atm(vcc);
+
++ if (ifx_atm_alloc_tx != NULL)
++ return ifx_atm_alloc_tx(vcc, size);
++
+ if (sk_wmem_alloc_get(sk) && !atm_may_send(vcc, size)) {
+ pr_debug("Sorry: wmem_alloc = %d, size = %d, sndbuf = %d\n",
+ sk_wmem_alloc_get(sk), size, sk->sk_sndbuf);
diff --git a/target/linux/lantiq/patches/400-mach-arv45xx.patch b/target/linux/lantiq/patches/400-mach-arv45xx.patch
new file mode 100644
index 0000000000..643a0f7ae1
--- /dev/null
+++ b/target/linux/lantiq/patches/400-mach-arv45xx.patch
@@ -0,0 +1,211 @@
+--- a/arch/mips/include/asm/mach-lantiq/machine.h
++++ b/arch/mips/include/asm/mach-lantiq/machine.h
+@@ -11,4 +11,7 @@
+ LANTIQ_MACH_EASY4010, /* Twinpass evalkit */
+ LANTIQ_MACH_EASY50712, /* Danube evalkit */
+ LANTIQ_MACH_EASY50812, /* AR9 eval board */
++ LANTIQ_MACH_ARV4518, /* Airties WAV-221, SMC-7908A-ISP */
++ LANTIQ_MACH_ARV452, /* Airties WAV-281, Arcor EasyboxA800 */
++ LANTIQ_MACH_ARV4525, /* Speedport W502V */
+ };
+--- a/arch/mips/lantiq/xway/Kconfig
++++ b/arch/mips/lantiq/xway/Kconfig
+@@ -14,6 +14,10 @@
+ bool "Easy4010"
+ default y
+
++config LANTIQ_MACH_ARV45XX
++ bool "ARV45XX"
++ default y
++
+ endmenu
+
+ endif
+--- a/arch/mips/lantiq/xway/Makefile
++++ b/arch/mips/lantiq/xway/Makefile
+@@ -3,3 +3,4 @@
+ obj-$(CONFIG_LANTIQ_MACH_EASY50812) += mach-easy50812.o
+ obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o
+ obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o
++obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o
+--- /dev/null
++++ b/arch/mips/lantiq/xway/mach-arv45xx.c
+@@ -0,0 +1,178 @@
++/*
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/gpio.h>
++#include <linux/gpio_buttons.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/physmap.h>
++#include <linux/input.h>
++#include <linux/etherdevice.h>
++
++#include <machine.h>
++
++#include <xway.h>
++#include <lantiq_platform.h>
++
++#include "devices.h"
++
++#define ARV452_LATCH_SWITCH (1 << 10)
++
++#ifdef CONFIG_MTD_PARTITIONS
++static struct mtd_partition arv45xx_partitions[] =
++{
++ {
++ .name = "uboot",
++ .offset = 0x0,
++ .size = 0x20000,
++ },
++ {
++ .name = "uboot_env",
++ .offset = 0x20000,
++ .size = 0x10000,
++ },
++ {
++ .name = "linux",
++ .offset = 0x30000,
++ .size = 0x3c0000,
++ },
++ {
++ .name = "board_config",
++ .offset = 0x3f0000,
++ .size = 0x10000,
++ },
++};
++#endif
++
++static struct physmap_flash_data arv45xx_flash_data = {
++#ifdef CONFIG_MTD_PARTITIONS
++ .nr_parts = ARRAY_SIZE(arv45xx_partitions),
++ .parts = arv45xx_partitions,
++#endif
++};
++
++static struct lq_pci_data lq_pci_data = {
++ .clock = PCI_CLOCK_EXT,
++ .req_mask = 0xf,
++};
++
++static struct lq_eth_data lq_eth_data = {
++ .mii_mode = REV_MII_MODE,
++ .mac = "\xff\xff\xff\xff\xff\xff",
++};
++
++static struct gpio_led
++arv4518_leds_gpio[] __initdata = {
++ { .name = "soc:blue:power", .gpio = 3, .active_low = 1, },
++ { .name = "soc:blue:adsl", .gpio = 4, .active_low = 1, },
++ { .name = "soc:blue:internet", .gpio = 5, .active_low = 1, },
++ { .name = "soc:red:power", .gpio = 6, .active_low = 1, },
++ { .name = "soc:yello:wps", .gpio = 7, .active_low = 1, },
++ { .name = "soc:red:wps", .gpio = 9, .active_low = 1, },
++ { .name = "soc:blue:voip", .gpio = 32, .active_low = 1, },
++ { .name = "soc:blue:fxs1", .gpio = 33, .active_low = 1, },
++ { .name = "soc:blue:fxs2", .gpio = 34, .active_low = 1, },
++ { .name = "soc:blue:fxo", .gpio = 35, .active_low = 1, },
++ { .name = "soc:blue:voice", .gpio = 36, .active_low = 1, },
++ { .name = "soc:blue:usb", .gpio = 37, .active_low = 1, },
++ { .name = "soc:blue:wlan", .gpio = 38, .active_low = 1, },
++};
++
++static struct gpio_led
++arv452_leds_gpio[] __initdata = {
++ { .name = "soc:blue:power", .gpio = 3, .active_low = 1, },
++ { .name = "soc:blue:adsl", .gpio = 4, .active_low = 1, },
++ { .name = "soc:blue:internet", .gpio = 5, .active_low = 1, },
++ { .name = "soc:red:power", .gpio = 6, .active_low = 1, },
++ { .name = "soc:yello:wps", .gpio = 7, .active_low = 1, },
++ { .name = "soc:red:wps", .gpio = 9, .active_low = 1, },
++ { .name = "soc:blue:voip", .gpio = 32, .active_low = 1, },
++ { .name = "soc:blue:fxs1", .gpio = 33, .active_low = 1, },
++ { .name = "soc:blue:fxs2", .gpio = 34, .active_low = 1, },
++ { .name = "soc:blue:fxo", .gpio = 35, .active_low = 1, },
++ { .name = "soc:blue:voice", .gpio = 36, .active_low = 1, },
++ { .name = "soc:blue:usb", .gpio = 37, .active_low = 1, },
++ { .name = "soc:blue:wlan", .gpio = 38, .active_low = 1, },
++};
++
++static struct gpio_led arv4525_leds_gpio[] __initdata = {
++ { .name = "soc:green:festnetz", .gpio = 4, .active_low = 1, },
++ { .name = "soc:green:internet", .gpio = 5, .active_low = 1, },
++ { .name = "soc:green:dsl", .gpio = 6, .active_low = 1, },
++ { .name = "soc:green:wlan", .gpio = 8, .active_low = 1, },
++ { .name = "soc:green:online", .gpio = 9, .active_low = 1, },
++};
++
++static void
++arv45xx_register_ethernet(void)
++{
++#define ARV45XX_BRN_MAC 0x3f0016
++ memcpy_fromio(lq_eth_data.mac,
++ (void *)KSEG1ADDR(LQ_FLASH_START + ARV45XX_BRN_MAC), 6);
++ lq_register_ethernet(&lq_eth_data);
++}
++
++static void __init
++arv4518_init(void)
++{
++ lq_register_gpio();
++ lq_register_gpio_ebu(0);
++ lq_register_gpio_leds(arv4518_leds_gpio, ARRAY_SIZE(arv4518_leds_gpio));
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_nor(&arv45xx_flash_data);
++ lq_register_pci(&lq_pci_data);
++ lq_register_wdt();
++ arv45xx_register_ethernet();
++}
++
++MIPS_MACHINE(LANTIQ_MACH_ARV4518,
++ "ARV4518",
++ "ARV4518 - SMC7908A-ISP",
++ arv4518_init);
++
++static void __init
++arv452_init(void)
++{
++ lq_register_gpio();
++ lq_register_gpio_ebu(ARV452_LATCH_SWITCH);
++ lq_register_gpio_leds(arv452_leds_gpio, ARRAY_SIZE(arv452_leds_gpio));
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_nor(&arv45xx_flash_data);
++ lq_register_pci(&lq_pci_data);
++ lq_register_wdt();
++ arv45xx_register_ethernet();
++}
++
++MIPS_MACHINE(LANTIQ_MACH_ARV452,
++ "ARV452",
++ "ARV452 - Airties WAV-281, Arcor A800",
++ arv452_init);
++
++static void __init
++arv4525_init(void)
++{
++ lq_register_gpio();
++ lq_register_gpio_leds(arv4525_leds_gpio, ARRAY_SIZE(arv4525_leds_gpio));
++ lq_register_asc(0);
++ lq_register_asc(1);
++ lq_register_nor(&arv45xx_flash_data);
++ lq_register_pci(&lq_pci_data);
++ lq_register_wdt();
++ lq_eth_data.mii_mode = MII_MODE;
++ arv45xx_register_ethernet();
++}
++
++MIPS_MACHINE(LANTIQ_MACH_ARV4525,
++ "ARV4525",
++ "ARV4525 - Speedport W502V",
++ arv4525_init);
diff --git a/target/linux/lantiq/patches/700-dwc_otg.patch b/target/linux/lantiq/patches/700-dwc_otg.patch
new file mode 100644
index 0000000000..9176770426
--- /dev/null
+++ b/target/linux/lantiq/patches/700-dwc_otg.patch
@@ -0,0 +1,15693 @@
+--- a/drivers/usb/Kconfig
++++ b/drivers/usb/Kconfig
+@@ -111,6 +111,8 @@
+
+ source "drivers/usb/host/Kconfig"
+
++source "drivers/usb/dwc_otg/Kconfig"
++
+ source "drivers/usb/musb/Kconfig"
+
+ source "drivers/usb/class/Kconfig"
+--- a/drivers/usb/Makefile
++++ b/drivers/usb/Makefile
+@@ -27,6 +27,8 @@
+
+ obj-$(CONFIG_USB_WUSB) += wusbcore/
+
++obj-$(CONFIG_DWC_OTG) += dwc_otg/
++
+ obj-$(CONFIG_USB_ACM) += class/
+ obj-$(CONFIG_USB_PRINTER) += class/
+ obj-$(CONFIG_USB_WDM) += class/
+--- /dev/null
++++ b/drivers/usb/dwc_otg/Kconfig
+@@ -0,0 +1,37 @@
++config DWC_OTG
++ tristate "Synopsis DWC_OTG support"
++ depends on USB
++ help
++ This driver supports Synopsis DWC_OTG IP core
++ embebbed on many SOCs (ralink, infineon, etc)
++
++choice
++ prompt "USB Operation Mode"
++ depends on DWC_OTG
++ default DWC_OTG_HOST_ONLY
++
++config DWC_OTG_HOST_ONLY
++ bool "HOST ONLY MODE"
++ depends on DWC_OTG
++
++config DWC_OTG_DEVICE_ONLY
++ bool "DEVICE ONLY MODE"
++ depends on DWC_OTG
++endchoice
++
++choice
++ prompt "Platform"
++ depends on DWC_OTG
++ default DWC_OTG_LANTIQ
++
++config DWC_OTG_LANTIQ
++ bool "Lantiq"
++ depends on LANTIQ
++ help
++ Danube USB Host Controller
++ platform support
++endchoice
++
++config DWC_OTG_DEBUG
++ bool "Enable debug mode"
++ depends on DWC_OTG
+--- /dev/null
++++ b/drivers/usb/dwc_otg/Makefile
+@@ -0,0 +1,39 @@
++#
++# Makefile for DWC_otg Highspeed USB controller driver
++#
++
++ifeq ($(CONFIG_DWC_OTG_DEBUG),y)
++EXTRA_CFLAGS += -DDEBUG
++endif
++
++# Use one of the following flags to compile the software in host-only or
++# device-only mode based on the configuration selected by the user
++ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y)
++ EXTRA_CFLAGS += -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY
++ EXTRA_CFLAGS += -DDWC_OTG_EN_ISOC -DDWC_EN_ISOC
++else ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y)
++ EXTRA_CFLAGS += -DDWC_OTG_DEVICE_ONLY
++else
++ EXTRA_CFLAGS += -DDWC_OTG_MODE
++endif
++
++# EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
++# EXTRA_CFLAGS += -DDWC_OTG_EXT_CHG_PUMP
++
++ifeq ($(CONFIG_DWC_OTG_LANTIQ),y)
++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY -D__KERNEL__
++endif
++ifeq ($(CONFIG_DWC_OTG_LANTIQ),m)
++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_HOST_ONLY -DMODULE -D__KERNEL__ -DDEBUG
++endif
++
++obj-$(CONFIG_DWC_OTG) := dwc_otg.o
++dwc_otg-objs := dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
++#dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o
++dwc_otg-objs += dwc_otg_attr.o
++dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o
++dwc_otg-objs += dwc_otg_ifx.o
++dwc_otg-objs += dwc_otg_driver.o
++
++#obj-$(CONFIG_DWC_OTG_IFX) := dwc_otg_ifx.o
++#dwc_otg_ifx-objs := dwc_otg_ifx.o
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_attr.c
+@@ -0,0 +1,802 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 537387 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing. The Linux driver attributes
++ * feature will be used to provide the Linux Diagnostic
++ * Interface. These attributes are accessed through sysfs.
++ */
++
++/** @page "Linux Module Attributes"
++ *
++ * The Linux module attributes feature is used to provide the Linux
++ * Diagnostic Interface. These attributes are accessed through sysfs.
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.
++
++
++ The following table shows the attributes.
++ <table>
++ <tr>
++ <td><b> Name</b></td>
++ <td><b> Description</b></td>
++ <td><b> Access</b></td>
++ </tr>
++
++ <tr>
++ <td> mode </td>
++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hnpcapable </td>
++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srpcapable </td>
++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hnp </td>
++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srp </td>
++ <td> Initiates the Session Request Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> buspower </td>
++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> bussuspend </td>
++ <td> Suspends the USB bus.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> busconnected </td>
++ <td> Gets the connection status of the bus</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> gotgctl </td>
++ <td> Gets or sets the Core Control Status Register.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gusbcfg </td>
++ <td> Gets or sets the Core USB Configuration Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> grxfsiz </td>
++ <td> Gets or sets the Receive FIFO Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gnptxfsiz </td>
++ <td> Gets or sets the non-periodic Transmit Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gpvndctl </td>
++ <td> Gets or sets the PHY Vendor Control Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> ggpio </td>
++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
++ or sets the upper 16 bits.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> guid </td>
++ <td> Gets or sets the value of the User ID Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gsnpsid </td>
++ <td> Gets the value of the Synopsys ID Regester</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> devspeed </td>
++ <td> Gets or sets the device speed setting in the DCFG register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> enumspeed </td>
++ <td> Gets the device enumeration Speed.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hptxfsiz </td>
++ <td> Gets the value of the Host Periodic Transmit FIFO</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hprt0 </td>
++ <td> Gets or sets the value in the Host Port Control and Status Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regoffset </td>
++ <td> Sets the register offset for the next Register Access</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regvalue </td>
++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> remote_wakeup </td>
++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
++ Wakeup signalling bit in the Device Control Register is set for 1
++ milli-second.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcddump </td>
++ <td> Dumps the current HCD state.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcd_frrem </td>
++ <td> Shows the average value of the Frame Remaining
++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
++ occurs. This can be used to determine the average interrupt latency. Also
++ shows the average Frame Remaining value for start_transfer and the "a" and
++ "b" sample points. The "a" and "b" sample points may be used during debugging
++ bto determine how long it takes to execute a section of the HCD code.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> rd_reg_test </td>
++ <td> Displays the time required to read the GNPTXFSIZ register many times
++ (the output shows the number of times the register is read).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> wr_reg_test </td>
++ <td> Displays the time required to write the GNPTXFSIZ register many times
++ (the output shows the number of times the register is written).
++ <td> Read</td>
++ </tr>
++
++ </table>
++
++ Example usage:
++ To get the current mode:
++ cat /sys/devices/lm0/mode
++
++ To power down the USB:
++ echo 0 > /sys/devices/lm0/buspower
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++
++#include <asm/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++// #include "dwc_otg_pcd.h"
++#include "dwc_otg_hcd.h"
++
++// 20070316, winder added.
++#ifndef SZ_256K
++#define SZ_256K 0x00040000
++#endif
++
++/*
++ * MACROs for defining sysfs attribute
++ */
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
++ uint32_t val; \
++ val = dwc_read_reg32 (_addr_); \
++ val = (val & (_mask_)) >> _shift_; \
++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ uint32_t clear = set; \
++ clear = ((~clear) << _shift_) & _mask_; \
++ set = (set << _shift_) & _mask_; \
++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
++ dwc_modify_reg32(_addr_, clear, set); \
++ return count; \
++}
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++/*
++ * MACROs for defining sysfs attribute for 32-bit registers
++ */
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
++ uint32_t val; \
++ val = dwc_read_reg32 (_addr_); \
++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
++ dwc_write_reg32(_addr_, val); \
++ return count; \
++}
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++
++/** @name Functions for Show/Store of Attributes */
++/**@{*/
++
++/**
++ * Show the register offset of the Register Access.
++ */
++static ssize_t regoffset_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
++}
++
++/**
++ * Set the register offset for the next Register Access Read/Write
++ */
++static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t offset = simple_strtoul(buf, NULL, 16);
++ //dev_dbg(_dev, "Offset=0x%08x\n", offset);
++ if (offset < SZ_256K ) {
++ otg_dev->reg_offset = offset;
++ }
++ else {
++ dev_err( _dev, "invalid offset\n" );
++ }
++
++ return count;
++}
++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store);
++
++/**
++ * Show the value of the register at the offset in the reg_offset
++ * attribute.
++ */
++static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t val;
++ volatile uint32_t *addr;
++
++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t*)(otg_dev->reg_offset +
++ (uint8_t*)otg_dev->base);
++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
++ val = dwc_read_reg32( addr );
++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
++ "Reg@0x%06x = 0x%08x\n",
++ otg_dev->reg_offset, val);
++ }
++ else {
++ dev_err(_dev, "Invalid offset (0x%0x)\n",
++ otg_dev->reg_offset);
++ return sprintf(buf, "invalid offset\n" );
++ }
++}
++
++/**
++ * Store the value in the register at the offset in the reg_offset
++ * attribute.
++ *
++ */
++static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ volatile uint32_t * addr;
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t*)(otg_dev->reg_offset +
++ (uint8_t*)otg_dev->base);
++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
++ dwc_write_reg32( addr, val );
++ }
++ else {
++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
++ otg_dev->reg_offset);
++ }
++ return count;
++}
++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
++
++/*
++ * Attributes
++ */
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
++
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
++
++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
++
++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
++
++
++/**
++ * @todo Add code to initiate the HNP.
++ */
++/**
++ * Show the HNP status bit
++ */
++static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ gotgctl_data_t val;
++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
++}
++
++/**
++ * Set the HNP Request bit
++ */
++static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
++ gotgctl_data_t mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.hnpreq = in;
++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
++
++/**
++ * @todo Add code to initiate the SRP.
++ */
++/**
++ * Show the SRP status bit
++ */
++static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ gotgctl_data_t val;
++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Set the SRP Request bit
++ */
++static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
++#endif
++ return count;
++}
++DEVICE_ATTR(srp, 0644, srp_show, srp_store);
++
++/**
++ * @todo Need to do more for power on/off?
++ */
++/**
++ * Show the Bus Power status
++ */
++static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ hprt0_data_t val;
++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
++}
++
++
++/**
++ * Set the Bus Power status
++ */
++static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t on = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
++ hprt0_data_t mem;
++
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtpwr = on;
++
++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++
++ return count;
++}
++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
++
++/**
++ * @todo Need to do more for suspend?
++ */
++/**
++ * Show the Bus Suspend status
++ */
++static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ hprt0_data_t val;
++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
++}
++
++/**
++ * Set the Bus Suspend status
++ */
++static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
++ hprt0_data_t mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtsusp = in;
++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
++
++/**
++ * Show the status of Remote Wakeup.
++ */
++static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ dctl_data_t val;
++ val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Initiate a remote wakeup of the host. The Device control register
++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
++ * flag is set.
++ *
++ */
++static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, const char *buf,
++ size_t count )
++{
++#ifndef DWC_HOST_ONLY
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ if (val&1) {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
++ }
++ else {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
++ }
++#endif
++ return count;
++}
++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
++ remote_wakeup_store);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++#ifdef DEBUG
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev);
++
++ dwc_otg_dump_global_registers( otg_dev->core_if);
++ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
++ dwc_otg_dump_host_registers( otg_dev->core_if);
++ } else {
++ dwc_otg_dump_dev_registers( otg_dev->core_if);
++ }
++#endif
++
++ return sprintf( buf, "Register Dump\n" );
++}
++
++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
++
++/**
++ * Dump the current hcd state.
++ */
++static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ dwc_otg_hcd_dump_state(otg_dev->hcd);
++#endif
++ return sprintf( buf, "HCD Dump\n" );
++}
++
++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ */
++static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
++#endif
++ return sprintf( buf, "HCD Dump Frame Remaining\n" );
++}
++
++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
++
++/**
++ * Displays the time required to read the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is read).
++ */
++#define RW_REG_COUNT 10000000
++#define MSEC_PER_JIFFIE 1000/HZ
++static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ int i;
++ int time;
++ int start_jiffies;
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
++}
++
++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
++
++/**
++ * Displays the time required to write the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is written).
++ */
++static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf)
++{
++ int i;
++ int time;
++ int start_jiffies;
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ uint32_t reg_val;
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
++/**@}*/
++
++/**
++ * Create the device files
++ */
++void dwc_otg_attr_create (struct device *_dev)
++{
++ int retval;
++
++ retval = device_create_file(_dev, &dev_attr_regoffset);
++ retval += device_create_file(_dev, &dev_attr_regvalue);
++ retval += device_create_file(_dev, &dev_attr_mode);
++ retval += device_create_file(_dev, &dev_attr_hnpcapable);
++ retval += device_create_file(_dev, &dev_attr_srpcapable);
++ retval += device_create_file(_dev, &dev_attr_hnp);
++ retval += device_create_file(_dev, &dev_attr_srp);
++ retval += device_create_file(_dev, &dev_attr_buspower);
++ retval += device_create_file(_dev, &dev_attr_bussuspend);
++ retval += device_create_file(_dev, &dev_attr_busconnected);
++ retval += device_create_file(_dev, &dev_attr_gotgctl);
++ retval += device_create_file(_dev, &dev_attr_gusbcfg);
++ retval += device_create_file(_dev, &dev_attr_grxfsiz);
++ retval += device_create_file(_dev, &dev_attr_gnptxfsiz);
++ retval += device_create_file(_dev, &dev_attr_gpvndctl);
++ retval += device_create_file(_dev, &dev_attr_ggpio);
++ retval += device_create_file(_dev, &dev_attr_guid);
++ retval += device_create_file(_dev, &dev_attr_gsnpsid);
++ retval += device_create_file(_dev, &dev_attr_devspeed);
++ retval += device_create_file(_dev, &dev_attr_enumspeed);
++ retval += device_create_file(_dev, &dev_attr_hptxfsiz);
++ retval += device_create_file(_dev, &dev_attr_hprt0);
++ retval += device_create_file(_dev, &dev_attr_remote_wakeup);
++ retval += device_create_file(_dev, &dev_attr_regdump);
++ retval += device_create_file(_dev, &dev_attr_hcddump);
++ retval += device_create_file(_dev, &dev_attr_hcd_frrem);
++ retval += device_create_file(_dev, &dev_attr_rd_reg_test);
++ retval += device_create_file(_dev, &dev_attr_wr_reg_test);
++
++ if(retval != 0)
++ {
++ DWC_PRINT("cannot create sysfs device files.\n");
++ // DWC_PRINT("killing own sysfs device files!\n");
++ dwc_otg_attr_remove(_dev);
++ }
++}
++
++/**
++ * Remove the device files
++ */
++void dwc_otg_attr_remove (struct device *_dev)
++{
++ device_remove_file(_dev, &dev_attr_regoffset);
++ device_remove_file(_dev, &dev_attr_regvalue);
++ device_remove_file(_dev, &dev_attr_mode);
++ device_remove_file(_dev, &dev_attr_hnpcapable);
++ device_remove_file(_dev, &dev_attr_srpcapable);
++ device_remove_file(_dev, &dev_attr_hnp);
++ device_remove_file(_dev, &dev_attr_srp);
++ device_remove_file(_dev, &dev_attr_buspower);
++ device_remove_file(_dev, &dev_attr_bussuspend);
++ device_remove_file(_dev, &dev_attr_busconnected);
++ device_remove_file(_dev, &dev_attr_gotgctl);
++ device_remove_file(_dev, &dev_attr_gusbcfg);
++ device_remove_file(_dev, &dev_attr_grxfsiz);
++ device_remove_file(_dev, &dev_attr_gnptxfsiz);
++ device_remove_file(_dev, &dev_attr_gpvndctl);
++ device_remove_file(_dev, &dev_attr_ggpio);
++ device_remove_file(_dev, &dev_attr_guid);
++ device_remove_file(_dev, &dev_attr_gsnpsid);
++ device_remove_file(_dev, &dev_attr_devspeed);
++ device_remove_file(_dev, &dev_attr_enumspeed);
++ device_remove_file(_dev, &dev_attr_hptxfsiz);
++ device_remove_file(_dev, &dev_attr_hprt0);
++ device_remove_file(_dev, &dev_attr_remote_wakeup);
++ device_remove_file(_dev, &dev_attr_regdump);
++ device_remove_file(_dev, &dev_attr_hcddump);
++ device_remove_file(_dev, &dev_attr_hcd_frrem);
++ device_remove_file(_dev, &dev_attr_rd_reg_test);
++ device_remove_file(_dev, &dev_attr_wr_reg_test);
++}
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_attr.h
+@@ -0,0 +1,67 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 510275 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_ATTR_H__)
++#define __DWC_OTG_ATTR_H__
++
++/** @file
++ * This file contains the interface to the Linux device attributes.
++ */
++extern struct device_attribute dev_attr_regoffset;
++extern struct device_attribute dev_attr_regvalue;
++
++extern struct device_attribute dev_attr_mode;
++extern struct device_attribute dev_attr_hnpcapable;
++extern struct device_attribute dev_attr_srpcapable;
++extern struct device_attribute dev_attr_hnp;
++extern struct device_attribute dev_attr_srp;
++extern struct device_attribute dev_attr_buspower;
++extern struct device_attribute dev_attr_bussuspend;
++extern struct device_attribute dev_attr_busconnected;
++extern struct device_attribute dev_attr_gotgctl;
++extern struct device_attribute dev_attr_gusbcfg;
++extern struct device_attribute dev_attr_grxfsiz;
++extern struct device_attribute dev_attr_gnptxfsiz;
++extern struct device_attribute dev_attr_gpvndctl;
++extern struct device_attribute dev_attr_ggpio;
++extern struct device_attribute dev_attr_guid;
++extern struct device_attribute dev_attr_gsnpsid;
++extern struct device_attribute dev_attr_devspeed;
++extern struct device_attribute dev_attr_enumspeed;
++extern struct device_attribute dev_attr_hptxfsiz;
++extern struct device_attribute dev_attr_hprt0;
++
++void dwc_otg_attr_create (struct device *_dev);
++void dwc_otg_attr_remove (struct device *_dev);
++
++#endif
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_cil.c
+@@ -0,0 +1,3025 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 631780 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * The CIL manages the memory map for the core so that the HCD and PCD
++ * don't have to do this separately. It also handles basic tasks like
++ * reading/writing the registers and data FIFOs in the controller.
++ * Some of the data access functions provide encapsulation of several
++ * operations required to perform a task, such as writing multiple
++ * registers to start a transfer. Finally, the CIL performs basic
++ * services that are not specific to either the host or device modes
++ * of operation. These services include management of the OTG Host
++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
++ * Diagnostic API is also provided to allow testing of the controller
++ * hardware.
++ *
++ * The Core Interface Layer has the following requirements:
++ * - Provides basic controller operations.
++ * - Minimal use of OS services.
++ * - The OS services used will be abstracted by using inline functions
++ * or macros.
++ *
++ */
++#include <asm/unaligned.h>
++
++#ifdef DEBUG
++#include <linux/jiffies.h>
++#endif
++
++#include "dwc_otg_plat.h"
++
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++/**
++ * This function is called to initialize the DWC_otg CSR data
++ * structures. The register addresses in the device and host
++ * structures are initialized from the base address supplied by the
++ * caller. The calling function must make the OS calls to get the
++ * base address of the DWC_otg controller registers. The core_params
++ * argument holds the parameters that specify how the core should be
++ * configured.
++ *
++ * @param[in] _reg_base_addr Base address of DWC_otg core registers
++ * @param[in] _core_params Pointer to the core configuration parameters
++ *
++ */
++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
++ dwc_otg_core_params_t *_core_params)
++{
++ dwc_otg_core_if_t *core_if = 0;
++ dwc_otg_dev_if_t *dev_if = 0;
++ dwc_otg_host_if_t *host_if = 0;
++ uint8_t *reg_base = (uint8_t *)_reg_base_addr;
++ int i = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params);
++
++ core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL);
++ if (core_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
++ return 0;
++ }
++ memset(core_if, 0, sizeof(dwc_otg_core_if_t));
++
++ core_if->core_params = _core_params;
++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
++ /*
++ * Allocate the Device Mode structures.
++ */
++ dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
++ if (dev_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
++ kfree( core_if );
++ return 0;
++ }
++
++ dev_if->dev_global_regs =
++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
++
++ for (i=0; i<MAX_EPS_CHANNELS; i++) {
++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++
++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
++ i, &dev_if->in_ep_regs[i]->diepctl);
++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
++ i, &dev_if->out_ep_regs[i]->doepctl);
++ }
++ dev_if->speed = 0; // unknown
++ //dev_if->num_eps = MAX_EPS_CHANNELS;
++ //dev_if->num_perio_eps = 0;
++
++ core_if->dev_if = dev_if;
++ /*
++ * Allocate the Host Mode structures.
++ */
++ host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL);
++ if (host_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
++ kfree( dev_if );
++ kfree( core_if );
++ return 0;
++ }
++
++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
++ for (i=0; i<MAX_EPS_CHANNELS; i++) {
++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
++ (i * DWC_OTG_CHAN_REGS_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
++ i, &host_if->hc_regs[i]->hcchar);
++ }
++ host_if->num_host_channels = MAX_EPS_CHANNELS;
++ core_if->host_if = host_if;
++
++ for (i=0; i<MAX_EPS_CHANNELS; i++) {
++ core_if->data_fifo[i] =
++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
++ (i * DWC_OTG_DATA_FIFO_SIZE));
++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
++ i, (unsigned)core_if->data_fifo[i]);
++ } // for loop.
++
++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
++
++ /*
++ * Store the contents of the hardware configuration registers here for
++ * easy access later.
++ */
++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
++
++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
++
++
++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
++
++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
++
++ /*
++ * Set the SRP sucess bit for FS-I2c
++ */
++ core_if->srp_success = 0;
++ core_if->srp_timer_started = 0;
++
++ return core_if;
++}
++/**
++ * This function frees the structures allocated by dwc_otg_cil_init().
++ *
++ * @param[in] _core_if The core interface pointer returned from
++ * dwc_otg_cil_init().
++ *
++ */
++void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if )
++{
++ /* Disable all interrupts */
++ dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0);
++ dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0);
++
++ if ( _core_if->dev_if ) {
++ kfree( _core_if->dev_if );
++ }
++ if ( _core_if->host_if ) {
++ kfree( _core_if->host_if );
++ }
++ kfree( _core_if );
++}
++
++/**
++ * This function enables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param[in] _core_if Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if )
++{
++ gahbcfg_data_t ahbcfg = { .d32 = 0};
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
++}
++/**
++ * This function disables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param[in] _core_if Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if )
++{
++ gahbcfg_data_t ahbcfg = { .d32 = 0};
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++}
++
++/**
++ * This function initializes the commmon interrupts, used in both
++ * device and host modes.
++ *
++ * @param[in] _core_if Programming view of the DWC_otg controller
++ *
++ */
++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ _core_if->core_global_regs;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ /* Clear any pending OTG Interrupts */
++ dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF);
++ /* Clear any pending interrupts */
++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
++ /*
++ * Enable the interrupts in the GINTMSK.
++ */
++ intr_mask.b.modemismatch = 1;
++ intr_mask.b.otgintr = 1;
++ if (!_core_if->dma_enable) {
++ intr_mask.b.rxstsqlvl = 1;
++ }
++ intr_mask.b.conidstschng = 1;
++ intr_mask.b.wkupintr = 1;
++ intr_mask.b.disconnect = 1;
++ intr_mask.b.usbsuspend = 1;
++ intr_mask.b.sessreqintr = 1;
++ dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32);
++}
++
++/**
++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
++ * type.
++ */
++static void init_fslspclksel(dwc_otg_core_if_t *_core_if)
++{
++ uint32_t val;
++ hcfg_data_t hcfg;
++
++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (_core_if->core_params->ulpi_fs_ls)) ||
++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
++ {
++ /* Full speed PHY */
++ val = DWC_HCFG_48_MHZ;
++ } else {
++ /* High speed PHY running at full speed or high speed */
++ val = DWC_HCFG_30_60_MHZ;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
++ hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg);
++ hcfg.b.fslspclksel = val;
++ dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/**
++ * Initializes the DevSpd field of the DCFG register depending on the PHY type
++ * and the enumeration speed of the device.
++ */
++static void init_devspd(dwc_otg_core_if_t *_core_if)
++{
++ uint32_t val;
++ dcfg_data_t dcfg;
++
++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (_core_if->core_params->ulpi_fs_ls)) ||
++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS))
++ {
++ /* Full speed PHY */
++ val = 0x3;
++ } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ /* High speed PHY running at full speed */
++ val = 0x1;
++ } else {
++ /* High speed PHY running at high speed */
++ val = 0x0;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
++ dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.devspd = val;
++ dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++/**
++ * This function calculates the number of IN EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param _pcd the pcd structure.
++ */
++static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if)
++{
++ uint32_t num_in_eps = 0;
++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
++ uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps;
++ int i;
++ for (i = 0; i < num_eps; ++i) {
++ if (!(hwcfg1 & 0x1))
++ num_in_eps++;
++ hwcfg1 >>= 2;
++ }
++ if (_core_if->hwcfg4.b.ded_fifo_en) {
++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
++ }
++ return num_in_eps;
++}
++
++
++/**
++ * This function calculates the number of OUT EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param _pcd the pcd structure.
++ */
++static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if)
++{
++ uint32_t num_out_eps = 0;
++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
++ int i;
++ for (i = 0; i < num_eps; ++i) {
++ if (!(hwcfg1 & 0x2))
++ num_out_eps++;
++ hwcfg1 >>= 2;
++ }
++ return num_out_eps;
++}
++/**
++ * This function initializes the DWC_otg controller registers and
++ * prepares the core for device mode or host mode operation.
++ *
++ * @param _core_if Programming view of the DWC_otg controller
++ *
++ */
++void dwc_otg_core_init(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ int i = 0;
++ gahbcfg_data_t ahbcfg = { .d32 = 0};
++ gusbcfg_data_t usbcfg = { .d32 = 0 };
++ gi2cctl_data_t i2cctl = {.d32 = 0};
++
++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if);
++
++ /* Common Initialization */
++
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32);
++
++ /* Program the ULPI External VBUS bit if needed */
++ //usbcfg.b.ulpi_ext_vbus_drv = 1;
++ //usbcfg.b.ulpi_ext_vbus_drv = 0;
++ usbcfg.b.ulpi_ext_vbus_drv =
++ (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
++
++ /* Set external TS Dline pulsing */
++ usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset the Controller */
++ dwc_otg_core_reset( _core_if );
++
++ /* Initialize parameters from Hardware configuration registers. */
++#if 0
++ dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep;
++ dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep;
++#else
++ dev_if->num_in_eps = calc_num_in_eps(_core_if);
++ dev_if->num_out_eps = calc_num_out_eps(_core_if);
++#endif
++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
++ _core_if->hwcfg4.b.num_dev_perio_in_ep);
++ DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n",
++ _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No");
++ DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n",
++ _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No");
++ DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n",
++ _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No");
++
++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep);
++ for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ dev_if->perio_tx_fifo_size[i] =
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i,
++ dev_if->perio_tx_fifo_size[i]);
++ }
++ for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) {
++ dev_if->tx_fifo_size[i] =
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i,
++ dev_if->perio_tx_fifo_size[i]);
++ }
++
++ _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth;
++ _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
++ _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size);
++
++ /* This programming sequence needs to happen in FS mode before any other
++ * programming occurs */
++ if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* If FS mode with FS PHY */
++
++ /* core_init() is now called on every switch so only call the
++ * following for the first time through. */
++ if (!_core_if->phy_init_done) {
++ _core_if->phy_init_done = 1;
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.physel = 1;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after a PHY select */
++ dwc_otg_core_reset( _core_if );
++ }
++
++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
++ * do this on HNP Dev/Host mode switches (done in dev_init and
++ * host_init). */
++ if (dwc_otg_is_host_mode(_core_if)) {
++ DWC_DEBUGPL(DBG_CIL, "host mode\n");
++ init_fslspclksel(_core_if);
++ } else {
++ DWC_DEBUGPL(DBG_CIL, "device mode\n");
++ init_devspd(_core_if);
++ }
++
++ if (_core_if->core_params->i2c_enable) {
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
++ /* Program GUSBCFG.OtgUtmifsSel to I2C */
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.otgutmifssel = 1;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Program GI2CCTL.I2CEn */
++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
++ i2cctl.b.i2cdevaddr = 1;
++ i2cctl.b.i2cen = 0;
++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
++ i2cctl.b.i2cen = 1;
++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
++ }
++
++ } /* endif speed == DWC_SPEED_PARAM_FULL */
++ else {
++ /* High speed PHY. */
++ if (!_core_if->phy_init_done) {
++ _core_if->phy_init_done = 1;
++ DWC_DEBUGPL(DBG_CIL, "High spped PHY\n");
++ /* HS PHY parameters. These parameters are preserved
++ * during soft reset so only program the first time. Do
++ * a soft reset immediately after setting phyif. */
++ usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type;
++ if (usbcfg.b.ulpi_utmi_sel == 2) { // winder
++ DWC_DEBUGPL(DBG_CIL, "ULPI\n");
++ /* ULPI interface */
++ usbcfg.b.phyif = 0;
++ usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr;
++ } else {
++ /* UTMI+ interface */
++ if (_core_if->core_params->phy_utmi_width == 16) {
++ usbcfg.b.phyif = 1;
++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n");
++ } else {
++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n");
++ usbcfg.b.phyif = 0;
++ }
++ }
++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after setting the PHY parameters */
++ dwc_otg_core_reset( _core_if );
++ }
++ }
++
++ if ((_core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (_core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (_core_if->core_params->ulpi_fs_ls))
++ {
++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 1;
++ usbcfg.b.ulpi_clk_sus_m = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ } else {
++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 0;
++ usbcfg.b.ulpi_clk_sus_m = 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ }
++
++ /* Program the GAHBCFG Register.*/
++ switch (_core_if->hwcfg2.b.architecture){
++
++ case DWC_SLAVE_ONLY_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ _core_if->dma_enable = 0;
++ break;
++
++ case DWC_EXT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
++ ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size;
++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
++ break;
++
++ case DWC_INT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
++ //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4;
++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
++ break;
++ }
++ ahbcfg.b.dmaenable = _core_if->dma_enable;
++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
++ _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en;
++
++ /*
++ * Program the GUSBCFG register.
++ */
++ usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg );
++
++ switch (_core_if->hwcfg2.b.op_mode) {
++ case DWC_MODE_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = (_core_if->core_params->otg_cap ==
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_SRP_ONLY_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++ }
++
++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32);
++
++ /* Enable common interrupts */
++ dwc_otg_enable_common_interrupts( _core_if );
++
++ /* Do device or host intialization based on mode during PCD
++ * and HCD initialization */
++ if (dwc_otg_is_host_mode( _core_if )) {
++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n" );
++ _core_if->op_state = A_HOST;
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n" );
++ _core_if->op_state = B_PERIPHERAL;
++#ifdef DWC_DEVICE_ONLY
++ dwc_otg_core_dev_init( _core_if );
++#endif
++ }
++}
++
++
++/**
++ * This function enables the Device mode interrupts.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32( &global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts */
++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts( _core_if );
++
++ /* Enable interrupts */
++ intr_mask.b.usbreset = 1;
++ intr_mask.b.enumdone = 1;
++ //intr_mask.b.epmismatch = 1;
++ intr_mask.b.inepintr = 1;
++ intr_mask.b.outepintr = 1;
++ intr_mask.b.erlysuspend = 1;
++ if (_core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.epmismatch = 1;
++ }
++
++ /** @todo NGS: Should this be a module parameter? */
++ intr_mask.b.isooutdrop = 1;
++ intr_mask.b.eopframe = 1;
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++
++ dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
++ dwc_read_reg32( &global_regs->gintmsk));
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * device mode.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ _core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ dwc_otg_core_params_t *params = _core_if->core_params;
++ dcfg_data_t dcfg = {.d32 = 0};
++ grstctl_t resetctl = { .d32=0 };
++ int i;
++ uint32_t rx_fifo_size;
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t txfifosize;
++ dthrctl_data_t dthrctl;
++
++ fifosize_data_t ptxfifosize;
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(_core_if->pcgcctl, 0);
++
++ /* Device configuration register */
++ init_devspd(_core_if);
++ dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg);
++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
++ dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 );
++
++ /* Configure data FIFO sizes */
++ if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) {
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++ rx_fifo_size = params->dev_rx_fifo_size;
++ dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size );
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++
++ /** Set Periodic Tx FIFO Mask all bits 0 */
++ _core_if->p_tx_msk = 0;
++
++ /** Set Tx FIFO Mask all bits 0 */
++ _core_if->tx_msk = 0;
++ if (_core_if->en_multiple_tx_fifo == 0) {
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++ dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 );
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++
++
++ /**@todo NGS: Fix Periodic FIFO Sizing! */
++ /*
++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_perio_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz array run from 0 to 14.
++ */
++ /** @todo Finish debug of this */
++ ptxfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
++ ptxfifosize.b.startaddr += ptxfifosize.b.depth;
++ }
++ } else {
++
++ /*
++ * Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz_dieptxf array run from 0 to 14.
++ */
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
++ txfifosize.b.depth = params->dev_tx_fifo_size[i];
++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1]));
++ txfifosize.b.startaddr += txfifosize.b.depth;
++ }
++ }
++ }
++ /* Flush the FIFOs */
++ dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(_core_if);
++
++ /* Flush the Learning Queue. */
++ resetctl.b.intknqflsh = 1;
++ dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32);
++
++ /* Clear all pending Device Interrupts */
++ dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 );
++ dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 );
++ dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF );
++ dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 );
++
++ for (i = 0; i <= dev_if->num_in_eps; i++) {
++ depctl_data_t depctl;
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ } else {
++ depctl.d32 = 0;
++ }
++ dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
++ }
++ for (i = 0; i <= dev_if->num_out_eps; i++) {
++ depctl_data_t depctl;
++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ } else {
++ depctl.d32 = 0;
++ }
++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++
++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0);
++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0);
++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0);
++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0);
++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF);
++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF);
++ }
++
++ if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) {
++ dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1;
++ dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1;
++ dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1;
++ dev_if->rx_thr_length = _core_if->core_params->rx_thr_length;
++ dev_if->tx_thr_length = _core_if->core_params->tx_thr_length;
++ dthrctl.d32 = 0;
++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32);
++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n"
++ "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en,
++ dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len,
++ dthrctl.b.rx_thr_len);
++ }
++ dwc_otg_enable_device_interrupts( _core_if );
++ {
++ diepmsk_data_t msk = {.d32 = 0};
++ msk.b.txfifoundrn = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32);
++}
++}
++
++/**
++ * This function enables the Host mode interrupts.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts. */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(_core_if);
++
++ /*
++ * Enable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++
++ //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++ //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++}
++
++/**
++ * This function disables the Host Mode interrupts.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ _core_if->core_global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
++
++ /*
++ * Disable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++ intr_mask.b.ptxfempty = 1;
++ intr_mask.b.nptxfempty = 1;
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++}
++
++#if 1
++/* currently not used, keep it here as if needed later */
++static int phy_read(dwc_otg_core_if_t * _core_if, int addr)
++{
++ u32 val;
++ int timeout = 10;
++
++ dwc_write_reg32(&_core_if->core_global_regs->gpvndctl,
++ 0x02000000 | (addr << 16));
++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
++ while (((val & 0x08000000) == 0) && (timeout--)) {
++ udelay(1000);
++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
++ }
++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
++ printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff);
++
++ return 0;
++}
++#endif
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * host mode.
++ *
++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
++ * request queues. Host channels are reset to ensure that they are ready for
++ * performing transfers.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if = _core_if->host_if;
++ dwc_otg_core_params_t *params = _core_if->core_params;
++ hprt0_data_t hprt0 = {.d32 = 0};
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t ptxfifosize;
++ int i;
++ hcchar_data_t hcchar;
++ hcfg_data_t hcfg;
++ dwc_otg_hc_regs_t *hc_regs;
++ int num_channels;
++ gotgctl_data_t gotgctl = {.d32 = 0};
++
++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if);
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(_core_if->pcgcctl, 0);
++
++ /* Initialize Host Configuration Register */
++ init_fslspclksel(_core_if);
++ if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++ hcfg.b.fslssupp = 1;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
++ }
++
++ /* Configure data FIFO sizes */
++ if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
++
++ /* Periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
++ }
++
++ /* Clear Host Set HNP Enable in the OTG Control Register */
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0);
++
++ /* Make sure the FIFOs are flushed. */
++ dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */);
++ dwc_otg_flush_rx_fifo(_core_if);
++
++ /* Flush out any leftover queued requests. */
++ num_channels = _core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ hc_regs = _core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ /* Halt all channels to put them into a known state. */
++ for (i = 0; i < num_channels; i++) {
++ int count = 0;
++ hc_regs = _core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
++ do {
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (++count > 200) {
++ DWC_ERROR("%s: Unable to clear halt on channel %d\n",
++ __func__, i);
++ break;
++ }
++ udelay(100);
++ } while (hcchar.b.chen);
++ }
++
++ /* Turn on the vbus power. */
++ DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state);
++ if (_core_if->op_state == A_HOST){
++ hprt0.d32 = dwc_otg_read_hprt0(_core_if);
++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
++ if (hprt0.b.prtpwr == 0 ) {
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(host_if->hprt0, hprt0.d32);
++ }
++ }
++
++ dwc_otg_enable_host_interrupts( _core_if );
++}
++
++/**
++ * Prepares a host channel for transferring packets to/from a specific
++ * endpoint. The HCCHARn register is set up with the characteristics specified
++ * in _hc. Host channel interrupts that may need to be serviced while this
++ * transfer is in progress are enabled.
++ *
++ * @param _core_if Programming view of DWC_otg controller
++ * @param _hc Information needed to initialize the host channel
++ */
++void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ uint32_t intr_enable;
++ hcintmsk_data_t hc_intr_mask;
++ gintmsk_data_t gintmsk = {.d32 = 0};
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++
++ uint8_t hc_num = _hc->hc_num;
++ dwc_otg_host_if_t *host_if = _core_if->host_if;
++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
++
++ /* Clear old interrupt conditions for this host channel. */
++ hc_intr_mask.d32 = 0xFFFFFFFF;
++ hc_intr_mask.b.reserved = 0;
++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
++
++ /* Enable channel interrupts required for this transfer. */
++ hc_intr_mask.d32 = 0;
++ hc_intr_mask.b.chhltd = 1;
++ if (_core_if->dma_enable) {
++ hc_intr_mask.b.ahberr = 1;
++ if (_hc->error_state && !_hc->do_split &&
++ _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ hc_intr_mask.b.ack = 1;
++ if (_hc->ep_is_in) {
++ hc_intr_mask.b.datatglerr = 1;
++ if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
++ hc_intr_mask.b.nak = 1;
++ }
++ }
++ }
++ } else {
++ switch (_hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ if (_hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ } else {
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.nyet = 1;
++ if (_hc->do_ping) {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (_hc->do_split) {
++ hc_intr_mask.b.nak = 1;
++ if (_hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ }
++ else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (_hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ break;
++ case DWC_OTG_EP_TYPE_INTR:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ hc_intr_mask.b.frmovrun = 1;
++
++ if (_hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ }
++ if (_hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ if (_hc->do_split) {
++ if (_hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ }
++ else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++ break;
++ case DWC_OTG_EP_TYPE_ISOC:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.frmovrun = 1;
++ hc_intr_mask.b.ack = 1;
++
++ if (_hc->ep_is_in) {
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.bblerr = 1;
++ }
++ break;
++ }
++ }
++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
++
++ /* Enable the top level host channel interrupt. */
++ intr_enable = (1 << hc_num);
++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
++
++ /* Make sure host channel interrupts are enabled. */
++ gintmsk.b.hcintr = 1;
++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
++
++ /*
++ * Program the HCCHARn register with the endpoint characteristics for
++ * the current transfer.
++ */
++ hcchar.d32 = 0;
++ hcchar.b.devaddr = _hc->dev_addr;
++ hcchar.b.epnum = _hc->ep_num;
++ hcchar.b.epdir = _hc->ep_is_in;
++ hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW);
++ hcchar.b.eptype = _hc->ep_type;
++ hcchar.b.mps = _hc->max_packet;
++
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
++
++ /*
++ * Program the HCSPLIT register for SPLITs
++ */
++ hcsplt.d32 = 0;
++ if (_hc->do_split) {
++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num,
++ _hc->complete_split ? "CSPLIT" : "SSPLIT");
++ hcsplt.b.compsplt = _hc->complete_split;
++ hcsplt.b.xactpos = _hc->xact_pos;
++ hcsplt.b.hubaddr = _hc->hub_addr;
++ hcsplt.b.prtaddr = _hc->port_addr;
++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split);
++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos);
++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr);
++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr);
++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len);
++ }
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
++
++}
++
++/**
++ * Attempts to halt a host channel. This function should only be called in
++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
++ * normal circumstances in DMA mode, the controller halts the channel when the
++ * transfer is complete or a condition occurs that requires application
++ * intervention.
++ *
++ * In slave mode, checks for a free request queue entry, then sets the Channel
++ * Enable and Channel Disable bits of the Host Channel Characteristics
++ * register of the specified channel to intiate the halt. If there is no free
++ * request queue entry, sets only the Channel Disable bit of the HCCHARn
++ * register to flush requests for this channel. In the latter case, sets a
++ * flag to indicate that the host channel needs to be halted when a request
++ * queue slot is open.
++ *
++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
++ * HCCHARn register. The controller ensures there is space in the request
++ * queue before submitting the halt request.
++ *
++ * Some time may elapse before the core flushes any posted requests for this
++ * host channel and halts. The Channel Halted interrupt handler completes the
++ * deactivation of the host channel.
++ *
++ * @param _core_if Controller register interface.
++ * @param _hc Host channel to halt.
++ * @param _halt_status Reason for halting the channel.
++ */
++void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
++ dwc_hc_t *_hc,
++ dwc_otg_halt_status_e _halt_status)
++{
++ gnptxsts_data_t nptxsts;
++ hptxsts_data_t hptxsts;
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_core_global_regs_t *global_regs;
++ dwc_otg_host_global_regs_t *host_global_regs;
++
++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++ global_regs = _core_if->core_global_regs;
++ host_global_regs = _core_if->host_if->host_global_regs;
++
++ WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
++
++ if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ _halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Disable all channel interrupts except Ch Halted. The QTD
++ * and QH state associated with this transfer has been cleared
++ * (in the case of URB_DEQUEUE), so the channel needs to be
++ * shut down carefully to prevent crashes.
++ */
++ hcintmsk_data_t hcintmsk;
++ hcintmsk.d32 = 0;
++ hcintmsk.b.chhltd = 1;
++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
++
++ /*
++ * Make sure no other interrupts besides halt are currently
++ * pending. Handling another interrupt could cause a crash due
++ * to the QTD and QH state.
++ */
++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
++
++ /*
++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
++ * even if the channel was already halted for some other
++ * reason.
++ */
++ _hc->halt_status = _halt_status;
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen == 0) {
++ /*
++ * The channel is either already halted or it hasn't
++ * started yet. In DMA mode, the transfer may halt if
++ * it finishes normally or a condition occurs that
++ * requires driver intervention. Don't want to halt
++ * the channel again. In either Slave or DMA mode,
++ * it's possible that the transfer has been assigned
++ * to a channel, but not started yet when an URB is
++ * dequeued. Don't want to halt a channel that hasn't
++ * started yet.
++ */
++ return;
++ }
++ }
++
++ if (_hc->halt_pending) {
++ /*
++ * A halt has already been issued for this channel. This might
++ * happen when a transfer is aborted by a higher level in
++ * the stack.
++ */
++#ifdef DEBUG
++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
++ __func__, _hc->hc_num);
++
++/* dwc_otg_dump_global_registers(_core_if); */
++/* dwc_otg_dump_host_registers(_core_if); */
++#endif
++ return;
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++
++ if (!_core_if->dma_enable) {
++ /* Check for space in the request queue to issue the halt. */
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (nptxsts.b.nptxqspcavail == 0) {
++ hcchar.b.chen = 0;
++ }
++ } else {
++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
++ if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) {
++ hcchar.b.chen = 0;
++ }
++ }
++ }
++
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ _hc->halt_status = _halt_status;
++
++ if (hcchar.b.chen) {
++ _hc->halt_pending = 1;
++ _hc->halt_on_queue = 0;
++ } else {
++ _hc->halt_on_queue = 1;
++ }
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending);
++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue);
++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status);
++
++ return;
++}
++
++/**
++ * Clears the transfer state for a host channel. This function is normally
++ * called after a transfer is done and the host channel is being released.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _hc Identifies the host channel to clean up.
++ */
++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ dwc_otg_hc_regs_t *hc_regs;
++
++ _hc->xfer_started = 0;
++
++ /*
++ * Clear channel interrupt enables and any unhandled channel interrupt
++ * conditions.
++ */
++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++ dwc_write_reg32(&hc_regs->hcintmsk, 0);
++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
++
++#ifdef DEBUG
++ del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
++ {
++ hcchar_data_t hcchar;
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, _hc->hc_num, hcchar.d32);
++ }
++ }
++#endif
++}
++
++/**
++ * Sets the channel property that indicates in which frame a periodic transfer
++ * should occur. This is always set to the _next_ frame. This function has no
++ * effect on non-periodic transfers.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _hc Identifies the host channel to set up and its properties.
++ * @param _hcchar Current value of the HCCHAR register for the specified host
++ * channel.
++ */
++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if,
++ dwc_hc_t *_hc,
++ hcchar_data_t *_hcchar)
++{
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hfnum_data_t hfnum;
++ hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum);
++ /* 1 if _next_ frame is odd, 0 if it's even */
++ _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
++#ifdef DEBUG
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) {
++ switch (hfnum.b.frnum & 0x7) {
++ case 7:
++ _core_if->hfnum_7_samples++;
++ _core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
++ break;
++ case 0:
++ _core_if->hfnum_0_samples++;
++ _core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
++ break;
++ default:
++ _core_if->hfnum_other_samples++;
++ _core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
++ break;
++ }
++ }
++#endif
++ }
++}
++
++#ifdef DEBUG
++static void hc_xfer_timeout(unsigned long _ptr)
++{
++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr;
++ int hc_num = xfer_info->hc->hc_num;
++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
++}
++#endif
++
++/*
++ * This function does the setup for a data transfer for a host channel and
++ * starts the transfer. May be called in either Slave mode or DMA mode. In
++ * Slave mode, the caller must ensure that there is sufficient space in the
++ * request queue and Tx Data FIFO.
++ *
++ * For an OUT transfer in Slave mode, it loads a data packet into the
++ * appropriate FIFO. If necessary, additional data packets will be loaded in
++ * the Host ISR.
++ *
++ * For an IN transfer in Slave mode, a data packet is requested. The data
++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
++ * additional data packets are requested in the Host ISR.
++ *
++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
++ * register along with a packet count of 1 and the channel is enabled. This
++ * causes a single PING transaction to occur. Other fields in HCTSIZ are
++ * simply set to 0 since no data transfer occurs in this case.
++ *
++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
++ * all the information required to perform the subsequent data transfer. In
++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
++ * controller performs the entire PING protocol, then starts the data
++ * transfer.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _hc Information needed to initialize the host channel. The xfer_len
++ * value may be reduced to accommodate the max widths of the XferSize and
++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
++ * to reflect the final xfer_len value.
++ */
++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ uint16_t num_packets;
++ uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size;
++ uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count;
++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++
++ hctsiz.d32 = 0;
++
++ if (_hc->do_ping) {
++ if (!_core_if->dma_enable) {
++ dwc_otg_hc_do_ping(_core_if, _hc);
++ _hc->xfer_started = 1;
++ return;
++ } else {
++ hctsiz.b.dopng = 1;
++ }
++ }
++
++ if (_hc->do_split) {
++ num_packets = 1;
++
++ if (_hc->complete_split && !_hc->ep_is_in) {
++ /* For CSPLIT OUT Transfer, set the size to 0 so the
++ * core doesn't expect any data written to the FIFO */
++ _hc->xfer_len = 0;
++ } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) {
++ _hc->xfer_len = _hc->max_packet;
++ } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) {
++ _hc->xfer_len = 188;
++ }
++
++ hctsiz.b.xfersize = _hc->xfer_len;
++ } else {
++ /*
++ * Ensure that the transfer length and packet count will fit
++ * in the widths allocated for them in the HCTSIZn register.
++ */
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure the transfer size is no larger than one
++ * (micro)frame's worth of data. (A check was done
++ * when the periodic transfer was accepted to ensure
++ * that a (micro)frame's worth of data can be
++ * programmed into a channel.)
++ */
++ uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet;
++ if (_hc->xfer_len > max_periodic_len) {
++ _hc->xfer_len = max_periodic_len;
++ } else {
++ }
++ } else if (_hc->xfer_len > max_hc_xfer_size) {
++ /* Make sure that xfer_len is a multiple of max packet size. */
++ _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1;
++ }
++
++ if (_hc->xfer_len > 0) {
++ num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet;
++ if (num_packets > max_hc_pkt_count) {
++ num_packets = max_hc_pkt_count;
++ _hc->xfer_len = num_packets * _hc->max_packet;
++ }
++ } else {
++ /* Need 1 packet for transfer length of 0. */
++ num_packets = 1;
++ }
++
++ if (_hc->ep_is_in) {
++ /* Always program an integral # of max packets for IN transfers. */
++ _hc->xfer_len = num_packets * _hc->max_packet;
++ }
++
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure that the multi_count field matches the
++ * actual transfer length.
++ */
++ _hc->multi_count = num_packets;
++
++ }
++
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /* Set up the initial PID for the transfer. */
++ if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++ if (_hc->ep_is_in) {
++ if (_hc->multi_count == 1) {
++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ } else if (_hc->multi_count == 2) {
++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ } else {
++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
++ }
++ } else {
++ if (_hc->multi_count == 1) {
++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ } else {
++ _hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
++ }
++ }
++ } else {
++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++ }
++
++ hctsiz.b.xfersize = _hc->xfer_len;
++ }
++
++ _hc->start_pkt_count = num_packets;
++ hctsiz.b.pktcnt = num_packets;
++ hctsiz.b.pid = _hc->data_pid_start;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
++
++ if (_core_if->dma_enable) {
++#ifdef DEBUG
++if(((uint32_t)_hc->xfer_buff)%4)
++printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n");
++#endif
++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff);
++ }
++
++ /* Start the split */
++ if (_hc->do_split) {
++ hcsplt_data_t hcsplt;
++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
++ hcsplt.b.spltena = 1;
++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.multicnt = _hc->multi_count;
++ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
++#ifdef DEBUG
++ _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32;
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, _hc->hc_num, hcchar.d32);
++ }
++#endif
++
++ /* Set host channel enable after all other setup is complete. */
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ _hc->xfer_started = 1;
++ _hc->requests++;
++
++ if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) {
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(_core_if, _hc);
++ }
++
++#ifdef DEBUG
++ /* Start a timer for this transfer. */
++ _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout;
++ _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if;
++ _core_if->hc_xfer_info[_hc->hc_num].hc = _hc;
++ _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]);
++ _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10);
++ add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
++#endif
++}
++
++/**
++ * This function continues a data transfer that was started by previous call
++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
++ * sufficient space in the request queue and Tx Data FIFO. This function
++ * should only be called in Slave mode. In DMA mode, the controller acts
++ * autonomously to complete transfers programmed to a host channel.
++ *
++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
++ * if there is any data remaining to be queued. For an IN transfer, another
++ * data packet is always requested. For the SETUP phase of a control transfer,
++ * this function does nothing.
++ *
++ * @return 1 if a new request is queued, 0 if no more requests are required
++ * for this transfer.
++ */
++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
++
++ if (_hc->do_split) {
++ /* SPLITs always queue just once per channel */
++ return 0;
++ } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ /* SETUPs are queued only once since they can't be NAKed. */
++ return 0;
++ } else if (_hc->ep_is_in) {
++ /*
++ * Always queue another request for other IN transfers. If
++ * back-to-back INs are issued and NAKs are received for both,
++ * the driver may still be processing the first NAK when the
++ * second NAK is received. When the interrupt handler clears
++ * the NAK interrupt for the first NAK, the second NAK will
++ * not be seen. So we can't depend on the NAK interrupt
++ * handler to requeue a NAKed request. Instead, IN requests
++ * are issued each time this function is called. When the
++ * transfer completes, the extra requests for the channel will
++ * be flushed.
++ */
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ _hc->requests++;
++ return 1;
++ } else {
++ /* OUT transfers. */
++ if (_hc->xfer_count < _hc->xfer_len) {
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(_core_if, _hc, &hcchar);
++ }
++
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(_core_if, _hc);
++ _hc->requests++;
++ return 1;
++ } else {
++ return 0;
++ }
++ }
++}
++
++/**
++ * Starts a PING transfer. This function should only be called in Slave mode.
++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
++ */
++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
++
++ hctsiz.d32 = 0;
++ hctsiz.b.dopng = 1;
++ hctsiz.b.pktcnt = 1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++}
++
++/*
++ * This function writes a packet into the Tx FIFO associated with the Host
++ * Channel. For a channel associated with a non-periodic EP, the non-periodic
++ * Tx FIFO is written. For a channel associated with a periodic EP, the
++ * periodic Tx FIFO is written. This function should only be called in Slave
++ * mode.
++ *
++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
++ * then number of bytes written to the Tx FIFO.
++ */
++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ uint32_t i;
++ uint32_t remaining_count;
++ uint32_t byte_count;
++ uint32_t dword_count;
++
++ uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff);
++ uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num];
++
++ remaining_count = _hc->xfer_len - _hc->xfer_count;
++ if (remaining_count > _hc->max_packet) {
++ byte_count = _hc->max_packet;
++ } else {
++ byte_count = remaining_count;
++ }
++
++ dword_count = (byte_count + 3) / 4;
++
++ if ((((unsigned long)data_buff) & 0x3) == 0) {
++ /* xfer_buff is DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++) {
++ dwc_write_reg32(data_fifo, *data_buff);
++ }
++ } else {
++ /* xfer_buff is not DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++) {
++ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
++ }
++ }
++
++ _hc->xfer_count += byte_count;
++ _hc->xfer_buff += byte_count;
++}
++
++/**
++ * Gets the current USB frame number. This is the frame number from the last
++ * SOF packet.
++ */
++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if)
++{
++ dsts_data_t dsts;
++ dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts);
++
++ /* read current frame/microfreme number from DSTS register */
++ return dsts.b.soffn;
++}
++
++/**
++ * This function reads a setup packet from the Rx FIFO into the destination
++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
++ * Interrupt routine when a SETUP packet has been received in Slave mode.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _dest Destination buffer for packet data.
++ */
++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest)
++{
++ /* Get the 8 bytes of a setup transaction data */
++
++ /* Pop 2 DWORDS off the receive data FIFO into memory */
++ _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]);
++ _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]);
++ //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]);
++ //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]);
++}
++
++
++/**
++ * This function enables EP0 OUT to receive SETUP packets and configures EP0
++ * IN for transmitting packets. It is normally called when the
++ * "Enumeration Done" interrupt occurs.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP0 data.
++ */
++void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ dsts_data_t dsts;
++ depctl_data_t diepctl;
++ depctl_data_t doepctl;
++ dctl_data_t dctl ={.d32=0};
++
++ /* Read the Device Status and Endpoint 0 Control registers */
++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
++
++ /* Set the MPS of the IN EP based on the enumeration speed */
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
++ break;
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
++ break;
++ }
++
++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Enable OUT EP for receive */
++ doepctl.b.epena = 1;
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++ dctl.b.cgnpinnak = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
++}
++
++/**
++ * This function activates an EP. The Device EP control register for
++ * the EP is configured as defined in the ep structure. Note: This
++ * function is not used for EP0.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to activate.
++ */
++void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ depctl_data_t depctl;
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = {.d32=0};
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num,
++ (_ep->is_in?"IN":"OUT"));
++
++ /* Read DEPCTLn register */
++ if (_ep->is_in == 1) {
++ addr = &dev_if->in_ep_regs[_ep->num]->diepctl;
++ daintmsk.ep.in = 1<<_ep->num;
++ } else {
++ addr = &dev_if->out_ep_regs[_ep->num]->doepctl;
++ daintmsk.ep.out = 1<<_ep->num;
++ }
++
++ /* If the EP is already active don't change the EP Control
++ * register. */
++ depctl.d32 = dwc_read_reg32(addr);
++ if (!depctl.b.usbactep) {
++ depctl.b.mps = _ep->maxpacket;
++ depctl.b.eptype = _ep->type;
++ depctl.b.txfnum = _ep->tx_fifo_num;
++
++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ depctl.b.setd0pid = 1; // ???
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ depctl.b.usbactep = 1;
++
++ dwc_write_reg32(addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr));
++ }
++
++
++ /* Enable the Interrupt for this EP */
++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
++ 0, daintmsk.d32);
++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
++ _ep->stall_clear_flag = 0;
++ return;
++}
++
++/**
++ * This function deactivates an EP. This is done by clearing the USB Active
++ * EP bit in the Device EP control register. Note: This function is not used
++ * for EP0. EP0 cannot be deactivated.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to deactivate.
++ */
++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ depctl_data_t depctl ={.d32 = 0};
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = {.d32=0};
++
++ /* Read DEPCTLn register */
++ if (_ep->is_in == 1) {
++ addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl;
++ daintmsk.ep.in = 1<<_ep->num;
++ } else {
++ addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl;
++ daintmsk.ep.out = 1<<_ep->num;
++ }
++
++ depctl.b.usbactep = 0;
++ dwc_write_reg32(addr, depctl.d32);
++
++ /* Disable the Interrupt for this EP */
++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk,
++ daintmsk.d32, 0);
++
++ return;
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to start the transfer on.
++ */
++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ /** @todo Refactor this funciton to check the transfer size
++ * count value does not execed the number bits in the Transfer
++ * count register. */
++ depctl_data_t depctl;
++ deptsiz_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++#ifdef CHECK_PACKET_COUNTER_WIDTH
++ const uint32_t MAX_XFER_SIZE =
++ _core_if->core_params->max_transfer_size;
++ const uint32_t MAX_PKT_COUNT =
++ _core_if->core_params->max_packet_count;
++ uint32_t num_packets;
++ uint32_t transfer_len;
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ _core_if->dev_if->out_ep_regs[_ep->num];
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ _core_if->dev_if->in_ep_regs[_ep->num];
++ gnptxsts_data_t txstatus;
++
++ int lvl = SET_DEBUG_LEVEL(DBG_PCD);
++
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p\n",
++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
++
++ transfer_len = _ep->xfer_len - _ep->xfer_count;
++ if (transfer_len > MAX_XFER_SIZE) {
++ transfer_len = MAX_XFER_SIZE;
++ }
++ if (transfer_len == 0) {
++ num_packets = 1;
++ /* OUT EP to recieve Zero-length packet set transfer
++ * size to maxpacket size. */
++ if (!_ep->is_in) {
++ transfer_len = _ep->maxpacket;
++ }
++ } else {
++ num_packets =
++ (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket;
++ if (num_packets > MAX_PKT_COUNT) {
++ num_packets = MAX_PKT_COUNT;
++ }
++ }
++ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
++ num_packets);
++
++ deptsiz.b.xfersize = transfer_len;
++ deptsiz.b.pktcnt = num_packets;
++
++ /* IN endpoint */
++ if (_ep->is_in == 1) {
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ } else {/* OUT endpoint */
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ /* IN endpoint */
++ if (_ep->is_in == 1) {
++ txstatus.d32 =
++ dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
++ if (txstatus.b.nptxqspcavail == 0) {
++ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
++ txstatus.d32);
++ return;
++ }
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (_core_if->dma_enable) {
++ dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff);
++ } else {
++ if (_core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
++ intr_mask.d32, 0);
++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (_ep->xfer_len > 0 &&
++ _ep->type != DWC_OTG_EP_TYPE_ISOC) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = (0x1 << _ep->num);
++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
++ dtknqr4_fifoemptymsk,0, fifoemptymsk);
++ }
++ }
++ }
++ } else { /* OUT endpoint */
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++ if (_core_if->dma_enable) {
++ dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff);
++ }
++ }
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++ dwc_read_reg32(&out_regs->doepctl),
++ dwc_read_reg32(&out_regs->doeptsiz));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
++
++ SET_DEBUG_LEVEL(lvl);
++#endif
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p\n",
++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
++
++ /* IN endpoint */
++ if (_ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num];
++ gnptxsts_data_t gtxstatus;
++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
++ if (_core_if->en_multiple_tx_fifo == 0 &&
++ gtxstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
++#endif
++ //return;
++ MDELAY(100); //james
++ }
++
++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
++
++ /* Zero Length Packet? */
++ if (_ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = _ep->xfer_len;
++ deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket;
++ }
++
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (_core_if->dma_enable) {
++#if 1 // winder
++ dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder
++ dwc_write_reg32 (&(in_regs->diepdma),
++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
++#else
++ dwc_write_reg32 (&(in_regs->diepdma),
++ (uint32_t)_ep->dma_addr);
++#endif
++ } else {
++ if (_ep->type != DWC_OTG_EP_TYPE_ISOC) {
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
++ * the data will be written into the fifo by the ISR.
++ */
++ if (_core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts,
++ intr_mask.d32, 0);
++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (_ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = 1 << _ep->num;
++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
++ dtknqr4_fifoemptymsk,0,fifoemptymsk);
++ }
++ }
++ }
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ if (_core_if->dma_enable) {
++ depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl);
++ depctl.b.nextep = _ep->num;
++ dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
++
++ }
++ } else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
++
++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
++
++ /* Program the transfer size and packet count as follows:
++ *
++ * pktcnt = N
++ * xfersize = N * maxpacket
++ */
++ if (_ep->xfer_len == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = _ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
++ }
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
++ _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (_core_if->dma_enable) {
++#if 1 // winder
++ dwc_write_reg32 (&(out_regs->doepdma),
++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder
++#else
++ dwc_write_reg32 (&(out_regs->doepdma),
++ (uint32_t)_ep->dma_addr);
++#endif
++ }
++
++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ /** @todo NGS: dpid is read-only. Use setd0pid
++ * or setd1pid. */
++ if (_ep->even_odd_frame) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++ dwc_read_reg32(&out_regs->doepctl),
++ dwc_read_reg32(&out_regs->doeptsiz));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
++ }
++}
++
++
++/**
++ * This function does the setup for a data transfer for EP0 and starts
++ * the transfer. For an IN transfer, the packets will be loaded into
++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
++ * unloaded from the Rx FIFO in the ISR.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP0 data.
++ */
++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ volatile depctl_data_t depctl;
++ volatile deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len,
++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff,
++ _ep->total_len);
++ _ep->total_len = _ep->xfer_len;
++
++ /* IN endpoint */
++ if (_ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0];
++ gnptxsts_data_t gtxstatus;
++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
++ if (_core_if->en_multiple_tx_fifo == 0 &&
++ gtxstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
++ dwc_read_reg32(&in_regs->diepctl));
++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
++ deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt);
++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32);
++#endif /* */
++ printk("TX Queue or FIFO Full!!!!\n"); // test-only
++ //return;
++ MDELAY(100); //james
++ }
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /* Zero Length Packet? */
++ if (_ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ if (_ep->xfer_len > _ep->maxpacket) {
++ _ep->xfer_len = _ep->maxpacket;
++ deptsiz.b.xfersize = _ep->maxpacket;
++ }
++ else {
++ deptsiz.b.xfersize = _ep->xfer_len;
++ }
++ deptsiz.b.pktcnt = 1;
++
++ }
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (_core_if->dma_enable) {
++ dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!_core_if->dma_enable) {
++ if (_core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0);
++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32,
++ intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (_ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk |= 1 << _ep->num;
++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++
++ }
++ }
++ } else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
++
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count as follows:
++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
++ * pktcnt = N */
++ if (_ep->xfer_len == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = _ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
++ }
++
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt);
++
++ if (_core_if->dma_enable) {
++ dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
++ }
++}
++
++/**
++ * This function continues control IN transfers started by
++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
++ * bit for the packet count.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP0 data.
++ */
++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ depctl_data_t depctl;
++ deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ if (_ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ _core_if->dev_if->in_ep_regs[0];
++ gnptxsts_data_t tx_status = {.d32 = 0};
++
++ tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts );
++ /** @todo Should there be check for room in the Tx
++ * Status Queue. If not remove the code above this comment. */
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket :
++ (_ep->total_len - _ep->xfer_count);
++ deptsiz.b.pktcnt = 1;
++ _ep->xfer_len += deptsiz.b.xfersize;
++
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ _ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ dwc_write_reg32 (&(in_regs->diepdma),
++ CPHYSADDR((uint32_t)_ep->dma_addr)); // winder
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!_core_if->dma_enable) {
++ /* First clear it from GINTSTS */
++ intr_mask.b.nptxfempty = 1;
++ dwc_write_reg32( &_core_if->core_global_regs->gintsts,
++ intr_mask.d32 );
++
++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++
++ }
++
++}
++
++#ifdef DEBUG
++void dump_msg(const u8 *buf, unsigned int length)
++{
++ unsigned int start, num, i;
++ char line[52], *p;
++
++ if (length >= 512)
++ return;
++ start = 0;
++ while (length > 0) {
++ num = min(length, 16u);
++ p = line;
++ for (i = 0; i < num; ++i) {
++ if (i == 8)
++ *p++ = ' ';
++ sprintf(p, " %02x", buf[i]);
++ p += 3;
++ }
++ *p = 0;
++ DWC_PRINT( "%6x: %s\n", start, line);
++ buf += num;
++ start += num;
++ length -= num;
++ }
++}
++#else
++static inline void dump_msg(const u8 *buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function writes a packet into the Tx FIFO associated with the
++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
++ * periodic EPs the periodic Tx FIFO associated with the EP is written
++ * with all packets for the next micro-frame.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to write packet for.
++ * @param _dma Indicates if DMA is being used.
++ */
++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma)
++{
++ /**
++ * The buffer is padded to DWORD on a per packet basis in
++ * slave/dma mode if the MPS is not DWORD aligned. The last
++ * packet, if short, is also padded to a multiple of DWORD.
++ *
++ * ep->xfer_buff always starts DWORD aligned in memory and is a
++ * multiple of DWORD in length
++ *
++ * ep->xfer_len can be any number of bytes
++ *
++ * ep->xfer_count is a multiple of ep->maxpacket until the last
++ * packet
++ *
++ * FIFO access is DWORD */
++
++ uint32_t i;
++ uint32_t byte_count;
++ uint32_t dword_count;
++ uint32_t *fifo;
++ uint32_t *data_buff = (uint32_t *)_ep->xfer_buff;
++
++ //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep);
++ if (_ep->xfer_count >= _ep->xfer_len) {
++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num);
++ return;
++ }
++
++ /* Find the byte length of the packet either short packet or MPS */
++ if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) {
++ byte_count = _ep->xfer_len - _ep->xfer_count;
++ }
++ else {
++ byte_count = _ep->maxpacket;
++ }
++
++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
++ * is not a multiple of DWORD */
++ dword_count = (byte_count + 3) / 4;
++
++#ifdef VERBOSE
++ dump_msg(_ep->xfer_buff, byte_count);
++#endif
++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ /**@todo NGS Where are the Periodic Tx FIFO addresses
++ * intialized? What should this be? */
++ fifo = _core_if->data_fifo[_ep->tx_fifo_num];
++ } else {
++ fifo = _core_if->data_fifo[_ep->num];
++ }
++
++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
++ fifo, data_buff, *data_buff, byte_count);
++
++
++ if (!_dma) {
++ for (i=0; i<dword_count; i++, data_buff++) {
++ dwc_write_reg32( fifo, *data_buff );
++ }
++ }
++
++ _ep->xfer_count += byte_count;
++ _ep->xfer_buff += byte_count;
++#if 1 // winder, why do we need this??
++ _ep->dma_addr += byte_count;
++#endif
++}
++
++/**
++ * Set the EP STALL.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to set the stall on.
++ */
++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
++ (_ep->is_in?"IN":"OUT"));
++
++ if (_ep->is_in == 1) {
++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the disable and stall bits */
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ }
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++
++ } else {
++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the stall bit */
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ }
++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
++ return;
++}
++
++/**
++ * Clear the EP STALL.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _ep The EP to clear stall from.
++ */
++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
++ (_ep->is_in?"IN":"OUT"));
++
++ if (_ep->is_in == 1) {
++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
++ } else {
++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
++ }
++
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* clear the stall bits */
++ depctl.b.stall = 0;
++
++ /*
++ * USB Spec 9.4.5: For endpoints using data toggle, regardless
++ * of whether an endpoint has the Halt feature set, a
++ * ClearFeature(ENDPOINT_HALT) request always results in the
++ * data toggle being reinitialized to DATA0.
++ */
++ if (_ep->type == DWC_OTG_EP_TYPE_INTR ||
++ _ep->type == DWC_OTG_EP_TYPE_BULK) {
++ depctl.b.setd0pid = 1; /* DATA0 */
++ }
++
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
++ return;
++}
++
++/**
++ * This function reads a packet from the Rx FIFO into the destination
++ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _dest Destination buffer for the packet.
++ * @param _bytes Number of bytes to copy to the destination.
++ */
++void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if,
++ uint8_t *_dest,
++ uint16_t _bytes)
++{
++ int i;
++ int word_count = (_bytes + 3) / 4;
++
++ volatile uint32_t *fifo = _core_if->data_fifo[0];
++ uint32_t *data_buff = (uint32_t *)_dest;
++
++ /**
++ * @todo Account for the case where _dest is not dword aligned. This
++ * requires reading data from the FIFO into a uint32_t temp buffer,
++ * then moving it into the data buffer.
++ */
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
++ _core_if, _dest, _bytes);
++
++ for (i=0; i<word_count; i++, data_buff++) {
++ *data_buff = dwc_read_reg32(fifo);
++ }
++
++ return;
++}
++
++
++#ifdef DEBUG
++/**
++ * This functions reads the device registers and prints them
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Device Global Registers\n");
++ addr=&_core_if->dev_if->dev_global_regs->dcfg;
++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->dctl;
++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->dsts;
++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->diepmsk;
++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->doepmsk;
++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->daint;
++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->dev_global_regs->dtknqr1;
++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ if (_core_if->hwcfg2.b.dev_token_q_depth > 6) {
++ addr=&_core_if->dev_if->dev_global_regs->dtknqr2;
++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
++ (uint32_t)addr,dwc_read_reg32(addr));
++ }
++
++ addr=&_core_if->dev_if->dev_global_regs->dvbusdis;
++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ addr=&_core_if->dev_if->dev_global_regs->dvbuspulse;
++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
++ (uint32_t)addr,dwc_read_reg32(addr));
++
++ if (_core_if->hwcfg2.b.dev_token_q_depth > 14) {
++ addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
++ DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n",
++ (uint32_t)addr, dwc_read_reg32(addr));
++ }
++
++ if (_core_if->hwcfg2.b.dev_token_q_depth > 22) {
++ addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr,
++ dwc_read_reg32(addr));
++ }
++ for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) {
++ DWC_PRINT("Device IN EP %d Registers\n", i);
++ addr=&_core_if->dev_if->in_ep_regs[i]->diepctl;
++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->in_ep_regs[i]->diepint;
++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz;
++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->in_ep_regs[i]->diepdma;
++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts;
++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
++ dwc_read_reg32(addr));
++ }
++ for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) {
++ DWC_PRINT("Device OUT EP %d Registers\n", i);
++ addr=&_core_if->dev_if->out_ep_regs[i]->doepctl;
++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->out_ep_regs[i]->doepfn;
++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->out_ep_regs[i]->doepint;
++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz;
++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->dev_if->out_ep_regs[i]->doepdma;
++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ }
++ return;
++}
++
++/**
++ * This function reads the host registers and prints them
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Host Global Registers\n");
++ addr=&_core_if->host_if->host_global_regs->hcfg;
++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->host_global_regs->hfir;
++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->host_global_regs->hfnum;
++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->host_global_regs->hptxsts;
++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->host_global_regs->haint;
++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->host_global_regs->haintmsk;
++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=_core_if->host_if->hprt0;
++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ for (i=0; i<_core_if->core_params->host_channels; i++) {
++ DWC_PRINT("Host Channel %d Specific Registers\n", i);
++ addr=&_core_if->host_if->hc_regs[i]->hcchar;
++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->hc_regs[i]->hcsplt;
++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->hc_regs[i]->hcint;
++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->hc_regs[i]->hcintmsk;
++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->hc_regs[i]->hctsiz;
++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->host_if->hc_regs[i]->hcdma;
++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ }
++ return;
++}
++
++/**
++ * This function reads the core global registers and prints them
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Core Global Registers\n");
++ addr=&_core_if->core_global_regs->gotgctl;
++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gotgint;
++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gahbcfg;
++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gusbcfg;
++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->grstctl;
++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gintsts;
++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gintmsk;
++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->grxstsr;
++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ //addr=&_core_if->core_global_regs->grxstsp;
++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->grxfsiz;
++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gnptxfsiz;
++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gnptxsts;
++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gi2cctl;
++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gpvndctl;
++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->ggpio;
++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->guid;
++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->gsnpsid;
++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->ghwcfg1;
++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->ghwcfg2;
++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->ghwcfg3;
++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->ghwcfg4;
++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&_core_if->core_global_regs->hptxfsiz;
++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i];
++ DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr));
++ }
++
++}
++#endif
++
++/**
++ * Flush a Tx FIFO.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _num Tx FIFO to flush.
++ */
++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
++ const int _num )
++{
++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num);
++
++ greset.b.txfflsh = 1;
++ greset.b.txfnum = _num;
++ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
++
++ do {
++ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
++ if (++count > 10000){
++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
++ __func__, greset.d32,
++ dwc_read_reg32( &global_regs->gnptxsts));
++ break;
++ }
++
++ udelay(1);
++ } while (greset.b.txfflsh == 1);
++ /* Wait for 3 PHY Clocks*/
++ UDELAY(1);
++}
++
++/**
++ * Flush Rx FIFO.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if )
++{
++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
++ /*
++ *
++ */
++ greset.b.rxfflsh = 1;
++ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
++
++ do {
++ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
++ if (++count > 10000){
++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ } while (greset.b.rxfflsh == 1);
++ /* Wait for 3 PHY Clocks*/
++ UDELAY(1);
++}
++
++/**
++ * Do core a soft reset of the core. Be careful with this because it
++ * resets all the internal state machines of the core.
++ */
++
++void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
++ /* Wait for AHB master IDLE state. */
++ do {
++ UDELAY(10);
++ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
++ if (++count > 100000){
++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__,
++ greset.d32, greset.b.ahbidle);
++ return;
++ }
++ } while (greset.b.ahbidle == 0);
++
++// winder add.
++#if 1
++ /* Note: Actually, I don't exactly why we need to put delay here. */
++ MDELAY(100);
++#endif
++ /* Core Soft Reset */
++ count = 0;
++ greset.b.csftrst = 1;
++ dwc_write_reg32( &global_regs->grstctl, greset.d32 );
++// winder add.
++#if 1
++ /* Note: Actually, I don't exactly why we need to put delay here. */
++ MDELAY(100);
++#endif
++ do {
++ greset.d32 = dwc_read_reg32( &global_regs->grstctl);
++ if (++count > 10000){
++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ udelay(1);
++ } while (greset.b.csftrst == 1);
++ /* Wait for 3 PHY Clocks*/
++ //DWC_PRINT("100ms\n");
++ MDELAY(100);
++}
++
++
++
++/**
++ * Register HCD callbacks. The callbacks are used to start and stop
++ * the HCD for interrupt processing.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _cb the HCD callback structure.
++ * @param _p pointer to be passed to callback function (usb_hcd*).
++ */
++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p)
++{
++ _core_if->hcd_cb = _cb;
++ _cb->p = _p;
++}
++
++/**
++ * Register PCD callbacks. The callbacks are used to start and stop
++ * the PCD for interrupt processing.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ * @param _cb the PCD callback structure.
++ * @param _p pointer to be passed to callback function (pcd*).
++ */
++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p)
++{
++ _core_if->pcd_cb = _cb;
++ _cb->p = _p;
++}
++
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_cil.h
+@@ -0,0 +1,911 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 631780 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CIL_H__)
++#define __DWC_CIL_H__
++
++#include "dwc_otg_plat.h"
++
++#include "dwc_otg_regs.h"
++#ifdef DEBUG
++#include "linux/timer.h"
++#endif
++
++/* the OTG capabilities. */
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++/* the maximum speed of operation in host and device mode. */
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++/* the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. */
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++/* the type of PHY interface to use. */
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++/* whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy. */
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++/* EP type. */
++
++/**
++ * @file
++ * This file contains the interface to the Core Interface Layer.
++ */
++
++/**
++ * The <code>dwc_ep</code> structure represents the state of a single
++ * endpoint when acting in device mode. It contains the data items
++ * needed for an endpoint to be activated and transfer packets.
++ */
++typedef struct dwc_ep {
++ /** EP number used for register address lookup */
++ uint8_t num;
++ /** EP direction 0 = OUT */
++ unsigned is_in : 1;
++ /** EP active. */
++ unsigned active : 1;
++
++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
++ unsigned tx_fifo_num : 4;
++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
++ unsigned type : 2;
++#define DWC_OTG_EP_TYPE_CONTROL 0
++#define DWC_OTG_EP_TYPE_ISOC 1
++#define DWC_OTG_EP_TYPE_BULK 2
++#define DWC_OTG_EP_TYPE_INTR 3
++
++ /** DATA start PID for INTR and BULK EP */
++ unsigned data_pid_start : 1;
++ /** Frame (even/odd) for ISOC EP */
++ unsigned even_odd_frame : 1;
++ /** Max Packet bytes */
++ unsigned maxpacket : 11;
++
++ /** @name Transfer state */
++ /** @{ */
++
++ /**
++ * Pointer to the beginning of the transfer buffer -- do not modify
++ * during transfer.
++ */
++
++ uint32_t dma_addr;
++
++ uint8_t *start_xfer_buff;
++ /** pointer to the transfer buffer */
++ uint8_t *xfer_buff;
++ /** Number of bytes to transfer */
++ unsigned xfer_len : 19;
++ /** Number of bytes transferred. */
++ unsigned xfer_count : 19;
++ /** Sent ZLP */
++ unsigned sent_zlp : 1;
++ /** Total len for control transfer */
++ unsigned total_len : 19;
++
++ /** stall clear flag */
++ unsigned stall_clear_flag : 1;
++
++ /** @} */
++} dwc_ep_t;
++
++/*
++ * Reasons for halting a host channel.
++ */
++typedef enum dwc_otg_halt_status {
++ DWC_OTG_HC_XFER_NO_HALT_STATUS,
++ DWC_OTG_HC_XFER_COMPLETE,
++ DWC_OTG_HC_XFER_URB_COMPLETE,
++ DWC_OTG_HC_XFER_ACK,
++ DWC_OTG_HC_XFER_NAK,
++ DWC_OTG_HC_XFER_NYET,
++ DWC_OTG_HC_XFER_STALL,
++ DWC_OTG_HC_XFER_XACT_ERR,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN,
++ DWC_OTG_HC_XFER_BABBLE_ERR,
++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
++ DWC_OTG_HC_XFER_AHB_ERR,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
++ DWC_OTG_HC_XFER_URB_DEQUEUE
++} dwc_otg_halt_status_e;
++
++/**
++ * Host channel descriptor. This structure represents the state of a single
++ * host channel when acting in host mode. It contains the data items needed to
++ * transfer packets to an endpoint via a host channel.
++ */
++typedef struct dwc_hc {
++ /** Host channel number used for register address lookup */
++ uint8_t hc_num;
++
++ /** Device to access */
++ unsigned dev_addr : 7;
++
++ /** EP to access */
++ unsigned ep_num : 4;
++
++ /** EP direction. 0: OUT, 1: IN */
++ unsigned ep_is_in : 1;
++
++ /**
++ * EP speed.
++ * One of the following values:
++ * - DWC_OTG_EP_SPEED_LOW
++ * - DWC_OTG_EP_SPEED_FULL
++ * - DWC_OTG_EP_SPEED_HIGH
++ */
++ unsigned speed : 2;
++#define DWC_OTG_EP_SPEED_LOW 0
++#define DWC_OTG_EP_SPEED_FULL 1
++#define DWC_OTG_EP_SPEED_HIGH 2
++
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - DWC_OTG_EP_TYPE_CONTROL: 0
++ * - DWC_OTG_EP_TYPE_ISOC: 1
++ * - DWC_OTG_EP_TYPE_BULK: 2
++ * - DWC_OTG_EP_TYPE_INTR: 3
++ */
++ unsigned ep_type : 2;
++
++ /** Max packet size in bytes */
++ unsigned max_packet : 11;
++
++ /**
++ * PID for initial transaction.
++ * 0: DATA0,<br>
++ * 1: DATA2,<br>
++ * 2: DATA1,<br>
++ * 3: MDATA (non-Control EP),
++ * SETUP (Control EP)
++ */
++ unsigned data_pid_start : 2;
++#define DWC_OTG_HC_PID_DATA0 0
++#define DWC_OTG_HC_PID_DATA2 1
++#define DWC_OTG_HC_PID_DATA1 2
++#define DWC_OTG_HC_PID_MDATA 3
++#define DWC_OTG_HC_PID_SETUP 3
++
++ /** Number of periodic transactions per (micro)frame */
++ unsigned multi_count: 2;
++
++ /** @name Transfer State */
++ /** @{ */
++
++ /** Pointer to the current transfer buffer position. */
++ uint8_t *xfer_buff;
++ /** Total number of bytes to transfer. */
++ uint32_t xfer_len;
++ /** Number of bytes transferred so far. */
++ uint32_t xfer_count;
++ /** Packet count at start of transfer.*/
++ uint16_t start_pkt_count;
++
++ /**
++ * Flag to indicate whether the transfer has been started. Set to 1 if
++ * it has been started, 0 otherwise.
++ */
++ uint8_t xfer_started;
++
++ /**
++ * Set to 1 to indicate that a PING request should be issued on this
++ * channel. If 0, process normally.
++ */
++ uint8_t do_ping;
++
++ /**
++ * Set to 1 to indicate that the error count for this transaction is
++ * non-zero. Set to 0 if the error count is 0.
++ */
++ uint8_t error_state;
++
++ /**
++ * Set to 1 to indicate that this channel should be halted the next
++ * time a request is queued for the channel. This is necessary in
++ * slave mode if no request queue space is available when an attempt
++ * is made to halt the channel.
++ */
++ uint8_t halt_on_queue;
++
++ /**
++ * Set to 1 if the host channel has been halted, but the core is not
++ * finished flushing queued requests. Otherwise 0.
++ */
++ uint8_t halt_pending;
++
++ /**
++ * Reason for halting the host channel.
++ */
++ dwc_otg_halt_status_e halt_status;
++
++ /*
++ * Split settings for the host channel
++ */
++ uint8_t do_split; /**< Enable split for the channel */
++ uint8_t complete_split; /**< Enable complete split */
++ uint8_t hub_addr; /**< Address of high speed hub */
++
++ uint8_t port_addr; /**< Port of the low/full speed device */
++ /** Split transaction position
++ * One of the following values:
++ * - DWC_HCSPLIT_XACTPOS_MID
++ * - DWC_HCSPLIT_XACTPOS_BEGIN
++ * - DWC_HCSPLIT_XACTPOS_END
++ * - DWC_HCSPLIT_XACTPOS_ALL */
++ uint8_t xact_pos;
++
++ /** Set when the host channel does a short read. */
++ uint8_t short_read;
++
++ /**
++ * Number of requests issued for this channel since it was assigned to
++ * the current transfer (not counting PINGs).
++ */
++ uint8_t requests;
++
++ /**
++ * Queue Head for the transfer being processed by this channel.
++ */
++ struct dwc_otg_qh *qh;
++
++ /** @} */
++
++ /** Entry in list of host channels. */
++ struct list_head hc_list_entry;
++} dwc_hc_t;
++
++/**
++ * The following parameters may be specified when starting the module. These
++ * parameters define how the DWC_otg controller should be configured.
++ * Parameter values are passed to the CIL initialization function
++ * dwc_otg_cil_init.
++ */
++
++typedef struct dwc_otg_core_params
++{
++ int32_t opt;
++//#define dwc_param_opt_default 1
++ /**
++ * Specifies the OTG capabilities. The driver will automatically
++ * detect the value for this parameter if none is specified.
++ * 0 - HNP and SRP capable (default)
++ * 1 - SRP Only capable
++ * 2 - No HNP/SRP capable
++ */
++ int32_t otg_cap;
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
++ /**
++ * Specifies whether to use slave or DMA mode for accessing the data
++ * FIFOs. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - Slave
++ * 1 - DMA (default, if available)
++ */
++ int32_t dma_enable;
++//#define dwc_param_dma_enable_default 1
++ /** The DMA Burst size (applicable only for External DMA
++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ */
++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
++//#define dwc_param_dma_burst_size_default 32
++ /**
++ * Specifies the maximum speed of operation in host and device mode.
++ * The actual speed depends on the speed of the attached device and
++ * the value of phy_type. The actual speed depends on the speed of the
++ * attached device.
++ * 0 - High Speed (default)
++ * 1 - Full Speed
++ */
++ int32_t speed;
++//#define dwc_param_speed_default 0
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++
++ /** Specifies whether low power mode is supported when attached
++ * to a Full Speed or Low Speed device in host mode.
++ * 0 - Don't support low power mode (default)
++ * 1 - Support low power mode
++ */
++ int32_t host_support_fs_ls_low_power;
++//#define dwc_param_host_support_fs_ls_low_power_default 0
++ /** Specifies the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. This parameter is applicable only if
++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
++ * then defaults to 6 MHZ otherwise 48 MHZ.
++ *
++ * 0 - 48 MHz
++ * 1 - 6 MHz
++ */
++ int32_t host_ls_low_power_phy_clk;
++//#define dwc_param_host_ls_low_power_phy_clk_default 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++ /**
++ * 0 - Use cC FIFO size parameters
++ * 1 - Allow dynamic FIFO sizing (default)
++ */
++ int32_t enable_dynamic_fifo;
++//#define dwc_param_enable_dynamic_fifo_default 1
++ /** Total number of 4-byte words in the data FIFO memory. This
++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++ * Tx FIFOs.
++ * 32 to 32768 (default 8192)
++ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ */
++ int32_t data_fifo_size;
++//#define dwc_param_data_fifo_size_default 8192
++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1064)
++ */
++ int32_t dev_rx_fifo_size;
++//#define dwc_param_dev_rx_fifo_size_default 1064
++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++ * when dynamic FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t dev_nperio_tx_fifo_size;
++//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++//#define dwc_param_dev_perio_tx_fifo_size_default 256
++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_rx_fifo_size;
++//#define dwc_param_host_rx_fifo_size_default 1024
++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++ * when Dynamic FIFO sizing is enabled in the core.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_nperio_tx_fifo_size;
++//#define dwc_param_host_nperio_tx_fifo_size_default 1024
++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_perio_tx_fifo_size;
++//#define dwc_param_host_perio_tx_fifo_size_default 1024
++ /** The maximum transfer size supported in bytes.
++ * 2047 to 65,535 (default 65,535)
++ */
++ int32_t max_transfer_size;
++//#define dwc_param_max_transfer_size_default 65535
++ /** The maximum number of packets in a transfer.
++ * 15 to 511 (default 511)
++ */
++ int32_t max_packet_count;
++//#define dwc_param_max_packet_count_default 511
++ /** The number of host channel registers to use.
++ * 1 to 16 (default 12)
++ * Note: The FPGA configuration supports a maximum of 12 host channels.
++ */
++ int32_t host_channels;
++//#define dwc_param_host_channels_default 12
++ /** The number of endpoints in addition to EP0 available for device
++ * mode operations.
++ * 1 to 15 (default 6 IN and OUT)
++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++ * endpoints in addition to EP0.
++ */
++ int32_t dev_endpoints;
++//#define dwc_param_dev_endpoints_default 6
++ /**
++ * Specifies the type of PHY interface to use. By default, the driver
++ * will automatically detect the phy_type.
++ *
++ * 0 - Full Speed PHY
++ * 1 - UTMI+ (default)
++ * 2 - ULPI
++ */
++ int32_t phy_type;
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++//#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++ /**
++ * Specifies the UTMI+ Data Width. This parameter is
++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++ * PHY_TYPE, this parameter indicates the data width between
++ * the MAC and the ULPI Wrapper.) Also, this parameter is
++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++ * to "8 and 16 bits", meaning that the core has been
++ * configured to work at either data path width.
++ *
++ * 8 or 16 bits (default 16)
++ */
++ int32_t phy_utmi_width;
++//#define dwc_param_phy_utmi_width_default 16
++ /**
++ * Specifies whether the ULPI operates at double or single
++ * data rate. This parameter is only applicable if PHY_TYPE is
++ * ULPI.
++ *
++ * 0 - single data rate ULPI interface with 8 bit wide data
++ * bus (default)
++ * 1 - double data rate ULPI interface with 4 bit wide data
++ * bus
++ */
++ int32_t phy_ulpi_ddr;
++//#define dwc_param_phy_ulpi_ddr_default 0
++ /**
++ * Specifies whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy.
++ */
++ int32_t phy_ulpi_ext_vbus;
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++//#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++ /**
++ * Specifies whether to use the I2Cinterface for full speed PHY. This
++ * parameter is only applicable if PHY_TYPE is FS.
++ * 0 - No (default)
++ * 1 - Yes
++ */
++ int32_t i2c_enable;
++//#define dwc_param_i2c_enable_default 0
++
++ int32_t ulpi_fs_ls;
++//#define dwc_param_ulpi_fs_ls_default 0
++
++ int32_t ts_dline;
++//#define dwc_param_ts_dline_default 0
++
++ /**
++ * Specifies whether dedicated transmit FIFOs are
++ * enabled for non periodic IN endpoints in device mode
++ * 0 - No
++ * 1 - Yes
++ */
++ int32_t en_multiple_tx_fifo;
++#define dwc_param_en_multiple_tx_fifo_default 1
++
++ /** Number of 4-byte words in each of the Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
++#define dwc_param_dev_tx_fifo_size_default 256
++
++ /** Thresholding enable flag-
++ * bit 0 - enable non-ISO Tx thresholding
++ * bit 1 - enable ISO Tx thresholding
++ * bit 2 - enable Rx thresholding
++ */
++ uint32_t thr_ctl;
++#define dwc_param_thr_ctl_default 0
++
++ /** Thresholding length for Tx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t tx_thr_length;
++#define dwc_param_tx_thr_length_default 64
++
++ /** Thresholding length for Rx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t rx_thr_length;
++#define dwc_param_rx_thr_length_default 64
++} dwc_otg_core_params_t;
++
++#ifdef DEBUG
++struct dwc_otg_core_if;
++typedef struct hc_xfer_info
++{
++ struct dwc_otg_core_if *core_if;
++ dwc_hc_t *hc;
++} hc_xfer_info_t;
++#endif
++
++/**
++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
++ * the DWC_otg controller acting in either host or device mode. It
++ * represents the programming view of the controller as a whole.
++ */
++typedef struct dwc_otg_core_if
++{
++ /** Parameters that define how the core should be configured.*/
++ dwc_otg_core_params_t *core_params;
++
++ /** Core Global registers starting at offset 000h. */
++ dwc_otg_core_global_regs_t *core_global_regs;
++
++ /** Device-specific information */
++ dwc_otg_dev_if_t *dev_if;
++ /** Host-specific information */
++ dwc_otg_host_if_t *host_if;
++
++ /*
++ * Set to 1 if the core PHY interface bits in USBCFG have been
++ * initialized.
++ */
++ uint8_t phy_init_done;
++
++ /*
++ * SRP Success flag, set by srp success interrupt in FS I2C mode
++ */
++ uint8_t srp_success;
++ uint8_t srp_timer_started;
++
++ /* Common configuration information */
++ /** Power and Clock Gating Control Register */
++ volatile uint32_t *pcgcctl;
++#define DWC_OTG_PCGCCTL_OFFSET 0xE00
++
++ /** Push/pop addresses for endpoints or host channels.*/
++ uint32_t *data_fifo[MAX_EPS_CHANNELS];
++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
++#define DWC_OTG_DATA_FIFO_SIZE 0x1000
++
++ /** Total RAM for FIFOs (Bytes) */
++ uint16_t total_fifo_size;
++ /** Size of Rx FIFO (Bytes) */
++ uint16_t rx_fifo_size;
++ /** Size of Non-periodic Tx FIFO (Bytes) */
++ uint16_t nperio_tx_fifo_size;
++
++ /** 1 if DMA is enabled, 0 otherwise. */
++ uint8_t dma_enable;
++
++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
++ uint8_t en_multiple_tx_fifo;
++
++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
++ * process of being queued */
++ uint8_t queuing_high_bandwidth;
++
++ /** Hardware Configuration -- stored here for convenience.*/
++ hwcfg1_data_t hwcfg1;
++ hwcfg2_data_t hwcfg2;
++ hwcfg3_data_t hwcfg3;
++ hwcfg4_data_t hwcfg4;
++
++ /** The operational State, during transations
++ * (a_host>>a_peripherial and b_device=>b_host) this may not
++ * match the core but allows the software to determine
++ * transitions.
++ */
++ uint8_t op_state;
++
++ /**
++ * Set to 1 if the HCD needs to be restarted on a session request
++ * interrupt. This is required if no connector ID status change has
++ * occurred since the HCD was last disconnected.
++ */
++ uint8_t restart_hcd_on_session_req;
++
++ /** HCD callbacks */
++ /** A-Device is a_host */
++#define A_HOST (1)
++ /** A-Device is a_suspend */
++#define A_SUSPEND (2)
++ /** A-Device is a_peripherial */
++#define A_PERIPHERAL (3)
++ /** B-Device is operating as a Peripheral. */
++#define B_PERIPHERAL (4)
++ /** B-Device is operating as a Host. */
++#define B_HOST (5)
++
++ /** HCD callbacks */
++ struct dwc_otg_cil_callbacks *hcd_cb;
++ /** PCD callbacks */
++ struct dwc_otg_cil_callbacks *pcd_cb;
++
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t p_tx_msk;
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t tx_msk;
++
++#ifdef DEBUG
++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
++
++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
++
++#if 1 // winder
++ uint32_t hfnum_7_samples;
++ uint32_t hfnum_7_frrem_accum;
++ uint32_t hfnum_0_samples;
++ uint32_t hfnum_0_frrem_accum;
++ uint32_t hfnum_other_samples;
++ uint32_t hfnum_other_frrem_accum;
++#else
++ uint32_t hfnum_7_samples;
++ uint64_t hfnum_7_frrem_accum;
++ uint32_t hfnum_0_samples;
++ uint64_t hfnum_0_frrem_accum;
++ uint32_t hfnum_other_samples;
++ uint64_t hfnum_other_frrem_accum;
++#endif
++ resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */
++#endif
++
++} dwc_otg_core_if_t;
++
++/*
++ * The following functions support initialization of the CIL driver component
++ * and the DWC_otg controller.
++ */
++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
++ dwc_otg_core_params_t *_core_params);
++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
++
++/** @name Device CIL Functions
++ * The following functions support managing the DWC_otg controller in device
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
++/**@}*/
++
++/** @name Host CIL Functions
++ * The following functions support managing the DWC_otg controller in host
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
++ dwc_hc_t *_hc,
++ dwc_otg_halt_status_e _halt_status);
++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
++
++/**
++ * This function Reads HPRT0 in preparation to modify. It keeps the
++ * WC bits 0 so that if they are read as 1, they won't clear when you
++ * write it back
++ */
++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
++ hprt0.b.prtena = 0;
++ hprt0.b.prtconndet = 0;
++ hprt0.b.prtenchng = 0;
++ hprt0.b.prtovrcurrchng = 0;
++ return hprt0.d32;
++}
++
++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
++/**@}*/
++
++/** @name Common CIL Functions
++ * The following functions support managing the DWC_otg controller in either
++ * device or host mode.
++ */
++/**@{*/
++
++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
++ uint8_t *dest,
++ uint16_t bytes);
++
++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
++
++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
++ const int _num );
++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
++
++#define NP_TXFIFO_EMPTY -1
++#define MAX_NP_TXREQUEST_Q_SLOTS 8
++/**
++ * This function returns the endpoint number of the request at
++ * the top of non-periodic TX FIFO, or -1 if the request FIFO is
++ * empty.
++ */
++static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) {
++ gnptxsts_data_t txstatus = {.d32 = 0};
++
++ txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
++ return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ?
++ -1 : txstatus.b.nptxqtop_chnep);
++}
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) {
++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
++}
++
++/**
++ * This function returns the OTG Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) {
++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the IN endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) {
++ uint32_t v;
++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
++ return (v & 0xffff);
++
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the OUT endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) {
++ uint32_t v;
++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk);
++ return ((v & 0xffff0000) >> 16);
++}
++
++/**
++ * This function returns the Device IN EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if,
++ dwc_ep_t *_ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ uint32_t v, msk, emp;
++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
++ msk |= ((emp >> _ep->num) & 0x1) << 7;
++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk;
++/*
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ uint32_t v;
++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) &
++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++*/
++ return v;
++}
++/**
++ * This function returns the Device OUT EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
++ dwc_ep_t *_ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ uint32_t v;
++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) &
++ dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
++ return v;
++}
++
++/**
++ * This function returns the Host All Channel Interrupt register
++ */
++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
++}
++
++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
++}
++
++
++/**
++ * This function returns the mode of the operation, host or device.
++ *
++ * @return 0 - Device Mode, 1 - Host Mode
++ */
++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) {
++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
++}
++
++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
++}
++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
++}
++
++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
++
++
++/**@}*/
++
++/**
++ * DWC_otg CIL callback structure. This structure allows the HCD and
++ * PCD to register functions used for starting and stopping the PCD
++ * and HCD for role change on for a DRD.
++ */
++typedef struct dwc_otg_cil_callbacks
++{
++ /** Start function for role change */
++ int (*start) (void *_p);
++ /** Stop Function for role change */
++ int (*stop) (void *_p);
++ /** Disconnect Function for role change */
++ int (*disconnect) (void *_p);
++ /** Resume/Remote wakeup Function */
++ int (*resume_wakeup) (void *_p);
++ /** Suspend function */
++ int (*suspend) (void *_p);
++ /** Session Start (SRP) */
++ int (*session_start) (void *_p);
++ /** Pointer passed to start() and stop() */
++ void *p;
++} dwc_otg_cil_callbacks_t;
++
++
++
++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p);
++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p);
++
++
++#endif
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_cil_ifx.h
+@@ -0,0 +1,58 @@
++/******************************************************************************
++**
++** FILE NAME : dwc_otg_cil_ifx.h
++** PROJECT : Twinpass/Danube
++** MODULES : DWC OTG USB
++**
++** DATE : 07 Sep. 2007
++** AUTHOR : Sung Winder
++** DESCRIPTION : Default param value.
++** COPYRIGHT : Copyright (c) 2007
++** Infineon Technologies AG
++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
++** Hsin-chu City, 300 Taiwan.
++**
++** This program is free software; you can redistribute it and/or modify
++** it under the terms of the GNU General Public License as published by
++** the Free Software Foundation; either version 2 of the License, or
++** (at your option) any later version.
++**
++** HISTORY
++** $Date $Author $Comment
++** 12 April 2007 Sung Winder Initiate Version
++*******************************************************************************/
++#if !defined(__DWC_OTG_CIL_IFX_H__)
++#define __DWC_OTG_CIL_IFX_H__
++
++/* ================ Default param value ================== */
++#define dwc_param_opt_default 1
++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
++#define dwc_param_dma_enable_default 1
++#define dwc_param_dma_burst_size_default 32
++#define dwc_param_speed_default DWC_SPEED_PARAM_HIGH
++#define dwc_param_host_support_fs_ls_low_power_default 0
++#define dwc_param_host_ls_low_power_phy_clk_default DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
++#define dwc_param_enable_dynamic_fifo_default 1
++#define dwc_param_data_fifo_size_default 2048
++#define dwc_param_dev_rx_fifo_size_default 1024
++#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++#define dwc_param_dev_perio_tx_fifo_size_default 768
++#define dwc_param_host_rx_fifo_size_default 640
++#define dwc_param_host_nperio_tx_fifo_size_default 640
++#define dwc_param_host_perio_tx_fifo_size_default 768
++#define dwc_param_max_transfer_size_default 65535
++#define dwc_param_max_packet_count_default 511
++#define dwc_param_host_channels_default 16
++#define dwc_param_dev_endpoints_default 6
++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++#define dwc_param_phy_utmi_width_default 16
++#define dwc_param_phy_ulpi_ddr_default 0
++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++#define dwc_param_i2c_enable_default 0
++#define dwc_param_ulpi_fs_ls_default 0
++#define dwc_param_ts_dline_default 0
++
++/* ======================================================= */
++
++#endif // __DWC_OTG_CIL_IFX_H__
++
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c
+@@ -0,0 +1,708 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 553126 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * This file contains the Common Interrupt handlers.
++ */
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++#ifdef DEBUG
++inline const char *op_state_str( dwc_otg_core_if_t *_core_if )
++{
++ return (_core_if->op_state==A_HOST?"a_host":
++ (_core_if->op_state==A_SUSPEND?"a_suspend":
++ (_core_if->op_state==A_PERIPHERAL?"a_peripheral":
++ (_core_if->op_state==B_PERIPHERAL?"b_peripheral":
++ (_core_if->op_state==B_HOST?"b_host":
++ "unknown")))));
++}
++#endif
++
++/** This function will log a debug message
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *_core_if)
++{
++ gintsts_data_t gintsts;
++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
++ dwc_otg_mode(_core_if) ? "Host" : "Device");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.modemismatch = 1;
++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/** Start the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_start( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->hcd_cb && _core_if->hcd_cb->start) {
++ _core_if->hcd_cb->start( _core_if->hcd_cb->p );
++ }
++}
++/** Stop the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_stop( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->hcd_cb && _core_if->hcd_cb->stop) {
++ _core_if->hcd_cb->stop( _core_if->hcd_cb->p );
++ }
++}
++/** Disconnect the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_disconnect( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) {
++ _core_if->hcd_cb->disconnect( _core_if->hcd_cb->p );
++ }
++}
++/** Inform the HCD the a New Session has begun. Helper function for
++ * using the HCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_session_start( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) {
++ _core_if->hcd_cb->session_start( _core_if->hcd_cb->p );
++ }
++}
++
++/** Start the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_start( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->pcd_cb && _core_if->pcd_cb->start ) {
++ _core_if->pcd_cb->start( _core_if->pcd_cb->p );
++ }
++}
++/** Stop the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_stop( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->pcd_cb && _core_if->pcd_cb->stop ) {
++ _core_if->pcd_cb->stop( _core_if->pcd_cb->p );
++ }
++}
++/** Suspend the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_suspend( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->pcd_cb && _core_if->pcd_cb->suspend ) {
++ _core_if->pcd_cb->suspend( _core_if->pcd_cb->p );
++ }
++}
++/** Resume the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_resume( dwc_otg_core_if_t *_core_if )
++{
++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup ) {
++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
++ }
++}
++
++/**
++ * This function handles the OTG Interrupts. It reads the OTG
++ * Interrupt Register (GOTGINT) to determine what interrupt has
++ * occurred.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *_core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ _core_if->core_global_regs;
++ gotgint_data_t gotgint;
++ gotgctl_data_t gotgctl;
++ gintmsk_data_t gintmsk;
++
++ gotgint.d32 = dwc_read_reg32( &global_regs->gotgint);
++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
++ op_state_str(_core_if));
++ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 );
++
++ if (gotgint.b.sesenddet) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session End Detected++ (%s)\n",
++ op_state_str(_core_if));
++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
++
++ if (_core_if->op_state == B_HOST) {
++ pcd_start( _core_if );
++ _core_if->op_state = B_PERIPHERAL;
++ } else {
++ /* If not B_HOST and Device HNP still set. HNP
++ * Did not succeed!*/
++ if (gotgctl.b.devhnpen) {
++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
++ DWC_ERROR( "Device Not Connected/Responding!\n" );
++ }
++
++ /* If Session End Detected the B-Cable has
++ * been disconnected. */
++ /* Reset PCD and Gadget driver to a
++ * clean state. */
++ pcd_stop(_core_if);
++ }
++ gotgctl.d32 = 0;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32( &global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ if (gotgint.b.sesreqsucstschng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session Reqeust Success Status Change++\n");
++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl);
++ if (gotgctl.b.sesreqscs) {
++ if ((_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (_core_if->core_params->i2c_enable)) {
++ _core_if->srp_success = 1;
++ }
++ else {
++ pcd_resume( _core_if );
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ dwc_modify_reg32( &global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ }
++ }
++ if (gotgint.b.hstnegsucstschng) {
++ /* Print statements during the HNP interrupt handling
++ * can cause it to fail.*/
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ if (gotgctl.b.hstnegscs) {
++ if (dwc_otg_is_host_mode(_core_if) ) {
++ _core_if->op_state = B_HOST;
++ /*
++ * Need to disable SOF interrupt immediately.
++ * When switching from device to host, the PCD
++ * interrupt handler won't handle the
++ * interrupt if host mode is already set. The
++ * HCD interrupt handler won't get called if
++ * the HCD state is HALT. This means that the
++ * interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++ pcd_stop(_core_if);
++ /*
++ * Initialize the Core for Host mode.
++ */
++ hcd_start( _core_if );
++ _core_if->op_state = B_HOST;
++ }
++ } else {
++ gotgctl.d32 = 0;
++ gotgctl.b.hnpreq = 1;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32( &global_regs->gotgctl,
++ gotgctl.d32, 0);
++ DWC_DEBUGPL( DBG_ANY, "HNP Failed\n");
++ DWC_ERROR( "Device Not Connected/Responding\n" );
++ }
++ }
++ if (gotgint.b.hstnegdet) {
++ /* The disconnect interrupt is set at the same time as
++ * Host Negotiation Detected. During the mode
++ * switch all interrupts are cleared so the disconnect
++ * interrupt handler will not get executed.
++ */
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Host Negotiation Detected++ (%s)\n",
++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
++ if (dwc_otg_is_device_mode(_core_if)){
++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",_core_if->op_state);
++ hcd_disconnect( _core_if );
++ pcd_start( _core_if );
++ _core_if->op_state = A_PERIPHERAL;
++ } else {
++ /*
++ * Need to disable SOF interrupt immediately. When
++ * switching from device to host, the PCD interrupt
++ * handler won't handle the interrupt if host mode is
++ * already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that
++ * the interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++ pcd_stop( _core_if );
++ hcd_start( _core_if );
++ _core_if->op_state = A_HOST;
++ }
++ }
++ if (gotgint.b.adevtoutchng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "A-Device Timeout Change++\n");
++ }
++ if (gotgint.b.debdone) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Debounce Done++\n");
++ }
++
++ /* Clear GOTGINT */
++ dwc_write_reg32 (&_core_if->core_global_regs->gotgint, gotgint.d32);
++
++ return 1;
++}
++
++/**
++ * This function handles the Connector ID Status Change Interrupt. It
++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
++ * is a Device to Host Mode transition or a Host Mode to Device
++ * Transition.
++ *
++ * This only occurs when the cable is connected/removed from the PHY
++ * connector.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *_core_if)
++{
++ uint32_t count = 0;
++
++ gintsts_data_t gintsts = { .d32 = 0 };
++ gintmsk_data_t gintmsk = { .d32 = 0 };
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++
++ /*
++ * Need to disable SOF interrupt immediately. If switching from device
++ * to host, the PCD interrupt handler won't handle the interrupt if
++ * host mode is already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that the interrupt does
++ * not get handled and Linux complains loudly.
++ */
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"));
++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
++
++ /* B-Device connector (Device Mode) */
++ if (gotgctl.b.conidsts) {
++ /* Wait for switch to device mode. */
++ while (!dwc_otg_is_device_mode(_core_if) ){
++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
++ MDELAY(100);
++ if (++count > 10000) *(uint32_t*)NULL=0;
++ }
++ _core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(_core_if);
++ dwc_otg_enable_global_interrupts(_core_if);
++ pcd_start( _core_if );
++ } else {
++ /* A-Device connector (Host Mode) */
++ while (!dwc_otg_is_host_mode(_core_if) ) {
++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral"));
++ MDELAY(100);
++ if (++count > 10000) *(uint32_t*)NULL=0;
++ }
++ _core_if->op_state = A_HOST;
++ /*
++ * Initialize the Core for Host mode.
++ */
++ dwc_otg_core_init(_core_if);
++ dwc_otg_enable_global_interrupts(_core_if);
++ hcd_start( _core_if );
++ }
++
++ /* Set flag and clear interrupt */
++ gintsts.b.conidstschng = 1;
++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device is initiating the Session
++ * Request Protocol to request the host to turn on bus power so a new
++ * session can begin. The handler responds by turning on bus power. If
++ * the DWC_otg controller is in low power mode, the handler brings the
++ * controller out of low power mode before turning on bus power.
++ *
++ * @param _core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_session_req_intr( dwc_otg_core_if_t *_core_if )
++{
++#ifndef DWC_HOST_ONLY // winder
++ hprt0_data_t hprt0;
++#endif
++ gintsts_data_t gintsts;
++
++#ifndef DWC_HOST_ONLY
++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(_core_if) ) {
++ DWC_PRINT("SRP: Device mode\n");
++ } else {
++ DWC_PRINT("SRP: Host mode\n");
++
++ /* Turn on the port power bit. */
++ hprt0.d32 = dwc_otg_read_hprt0( _core_if );
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
++
++ /* Start the Connection timer. So a message can be displayed
++ * if connect does not occur within 10 seconds. */
++ hcd_session_start( _core_if );
++ }
++#endif
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sessreqintr = 1;
++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the DWC_otg controller has detected a
++ * resume or remote wakeup sequence. If the DWC_otg controller is in
++ * low power mode, the handler must brings the controller out of low
++ * power mode. The controller automatically begins resume
++ * signaling. The handler schedules a time to stop resume signaling.
++ */
++int32_t dwc_otg_handle_wakeup_detected_intr( dwc_otg_core_if_t *_core_if )
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(_core_if) ) {
++ dctl_data_t dctl = {.d32=0};
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
++ dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts));
++#ifdef PARTIAL_POWER_DOWN
++ if (_core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32=0};
++
++ power.d32 = dwc_read_reg32( _core_if->pcgcctl );
++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
++
++ power.b.stoppclk = 0;
++ dwc_write_reg32( _core_if->pcgcctl, power.d32);
++
++ power.b.pwrclmp = 0;
++ dwc_write_reg32( _core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 0;
++ dwc_write_reg32( _core_if->pcgcctl, power.d32);
++ }
++#endif
++ /* Clear the Remote Wakeup Signalling */
++ dctl.b.rmtwkupsig = 1;
++ dwc_modify_reg32( &_core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32, 0 );
++
++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) {
++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p );
++ }
++
++ } else {
++ /*
++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
++ * so that OPT tests pass with all PHYs).
++ */
++ hprt0_data_t hprt0 = {.d32=0};
++ pcgcctl_data_t pcgcctl = {.d32=0};
++ /* Restart the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0);
++ UDELAY(10);
++
++ /* Now wait for 70 ms. */
++ hprt0.d32 = dwc_otg_read_hprt0( _core_if );
++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
++ MDELAY(70);
++ hprt0.b.prtres = 0; /* Resume */
++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32);
++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(_core_if->host_if->hprt0));
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.wkupintr = 1;
++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device has been disconnected from
++ * the root port.
++ */
++int32_t dwc_otg_handle_disconnect_intr( dwc_otg_core_if_t *_core_if)
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"),
++ op_state_str(_core_if));
++
++/** @todo Consolidate this if statement. */
++#ifndef DWC_HOST_ONLY
++ if (_core_if->op_state == B_HOST) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect( _core_if );
++ pcd_start( _core_if );
++ _core_if->op_state = B_PERIPHERAL;
++ } else if (dwc_otg_is_device_mode(_core_if)) {
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl);
++ if (gotgctl.b.hstsethnpen==1) {
++ /* Do nothing, if HNP in process the OTG
++ * interrupt "Host Negotiation Detected"
++ * interrupt will do the mode switch.
++ */
++ } else if (gotgctl.b.devhnpen == 0) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect( _core_if );
++ pcd_start( _core_if );
++ _core_if->op_state = B_PERIPHERAL;
++ } else {
++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
++ }
++ } else {
++ if (_core_if->op_state == A_HOST) {
++ /* A-Cable still connected but device disconnected. */
++ hcd_disconnect( _core_if );
++ }
++ }
++#endif
++/* Without OTG, we should use the disconnect function!? winder added.*/
++#if 1 // NO OTG, so host only!!
++ hcd_disconnect( _core_if );
++#endif
++
++ gintsts.d32 = 0;
++ gintsts.b.disconnect = 1;
++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++/**
++ * This interrupt indicates that SUSPEND state has been detected on
++ * the USB.
++ *
++ * For HNP the USB Suspend interrupt signals the change from
++ * "a_peripheral" to "a_host".
++ *
++ * When power management is enabled the core will be put in low power
++ * mode.
++ */
++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *_core_if )
++{
++ dsts_data_t dsts;
++ gintsts_data_t gintsts;
++
++ //805141:<IFTW-fchang>.removed DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
++
++ if (dwc_otg_is_device_mode( _core_if ) ) {
++ /* Check the Device status register to determine if the Suspend
++ * state is active. */
++ dsts.d32 = dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts);
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
++ "HWCFG4.power Optimize=%d\n",
++ dsts.b.suspsts, _core_if->hwcfg4.b.power_optimiz);
++
++
++#ifdef PARTIAL_POWER_DOWN
++/** @todo Add a module parameter for power management. */
++
++ if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32=0};
++ DWC_DEBUGPL(DBG_CIL, "suspend\n");
++
++ power.b.pwrclmp = 1;
++ dwc_write_reg32( _core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 1;
++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
++
++ power.b.stoppclk = 1;
++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32);
++
++ } else {
++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
++ }
++#endif
++ /* PCD callback for suspend. */
++ pcd_suspend(_core_if);
++ } else {
++ if (_core_if->op_state == A_PERIPHERAL) {
++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
++ /* Clear the a_peripheral flag, back to a_host. */
++ pcd_stop( _core_if );
++ hcd_start( _core_if );
++ _core_if->op_state = A_HOST;
++ }
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ dwc_write_reg32( &_core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *_core_if)
++{
++ gintsts_data_t gintsts;
++ gintmsk_data_t gintmsk;
++ gintmsk_data_t gintmsk_common = {.d32=0};
++ gintmsk_common.b.wkupintr = 1;
++ gintmsk_common.b.sessreqintr = 1;
++ gintmsk_common.b.conidstschng = 1;
++ gintmsk_common.b.otgintr = 1;
++ gintmsk_common.b.modemismatch = 1;
++ gintmsk_common.b.disconnect = 1;
++ gintmsk_common.b.usbsuspend = 1;
++ /** @todo: The port interrupt occurs while in device
++ * mode. Added code to CIL to clear the interrupt for now!
++ */
++ gintmsk_common.b.portintr = 1;
++
++ gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts);
++ gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk);
++#ifdef DEBUG
++ /* if any common interrupts set */
++ if (gintsts.d32 & gintmsk_common.d32) {
++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
++ gintsts.d32, gintmsk.d32);
++ }
++#endif
++
++ return ((gintsts.d32 & gintmsk.d32 ) & gintmsk_common.d32);
++
++}
++
++/**
++ * Common interrupt handler.
++ *
++ * The common interrupts are those that occur in both Host and Device mode.
++ * This handler handles the following interrupts:
++ * - Mode Mismatch Interrupt
++ * - Disconnect Interrupt
++ * - OTG Interrupt
++ * - Connector ID Status Change Interrupt
++ * - Session Request Interrupt.
++ * - Resume / Remote Wakeup Detected Interrupt.
++ *
++ */
++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if )
++{
++ int retval = 0;
++ gintsts_data_t gintsts;
++
++ gintsts.d32 = dwc_otg_read_common_intr(_core_if);
++
++ if (gintsts.b.modemismatch) {
++ retval |= dwc_otg_handle_mode_mismatch_intr( _core_if );
++ }
++ if (gintsts.b.otgintr) {
++ retval |= dwc_otg_handle_otg_intr( _core_if );
++ }
++ if (gintsts.b.conidstschng) {
++ retval |= dwc_otg_handle_conn_id_status_change_intr( _core_if );
++ }
++ if (gintsts.b.disconnect) {
++ retval |= dwc_otg_handle_disconnect_intr( _core_if );
++ }
++ if (gintsts.b.sessreqintr) {
++ retval |= dwc_otg_handle_session_req_intr( _core_if );
++ }
++ if (gintsts.b.wkupintr) {
++ retval |= dwc_otg_handle_wakeup_detected_intr( _core_if );
++ }
++ if (gintsts.b.usbsuspend) {
++ retval |= dwc_otg_handle_usb_suspend_intr( _core_if );
++ }
++ if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) {
++ /* The port interrupt occurs while in device mode with HPRT0
++ * Port Enable/Disable.
++ */
++ gintsts.d32 = 0;
++ gintsts.b.portintr = 1;
++ dwc_write_reg32(&_core_if->core_global_regs->gintsts,
++ gintsts.d32);
++ retval |= 1;
++
++ }
++ return retval;
++}
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_driver.c
+@@ -0,0 +1,1264 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 631780 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ * The dwc_otg_driver module provides the initialization and cleanup entry
++ * points for the DWC_otg driver. This module will be dynamically installed
++ * after Linux is booted using the insmod command. When the module is
++ * installed, the dwc_otg_init function is called. When the module is
++ * removed (using rmmod), the dwc_otg_cleanup function is called.
++ *
++ * This module also defines a data structure for the dwc_otg_driver, which is
++ * used in conjunction with the standard ARM lm_device structure. These
++ * structures allow the OTG driver to comply with the standard Linux driver
++ * model in which devices and drivers are registered with a bus driver. This
++ * has the benefit that Linux can expose attributes of the driver and device
++ * in its special sysfs file system. Users can then read or write files in
++ * this file system to perform diagnostics on the driver components or the
++ * device.
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++
++#include <linux/device.h>
++#include <linux/platform_device.h>
++
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++#include <linux/irq.h>
++#include <asm/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_cil.h"
++#include "dwc_otg_cil_ifx.h"
++
++// #include "dwc_otg_pcd.h" // device
++#include "dwc_otg_hcd.h" // host
++
++#include "dwc_otg_ifx.h" // for Infineon platform specific.
++
++#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006"
++#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
++
++const char dwc_driver_name[] = "dwc_otg";
++
++static unsigned long dwc_iomem_base = IFX_USB_IOMEM_BASE;
++int dwc_irq = LQ_USB_INT;
++//int dwc_irq = 54;
++//int dwc_irq = IFXMIPS_USB_OC_INT;
++
++extern int ifx_usb_hc_init(unsigned long base_addr, int irq);
++extern void ifx_usb_hc_remove(void);
++
++/*-------------------------------------------------------------------------*/
++/* Encapsulate the module parameter settings */
++
++static dwc_otg_core_params_t dwc_otg_module_params = {
++ .opt = -1,
++ .otg_cap = -1,
++ .dma_enable = -1,
++ .dma_burst_size = -1,
++ .speed = -1,
++ .host_support_fs_ls_low_power = -1,
++ .host_ls_low_power_phy_clk = -1,
++ .enable_dynamic_fifo = -1,
++ .data_fifo_size = -1,
++ .dev_rx_fifo_size = -1,
++ .dev_nperio_tx_fifo_size = -1,
++ .dev_perio_tx_fifo_size = /* dev_perio_tx_fifo_size_1 */ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 15 */
++ .host_rx_fifo_size = -1,
++ .host_nperio_tx_fifo_size = -1,
++ .host_perio_tx_fifo_size = -1,
++ .max_transfer_size = -1,
++ .max_packet_count = -1,
++ .host_channels = -1,
++ .dev_endpoints = -1,
++ .phy_type = -1,
++ .phy_utmi_width = -1,
++ .phy_ulpi_ddr = -1,
++ .phy_ulpi_ext_vbus = -1,
++ .i2c_enable = -1,
++ .ulpi_fs_ls = -1,
++ .ts_dline = -1,
++ .en_multiple_tx_fifo = -1,
++ .dev_tx_fifo_size = { /* dev_tx_fifo_size */
++ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
++ }, /* 15 */
++ .thr_ctl = -1,
++ .tx_thr_length = -1,
++ .rx_thr_length = -1,
++};
++
++/**
++ * This function shows the Driver Version.
++ */
++static ssize_t version_show(struct device_driver *dev, char *buf)
++{
++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2,"%s\n",
++ DWC_DRIVER_VERSION);
++}
++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
++
++/**
++ * Global Debug Level Mask.
++ */
++uint32_t g_dbg_lvl = 0xff; /* OFF */
++
++/**
++ * This function shows the driver Debug Level.
++ */
++static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf)
++{
++ return sprintf(_buf, "0x%0x\n", g_dbg_lvl);
++}
++/**
++ * This function stores the driver Debug Level.
++ */
++static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf,
++ size_t _count)
++{
++ g_dbg_lvl = simple_strtoul(_buf, NULL, 16);
++ return _count;
++}
++static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store);
++
++/**
++ * This function is called during module intialization to verify that
++ * the module parameters are in a valid state.
++ */
++static int check_parameters(dwc_otg_core_if_t *core_if)
++{
++ int i;
++ int retval = 0;
++
++/* Checks if the parameter is outside of its valid range of values */
++#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \
++ ((dwc_otg_module_params._param_ < (_low_)) || \
++ (dwc_otg_module_params._param_ > (_high_)))
++
++/* If the parameter has been set by the user, check that the parameter value is
++ * within the value range of values. If not, report a module error. */
++#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \
++ do { \
++ if (dwc_otg_module_params._param_ != -1) { \
++ if (DWC_OTG_PARAM_TEST(_param_,(_low_),(_high_))) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
++ dwc_otg_module_params._param_, _string_); \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ retval ++; \
++ } \
++ } \
++ } while (0)
++
++ DWC_OTG_PARAM_ERR(opt,0,1,"opt");
++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
++ DWC_OTG_PARAM_ERR(speed,0,1,"speed");
++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
++
++ if (dwc_otg_module_params.dma_burst_size != -1) {
++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256))
++ {
++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
++ dwc_otg_module_params.dma_burst_size);
++ dwc_otg_module_params.dma_burst_size = 32;
++ retval ++;
++ }
++ }
++
++ if (dwc_otg_module_params.phy_utmi_width != -1) {
++ if (DWC_OTG_PARAM_TEST(phy_utmi_width,8,8) &&
++ DWC_OTG_PARAM_TEST(phy_utmi_width,16,16))
++ {
++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
++ dwc_otg_module_params.phy_utmi_width);
++ //dwc_otg_module_params.phy_utmi_width = 16;
++ dwc_otg_module_params.phy_utmi_width = 8;
++ retval ++;
++ }
++ }
++
++ for (i=0; i<15; i++) {
++ /** @todo should be like above */
++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size");
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i],4,768)) {
++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
++ retval ++;
++ }
++ }
++ }
++
++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
++ for (i = 0; i < 15; i++) {
++ /** @todo should be like above */
++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size");
++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
++ dwc_otg_module_params.dev_tx_fifo_size[i],
++ "dev_tx_fifo_size", i);
++ dwc_otg_module_params.dev_tx_fifo_size[i] =
++ dwc_param_dev_tx_fifo_size_default;
++ retval++;
++ }
++ }
++ }
++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
++
++ /* At this point, all module parameters that have been set by the user
++ * are valid, and those that have not are left unset. Now set their
++ * default values and/or check the parameters against the hardware
++ * configurations of the OTG core. */
++
++
++
++/* This sets the parameter to the default value if it has not been set by the
++ * user */
++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
++ ({ \
++ int changed = 1; \
++ if (dwc_otg_module_params._param_ == -1) { \
++ changed = 0; \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ } \
++ changed; \
++ })
++
++/* This checks the macro agains the hardware configuration to see if it is
++ * valid. It is possible that the default value could be invalid. In this
++ * case, it will report a module error if the user touched the parameter.
++ * Otherwise it will adjust the value without any error. */
++#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \
++ ({ \
++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
++ int error = 0; \
++ if (!(_is_valid_)) { \
++ if (changed) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_,_str_); \
++ error = 1; \
++ } \
++ dwc_otg_module_params._param_ = (_set_valid_); \
++ } \
++ error; \
++ })
++
++ /* OTG Cap */
++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap,"otg_cap",
++ ({
++ int valid;
++ valid = 1;
++ switch (dwc_otg_module_params.otg_cap) {
++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) valid = 0;
++ break;
++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
++ {
++ valid = 0;
++ }
++ break;
++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
++ /* always valid */
++ break;
++ }
++ valid;
++ }),
++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable,"dma_enable",
++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
++ 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(opt,"opt",
++ 1,
++ 0);
++
++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
++ "host_support_fs_ls_low_power",
++ 1, 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
++ "enable_dynamic_fifo",
++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
++
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
++ "data_fifo_size",
++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
++ core_if->hwcfg3.b.dfifo_depth);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
++ "dev_rx_fifo_size",
++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
++ "dev_nperio_tx_fifo_size",
++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
++ "host_rx_fifo_size",
++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
++ "host_nperio_tx_fifo_size",
++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
++ "host_perio_tx_fifo_size",
++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
++ "max_transfer_size",
++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
++ "max_packet_count",
++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
++ "host_channels",
++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
++ (core_if->hwcfg2.b.num_host_chan + 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
++ "dev_endpoints",
++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
++ core_if->hwcfg2.b.num_dev_ep);
++
++/*
++ * Define the following to disable the FS PHY Hardware checking. This is for
++ * internal testing only.
++ *
++ * #define NO_FS_PHY_HW_CHECKS
++ */
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
++ "phy_type", 1, 0);
++#else
++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
++ "phy_type",
++ ({
++ int valid = 0;
++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3)))
++ {
++ valid = 1;
++ }
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3)))
++ {
++ valid = 1;
++ }
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1))
++ {
++ valid = 1;
++ }
++ valid;
++ }),
++ ({
++ int set = DWC_PHY_TYPE_PARAM_FS;
++ if (core_if->hwcfg2.b.hs_phy_type) {
++ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
++ (core_if->hwcfg2.b.hs_phy_type == 1)) {
++ set = DWC_PHY_TYPE_PARAM_UTMI;
++ }
++ else {
++ set = DWC_PHY_TYPE_PARAM_ULPI;
++ }
++ }
++ set;
++ }));
++#endif
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(speed,"speed",
++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
++ "host_ls_low_power_phy_clk",
++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
++
++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
++ "i2c_enable", 1, 0);
++#else
++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
++ "i2c_enable",
++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
++ 0);
++#endif
++
++ for (i=0; i<16; i++) {
++
++ int changed = 1;
++ int error = 0;
++
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
++ changed = 0;
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
++ }
++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
++ if (changed) {
++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i],i);
++ error = 1;
++ }
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
++ }
++ retval += error;
++ }
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo,
++ "en_multiple_tx_fifo",
++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) &&
++ (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0);
++
++ for (i = 0; i < 16; i++) {
++ int changed = 1;
++ int error = 0;
++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
++ changed = 0;
++ dwc_otg_module_params.dev_tx_fifo_size[i] =
++ dwc_param_dev_tx_fifo_size_default;
++ }
++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <=
++ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
++ if (changed) {
++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'."
++ "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i);
++ error = 1;
++ }
++ dwc_otg_module_params.dev_tx_fifo_size[i] =
++ dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
++ }
++ retval += error;
++ }
++ DWC_OTG_PARAM_SET_DEFAULT(thr_ctl);
++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
++ return retval;
++} // check_parameters
++
++
++/**
++ * This function is the top level interrupt handler for the Common
++ * (Device and host modes) interrupts.
++ */
++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
++{
++ dwc_otg_device_t *otg_dev = _dev;
++ int32_t retval = IRQ_NONE;
++
++ retval = dwc_otg_handle_common_intr( otg_dev->core_if );
++
++ mask_and_ack_ifx_irq (_irq);
++
++ return IRQ_RETVAL(retval);
++}
++
++
++/**
++ * This function is called when a DWC_OTG device is unregistered with the
++ * dwc_otg_driver. This happens, for example, when the rmmod command is
++ * executed. The device may or may not be electrically present. If it is
++ * present, the driver stops device processing. Any resources used on behalf
++ * of this device are freed.
++ *
++ * @return
++ */
++static int
++dwc_otg_driver_remove(struct platform_device *_dev)
++{
++ //dwc_otg_device_t *otg_dev = dev_get_drvdata(&_dev->dev);
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev);
++
++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev);
++
++ if (otg_dev == NULL) {
++ /* Memory allocation for the dwc_otg_device failed. */
++ return 0;
++ }
++
++ /*
++ * Free the IRQ
++ */
++ if (otg_dev->common_irq_installed) {
++ free_irq( otg_dev->irq, otg_dev );
++ }
++
++#ifndef DWC_DEVICE_ONLY
++ if (otg_dev->hcd != NULL) {
++ dwc_otg_hcd_remove(&_dev->dev);
++ }
++#endif
++ printk("after removehcd\n");
++
++// Note: Integrate HOST and DEVICE(Gadget) is not planned yet.
++#ifndef DWC_HOST_ONLY
++ if (otg_dev->pcd != NULL) {
++ dwc_otg_pcd_remove(otg_dev);
++ }
++#endif
++ if (otg_dev->core_if != NULL) {
++ dwc_otg_cil_remove( otg_dev->core_if );
++ }
++ printk("after removecil\n");
++
++ /*
++ * Remove the device attributes
++ */
++ dwc_otg_attr_remove(&_dev->dev);
++ printk("after removeattr\n");
++
++ /*
++ * Return the memory.
++ */
++ if (otg_dev->base != NULL) {
++ iounmap(otg_dev->base);
++ }
++ if (otg_dev->phys_addr != 0) {
++ release_mem_region(otg_dev->phys_addr, otg_dev->base_len);
++ }
++ kfree(otg_dev);
++
++ /*
++ * Clear the drvdata pointer.
++ */
++ //dev_set_drvdata(&_dev->dev, 0);
++ platform_set_drvdata(_dev, 0);
++ return 0;
++}
++
++/**
++ * This function is called when an DWC_OTG device is bound to a
++ * dwc_otg_driver. It creates the driver components required to
++ * control the device (CIL, HCD, and PCD) and it initializes the
++ * device. The driver components are stored in a dwc_otg_device
++ * structure. A reference to the dwc_otg_device is saved in the
++ * lm_device. This allows the driver to access the dwc_otg_device
++ * structure on subsequent calls to driver methods for this device.
++ *
++ * @return
++ */
++static int __devinit
++dwc_otg_driver_probe(struct platform_device *_dev)
++{
++ int retval = 0;
++ dwc_otg_device_t *dwc_otg_device;
++ int32_t snpsid;
++ struct resource *res;
++ gusbcfg_data_t usbcfg = {.d32 = 0};
++
++ dev_dbg(&_dev->dev, "dwc_otg_driver_probe (%p)\n", _dev);
++
++ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
++ if (dwc_otg_device == 0) {
++ dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
++ dwc_otg_device->reg_offset = 0xFFFFFFFF;
++
++ /*
++ * Retrieve the memory and IRQ resources.
++ */
++ dwc_otg_device->irq = platform_get_irq(_dev, 0);
++ if (dwc_otg_device->irq == 0) {
++ dev_err(&_dev->dev, "no device irq\n");
++ retval = -ENODEV;
++ goto fail;
++ }
++ dev_dbg(&_dev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq);
++ res = platform_get_resource(_dev, IORESOURCE_MEM, 0);
++ if (res == NULL) {
++ dev_err(&_dev->dev, "no CSR address\n");
++ retval = -ENODEV;
++ goto fail;
++ }
++ dev_dbg(&_dev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n",
++ (unsigned)res->start, (unsigned)res->end);
++ dwc_otg_device->phys_addr = res->start;
++ dwc_otg_device->base_len = res->end - res->start + 1;
++ if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len,
++ dwc_driver_name) == NULL) {
++ dev_err(&_dev->dev, "request_mem_region failed\n");
++ retval = -EBUSY;
++ goto fail;
++ }
++
++ /*
++ * Map the DWC_otg Core memory into virtual address space.
++ */
++ dwc_otg_device->base = ioremap_nocache(dwc_otg_device->phys_addr, dwc_otg_device->base_len);
++ if (dwc_otg_device->base == NULL) {
++ dev_err(&_dev->dev, "ioremap() failed\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++ dev_dbg(&_dev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base);
++
++ /*
++ * Attempt to ensure this device is really a DWC_otg Controller.
++ * Read and verify the SNPSID register contents. The value should be
++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
++ */
++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
++ if ((snpsid & 0xFFFFF000) != 0x4F542000) {
++ dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ /*
++ * Initialize driver data to point to the global DWC_otg
++ * Device structure.
++ */
++ platform_set_drvdata(_dev, dwc_otg_device);
++ dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
++ dwc_otg_device->core_if = dwc_otg_cil_init( dwc_otg_device->base, &dwc_otg_module_params);
++ if (dwc_otg_device->core_if == 0) {
++ dev_err(&_dev->dev, "CIL initialization failed!\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++
++ /*
++ * Validate parameter values.
++ */
++ if (check_parameters(dwc_otg_device->core_if) != 0) {
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ /* Added for PLB DMA phys virt mapping */
++ //dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr;
++ /*
++ * Create Device Attributes in sysfs
++ */
++ dwc_otg_attr_create (&_dev->dev);
++
++ /*
++ * Disable the global interrupt until all the interrupt
++ * handlers are installed.
++ */
++ dwc_otg_disable_global_interrupts( dwc_otg_device->core_if );
++ /*
++ * Install the interrupt handler for the common interrupts before
++ * enabling common interrupts in core_init below.
++ */
++ DWC_DEBUGPL( DBG_CIL, "registering (common) handler for irq%d\n", dwc_otg_device->irq);
++
++ retval = request_irq((unsigned int)dwc_otg_device->irq, dwc_otg_common_irq,
++ //SA_INTERRUPT|SA_SHIRQ, "dwc_otg", (void *)dwc_otg_device );
++ IRQF_SHARED, "dwc_otg", (void *)dwc_otg_device );
++ //IRQF_DISABLED, "dwc_otg", (void *)dwc_otg_device );
++ if (retval != 0) {
++ DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval);
++ retval = -EBUSY;
++ goto fail;
++ } else {
++ dwc_otg_device->common_irq_installed = 1;
++ }
++
++ /*
++ * Initialize the DWC_otg core.
++ */
++ dwc_otg_core_init( dwc_otg_device->core_if );
++
++
++#ifndef DWC_HOST_ONLY // otg device mode. (gadget.)
++ /*
++ * Initialize the PCD
++ */
++ retval = dwc_otg_pcd_init(dwc_otg_device);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_pcd_init failed\n");
++ dwc_otg_device->pcd = NULL;
++ goto fail;
++ }
++#endif // DWC_HOST_ONLY
++
++#ifndef DWC_DEVICE_ONLY // otg host mode. (HCD)
++ /*
++ * Initialize the HCD
++ */
++#if 1 /*fscz*/
++ /* force_host_mode */
++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
++ usbcfg.b.force_host_mode = 1;
++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
++#endif
++ retval = dwc_otg_hcd_init(&_dev->dev, dwc_otg_device);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_hcd_init failed\n");
++ dwc_otg_device->hcd = NULL;
++ goto fail;
++ }
++#endif // DWC_DEVICE_ONLY
++
++ /*
++ * Enable the global interrupt after all the interrupt
++ * handlers are installed.
++ */
++ dwc_otg_enable_global_interrupts( dwc_otg_device->core_if );
++#if 0 /*fscz*/
++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg);
++ usbcfg.b.force_host_mode = 0;
++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32);
++#endif
++
++
++ return 0;
++
++fail:
++ dwc_otg_driver_remove(_dev);
++ return retval;
++}
++
++/**
++ * This structure defines the methods to be called by a bus driver
++ * during the lifecycle of a device on that bus. Both drivers and
++ * devices are registered with a bus driver. The bus driver matches
++ * devices to drivers based on information in the device and driver
++ * structures.
++ *
++ * The probe function is called when the bus driver matches a device
++ * to this driver. The remove function is called when a device is
++ * unregistered with the bus driver.
++ */
++struct platform_driver dwc_otg_driver = {
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++// .suspend = dwc_otg_driver_suspend,
++// .resume = dwc_otg_driver_resume,
++ .driver = {
++ .name = dwc_driver_name,
++ .owner = THIS_MODULE,
++ },
++};
++EXPORT_SYMBOL(dwc_otg_driver);
++
++/**
++ * This function is called when the dwc_otg_driver is installed with the
++ * insmod command. It registers the dwc_otg_driver structure with the
++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
++ * to be called. In addition, the bus driver will automatically expose
++ * attributes defined for the device and driver in the special sysfs file
++ * system.
++ *
++ * @return
++ */
++static int __init dwc_otg_init(void)
++{
++ int retval = 0;
++
++ printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
++
++ // ifxmips setup
++ retval = ifx_usb_hc_init(dwc_iomem_base, dwc_irq);
++ if (retval < 0)
++ {
++ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
++ return retval;
++ }
++ dwc_otg_power_on(); // ifx only!!
++
++
++ retval = platform_driver_register(&dwc_otg_driver);
++
++ if (retval < 0) {
++ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
++ goto error1;
++ }
++
++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version);
++ if (retval < 0)
++ {
++ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
++ goto error2;
++ }
++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
++ if (retval < 0)
++ {
++ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
++ goto error3;
++ }
++ return retval;
++
++
++error3:
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++error2:
++ driver_unregister(&dwc_otg_driver.driver);
++error1:
++ ifx_usb_hc_remove();
++ return retval;
++}
++module_init(dwc_otg_init);
++
++/**
++ * This function is called when the driver is removed from the kernel
++ * with the rmmod command. The driver unregisters itself with its bus
++ * driver.
++ *
++ */
++static void __exit dwc_otg_cleanup(void)
++{
++ printk(KERN_DEBUG "dwc_otg_cleanup()\n");
++
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++
++ platform_driver_unregister(&dwc_otg_driver);
++ ifx_usb_hc_remove();
++
++ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
++}
++module_exit(dwc_otg_cleanup);
++
++MODULE_DESCRIPTION(DWC_DRIVER_DESC);
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE("GPL");
++
++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
++module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
++MODULE_PARM_DESC(opt, "OPT Mode");
++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
++module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
++/** @todo Set the max to 512K, modify checks */
++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
++module_param_named(debug, g_dbg_lvl, int, 0444);
++MODULE_PARM_DESC(debug, "0");
++module_param_named(en_multiple_tx_fifo,
++ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
++MODULE_PARM_DESC(en_multiple_tx_fifo,
++ "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
++module_param_named(dev_tx_fifo_size_1,
++ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_2,
++ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_3,
++ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_4,
++ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_5,
++ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_6,
++ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_7,
++ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_8,
++ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_9,
++ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_10,
++ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_11,
++ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_12,
++ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_13,
++ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_14,
++ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_15,
++ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit"
++ "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
++module_param_named (iomem_base, dwc_iomem_base, ulong, 0444);
++MODULE_PARM_DESC (dwc_iomem_base, "The base address of the DWC_OTG register.");
++module_param_named (irq, dwc_irq, int, 0444);
++MODULE_PARM_DESC (dwc_irq, "The interrupt number");
++
++/** @page "Module Parameters"
++ *
++ * The following parameters may be specified when starting the module.
++ * These parameters define how the DWC_otg controller should be
++ * configured. Parameter values are passed to the CIL initialization
++ * function dwc_otg_cil_init
++ *
++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
++ *
++
++ <table>
++ <tr><td>Parameter Name</td><td>Meaning</td></tr>
++
++ <tr>
++ <td>otg_cap</td>
++ <td>Specifies the OTG capabilities. The driver will automatically detect the
++ value for this parameter if none is specified.
++ - 0: HNP and SRP capable (default, if available)
++ - 1: SRP Only capable
++ - 2: No HNP/SRP capable
++ </td></tr>
++
++ <tr>
++ <td>dma_enable</td>
++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Slave
++ - 1: DMA (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dma_burst_size</td>
++ <td>The DMA Burst size (applicable only for External DMA Mode).
++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ </td></tr>
++
++ <tr>
++ <td>speed</td>
++ <td>Specifies the maximum speed of operation in host and device mode. The
++ actual speed depends on the speed of the attached device and the value of
++ phy_type.
++ - 0: High Speed (default)
++ - 1: Full Speed
++ </td></tr>
++
++ <tr>
++ <td>host_support_fs_ls_low_power</td>
++ <td>Specifies whether low power mode is supported when attached to a Full
++ Speed or Low Speed device in host mode.
++ - 0: Don't support low power mode (default)
++ - 1: Support low power mode
++ </td></tr>
++
++ <tr>
++ <td>host_ls_low_power_phy_clk</td>
++ <td>Specifies the PHY clock rate in low power mode when connected to a Low
++ Speed device in host mode. This parameter is applicable only if
++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
++ - 0: 48 MHz (default)
++ - 1: 6 MHz
++ </td></tr>
++
++ <tr>
++ <td>enable_dynamic_fifo</td>
++ <td> Specifies whether FIFOs may be resized by the driver software.
++ - 0: Use cC FIFO size parameters
++ - 1: Allow dynamic FIFO sizing (default)
++ </td></tr>
++
++ <tr>
++ <td>data_fifo_size</td>
++ <td>Total number of 4-byte words in the data FIFO memory. This memory
++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
++ - Values: 32 to 32768 (default 8192)
++
++ Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ </td></tr>
++
++ <tr>
++ <td>dev_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1064)
++ </td></tr>
++
++ <tr>
++ <td>dev_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
++ dynamic FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++ <tr>
++ <td>host_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
++ dynamic FIFO sizing is enabled in the core.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_perio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>max_transfer_size</td>
++ <td>The maximum transfer size supported in bytes.
++ - Values: 2047 to 65,535 (default 65,535)
++ </td></tr>
++
++ <tr>
++ <td>max_packet_count</td>
++ <td>The maximum number of packets in a transfer.
++ - Values: 15 to 511 (default 511)
++ </td></tr>
++
++ <tr>
++ <td>host_channels</td>
++ <td>The number of host channel registers to use.
++ - Values: 1 to 16 (default 12)
++
++ Note: The FPGA configuration supports a maximum of 12 host channels.
++ </td></tr>
++
++ <tr>
++ <td>dev_endpoints</td>
++ <td>The number of endpoints in addition to EP0 available for device mode
++ operations.
++ - Values: 1 to 15 (default 6 IN and OUT)
++
++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
++ addition to EP0.
++ </td></tr>
++
++ <tr>
++ <td>phy_type</td>
++ <td>Specifies the type of PHY interface to use. By default, the driver will
++ automatically detect the phy_type.
++ - 0: Full Speed
++ - 1: UTMI+ (default, if available)
++ - 2: ULPI
++ </td></tr>
++
++ <tr>
++ <td>phy_utmi_width</td>
++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
++ phy_type of UTMI+. Also, this parameter is applicable only if the
++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
++ core has been configured to work at either data path width.
++ - Values: 8 or 16 bits (default 16)
++ </td></tr>
++
++ <tr>
++ <td>phy_ulpi_ddr</td>
++ <td>Specifies whether the ULPI operates at double or single data rate. This
++ parameter is only applicable if phy_type is ULPI.
++ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
++ - 1: double data rate ULPI interface with 4 bit wide data bus
++ </td></tr>
++
++ <tr>
++ <td>i2c_enable</td>
++ <td>Specifies whether to use the I2C interface for full speed PHY. This
++ parameter is only applicable if PHY_TYPE is FS.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++ <tr>
++ <td>otg_en_multiple_tx_fifo</td>
++ <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Disabled
++ - 1: Enabled (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dev_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++*/
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_driver.h
+@@ -0,0 +1,84 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 510275 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_DRIVER_H__)
++#define __DWC_OTG_DRIVER_H__
++
++/** @file
++ * This file contains the interface to the Linux driver.
++ */
++#include "dwc_otg_cil.h"
++
++/* Type declarations */
++struct dwc_otg_pcd;
++struct dwc_otg_hcd;
++
++/**
++ * This structure is a wrapper that encapsulates the driver components used to
++ * manage a single DWC_otg controller.
++ */
++typedef struct dwc_otg_device
++{
++ /** Base address returned from ioremap() */
++ void *base;
++
++ /** Pointer to the core interface structure. */
++ dwc_otg_core_if_t *core_if;
++
++ /** Register offset for Diagnostic API.*/
++ uint32_t reg_offset;
++
++ /** Pointer to the PCD structure. */
++ struct dwc_otg_pcd *pcd;
++
++ /** Pointer to the HCD structure. */
++ struct dwc_otg_hcd *hcd;
++
++ /** Flag to indicate whether the common IRQ handler is installed. */
++ uint8_t common_irq_installed;
++
++ /** Interrupt request number. */
++ unsigned int irq;
++
++ /** Physical address of Control and Status registers, used by
++ * release_mem_region().
++ */
++ resource_size_t phys_addr;
++
++ /** Length of memory region, used by release_mem_region(). */
++ unsigned long base_len;
++} dwc_otg_device_t;
++
++//#define dev_dbg(fake, format, arg...) printk(KERN_CRIT __FILE__ ":%d: " format "\n" , __LINE__, ## arg)
++
++#endif
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c
+@@ -0,0 +1,2870 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 631780 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the implementation of the HCD. In Linux, the HCD
++ * implements the hc_driver API.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++
++#include <linux/device.h>
++
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++
++#include <linux/dma-mapping.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++#include <asm/irq.h>
++#include "dwc_otg_ifx.h" // for Infineon platform specific.
++extern atomic_t release_later;
++
++static u64 dma_mask = DMA_BIT_MASK(32);
++
++static const char dwc_otg_hcd_name [] = "dwc_otg_hcd";
++static const struct hc_driver dwc_otg_hc_driver =
++{
++ .description = dwc_otg_hcd_name,
++ .product_desc = "DWC OTG Controller",
++ .hcd_priv_size = sizeof(dwc_otg_hcd_t),
++ .irq = dwc_otg_hcd_irq,
++ .flags = HCD_MEMORY | HCD_USB2,
++ //.reset =
++ .start = dwc_otg_hcd_start,
++ //.suspend =
++ //.resume =
++ .stop = dwc_otg_hcd_stop,
++ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
++ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
++ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
++ .get_frame_number = dwc_otg_hcd_get_frame_number,
++ .hub_status_data = dwc_otg_hcd_hub_status_data,
++ .hub_control = dwc_otg_hcd_hub_control,
++ //.hub_suspend =
++ //.hub_resume =
++};
++
++
++/**
++ * Work queue function for starting the HCD when A-Cable is connected.
++ * The dwc_otg_hcd_start() must be called in a process context.
++ */
++static void hcd_start_func(struct work_struct *work)
++{
++ struct dwc_otg_hcd *priv =
++ container_of(work, struct dwc_otg_hcd, start_work);
++ struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p;
++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
++ if (usb_hcd) {
++ dwc_otg_hcd_start(usb_hcd);
++ }
++}
++
++
++/**
++ * HCD Callback function for starting the HCD when A-Cable is
++ * connected.
++ *
++ * @param _p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_start_cb(void *_p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ hprt0_data_t hprt0;
++ if (core_if->op_state == B_HOST) {
++ /*
++ * Reset the port. During a HNP mode switch the reset
++ * needs to occur within 1ms and have a duration of at
++ * least 50ms.
++ */
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ ((struct usb_hcd *)_p)->self.is_b_host = 1;
++ } else {
++ ((struct usb_hcd *)_p)->self.is_b_host = 0;
++ }
++ /* Need to start the HCD in a non-interrupt context. */
++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
++ dwc_otg_hcd->_p = _p;
++ schedule_work(&dwc_otg_hcd->start_work);
++ return 1;
++}
++
++
++/**
++ * HCD Callback function for stopping the HCD.
++ *
++ * @param _p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_stop_cb( void *_p )
++{
++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++ dwc_otg_hcd_stop( usb_hcd );
++ return 1;
++}
++static void del_xfer_timers(dwc_otg_hcd_t *_hcd)
++{
++#ifdef DEBUG
++ int i;
++ int num_channels = _hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ del_timer(&_hcd->core_if->hc_xfer_timer[i]);
++ }
++#endif /* */
++}
++
++static void del_timers(dwc_otg_hcd_t *_hcd)
++{
++ del_xfer_timers(_hcd);
++ del_timer(&_hcd->conn_timer);
++}
++
++/**
++ * Processes all the URBs in a single list of QHs. Completes them with
++ * -ETIMEDOUT and frees the QTD.
++ */
++static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd,
++ struct list_head *_qh_list)
++{
++ struct list_head *qh_item;
++ dwc_otg_qh_t *qh;
++ struct list_head *qtd_item;
++ dwc_otg_qtd_t *qtd;
++
++ list_for_each(qh_item, _qh_list) {
++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
++ for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list;
++ qtd_item = qh->qtd_list.next) {
++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
++ if (qtd->urb != NULL) {
++ dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT);
++ }
++ dwc_otg_hcd_qtd_remove_and_free(qtd);
++ }
++ }
++}
++
++/**
++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
++ * and periodic schedules. The QTD associated with each URB is removed from
++ * the schedule and freed. This function may be called when a disconnect is
++ * detected or when the HCD is being stopped.
++ */
++static void kill_all_urbs(dwc_otg_hcd_t *_hcd)
++{
++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred);
++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive);
++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active);
++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive);
++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready);
++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned);
++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param _p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_disconnect_cb( void *_p )
++{
++ gintsts_data_t intr;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++
++ /*
++ * Set status flags for the hub driver.
++ */
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 0;
++
++ /*
++ * Shutdown any transfers in process by clearing the Tx FIFO Empty
++ * interrupt mask and status bits and disabling subsequent host
++ * channel interrupts.
++ */
++ intr.d32 = 0;
++ intr.b.nptxfempty = 1;
++ intr.b.ptxfempty = 1;
++ intr.b.hcintr = 1;
++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
++
++ del_timers(dwc_otg_hcd);
++
++ /*
++ * Turn off the vbus power only if the core has transitioned to device
++ * mode. If still in host mode, need to keep power on to detect a
++ * reconnection.
++ */
++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
++ hprt0_data_t hprt0 = { .d32=0 };
++ DWC_PRINT("Disconnect: PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++ }
++
++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
++ }
++
++ /* Respond with an error status to all URBs in the schedule. */
++ kill_all_urbs(dwc_otg_hcd);
++
++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
++ /* Clean up any host channels that were in use. */
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ /* Flush out any channel requests in slave mode. */
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++ }
++ }
++ }
++
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ /* Halt the channel. */
++ hcchar.b.chdis = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
++ list_add_tail(&channel->hc_list_entry,
++ &dwc_otg_hcd->free_hc_list);
++ }
++ }
++ }
++
++ /* A disconnect will end the session so the B-Device is no
++ * longer a B-host. */
++ ((struct usb_hcd *)_p)->self.is_b_host = 0;
++
++ return 1;
++}
++
++/**
++ * Connection timeout function. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.
++ */
++void dwc_otg_hcd_connect_timeout( unsigned long _ptr )
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
++ DWC_PRINT( "Connect Timeout\n");
++ DWC_ERROR( "Device Not Connected/Responding\n" );
++}
++
++/**
++ * Start the connection timer. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds. The
++ * timer is deleted if a port connect interrupt occurs before the
++ * timer expires.
++ */
++static void dwc_otg_hcd_start_connect_timer( dwc_otg_hcd_t *_hcd)
++{
++ init_timer( &_hcd->conn_timer );
++ _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
++ _hcd->conn_timer.data = (unsigned long)0;
++ _hcd->conn_timer.expires = jiffies + (HZ*10);
++ add_timer( &_hcd->conn_timer );
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param _p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_session_start_cb( void *_p )
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p);
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++ dwc_otg_hcd_start_connect_timer( dwc_otg_hcd );
++ return 1;
++}
++
++/**
++ * HCD Callback structure for handling mode switching.
++ */
++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
++ .start = dwc_otg_hcd_start_cb,
++ .stop = dwc_otg_hcd_stop_cb,
++ .disconnect = dwc_otg_hcd_disconnect_cb,
++ .session_start = dwc_otg_hcd_session_start_cb,
++ .p = 0,
++};
++
++
++/**
++ * Reset tasklet function
++ */
++static void reset_tasklet_func (unsigned long data)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t*)data;
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ hprt0_data_t hprt0;
++
++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
++
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ mdelay (60);
++
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++
++ return;
++}
++
++static struct tasklet_struct reset_tasklet = {
++ .next = NULL,
++ .state = 0,
++ .count = ATOMIC_INIT(0),
++ .func = reset_tasklet_func,
++ .data = 0,
++};
++
++/**
++ * Initializes the HCD. This function allocates memory for and initializes the
++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
++ * USB bus with the core and calls the hc_driver->start() function. It returns
++ * a negative error on failure.
++ */
++int init_hcd_usecs(dwc_otg_hcd_t *_hcd);
++
++int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device)
++{
++ struct usb_hcd *hcd = NULL;
++ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
++
++ /*
++ * Allocate memory for the base HCD plus the DWC OTG HCD.
++ * Initialize the base HCD.
++ */
++ hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev));
++ if (hcd == NULL) {
++ retval = -ENOMEM;
++ goto error1;
++ }
++ dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */
++ hcd->regs = otg_dev->base;
++ hcd->rsrc_start = (int)otg_dev->base;
++
++ hcd->self.otg_port = 1;
++
++ /* Initialize the DWC OTG HCD. */
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_hcd->core_if = otg_dev->core_if;
++ otg_dev->hcd = dwc_otg_hcd;
++
++ /* Register the HCD CIL Callbacks */
++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
++ &hcd_cil_callbacks, hcd);
++
++ /* Initialize the non-periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred);
++
++ /* Initialize the periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
++
++ /*
++ * Create a host channel descriptor for each host channel implemented
++ * in the controller. Initialize the channel descriptor array.
++ */
++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
++ if (channel == NULL) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: host channel allocation failed\n", __func__);
++ goto error2;
++ }
++ memset(channel, 0, sizeof(dwc_hc_t));
++ channel->hc_num = i;
++ dwc_otg_hcd->hc_ptr_array[i] = channel;
++#ifdef DEBUG
++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
++#endif
++
++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
++ }
++
++ /* Initialize the Connection timeout timer. */
++ init_timer( &dwc_otg_hcd->conn_timer );
++
++ /* Initialize reset tasklet. */
++ reset_tasklet.data = (unsigned long) dwc_otg_hcd;
++ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
++
++ /* Set device flags indicating whether the HCD supports DMA. */
++ if (otg_dev->core_if->dma_enable) {
++ DWC_PRINT("Using DMA mode\n");
++ //_dev->dma_mask = (void *)~0;
++ //_dev->coherent_dma_mask = ~0;
++ _dev->dma_mask = &dma_mask;
++ _dev->coherent_dma_mask = DMA_BIT_MASK(32);
++ } else {
++ DWC_PRINT("Using Slave mode\n");
++ _dev->dma_mask = (void *)0;
++ _dev->coherent_dma_mask = 0;
++ }
++
++ init_hcd_usecs(dwc_otg_hcd);
++ /*
++ * Finish generic HCD initialization and start the HCD. This function
++ * allocates the DMA buffer pool, registers the USB bus, requests the
++ * IRQ line, and calls dwc_otg_hcd_start method.
++ */
++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
++ if (retval < 0) {
++ goto error2;
++ }
++
++ /*
++ * Allocate space for storing data on status transactions. Normally no
++ * data is sent, but this space acts as a bit bucket. This must be
++ * done after usb_add_hcd since that function allocates the DMA buffer
++ * pool.
++ */
++ if (otg_dev->core_if->dma_enable) {
++ dwc_otg_hcd->status_buf =
++ dma_alloc_coherent(_dev,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ &dwc_otg_hcd->status_buf_dma,
++ GFP_KERNEL | GFP_DMA);
++ } else {
++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
++ GFP_KERNEL);
++ }
++ if (dwc_otg_hcd->status_buf == NULL) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
++ goto error3;
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n",
++ dev_name(_dev), hcd->self.busnum);
++
++ return 0;
++
++ /* Error conditions */
++error3:
++ usb_remove_hcd(hcd);
++error2:
++ dwc_otg_hcd_free(hcd);
++ usb_put_hcd(hcd);
++error1:
++ return retval;
++}
++
++/**
++ * Removes the HCD.
++ * Frees memory and resources associated with the HCD and deregisters the bus.
++ */
++void dwc_otg_hcd_remove(struct device *_dev)
++{
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);
++ dwc_otg_hcd_t *dwc_otg_hcd = otg_dev->hcd;
++ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
++
++ /* Turn off all interrupts */
++ dwc_write_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
++
++ usb_remove_hcd(hcd);
++
++ dwc_otg_hcd_free(hcd);
++
++ usb_put_hcd(hcd);
++
++ return;
++}
++
++
++/* =========================================================================
++ * Linux HC Driver Functions
++ * ========================================================================= */
++
++/**
++ * Initializes dynamic portions of the DWC_otg HCD state.
++ */
++static void hcd_reinit(dwc_otg_hcd_t *_hcd)
++{
++ struct list_head *item;
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++
++ _hcd->flags.d32 = 0;
++
++ _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active;
++ _hcd->available_host_channels = _hcd->core_if->core_params->host_channels;
++
++ /*
++ * Put all channels in the free channel list and clean up channel
++ * states.
++ */
++ item = _hcd->free_hc_list.next;
++ while (item != &_hcd->free_hc_list) {
++ list_del(item);
++ item = _hcd->free_hc_list.next;
++ }
++ num_channels = _hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = _hcd->hc_ptr_array[i];
++ list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list);
++ dwc_otg_hc_cleanup(_hcd->core_if, channel);
++ }
++
++ /* Initialize the DWC core for host mode operation. */
++ dwc_otg_core_host_init(_hcd->core_if);
++}
++
++/** Initializes the DWC_otg controller and its root hub and prepares it for host
++ * mode operation. Activates the root port. Returns 0 on success and a negative
++ * error code on failure. */
++int dwc_otg_hcd_start(struct usb_hcd *_hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++ dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if;
++ struct usb_bus *bus;
++
++ // int retval;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
++
++ bus = hcd_to_bus(_hcd);
++
++ /* Initialize the bus state. If the core is in Device Mode
++ * HALT the USB bus and return. */
++ if (dwc_otg_is_device_mode (core_if)) {
++ _hcd->state = HC_STATE_HALT;
++ return 0;
++ }
++ _hcd->state = HC_STATE_RUNNING;
++
++ /* Initialize and connect root hub if one is not already attached */
++ if (bus->root_hub) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
++ /* Inform the HUB driver to resume. */
++ usb_hcd_resume_root_hub(_hcd);
++ }
++ else {
++#if 0
++ struct usb_device *udev;
++ udev = usb_alloc_dev(NULL, bus, 0);
++ if (!udev) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
++ return -ENODEV;
++ }
++ udev->speed = USB_SPEED_HIGH;
++ /* Not needed - VJ
++ if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval);
++ return -ENODEV;
++ }
++ */
++#else
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n");
++#endif
++ }
++
++ hcd_reinit(dwc_otg_hcd);
++
++ return 0;
++}
++
++static void qh_list_free(dwc_otg_hcd_t *_hcd, struct list_head *_qh_list)
++{
++ struct list_head *item;
++ dwc_otg_qh_t *qh;
++
++ if (_qh_list->next == NULL) {
++ /* The list hasn't been initialized yet. */
++ return;
++ }
++
++ /* Ensure there are no QTDs or URBs left. */
++ kill_urbs_in_qh_list(_hcd, _qh_list);
++
++ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ dwc_otg_hcd_qh_remove_and_free(_hcd, qh);
++ }
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void dwc_otg_hcd_stop(struct usb_hcd *_hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++ hprt0_data_t hprt0 = { .d32=0 };
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
++
++ /* Turn off all host-specific interrupts. */
++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if );
++
++ /*
++ * The root hub should be disconnected before this function is called.
++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
++ * and the QH lists (via ..._hcd_endpoint_disable).
++ */
++
++ /* Turn off the vbus power */
++ DWC_PRINT("PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++
++ return;
++}
++
++
++/** Returns the current frame number. */
++int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
++ hfnum_data_t hfnum;
++
++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
++ host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
++#endif
++ return hfnum.b.frnum;
++}
++
++/**
++ * Frees secondary storage associated with the dwc_otg_hcd structure contained
++ * in the struct usb_hcd field.
++ */
++void dwc_otg_hcd_free(struct usb_hcd *_hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
++ int i;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
++
++ del_timers(dwc_otg_hcd);
++
++ /* Free memory for QH/QTD lists */
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
++
++ /* Free memory for the host channels. */
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
++ if (hc != NULL) {
++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
++ kfree(hc);
++ }
++ }
++
++ if (dwc_otg_hcd->core_if->dma_enable) {
++ if (dwc_otg_hcd->status_buf_dma) {
++ dma_free_coherent(_hcd->self.controller,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ dwc_otg_hcd->status_buf,
++ dwc_otg_hcd->status_buf_dma);
++ }
++ } else if (dwc_otg_hcd->status_buf != NULL) {
++ kfree(dwc_otg_hcd->status_buf);
++ }
++
++ return;
++}
++
++
++#ifdef DEBUG
++static void dump_urb_info(struct urb *_urb, char* _fn_name)
++{
++ DWC_PRINT("%s, urb %p\n", _fn_name, _urb);
++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe));
++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe),
++ (usb_pipein(_urb->pipe) ? "IN" : "OUT"));
++ DWC_PRINT(" Endpoint type: %s\n",
++ ({char *pipetype;
++ switch (usb_pipetype(_urb->pipe)) {
++ case PIPE_CONTROL: pipetype = "CONTROL"; break;
++ case PIPE_BULK: pipetype = "BULK"; break;
++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
++ default: pipetype = "UNKNOWN"; break;
++ }; pipetype;}));
++ DWC_PRINT(" Speed: %s\n",
++ ({char *speed;
++ switch (_urb->dev->speed) {
++ case USB_SPEED_HIGH: speed = "HIGH"; break;
++ case USB_SPEED_FULL: speed = "FULL"; break;
++ case USB_SPEED_LOW: speed = "LOW"; break;
++ default: speed = "UNKNOWN"; break;
++ }; speed;}));
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe)));
++ DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length);
++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
++ _urb->transfer_buffer, (void *)_urb->transfer_dma);
++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
++ _urb->setup_packet, (void *)_urb->setup_dma);
++ DWC_PRINT(" Interval: %d\n", _urb->interval);
++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < _urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d:\n", i);
++ DWC_PRINT(" offset: %d, length %d\n",
++ _urb->iso_frame_desc[i].offset,
++ _urb->iso_frame_desc[i].length);
++ }
++ }
++}
++
++static void dump_channel_info(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *qh)
++{
++ if (qh->channel != NULL) {
++ dwc_hc_t *hc = qh->channel;
++ struct list_head *item;
++ dwc_otg_qh_t *qh_item;
++ int num_channels = _hcd->core_if->core_params->host_channels;
++ int i;
++
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++
++ hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++ DWC_PRINT(" Assigned to channel %p:\n", hc);
++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ DWC_PRINT(" NP inactive sched:\n");
++ list_for_each(item, &_hcd->non_periodic_sched_inactive) {
++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ } DWC_PRINT(" NP active sched:\n");
++ list_for_each(item, &_hcd->non_periodic_sched_deferred) {
++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ } DWC_PRINT(" NP deferred sched:\n");
++ list_for_each(item, &_hcd->non_periodic_sched_active) {
++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ } DWC_PRINT(" Channels: \n");
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = _hcd->hc_ptr_array[i];
++ DWC_PRINT(" %2d: %p\n", i, hc);
++ }
++ }
++}
++#endif // DEBUG
++
++/** Starts processing a USB transfer request specified by a USB Request Block
++ * (URB). mem_flags indicates the type of memory allocation to use while
++ * processing this URB. */
++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd,
++ struct urb *_urb,
++ gfp_t _mem_flags)
++{
++ unsigned long flags;
++ int retval;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++ dwc_otg_qtd_t *qtd;
++
++ local_irq_save(flags);
++ retval = usb_hcd_link_urb_to_ep(_hcd, _urb);
++ if (retval) {
++ local_irq_restore(flags);
++ return retval;
++ }
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue");
++ }
++#endif // DEBUG
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /* No longer connected. */
++ local_irq_restore(flags);
++ return -ENODEV;
++ }
++
++ qtd = dwc_otg_hcd_qtd_create (_urb);
++ if (qtd == NULL) {
++ local_irq_restore(flags);
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
++ return -ENOMEM;
++ }
++
++ retval = dwc_otg_hcd_qtd_add (qtd, dwc_otg_hcd);
++ if (retval < 0) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
++ "Error status %d\n", retval);
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++
++ local_irq_restore (flags);
++ return retval;
++}
++
++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
++ * success. */
++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status)
++{
++ unsigned long flags;
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ dwc_otg_qtd_t *urb_qtd;
++ dwc_otg_qh_t *qh;
++ int retval;
++ //struct usb_host_endpoint *_ep = NULL;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
++
++ local_irq_save(flags);
++
++ retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status);
++ if (retval) {
++ local_irq_restore(flags);
++ return retval;
++ }
++
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
++ urb_qtd = (dwc_otg_qtd_t *)_urb->hcpriv;
++ if (urb_qtd == NULL) {
++ printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb);
++ goto done;
++ }
++ qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr;
++ if (qh == NULL) {
++ goto done;
++ }
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue");
++ if (urb_qtd == qh->qtd_in_process) {
++ dump_channel_info(dwc_otg_hcd, qh);
++ }
++ }
++#endif // DEBUG
++
++ if (urb_qtd == qh->qtd_in_process) {
++ /* The QTD is in process (it has been assigned to a channel). */
++
++ if (dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * If still connected (i.e. in host mode), halt the
++ * channel so it can be used for other transfers. If
++ * no longer connected, the host registers can't be
++ * written to halt the channel since the core is in
++ * device mode.
++ */
++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
++ DWC_OTG_HC_XFER_URB_DEQUEUE);
++ }
++ }
++
++ /*
++ * Free the QTD and clean up the associated QH. Leave the QH in the
++ * schedule if it has any remaining QTDs.
++ */
++ dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
++ if (urb_qtd == qh->qtd_in_process) {
++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
++ qh->channel = NULL;
++ qh->qtd_in_process = NULL;
++ } else if (list_empty(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
++ }
++
++done:
++ local_irq_restore(flags);
++ _urb->hcpriv = NULL;
++
++ /* Higher layer software sets URB status. */
++ usb_hcd_unlink_urb_from_ep(_hcd, _urb);
++ usb_hcd_giveback_urb(_hcd, _urb, _status);
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
++ DWC_PRINT(" urb->status = %d\n", _urb->status);
++ }
++
++ return 0;
++}
++
++
++/** Frees resources in the DWC_otg controller related to a given endpoint. Also
++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
++ * must already be dequeued. */
++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd,
++ struct usb_host_endpoint *_ep)
++
++{
++ dwc_otg_qh_t *qh;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd);
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
++ "endpoint=%d\n", _ep->desc.bEndpointAddress,
++ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
++
++ qh = (dwc_otg_qh_t *)(_ep->hcpriv);
++ if (qh != NULL) {
++#ifdef DEBUG
++ /** Check that the QTD list is really empty */
++ if (!list_empty(&qh->qtd_list)) {
++ DWC_WARN("DWC OTG HCD EP DISABLE:"
++ " QTD List for this endpoint is not empty\n");
++ }
++#endif // DEBUG
++
++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
++ _ep->hcpriv = NULL;
++ }
++
++ return;
++}
++extern int dwc_irq;
++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
++ * interrupt.
++ *
++ * This function is called by the USB core when an interrupt occurs */
++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *_hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++
++ mask_and_ack_ifx_irq (dwc_irq);
++ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
++}
++
++/** Creates Status Change bitmap for the root hub and root port. The bitmap is
++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
++ * is the status change indicator for the single root port. Returns 1 if either
++ * change indicator is 1, otherwise returns 0. */
++int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++
++ _buf[0] = 0;
++ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
++ dwc_otg_hcd->flags.b.port_reset_change ||
++ dwc_otg_hcd->flags.b.port_enable_change ||
++ dwc_otg_hcd->flags.b.port_suspend_change ||
++ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
++
++#ifdef DEBUG
++ if (_buf[0]) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
++ " Root port status changed\n");
++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
++ dwc_otg_hcd->flags.b.port_connect_status_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
++ dwc_otg_hcd->flags.b.port_reset_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
++ dwc_otg_hcd->flags.b.port_enable_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
++ dwc_otg_hcd->flags.b.port_suspend_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
++ dwc_otg_hcd->flags.b.port_over_current_change);
++ }
++#endif // DEBUG
++ return (_buf[0] != 0);
++}
++
++#ifdef DWC_HS_ELECT_TST
++/*
++ * Quick and dirty hack to implement the HS Electrical Test
++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
++ *
++ * This code was copied from our userspace app "hset". It sends a
++ * Get Device Descriptor control sequence in two parts, first the
++ * Setup packet by itself, followed some time later by the In and
++ * Ack packets. Rather than trying to figure out how to add this
++ * functionality to the normal driver code, we just hijack the
++ * hardware, using these two function to drive the hardware
++ * directly.
++ */
++
++dwc_otg_core_global_regs_t *global_regs;
++dwc_otg_host_global_regs_t *hc_global_regs;
++dwc_otg_hc_regs_t *hc_regs;
++uint32_t *data_fifo;
++
++static void do_setup(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /*
++ * Send Setup packet (Get Device Descriptor)
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++ // hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ MDELAY(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ /* Fill FIFO with Setup data for Get Device Descriptor */
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++ dwc_write_reg32(data_fifo++, 0x01000680);
++ dwc_write_reg32(data_fifo++, 0x00080000);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++}
++
++static void do_in_ack(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++ host_grxsts_data_t grxsts;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /*
++ * Receive Control In packet
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ MDELAY(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 1;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer */
++ if (grxsts.b.bcnt > 0) {
++ int i;
++ int word_count = (grxsts.b.bcnt + 3) / 4;
++
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++
++ for (i = 0; i < word_count; i++) {
++ (void)dwc_read_reg32(data_fifo++);
++ }
++ }
++
++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
++ break;
++
++ default:
++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ break;
++
++ default:
++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ // usleep(100000);
++ // mdelay(100);
++ MDELAY(1);
++
++ /*
++ * Send handshake packet
++ */
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ MDELAY(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 0;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++}
++#endif /* DWC_HS_ELECT_TST */
++
++/** Handles hub class-specific requests.*/
++int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd,
++ u16 _typeReq,
++ u16 _wValue,
++ u16 _wIndex,
++ char *_buf,
++ u16 _wLength)
++{
++ int retval = 0;
++
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd);
++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd (_hcd)->core_if;
++ struct usb_hub_descriptor *desc;
++ hprt0_data_t hprt0 = {.d32 = 0};
++
++ uint32_t port_status;
++
++ switch (_typeReq) {
++ case ClearHubFeature:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearHubFeature 0x%x\n", _wValue);
++ switch (_wValue) {
++ case C_HUB_LOCAL_POWER:
++ case C_HUB_OVER_CURRENT:
++ /* Nothing required here */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR ("DWC OTG HCD - "
++ "ClearHubFeature request %xh unknown\n", _wValue);
++ }
++ break;
++ case ClearPortFeature:
++ if (!_wIndex || _wIndex > 1)
++ goto error;
++
++ switch (_wValue) {
++ case USB_PORT_FEAT_ENABLE:
++ DWC_DEBUGPL (DBG_ANY, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtena = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ /* Clear Resume bit */
++ mdelay (100);
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
++ /* Port inidicator not supported */
++ break;
++ case USB_PORT_FEAT_C_CONNECTION:
++ /* Clears drivers internal connect status change
++ * flag */
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
++ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
++ break;
++ case USB_PORT_FEAT_C_RESET:
++ /* Clears the driver's internal Port Reset Change
++ * flag */
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
++ dwc_otg_hcd->flags.b.port_reset_change = 0;
++ break;
++ case USB_PORT_FEAT_C_ENABLE:
++ /* Clears the driver's internal Port
++ * Enable/Disable Change flag */
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
++ dwc_otg_hcd->flags.b.port_enable_change = 0;
++ break;
++ case USB_PORT_FEAT_C_SUSPEND:
++ /* Clears the driver's internal Port Suspend
++ * Change flag, which is set when resume signaling on
++ * the host port is complete */
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
++ dwc_otg_hcd->flags.b.port_suspend_change = 0;
++ break;
++ case USB_PORT_FEAT_C_OVER_CURRENT:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
++ dwc_otg_hcd->flags.b.port_over_current_change = 0;
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR ("DWC OTG HCD - "
++ "ClearPortFeature request %xh "
++ "unknown or unsupported\n", _wValue);
++ }
++ break;
++ case GetHubDescriptor:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubDescriptor\n");
++ desc = (struct usb_hub_descriptor *)_buf;
++ desc->bDescLength = 9;
++ desc->bDescriptorType = 0x29;
++ desc->bNbrPorts = 1;
++ desc->wHubCharacteristics = 0x08;
++ desc->bPwrOn2PwrGood = 1;
++ desc->bHubContrCurrent = 0;
++ desc->bitmap[0] = 0;
++ desc->bitmap[1] = 0xff;
++ break;
++ case GetHubStatus:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubStatus\n");
++ memset (_buf, 0, 4);
++ break;
++ case GetPortStatus:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetPortStatus\n");
++
++ if (!_wIndex || _wIndex > 1)
++ goto error;
++
++ port_status = 0;
++
++ if (dwc_otg_hcd->flags.b.port_connect_status_change)
++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
++
++ if (dwc_otg_hcd->flags.b.port_enable_change)
++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
++
++ if (dwc_otg_hcd->flags.b.port_suspend_change)
++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
++
++ if (dwc_otg_hcd->flags.b.port_reset_change)
++ port_status |= (1 << USB_PORT_FEAT_C_RESET);
++
++ if (dwc_otg_hcd->flags.b.port_over_current_change) {
++ DWC_ERROR("Device Not Supported\n");
++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
++ }
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ printk("DISCONNECTED PORT\n");
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return 0's for the remainder of the port status
++ * since the port register can't be read if the core
++ * is in device mode.
++ */
++#if 1 // winder.
++ *((u32 *) _buf) = cpu_to_le32(port_status);
++#else
++ *((__le32 *) _buf) = cpu_to_le32(port_status);
++#endif
++ break;
++ }
++
++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
++
++ if (hprt0.b.prtconnsts)
++ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
++
++ if (hprt0.b.prtena)
++ port_status |= (1 << USB_PORT_FEAT_ENABLE);
++
++ if (hprt0.b.prtsusp)
++ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
++
++ if (hprt0.b.prtovrcurract)
++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
++
++ if (hprt0.b.prtrst)
++ port_status |= (1 << USB_PORT_FEAT_RESET);
++
++ if (hprt0.b.prtpwr)
++ port_status |= (1 << USB_PORT_FEAT_POWER);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
++ port_status |= USB_PORT_STAT_HIGH_SPEED;
++
++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++ port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
++
++ if (hprt0.b.prttstctl)
++ port_status |= (1 << USB_PORT_FEAT_TEST);
++
++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
++#if 1 // winder.
++ *((u32 *) _buf) = cpu_to_le32(port_status);
++#else
++ *((__le32 *) _buf) = cpu_to_le32(port_status);
++#endif
++
++ break;
++ case SetHubFeature:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetHubFeature\n");
++ /* No HUB features supported */
++ break;
++ case SetPortFeature:
++ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
++ goto error;
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return without doing anything since the port
++ * register can't be written if the core is in device
++ * mode.
++ */
++ break;
++ }
++
++ switch (_wValue) {
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
++ if (_hcd->self.otg_port == _wIndex
++ && _hcd->self.b_hnp_enable) {
++ gotgctl_data_t gotgctl = {.d32=0};
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->
++ gotgctl, 0, gotgctl.d32);
++ core_if->op_state = A_SUSPEND;
++ }
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtsusp = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32);
++ /* Suspend the Phy Clock */
++ {
++ pcgcctl_data_t pcgcctl = {.d32=0};
++ pcgcctl.b.stoppclk = 1;
++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
++ }
++
++ /* For HNP the bus must be suspended for at least 200ms.*/
++ if (_hcd->self.b_hnp_enable) {
++ mdelay(200);
++ //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state);
++ }
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_RESET:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_RESET\n");
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ /* TODO: Is this for OTG protocol??
++ * We shoudl remove OTG totally for Danube system.
++ * But, in the future, maybe we need this.
++ */
++#if 1 // winder
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++#else
++ /* When B-Host the Port reset bit is set in
++ * the Start HCD Callback function, so that
++ * the reset is started within 1ms of the HNP
++ * success interrupt. */
++ if (!_hcd->self.is_b_host) {
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ }
++#endif
++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
++ MDELAY (60);
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++
++#ifdef DWC_HS_ELECT_TST
++ case USB_PORT_FEAT_TEST:
++ {
++ uint32_t t;
++ gintmsk_data_t gintmsk;
++
++ t = (_wIndex >> 8); /* MSB wIndex USB */
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
++ printk("USB_PORT_FEAT_TEST %d\n", t);
++ if (t < 6) {
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prttstctl = t;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ } else {
++ /* Setup global vars with reg addresses (quick and
++ * dirty hack, should be cleaned up)
++ */
++ global_regs = core_if->core_global_regs;
++ hc_global_regs = core_if->host_if->host_global_regs;
++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++
++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive suspend on the root port */
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtsusp = 1;
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive resume on the root port */
++ hprt0.d32 = dwc_otg_read_hprt0 (core_if);
++ hprt0.b.prtsusp = 0;
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ mdelay(100);
++
++ /* Clear the resume bit */
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Send the In and Ack packets */
++ do_in_ack();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ }
++ }
++ break;
++ }
++#endif /* DWC_HS_ELECT_TST */
++
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
++ /* Not supported */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR ("DWC OTG HCD - "
++ "SetPortFeature request %xh "
++ "unknown or unsupported\n", _wValue);
++ break;
++ }
++ break;
++ default:
++error:
++ retval = -EINVAL;
++ DWC_WARN ("DWC OTG HCD - "
++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
++ _typeReq, _wIndex, _wValue);
++ break;
++ }
++
++ return retval;
++}
++
++
++/**
++ * Assigns transactions from a QTD to a free host channel and initializes the
++ * host channel to perform the transactions. The host channel is removed from
++ * the free list.
++ *
++ * @param _hcd The HCD state structure.
++ * @param _qh Transactions from the first QTD for this QH are selected and
++ * assigned to a free host channel.
++ */
++static void assign_and_init_hc(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ dwc_hc_t *hc;
++ dwc_otg_qtd_t *qtd;
++ struct urb *urb;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh);
++
++ hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
++
++ /* Remove the host channel from the free list. */
++ list_del_init(&hc->hc_list_entry);
++
++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++ urb = qtd->urb;
++ _qh->channel = hc;
++ _qh->qtd_in_process = qtd;
++
++ /*
++ * Use usb_pipedevice to determine device address. This address is
++ * 0 before the SET_ADDRESS command and the correct address afterward.
++ */
++ hc->dev_addr = usb_pipedevice(urb->pipe);
++ hc->ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (urb->dev->speed == USB_SPEED_LOW) {
++ hc->speed = DWC_OTG_EP_SPEED_LOW;
++ } else if (urb->dev->speed == USB_SPEED_FULL) {
++ hc->speed = DWC_OTG_EP_SPEED_FULL;
++ } else {
++ hc->speed = DWC_OTG_EP_SPEED_HIGH;
++ }
++ hc->max_packet = dwc_max_packet(_qh->maxp);
++
++ hc->xfer_started = 0;
++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
++ hc->error_state = (qtd->error_count > 0);
++ hc->halt_on_queue = 0;
++ hc->halt_pending = 0;
++ hc->requests = 0;
++
++ /*
++ * The following values may be modified in the transfer type section
++ * below. The xfer_len value may be reduced when the transfer is
++ * started to accommodate the max widths of the XferSize and PktCnt
++ * fields in the HCTSIZn register.
++ */
++ hc->do_ping = _qh->ping_state;
++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
++ hc->data_pid_start = _qh->data_toggle;
++ hc->multi_count = 1;
++
++ if (_hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma + urb->actual_length;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
++ }
++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
++ hc->xfer_count = 0;
++
++ /*
++ * Set the split attributes
++ */
++ hc->do_split = 0;
++ if (_qh->do_split) {
++ hc->do_split = 1;
++ hc->xact_pos = qtd->isoc_split_pos;
++ hc->complete_split = qtd->complete_split;
++ hc->hub_addr = urb->dev->tt->hub->devnum;
++ hc->port_addr = urb->dev->ttport;
++ }
++
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
++ hc->do_ping = 0;
++ hc->ep_is_in = 0;
++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
++ if (_hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->setup_packet;
++ }
++ hc->xfer_len = 8;
++ break;
++ case DWC_OTG_CONTROL_DATA:
++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
++ hc->data_pid_start = qtd->data_toggle;
++ break;
++ case DWC_OTG_CONTROL_STATUS:
++ /*
++ * Direction is opposite of data direction or IN if no
++ * data.
++ */
++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
++ if (urb->transfer_buffer_length == 0) {
++ hc->ep_is_in = 1;
++ } else {
++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
++ }
++ if (hc->ep_is_in) {
++ hc->do_ping = 0;
++ }
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ hc->xfer_len = 0;
++ if (_hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)_hcd->status_buf_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)_hcd->status_buf;
++ }
++ break;
++ }
++ break;
++ case PIPE_BULK:
++ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
++ break;
++ case PIPE_INTERRUPT:
++ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ struct usb_iso_packet_descriptor *frame_desc;
++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
++ if (_hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
++ }
++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
++
++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ if (hc->xfer_len <= 188) {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ }
++ else {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
++ }
++ }
++ }
++ break;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This value may be modified when the transfer is started to
++ * reflect the actual transfer length.
++ */
++ hc->multi_count = dwc_hb_mult(_qh->maxp);
++ }
++
++ dwc_otg_hc_init(_hcd->core_if, hc);
++ hc->qh = _qh;
++}
++#define DEBUG_HOST_CHANNELS
++#ifdef DEBUG_HOST_CHANNELS
++static int last_sel_trans_num_per_scheduled = 0;
++module_param(last_sel_trans_num_per_scheduled, int, 0444);
++
++static int last_sel_trans_num_nonper_scheduled = 0;
++module_param(last_sel_trans_num_nonper_scheduled, int, 0444);
++
++static int last_sel_trans_num_avail_hc_at_start = 0;
++module_param(last_sel_trans_num_avail_hc_at_start, int, 0444);
++
++static int last_sel_trans_num_avail_hc_at_end = 0;
++module_param(last_sel_trans_num_avail_hc_at_end, int, 0444);
++#endif /* DEBUG_HOST_CHANNELS */
++
++/**
++ * This function selects transactions from the HCD transfer schedule and
++ * assigns them to available host channels. It is called from HCD interrupt
++ * handler functions.
++ *
++ * @param _hcd The HCD state structure.
++ *
++ * @return The types of new transactions that were assigned to host channels.
++ */
++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd)
++{
++ struct list_head *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int num_channels;
++ unsigned long flags;
++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
++#endif /* */
++
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_per_scheduled = 0;
++ last_sel_trans_num_nonper_scheduled = 0;
++ last_sel_trans_num_avail_hc_at_start = _hcd->available_host_channels;
++#endif /* DEBUG_HOST_CHANNELS */
++
++ /* Process entries in the periodic ready list. */
++ num_channels = _hcd->core_if->core_params->host_channels;
++ qh_ptr = _hcd->periodic_sched_ready.next;
++ while (qh_ptr != &_hcd->periodic_sched_ready
++ && !list_empty(&_hcd->free_hc_list)) {
++
++ // Make sure we leave one channel for non periodic transactions.
++ local_irq_save(flags);
++ if (_hcd->available_host_channels <= 1) {
++ local_irq_restore(flags);
++ break;
++ }
++ _hcd->available_host_channels--;
++ local_irq_restore(flags);
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_per_scheduled++;
++#endif /* DEBUG_HOST_CHANNELS */
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ assign_and_init_hc(_hcd, qh);
++
++ /*
++ * Move the QH from the periodic ready schedule to the
++ * periodic assigned schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ local_irq_save(flags);
++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned);
++ local_irq_restore(flags);
++ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
++ }
++
++ /*
++ * Process entries in the deferred portion of the non-periodic list.
++ * A NAK put them here and, at the right time, they need to be
++ * placed on the sched_inactive list.
++ */
++ qh_ptr = _hcd->non_periodic_sched_deferred.next;
++ while (qh_ptr != &_hcd->non_periodic_sched_deferred) {
++ uint16_t frame_number =
++ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ qh_ptr = qh_ptr->next;
++
++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
++ // NAK did this
++ /*
++ * Move the QH from the non periodic deferred schedule to
++ * the non periodic inactive schedule.
++ */
++ local_irq_save(flags);
++ list_move(&qh->qh_list_entry,
++ &_hcd->non_periodic_sched_inactive);
++ local_irq_restore(flags);
++ }
++ }
++
++ /*
++ * Process entries in the inactive portion of the non-periodic
++ * schedule. Some free host channels may not be used if they are
++ * reserved for periodic transfers.
++ */
++ qh_ptr = _hcd->non_periodic_sched_inactive.next;
++ num_channels = _hcd->core_if->core_params->host_channels;
++ while (qh_ptr != &_hcd->non_periodic_sched_inactive
++ && !list_empty(&_hcd->free_hc_list)) {
++
++ local_irq_save(flags);
++ if (_hcd->available_host_channels < 1) {
++ local_irq_restore(flags);
++ break;
++ }
++ _hcd->available_host_channels--;
++ local_irq_restore(flags);
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_nonper_scheduled++;
++#endif /* DEBUG_HOST_CHANNELS */
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ assign_and_init_hc(_hcd, qh);
++
++ /*
++ * Move the QH from the non-periodic inactive schedule to the
++ * non-periodic active schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ local_irq_save(flags);
++ list_move(&qh->qh_list_entry, &_hcd->non_periodic_sched_active);
++ local_irq_restore(flags);
++
++ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
++ } else {
++ ret_val = DWC_OTG_TRANSACTION_ALL;
++ }
++
++ }
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_avail_hc_at_end = _hcd->available_host_channels;
++#endif /* DEBUG_HOST_CHANNELS */
++
++ return ret_val;
++}
++
++/**
++ * Attempts to queue a single transaction request for a host channel
++ * associated with either a periodic or non-periodic transfer. This function
++ * assumes that there is space available in the appropriate request queue. For
++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
++ * is available in the appropriate Tx FIFO.
++ *
++ * @param _hcd The HCD state structure.
++ * @param _hc Host channel descriptor associated with either a periodic or
++ * non-periodic transfer.
++ * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx
++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
++ * transfers.
++ *
++ * @return 1 if a request is queued and more requests may be needed to
++ * complete the transfer, 0 if no more requests are required for this
++ * transfer, -1 if there is insufficient space in the Tx FIFO.
++ */
++static int queue_transaction(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ uint16_t _fifo_dwords_avail)
++{
++ int retval;
++
++ if (_hcd->core_if->dma_enable) {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
++ _hc->qh->ping_state = 0;
++ }
++ retval = 0;
++ } else if (_hc->halt_pending) {
++ /* Don't queue a request if the channel has been halted. */
++ retval = 0;
++ } else if (_hc->halt_on_queue) {
++ dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status);
++ retval = 0;
++ } else if (_hc->do_ping) {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
++ }
++ retval = 0;
++ } else if (!_hc->ep_is_in ||
++ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
++ retval = 1;
++ } else {
++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
++ }
++ } else {
++ retval = -1;
++ }
++ } else {
++ if (!_hc->xfer_started) {
++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc);
++ retval = 1;
++ } else {
++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc);
++ }
++ }
++
++ return retval;
++}
++
++/**
++ * Processes active non-periodic channels and queues transactions for these
++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
++ * FIFO Empty interrupt is enabled if there are more transactions to queue as
++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
++ * FIFO Empty interrupt is disabled.
++ */
++static void process_non_periodic_channels(dwc_otg_hcd_t *_hcd)
++{
++ gnptxsts_data_t tx_status;
++ struct list_head *orig_qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++ int more_to_do = 0;
++
++ dwc_otg_core_global_regs_t *global_regs = _hcd->core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ /*
++ * Keep track of the starting point. Skip over the start-of-list
++ * entry.
++ */
++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
++ }
++ orig_qh_ptr = _hcd->non_periodic_qh_ptr;
++
++ /*
++ * Process once through the active list or until no more space is
++ * available in the request queue or the Tx FIFO.
++ */
++ do {
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (!_hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ status = queue_transaction(_hcd, qh->channel, tx_status.b.nptxfspcavail);
++
++ if (status > 0) {
++ more_to_do = 1;
++ } else if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /* Advance to next QH, skipping start-of-list entry. */
++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) {
++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
++ }
++
++ } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr);
++
++ if (!_hcd->core_if->dma_enable) {
++ gintmsk_data_t intr_mask = {.d32 = 0};
++ intr_mask.b.nptxfempty = 1;
++
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ if (more_to_do || no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the non-periodic
++ * Tx FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ }
++}
++
++/**
++ * Processes periodic channels for the next frame and queues transactions for
++ * these channels to the DWC_otg controller. After queueing transactions, the
++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
++ * to queue as Periodic Tx FIFO or request queue space becomes available.
++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
++ */
++static void process_periodic_channels(dwc_otg_hcd_t *_hcd)
++{
++ hptxsts_data_t tx_status;
++ struct list_head *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++
++ dwc_otg_host_global_regs_t *host_regs;
++ host_regs = _hcd->core_if->host_if->host_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++
++ qh_ptr = _hcd->periodic_sched_assigned.next;
++ while (qh_ptr != &_hcd->periodic_sched_assigned) {
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ if (tx_status.b.ptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++
++ /*
++ * Set a flag if we're queuing high-bandwidth in slave mode.
++ * The flag prevents any halts to get into the request queue in
++ * the middle of multiple high-bandwidth packets getting queued.
++ */
++ if ((!_hcd->core_if->dma_enable) &&
++ (qh->channel->multi_count > 1))
++ {
++ _hcd->core_if->queuing_high_bandwidth = 1;
++ }
++
++ status = queue_transaction(_hcd, qh->channel, tx_status.b.ptxfspcavail);
++ if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /*
++ * In Slave mode, stay on the current transfer until there is
++ * nothing more to do or the high-bandwidth request count is
++ * reached. In DMA mode, only need to queue one request. The
++ * controller automatically handles multiple packets for
++ * high-bandwidth transfers.
++ */
++ if (_hcd->core_if->dma_enable ||
++ (status == 0 ||
++ qh->channel->requests == qh->channel->multi_count)) {
++ qh_ptr = qh_ptr->next;
++ /*
++ * Move the QH from the periodic assigned schedule to
++ * the periodic queued schedule.
++ */
++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_queued);
++
++ /* done queuing high bandwidth */
++ _hcd->core_if->queuing_high_bandwidth = 0;
++ }
++ }
++
++ if (!_hcd->core_if->dma_enable) {
++ dwc_otg_core_global_regs_t *global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ global_regs = _hcd->core_if->core_global_regs;
++ intr_mask.b.ptxfempty = 1;
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++ if (!(list_empty(&_hcd->periodic_sched_assigned)) ||
++ no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the periodic Tx
++ * FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ }
++}
++
++/**
++ * This function processes the currently active host channels and queues
++ * transactions for these channels to the DWC_otg controller. It is called
++ * from HCD interrupt handler functions.
++ *
++ * @param _hcd The HCD state structure.
++ * @param _tr_type The type(s) of transactions to queue (non-periodic,
++ * periodic, or both).
++ */
++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
++ dwc_otg_transaction_type_e _tr_type)
++{
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
++#endif
++ /* Process host channels associated with periodic transfers. */
++ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
++ _tr_type == DWC_OTG_TRANSACTION_ALL) &&
++ !list_empty(&_hcd->periodic_sched_assigned)) {
++
++ process_periodic_channels(_hcd);
++ }
++
++ /* Process host channels associated with non-periodic transfers. */
++ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
++ _tr_type == DWC_OTG_TRANSACTION_ALL)) {
++ if (!list_empty(&_hcd->non_periodic_sched_active)) {
++ process_non_periodic_channels(_hcd);
++ } else {
++ /*
++ * Ensure NP Tx FIFO empty interrupt is disabled when
++ * there are no non-periodic transfers to process.
++ */
++ gintmsk_data_t gintmsk = {.d32 = 0};
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++ }
++ }
++}
++
++/**
++ * Sets the final status of an URB and returns it to the device driver. Any
++ * required cleanup of the URB is performed.
++ */
++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb,
++ int _status)
++ __releases(_hcd->lock)
++__acquires(_hcd->lock)
++{
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
++ __func__, _urb, usb_pipedevice(_urb->pipe),
++ usb_pipeendpoint(_urb->pipe),
++ usb_pipein(_urb->pipe) ? "IN" : "OUT", _status);
++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < _urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d status: %d\n",
++ i, _urb->iso_frame_desc[i].status);
++ }
++ }
++ }
++#endif
++
++ _urb->status = _status;
++ _urb->hcpriv = NULL;
++ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb);
++ spin_unlock(&_hcd->lock);
++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status);
++ spin_lock(&_hcd->lock);
++}
++
++/*
++ * Returns the Queue Head for an URB.
++ */
++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb)
++{
++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb);
++ return (dwc_otg_qh_t *)ep->hcpriv;
++}
++
++#ifdef DEBUG
++void dwc_print_setup_data (uint8_t *setup)
++{
++ int i;
++ if (CHK_DEBUG_LEVEL(DBG_HCD)){
++ DWC_PRINT("Setup Data = MSB ");
++ for (i=7; i>=0; i--) DWC_PRINT ("%02x ", setup[i]);
++ DWC_PRINT("\n");
++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0]&0x80) ? "Device-to-Host" : "Host-to-Device");
++ DWC_PRINT(" bmRequestType Type = ");
++ switch ((setup[0]&0x60) >> 5) {
++ case 0: DWC_PRINT("Standard\n"); break;
++ case 1: DWC_PRINT("Class\n"); break;
++ case 2: DWC_PRINT("Vendor\n"); break;
++ case 3: DWC_PRINT("Reserved\n"); break;
++ }
++ DWC_PRINT(" bmRequestType Recipient = ");
++ switch (setup[0]&0x1f) {
++ case 0: DWC_PRINT("Device\n"); break;
++ case 1: DWC_PRINT("Interface\n"); break;
++ case 2: DWC_PRINT("Endpoint\n"); break;
++ case 3: DWC_PRINT("Other\n"); break;
++ default: DWC_PRINT("Reserved\n"); break;
++ }
++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
++ }
++}
++#endif
++
++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd) {
++#ifdef DEBUG
++#if 0
++ DWC_PRINT("Frame remaining at SOF:\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->frrem_samples, _hcd->frrem_accum,
++ (_hcd->frrem_samples > 0) ?
++ _hcd->frrem_accum/_hcd->frrem_samples : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %u, avg %u\n",
++ _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum,
++ (_hcd->core_if->hfnum_7_samples > 0) ?
++ _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0);
++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %u, avg %u\n",
++ _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum,
++ (_hcd->core_if->hfnum_0_samples > 0) ?
++ _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0);
++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %u, avg %u\n",
++ _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum,
++ (_hcd->core_if->hfnum_other_samples > 0) ?
++ _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a,
++ (_hcd->hfnum_7_samples_a > 0) ?
++ _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0);
++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a,
++ (_hcd->hfnum_0_samples_a > 0) ?
++ _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0);
++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a,
++ (_hcd->hfnum_other_samples_a > 0) ?
++ _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0);
++
++ DWC_PRINT("\n");
++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b,
++ (_hcd->hfnum_7_samples_b > 0) ?
++ _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0);
++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b,
++ (_hcd->hfnum_0_samples_b > 0) ?
++ _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0);
++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n",
++ _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b,
++ (_hcd->hfnum_other_samples_b > 0) ?
++ _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0);
++#endif
++#endif
++}
++
++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd)
++{
++#ifdef DEBUG
++ int num_channels;
++ int i;
++ gnptxsts_data_t np_tx_status;
++ hptxsts_data_t p_tx_status;
++
++ num_channels = _hcd->core_if->core_params->host_channels;
++ DWC_PRINT("\n");
++ DWC_PRINT("************************************************************\n");
++ DWC_PRINT("HCD State:\n");
++ DWC_PRINT(" Num channels: %d\n", num_channels);
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = _hcd->hc_ptr_array[i];
++ DWC_PRINT(" Channel %d:\n", i);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" speed: %d\n", hc->speed);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" do_split: %d\n", hc->do_split);
++ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
++ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
++ DWC_PRINT(" requests: %d\n", hc->requests);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ if (hc->xfer_started) {
++ hfnum_data_t hfnum;
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
++ hcchar.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcchar);
++ hctsiz.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hctsiz);
++ hcint.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcintmsk);
++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
++ }
++ if (hc->xfer_started && (hc->qh != NULL) && (hc->qh->qtd_in_process != NULL)) {
++ dwc_otg_qtd_t *qtd;
++ struct urb *urb;
++ qtd = hc->qh->qtd_in_process;
++ urb = qtd->urb;
++ DWC_PRINT(" URB Info:\n");
++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
++ if (urb != NULL) {
++ DWC_PRINT(" Dev: %d, EP: %d %s\n",
++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT");
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
++ DWC_PRINT(" actual_length: %d\n", urb->actual_length);
++ }
++ }
++ }
++ //DWC_PRINT(" non_periodic_channels: %d\n", _hcd->non_periodic_channels);
++ //DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels);
++ DWC_PRINT(" available_channels: %d\n", _hcd->available_host_channels);
++ DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs);
++ np_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts);
++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
++ p_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts);
++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
++ dwc_otg_hcd_dump_frrem(_hcd);
++ dwc_otg_dump_global_registers(_hcd->core_if);
++ dwc_otg_dump_host_registers(_hcd->core_if);
++ DWC_PRINT("************************************************************\n");
++ DWC_PRINT("\n");
++#endif
++}
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h
+@@ -0,0 +1,676 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 537387 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#if !defined(__DWC_HCD_H__)
++#define __DWC_HCD_H__
++
++#include <linux/list.h>
++#include <linux/usb.h>
++#include <linux/usb/hcd.h>
++
++struct lm_device;
++struct dwc_otg_device;
++
++#include "dwc_otg_cil.h"
++//#include "dwc_otg_ifx.h" // winder
++
++
++/**
++ * @file
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Host Contoller Driver (HCD).
++ *
++ * The Host Controller Driver (HCD) is responsible for translating requests
++ * from the USB Driver into the appropriate actions on the DWC_otg controller.
++ * It isolates the USBD from the specifics of the controller by providing an
++ * API to the USBD.
++ */
++
++/**
++ * Phases for control transfers.
++ */
++typedef enum dwc_otg_control_phase {
++ DWC_OTG_CONTROL_SETUP,
++ DWC_OTG_CONTROL_DATA,
++ DWC_OTG_CONTROL_STATUS
++} dwc_otg_control_phase_e;
++
++/** Transaction types. */
++typedef enum dwc_otg_transaction_type {
++ DWC_OTG_TRANSACTION_NONE,
++ DWC_OTG_TRANSACTION_PERIODIC,
++ DWC_OTG_TRANSACTION_NON_PERIODIC,
++ DWC_OTG_TRANSACTION_ALL
++} dwc_otg_transaction_type_e;
++
++/**
++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
++ * interrupt, or isochronous transfer. A single QTD is created for each URB
++ * (of one of these types) submitted to the HCD. The transfer associated with
++ * a QTD may require one or multiple transactions.
++ *
++ * A QTD is linked to a Queue Head, which is entered in either the
++ * non-periodic or periodic schedule for execution. When a QTD is chosen for
++ * execution, some or all of its transactions may be executed. After
++ * execution, the state of the QTD is updated. The QTD may be retired if all
++ * its transactions are complete or if an error occurred. Otherwise, it
++ * remains in the schedule so more transactions can be executed later.
++ */
++struct dwc_otg_qh;
++typedef struct dwc_otg_qtd {
++ /**
++ * Determines the PID of the next data packet for the data phase of
++ * control transfers. Ignored for other transfer types.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Current phase for control transfers (Setup, Data, or Status). */
++ dwc_otg_control_phase_e control_phase;
++
++ /** Keep track of the current split type
++ * for FS/LS endpoints on a HS Hub */
++ uint8_t complete_split;
++
++ /** How many bytes transferred during SSPLIT OUT */
++ uint32_t ssplit_out_xfer_count;
++
++ /**
++ * Holds the number of bus errors that have occurred for a transaction
++ * within this transfer.
++ */
++ uint8_t error_count;
++
++ /**
++ * Index of the next frame descriptor for an isochronous transfer. A
++ * frame descriptor describes the buffer position and length of the
++ * data to be transferred in the next scheduled (micro)frame of an
++ * isochronous transfer. It also holds status for that transaction.
++ * The frame index starts at 0.
++ */
++ int isoc_frame_index;
++
++ /** Position of the ISOC split on full/low speed */
++ uint8_t isoc_split_pos;
++
++ /** Position of the ISOC split in the buffer for the current frame */
++ uint16_t isoc_split_offset;
++
++ /** URB for this transfer */
++ struct urb *urb;
++
++ /** This list of QTDs */
++ struct list_head qtd_list_entry;
++
++ /* Field to track the qh pointer */
++ struct dwc_otg_qh *qtd_qh_ptr;
++} dwc_otg_qtd_t;
++
++/**
++ * A Queue Head (QH) holds the static characteristics of an endpoint and
++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
++ * be entered in either the non-periodic or periodic schedule.
++ */
++typedef struct dwc_otg_qh {
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - USB_ENDPOINT_XFER_CONTROL
++ * - USB_ENDPOINT_XFER_ISOC
++ * - USB_ENDPOINT_XFER_BULK
++ * - USB_ENDPOINT_XFER_INT
++ */
++ uint8_t ep_type;
++ uint8_t ep_is_in;
++
++ /** wMaxPacketSize Field of Endpoint Descriptor. */
++ uint16_t maxp;
++
++ /**
++ * Determines the PID of the next data packet for non-control
++ * transfers. Ignored for control transfers.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Ping state if 1. */
++ uint8_t ping_state;
++
++ /**
++ * List of QTDs for this QH.
++ */
++ struct list_head qtd_list;
++
++ /** Host channel currently processing transfers for this QH. */
++ dwc_hc_t *channel;
++
++ /** QTD currently assigned to a host channel for this QH. */
++ dwc_otg_qtd_t *qtd_in_process;
++
++ /** Full/low speed endpoint on high-speed hub requires split. */
++ uint8_t do_split;
++
++ /** @name Periodic schedule information */
++ /** @{ */
++
++ /** Bandwidth in microseconds per (micro)frame. */
++ uint8_t usecs;
++
++ /** Interval between transfers in (micro)frames. */
++ uint16_t interval;
++
++ /**
++ * (micro)frame to initialize a periodic transfer. The transfer
++ * executes in the following (micro)frame.
++ */
++ uint16_t sched_frame;
++
++ /** (micro)frame at which last start split was initialized. */
++ uint16_t start_split_frame;
++
++ /** @} */
++
++ uint16_t speed;
++ uint16_t frame_usecs[8];
++ /** Entry for QH in either the periodic or non-periodic schedule. */
++ struct list_head qh_list_entry;
++} dwc_otg_qh_t;
++
++/**
++ * This structure holds the state of the HCD, including the non-periodic and
++ * periodic schedules.
++ */
++typedef struct dwc_otg_hcd {
++ spinlock_t lock;
++
++ /** DWC OTG Core Interface Layer */
++ dwc_otg_core_if_t *core_if;
++
++ /** Internal DWC HCD Flags */
++ volatile union dwc_otg_hcd_internal_flags {
++ uint32_t d32;
++ struct {
++ unsigned port_connect_status_change : 1;
++ unsigned port_connect_status : 1;
++ unsigned port_reset_change : 1;
++ unsigned port_enable_change : 1;
++ unsigned port_suspend_change : 1;
++ unsigned port_over_current_change : 1;
++ unsigned reserved : 27;
++ } b;
++ } flags;
++
++ /**
++ * Inactive items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are not
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_inactive;
++
++ /**
++ * Deferred items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are not
++ * currently assigned to a host channel.
++ * When we get an NAK, the QH goes here.
++ */
++ struct list_head non_periodic_sched_deferred;
++
++ /**
++ * Active items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_active;
++
++ /**
++ * Pointer to the next Queue Head to process in the active
++ * non-periodic schedule.
++ */
++ struct list_head *non_periodic_qh_ptr;
++
++ /**
++ * Inactive items in the periodic schedule. This is a list of QHs for
++ * periodic transfers that are _not_ scheduled for the next frame.
++ * Each QH in the list has an interval counter that determines when it
++ * needs to be scheduled for execution. This scheduling mechanism
++ * allows only a simple calculation for periodic bandwidth used (i.e.
++ * must assume that all periodic transfers may need to execute in the
++ * same frame). However, it greatly simplifies scheduling and should
++ * be sufficient for the vast majority of OTG hosts, which need to
++ * connect to a small number of peripherals at one time.
++ *
++ * Items move from this list to periodic_sched_ready when the QH
++ * interval counter is 0 at SOF.
++ */
++ struct list_head periodic_sched_inactive;
++
++ /**
++ * List of periodic QHs that are ready for execution in the next
++ * frame, but have not yet been assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_assigned as host
++ * channels become available during the current frame.
++ */
++ struct list_head periodic_sched_ready;
++
++ /**
++ * List of periodic QHs to be executed in the next frame that are
++ * assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_queued as the
++ * transactions for the QH are queued to the DWC_otg controller.
++ */
++ struct list_head periodic_sched_assigned;
++
++ /**
++ * List of periodic QHs that have been queued for execution.
++ *
++ * Items move from this list to either periodic_sched_inactive or
++ * periodic_sched_ready when the channel associated with the transfer
++ * is released. If the interval for the QH is 1, the item moves to
++ * periodic_sched_ready because it must be rescheduled for the next
++ * frame. Otherwise, the item moves to periodic_sched_inactive.
++ */
++ struct list_head periodic_sched_queued;
++
++ /**
++ * Total bandwidth claimed so far for periodic transfers. This value
++ * is in microseconds per (micro)frame. The assumption is that all
++ * periodic transfers may occur in the same (micro)frame.
++ */
++ uint16_t periodic_usecs;
++
++ /**
++ * Total bandwidth claimed so far for all periodic transfers
++ * in a frame.
++ * This will include a mixture of HS and FS transfers.
++ * Units are microseconds per (micro)frame.
++ * We have a budget per frame and have to schedule
++ * transactions accordingly.
++ * Watch out for the fact that things are actually scheduled for the
++ * "next frame".
++ */
++ uint16_t frame_usecs[8];
++
++ /**
++ * Frame number read from the core at SOF. The value ranges from 0 to
++ * DWC_HFNUM_MAX_FRNUM.
++ */
++ uint16_t frame_number;
++
++ /**
++ * Free host channels in the controller. This is a list of
++ * dwc_hc_t items.
++ */
++ struct list_head free_hc_list;
++
++ /**
++ * Number of available host channels.
++ */
++ int available_host_channels;
++
++ /**
++ * Array of pointers to the host channel descriptors. Allows accessing
++ * a host channel descriptor given the host channel number. This is
++ * useful in interrupt handlers.
++ */
++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
++
++ /**
++ * Buffer to use for any data received during the status phase of a
++ * control transfer. Normally no data is transferred during the status
++ * phase. This buffer is used as a bit bucket.
++ */
++ uint8_t *status_buf;
++
++ /**
++ * DMA address for status_buf.
++ */
++ dma_addr_t status_buf_dma;
++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
++
++ /**
++ * Structure to allow starting the HCD in a non-interrupt context
++ * during an OTG role change.
++ */
++ struct work_struct start_work;
++ struct usb_hcd *_p;
++
++ /**
++ * Connection timer. An OTG host must display a message if the device
++ * does not connect. Started when the VBus power is turned on via
++ * sysfs attribute "buspower".
++ */
++ struct timer_list conn_timer;
++
++ /* Tasket to do a reset */
++ struct tasklet_struct *reset_tasklet;
++
++#ifdef DEBUG
++ uint32_t frrem_samples;
++ uint64_t frrem_accum;
++
++ uint32_t hfnum_7_samples_a;
++ uint64_t hfnum_7_frrem_accum_a;
++ uint32_t hfnum_0_samples_a;
++ uint64_t hfnum_0_frrem_accum_a;
++ uint32_t hfnum_other_samples_a;
++ uint64_t hfnum_other_frrem_accum_a;
++
++ uint32_t hfnum_7_samples_b;
++ uint64_t hfnum_7_frrem_accum_b;
++ uint32_t hfnum_0_samples_b;
++ uint64_t hfnum_0_frrem_accum_b;
++ uint32_t hfnum_other_samples_b;
++ uint64_t hfnum_other_frrem_accum_b;
++#endif
++
++} dwc_otg_hcd_t;
++
++/** Gets the dwc_otg_hcd from a struct usb_hcd */
++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
++{
++ return (dwc_otg_hcd_t *)(hcd->hcd_priv);
++}
++
++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
++}
++
++/** @name HCD Create/Destroy Functions */
++/** @{ */
++extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device);
++extern void dwc_otg_hcd_remove(struct device *_dev);
++/** @} */
++
++/** @name Linux HC Driver API Functions */
++/** @{ */
++
++extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
++
++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++ struct urb *urb,
++ gfp_t mem_flags);
++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
++ struct urb *urb,
++ int status);
++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
++
++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep);
++
++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
++ char *buf);
++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++ u16 typeReq,
++ u16 wValue,
++ u16 wIndex,
++ char *buf,
++ u16 wLength);
++
++/** @} */
++
++/** @name Transaction Execution Functions */
++/** @{ */
++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd);
++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd,
++ dwc_otg_transaction_type_e _tr_type);
++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb,
++ int _status);
++/** @} */
++
++/** @name Interrupt Handler Functions */
++/** @{ */
++extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num);
++extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd);
++/** @} */
++
++
++/** @name Schedule Queue Functions */
++/** @{ */
++
++/* Implemented in dwc_otg_hcd_queue.c */
++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb);
++extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb);
++extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh);
++extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
++extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh);
++extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit);
++extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay);
++
++/** Remove and free a QH */
++static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd,
++ dwc_otg_qh_t *_qh)
++{
++ dwc_otg_hcd_qh_remove (_hcd, _qh);
++ dwc_otg_hcd_qh_free (_qh);
++}
++
++/** Allocates memory for a QH structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void)
++{
++#ifdef _SC_BUILD_
++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC);
++#else
++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL);
++#endif
++}
++
++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb);
++extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb);
++extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
++
++/** Allocates memory for a QTD structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void)
++{
++#ifdef _SC_BUILD_
++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC);
++#else
++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL);
++#endif
++}
++
++/** Frees the memory for a QTD structure. QTD should already be removed from
++ * list.
++ * @param[in] _qtd QTD to free.*/
++static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd)
++{
++ kfree (_qtd);
++}
++
++/** Removes a QTD from list.
++ * @param[in] _qtd QTD to remove from list. */
++static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd)
++{
++ unsigned long flags;
++ local_irq_save (flags);
++ list_del (&_qtd->qtd_list_entry);
++ local_irq_restore (flags);
++}
++
++/** Remove and free a QTD */
++static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd)
++{
++ dwc_otg_hcd_qtd_remove (_qtd);
++ dwc_otg_hcd_qtd_free (_qtd);
++}
++
++/** @} */
++
++
++/** @name Internal Functions */
++/** @{ */
++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb);
++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd);
++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd);
++/** @} */
++
++
++/** Gets the usb_host_endpoint associated with an URB. */
++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb)
++{
++ struct usb_device *dev = _urb->dev;
++ int ep_num = usb_pipeendpoint(_urb->pipe);
++ if (usb_pipein(_urb->pipe))
++ return dev->ep_in[ep_num];
++ else
++ return dev->ep_out[ep_num];
++}
++
++/**
++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
++ * qualified with its direction (possible 32 endpoints per device).
++ */
++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \
++ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
++
++/** Gets the QH that contains the list_head */
++#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry))
++
++/** Gets the QTD that contains the list_head */
++#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry))
++
++/** Check if QH is non-periodic */
++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
++
++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
++
++/** Packet size for any kind of endpoint descriptor */
++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
++
++/**
++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
++ * frame number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2)
++{
++ return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <=
++ (DWC_HFNUM_MAX_FRNUM >> 1);
++}
++
++/**
++ * Returns true if _frame1 is greater than _frame2. The comparison is done
++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
++ * number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2)
++{
++ return (_frame1 != _frame2) &&
++ (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) <
++ (DWC_HFNUM_MAX_FRNUM >> 1));
++}
++
++/**
++ * Increments _frame by the amount specified by _inc. The addition is done
++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
++ */
++static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc)
++{
++ return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM;
++}
++
++static inline uint16_t dwc_full_frame_num (uint16_t _frame)
++{
++ return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3;
++}
++
++static inline uint16_t dwc_micro_frame_num (uint16_t _frame)
++{
++ return (_frame) & 0x7;
++}
++
++#ifdef DEBUG
++/**
++ * Macro to sample the remaining PHY clocks left in the current frame. This
++ * may be used during debugging to determine the average time it takes to
++ * execute sections of code. There are two possible sample points, "a" and
++ * "b", so the _letter argument must be one of these values.
++ *
++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
++ * example, "cat /sys/devices/lm0/hcd_frrem".
++ */
++#define dwc_sample_frrem(_hcd, _qh, _letter) \
++{ \
++ hfnum_data_t hfnum; \
++ dwc_otg_qtd_t *qtd; \
++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
++ switch (hfnum.b.frnum & 0x7) { \
++ case 7: \
++ _hcd->hfnum_7_samples_##_letter++; \
++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ case 0: \
++ _hcd->hfnum_0_samples_##_letter++; \
++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ default: \
++ _hcd->hfnum_other_samples_##_letter++; \
++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ } \
++ } \
++}
++#else // DEBUG
++#define dwc_sample_frrem(_hcd, _qh, _letter)
++#endif // DEBUG
++#endif // __DWC_HCD_H__
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c
+@@ -0,0 +1,1841 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 553126 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++const int erratum_usb09_patched = 0;
++const int deferral_on = 1;
++const int nak_deferral_delay = 8;
++const int nyet_deferral_delay = 1;
++/** @file
++ * This file contains the implementation of the HCD Interrupt handlers.
++ */
++
++/** This function handles interrupts for the HCD. */
++int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ int retval = 0;
++
++ dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if;
++ gintsts_data_t gintsts;
++#ifdef DEBUG
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++#endif
++
++ /* Check if HOST Mode */
++ if (dwc_otg_is_host_mode(core_if)) {
++ gintsts.d32 = dwc_otg_read_core_intr(core_if);
++ if (!gintsts.d32) {
++ return 0;
++ }
++
++#ifdef DEBUG
++ /* Don't print debug message in the interrupt handler on SOF */
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL (DBG_HCD, "\n");
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
++#endif
++
++ if (gintsts.b.sofintr) {
++ retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd);
++ }
++ if (gintsts.b.rxstsqlvl) {
++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd);
++ }
++ if (gintsts.b.nptxfempty) {
++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd);
++ }
++ if (gintsts.b.i2cintr) {
++ /** @todo Implement i2cintr handler. */
++ }
++ if (gintsts.b.portintr) {
++ retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd);
++ }
++ if (gintsts.b.hcintr) {
++ retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd);
++ }
++ if (gintsts.b.ptxfempty) {
++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd);
++ }
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintmsk));
++ }
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL (DBG_HCD, "\n");
++#endif
++
++ }
++
++ return retval;
++}
++
++#ifdef DWC_TRACK_MISSED_SOFS
++#warning Compiling code to track missed SOFs
++#define FRAME_NUM_ARRAY_SIZE 1000
++/**
++ * This function is for debug only.
++ */
++static inline void track_missed_sofs(uint16_t _curr_frame_number) {
++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static int frame_num_idx = 0;
++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
++ static int dumped_frame_num_array = 0;
++
++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
++ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) {
++ frame_num_array[frame_num_idx] = _curr_frame_number;
++ last_frame_num_array[frame_num_idx++] = last_frame_num;
++ }
++ } else if (!dumped_frame_num_array) {
++ int i;
++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
++ printk(KERN_EMERG USB_DWC "----- ----------\n");
++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
++ frame_num_array[i], last_frame_num_array[i]);
++ }
++ dumped_frame_num_array = 1;
++ }
++ last_frame_num = _curr_frame_number;
++}
++#endif
++
++/**
++ * Handles the start-of-frame interrupt in host mode. Non-periodic
++ * transactions may be queued to the DWC_otg controller for the current
++ * (micro)frame. Periodic transactions may be queued to the controller for the
++ * next (micro)frame.
++ */
++int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd)
++{
++ hfnum_data_t hfnum;
++ struct list_head *qh_entry;
++ dwc_otg_qh_t *qh;
++ dwc_otg_transaction_type_e tr_type;
++ gintsts_data_t gintsts = {.d32 = 0};
++
++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
++#endif
++
++ _hcd->frame_number = hfnum.b.frnum;
++
++#ifdef DEBUG
++ _hcd->frrem_accum += hfnum.b.frrem;
++ _hcd->frrem_samples++;
++#endif
++
++#ifdef DWC_TRACK_MISSED_SOFS
++ track_missed_sofs(_hcd->frame_number);
++#endif
++
++ /* Determine whether any periodic QHs should be executed. */
++ qh_entry = _hcd->periodic_sched_inactive.next;
++ while (qh_entry != &_hcd->periodic_sched_inactive) {
++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
++ qh_entry = qh_entry->next;
++ if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) {
++ /*
++ * Move QH to the ready list to be executed next
++ * (micro)frame.
++ */
++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready);
++ }
++ }
++
++ tr_type = dwc_otg_hcd_select_transactions(_hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(_hcd, tr_type);
++ }
++
++ /* Clear interrupt */
++ gintsts.b.sofintr = 1;
++ dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
++ * memory if the DWC_otg controller is operating in Slave mode. */
++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ host_grxsts_data_t grxsts;
++ dwc_hc_t *hc = NULL;
++
++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
++
++ grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp);
++
++ hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
++
++ /* Packet Status */
++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer. */
++ if (grxsts.b.bcnt > 0) {
++ dwc_otg_read_packet(_dwc_otg_hcd->core_if,
++ hc->xfer_buff,
++ grxsts.b.bcnt);
++
++ /* Update the HC fields for the next packet received. */
++ hc->xfer_count += grxsts.b.bcnt;
++ hc->xfer_buff += grxsts.b.bcnt;
++ }
++
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
++ case DWC_GRXSTS_PKTSTS_CH_HALTED:
++ /* Handled in interrupt, just ignore data */
++ break;
++ default:
++ DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
++ break;
++ }
++
++ return 1;
++}
++
++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
++ * data packets may be written to the FIFO for OUT transfers. More requests
++ * may be written to the non-periodic request queue for IN transfers. This
++ * interrupt is enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_NON_PERIODIC);
++ return 1;
++}
++
++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
++ * packets may be written to the FIFO for OUT transfers. More requests may be
++ * written to the periodic request queue for IN transfers. This interrupt is
++ * enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_PERIODIC);
++ return 1;
++}
++
++/** There are multiple conditions that can cause a port interrupt. This function
++ * determines which interrupt conditions have occurred and handles them
++ * appropriately. */
++int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ int retval = 0;
++ hprt0_data_t hprt0;
++ hprt0_data_t hprt0_modify;
++
++ hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
++ hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0);
++
++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
++ * GINTSTS */
++
++ hprt0_modify.b.prtena = 0;
++ hprt0_modify.b.prtconndet = 0;
++ hprt0_modify.b.prtenchng = 0;
++ hprt0_modify.b.prtovrcurrchng = 0;
++
++ /* Port Connect Detected
++ * Set flag and clear if detected */
++ if (hprt0.b.prtconndet) {
++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
++ "Port Connect Detected--\n", hprt0.d32);
++ _dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ _dwc_otg_hcd->flags.b.port_connect_status = 1;
++ hprt0_modify.b.prtconndet = 1;
++
++ /* B-Device has connected, Delete the connection timer. */
++ del_timer( &_dwc_otg_hcd->conn_timer );
++
++ /* The Hub driver asserts a reset when it sees port connect
++ * status change flag */
++ retval |= 1;
++ }
++
++ /* Port Enable Changed
++ * Clear if detected - Set internal flag if disabled */
++ if (hprt0.b.prtenchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Enable Changed--\n", hprt0.d32);
++ hprt0_modify.b.prtenchng = 1;
++ if (hprt0.b.prtena == 1) {
++ int do_reset = 0;
++ dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params;
++ dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if;
++
++ /* Check if we need to adjust the PHY clock speed for
++ * low power and adjust it */
++ if (params->host_support_fs_ls_low_power)
++ {
++ gusbcfg_data_t usbcfg;
++
++ usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg);
++
++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ||
++ (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED))
++ {
++ /*
++ * Low power
++ */
++ hcfg_data_t hcfg;
++ if (usbcfg.b.phylpwrclksel == 0) {
++ /* Set PHY low power clock select for FS/LS devices */
++ usbcfg.b.phylpwrclksel = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ do_reset = 1;
++ }
++
++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++
++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) &&
++ (params->host_ls_low_power_phy_clk ==
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ))
++ {
++ /* 6 MHZ */
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ }
++ else {
++ /* 48 MHZ */
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ }
++ }
++ else {
++ /*
++ * Not low power
++ */
++ if (usbcfg.b.phylpwrclksel == 1) {
++ usbcfg.b.phylpwrclksel = 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ do_reset = 1;
++ }
++ }
++
++ if (do_reset) {
++ tasklet_schedule(_dwc_otg_hcd->reset_tasklet);
++ }
++ }
++
++ if (!do_reset) {
++ /* Port has been enabled set the reset change flag */
++ _dwc_otg_hcd->flags.b.port_reset_change = 1;
++ }
++
++ } else {
++ _dwc_otg_hcd->flags.b.port_enable_change = 1;
++ }
++ retval |= 1;
++ }
++
++ /** Overcurrent Change Interrupt */
++ if (hprt0.b.prtovrcurrchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Overcurrent Changed--\n", hprt0.d32);
++ _dwc_otg_hcd->flags.b.port_over_current_change = 1;
++ hprt0_modify.b.prtovrcurrchng = 1;
++ retval |= 1;
++ }
++
++ /* Clear Port Interrupts */
++ dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
++
++ return retval;
++}
++
++
++/** This interrupt indicates that one or more host channels has a pending
++ * interrupt. There are multiple conditions that can cause each host channel
++ * interrupt. This function determines which conditions have occurred for each
++ * host channel interrupt and handles them appropriately. */
++int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd)
++{
++ int i;
++ int retval = 0;
++ haint_data_t haint;
++
++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
++ * GINTSTS */
++
++ haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if);
++
++ for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) {
++ if (haint.b2.chint & (1 << i)) {
++ retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i);
++ }
++ }
++
++ return retval;
++}
++
++/* Macro used to clear one channel interrupt */
++#define clear_hc_int(_hc_regs_,_intr_) \
++do { \
++ hcint_data_t hcint_clear = {.d32 = 0}; \
++ hcint_clear.b._intr_ = 1; \
++ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
++} while (0)
++
++/*
++ * Macro used to disable one channel interrupt. Channel interrupts are
++ * disabled when the channel is halted or released by the interrupt handler.
++ * There is no need to handle further interrupts of that type until the
++ * channel is re-assigned. In fact, subsequent handling may cause crashes
++ * because the channel structures are cleaned up when the channel is released.
++ */
++#define disable_hc_int(_hc_regs_,_intr_) \
++do { \
++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
++ hcintmsk.b._intr_ = 1; \
++ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
++} while (0)
++
++/**
++ * Gets the actual length of a transfer after the transfer halts. _halt_status
++ * holds the reason for the halt.
++ *
++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
++ * *_short_read is set to 1 upon return if less than the requested
++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
++ * return. _short_read may also be NULL on entry, in which case it remains
++ * unchanged.
++ */
++static uint32_t get_actual_xfer_length(dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status,
++ int *_short_read)
++{
++ hctsiz_data_t hctsiz;
++ uint32_t length;
++
++ if (_short_read != NULL) {
++ *_short_read = 0;
++ }
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++
++ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ if (_hc->ep_is_in) {
++ length = _hc->xfer_len - hctsiz.b.xfersize;
++ if (_short_read != NULL) {
++ *_short_read = (hctsiz.b.xfersize != 0);
++ }
++ } else if (_hc->qh->do_split) {
++ length = _qtd->ssplit_out_xfer_count;
++ } else {
++ length = _hc->xfer_len;
++ }
++ } else {
++ /*
++ * Must use the hctsiz.pktcnt field to determine how much data
++ * has been transferred. This field reflects the number of
++ * packets that have been transferred via the USB. This is
++ * always an integral number of packets if the transfer was
++ * halted before its normal completion. (Can't use the
++ * hctsiz.xfersize field because that reflects the number of
++ * bytes transferred via the AHB, not the USB).
++ */
++ length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet;
++ }
++
++ return length;
++}
++
++/**
++ * Updates the state of the URB after a Transfer Complete interrupt on the
++ * host channel. Updates the actual_length field of the URB based on the
++ * number of bytes transferred via the host channel. Sets the URB status
++ * if the data transfer is finished.
++ *
++ * @return 1 if the data transfer specified by the URB is completely finished,
++ * 0 otherwise.
++ */
++static int update_urb_state_xfer_comp(dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb,
++ dwc_otg_qtd_t * _qtd, int *status)
++{
++ int xfer_done = 0;
++ int short_read = 0;
++
++ _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_COMPLETE,
++ &short_read);
++
++ if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) {
++ xfer_done = 1;
++ if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) {
++ *status = -EREMOTEIO;
++ } else {
++ *status = 0;
++ }
++ }
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ _urb->transfer_buffer_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
++ short_read, xfer_done);
++ }
++#endif
++
++ return xfer_done;
++}
++
++/*
++ * Save the starting data toggle for the next transfer. The data toggle is
++ * saved in the QH for non-control transfers and it's saved in the QTD for
++ * control transfers.
++ */
++static void save_data_toggle(dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd)
++{
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++
++ if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
++ dwc_otg_qh_t *qh = _hc->qh;
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ } else {
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ }
++}
++
++/**
++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
++ * still linked to the QH, the QH is added to the end of the inactive
++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
++ * schedule if no more QTDs are linked to the QH.
++ */
++static void deactivate_qh(dwc_otg_hcd_t *_hcd,
++ dwc_otg_qh_t *_qh,
++ int free_qtd)
++{
++ int continue_split = 0;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd);
++
++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++
++ if (qtd->complete_split) {
++ continue_split = 1;
++ }
++ else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
++ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END))
++ {
++ continue_split = 1;
++ }
++
++ if (free_qtd) {
++ /*
++ * Note that this was previously a call to
++ * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd.
++ * However, that call frees the qtd memory, and we continue in the
++ * interrupt logic to access it many more times, including writing
++ * to it. With slub debugging on, it is clear that we were writing
++ * to memory we had freed.
++ * Call this instead, and now I have moved the freeing of the memory to
++ * the end of processing this interrupt.
++ */
++ //dwc_otg_hcd_qtd_remove_and_free(qtd);
++ dwc_otg_hcd_qtd_remove(qtd);
++
++ continue_split = 0;
++ }
++
++ _qh->channel = NULL;
++ _qh->qtd_in_process = NULL;
++ dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split);
++}
++
++/**
++ * Updates the state of an Isochronous URB when the transfer is stopped for
++ * any reason. The fields of the current entry in the frame descriptor array
++ * are set based on the transfer state and the input _halt_status. Completes
++ * the Isochronous URB if all the URB frames have been completed.
++ *
++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
++ */
++static dwc_otg_halt_status_e
++update_isoc_urb_state(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status)
++{
++ struct urb *urb = _qtd->urb;
++ dwc_otg_halt_status_e ret_val = _halt_status;
++ struct usb_iso_packet_descriptor *frame_desc;
++
++ frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index];
++ switch (_halt_status) {
++ case DWC_OTG_HC_XFER_COMPLETE:
++ frame_desc->status = 0;
++ frame_desc->actual_length =
++ get_actual_xfer_length(_hc, _hc_regs, _qtd,
++ _halt_status, NULL);
++ break;
++ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
++ urb->error_count++;
++ if (_hc->ep_is_in) {
++ frame_desc->status = -ENOSR;
++ } else {
++ frame_desc->status = -ECOMM;
++ }
++ frame_desc->actual_length = 0;
++ break;
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ urb->error_count++;
++ frame_desc->status = -EOVERFLOW;
++ /* Don't need to update actual_length in this case. */
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ urb->error_count++;
++ frame_desc->status = -EPROTO;
++ frame_desc->actual_length =
++ get_actual_xfer_length(_hc, _hc_regs, _qtd,
++ _halt_status, NULL);
++ default:
++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
++ _halt_status);
++ BUG();
++ break;
++ }
++
++ if (++_qtd->isoc_frame_index == urb->number_of_packets) {
++ /*
++ * urb->status is not used for isoc transfers.
++ * The individual frame_desc statuses are used instead.
++ */
++ dwc_otg_hcd_complete_urb(_hcd, urb, 0);
++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ ret_val = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ return ret_val;
++}
++
++/**
++ * Releases a host channel for use by other transfers. Attempts to select and
++ * queue more transactions since at least one host channel is available.
++ *
++ * @param _hcd The HCD state structure.
++ * @param _hc The host channel to release.
++ * @param _qtd The QTD associated with the host channel. This QTD may be freed
++ * if the transfer is complete or an error has occurred.
++ * @param _halt_status Reason the channel is being released. This status
++ * determines the actions taken by this function.
++ */
++static void release_channel(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status,
++ int *must_free)
++{
++ dwc_otg_transaction_type_e tr_type;
++ int free_qtd;
++ dwc_otg_qh_t * _qh;
++ int deact = 1;
++ int retry_delay = 1;
++ unsigned long flags;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__,
++ _hc->hc_num, _halt_status);
++
++ switch (_halt_status) {
++ case DWC_OTG_HC_XFER_NYET:
++ case DWC_OTG_HC_XFER_NAK:
++ if (_halt_status == DWC_OTG_HC_XFER_NYET) {
++ retry_delay = nyet_deferral_delay;
++ } else {
++ retry_delay = nak_deferral_delay;
++ }
++ free_qtd = 0;
++ if (deferral_on && _hc->do_split) {
++ _qh = _hc->qh;
++ if (_qh) {
++ deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay);
++ }
++ }
++ break;
++ case DWC_OTG_HC_XFER_URB_COMPLETE:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_AHB_ERR:
++ case DWC_OTG_HC_XFER_STALL:
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ if (_qtd->error_count >= 3) {
++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
++ free_qtd = 1;
++ //_qtd->urb->status = -EPROTO;
++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO);
++ } else {
++ free_qtd = 0;
++ }
++ break;
++ case DWC_OTG_HC_XFER_URB_DEQUEUE:
++ /*
++ * The QTD has already been removed and the QH has been
++ * deactivated. Don't want to do anything except release the
++ * host channel and try to queue more transfers.
++ */
++ goto cleanup;
++ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num);
++ free_qtd = 0;
++ break;
++ default:
++ free_qtd = 0;
++ break;
++ }
++ if (free_qtd) {
++ /* Only change must_free to true (do not set to zero here -- it is
++ * pre-initialized to zero).
++ */
++ *must_free = 1;
++ }
++ if (deact) {
++ deactivate_qh(_hcd, _hc->qh, free_qtd);
++ }
++ cleanup:
++ /*
++ * Release the host channel for use by other transfers. The cleanup
++ * function clears the channel interrupt enables and conditions, so
++ * there's no need to clear the Channel Halted interrupt separately.
++ */
++ dwc_otg_hc_cleanup(_hcd->core_if, _hc);
++ list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list);
++
++ local_irq_save(flags);
++ _hcd->available_host_channels++;
++ local_irq_restore(flags);
++ /* Try to queue more transfers now that there's a free channel, */
++ /* unless erratum_usb09_patched is set */
++ if (!erratum_usb09_patched) {
++ tr_type = dwc_otg_hcd_select_transactions(_hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(_hcd, tr_type);
++ }
++ }
++}
++
++/**
++ * Halts a host channel. If the channel cannot be halted immediately because
++ * the request queue is full, this function ensures that the FIFO empty
++ * interrupt for the appropriate queue is enabled so that the halt request can
++ * be queued when there is space in the request queue.
++ *
++ * This function may also be called in DMA mode. In that case, the channel is
++ * simply released since the core always halts the channel automatically in
++ * DMA mode.
++ */
++static void halt_channel(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status, int *must_free)
++{
++ if (_hcd->core_if->dma_enable) {
++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
++ return;
++ }
++
++ /* Slave mode processing... */
++ dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status);
++
++ if (_hc->halt_on_queue) {
++ gintmsk_data_t gintmsk = {.d32 = 0};
++ dwc_otg_core_global_regs_t *global_regs;
++ global_regs = _hcd->core_if->core_global_regs;
++
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ /*
++ * Make sure the Non-periodic Tx FIFO empty interrupt
++ * is enabled so that the non-periodic schedule will
++ * be processed.
++ */
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ } else {
++ /*
++ * Move the QH from the periodic queued schedule to
++ * the periodic assigned schedule. This allows the
++ * halt to be queued when the periodic schedule is
++ * processed.
++ */
++ list_move(&_hc->qh->qh_list_entry,
++ &_hcd->periodic_sched_assigned);
++
++ /*
++ * Make sure the Periodic Tx FIFO Empty interrupt is
++ * enabled so that the periodic schedule will be
++ * processed.
++ */
++ gintmsk.b.ptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ }
++ }
++}
++
++/**
++ * Performs common cleanup for non-periodic transfers after a Transfer
++ * Complete interrupt. This function should be called after any endpoint type
++ * specific handling is finished to release the host channel.
++ */
++static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status, int *must_free)
++{
++ hcint_data_t hcint;
++
++ _qtd->error_count = 0;
++
++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
++ if (hcint.b.nyet) {
++ /*
++ * Got a NYET on the last transaction of the transfer. This
++ * means that the endpoint should be in the PING state at the
++ * beginning of the next transfer.
++ */
++ _hc->qh->ping_state = 1;
++ clear_hc_int(_hc_regs,nyet);
++ }
++
++ /*
++ * Always halt and release the host channel to make it available for
++ * more transfers. There may still be more phases for a control
++ * transfer or more data packets for a bulk transfer at this point,
++ * but the host channel is still halted. A channel will be reassigned
++ * to the transfer when the non-periodic schedule is processed after
++ * the channel is released. This allows transactions to be queued
++ * properly via dwc_otg_hcd_queue_transactions, which also enables the
++ * Tx FIFO Empty interrupt if necessary.
++ */
++ if (_hc->ep_is_in) {
++ /*
++ * IN transfers in Slave mode require an explicit disable to
++ * halt the channel. (In DMA mode, this call simply releases
++ * the channel.)
++ */
++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
++ } else {
++ /*
++ * The channel is automatically disabled by the core for OUT
++ * transfers in Slave mode.
++ */
++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
++ }
++}
++
++/**
++ * Performs common cleanup for periodic transfers after a Transfer Complete
++ * interrupt. This function should be called after any endpoint type specific
++ * handling is finished to release the host channel.
++ */
++static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status, int *must_free)
++{
++ hctsiz_data_t hctsiz;
++ _qtd->error_count = 0;
++
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++ if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) {
++ /* Core halts channel in these cases. */
++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free);
++ } else {
++ /* Flush any outstanding requests from the Tx queue. */
++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free);
++ }
++}
++
++/**
++ * Handles a host channel Transfer Complete interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd, int *must_free)
++{
++ int urb_xfer_done;
++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ struct urb *urb = _qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++ int status = -EINPROGRESS;
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transfer Complete--\n", _hc->hc_num);
++
++ /*
++ * Handle xfer complete on CSPLIT.
++ */
++ if (_hc->qh->do_split) {
++ _qtd->complete_split = 0;
++ }
++
++ /* Update the QTD and URB states. */
++ switch (pipe_type) {
++ case PIPE_CONTROL:
++ switch (_qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ if (urb->transfer_buffer_length > 0) {
++ _qtd->control_phase = DWC_OTG_CONTROL_DATA;
++ } else {
++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ }
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ case DWC_OTG_CONTROL_DATA: {
++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status);
++ if (urb_xfer_done) {
++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
++ } else {
++ save_data_toggle(_hc, _hc_regs, _qtd);
++ }
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ }
++ case DWC_OTG_CONTROL_STATUS:
++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
++ if (status == -EINPROGRESS) {
++ status = 0;
++ }
++ dwc_otg_hcd_complete_urb(_hcd, urb, status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ break;
++ }
++
++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
++ halt_status, must_free);
++ break;
++ case PIPE_BULK:
++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
++ if (urb_xfer_done) {
++ dwc_otg_hcd_complete_urb(_hcd, urb, status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ save_data_toggle(_hc, _hc_regs, _qtd);
++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free);
++ break;
++ case PIPE_INTERRUPT:
++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
++ update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status);
++
++ /*
++ * Interrupt URB is done on the first transfer complete
++ * interrupt.
++ */
++ dwc_otg_hcd_complete_urb(_hcd, urb, status);
++ save_data_toggle(_hc, _hc_regs, _qtd);
++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_URB_COMPLETE, must_free);
++ break;
++ case PIPE_ISOCHRONOUS:
++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
++ if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL)
++ {
++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_COMPLETE);
++ }
++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free);
++ break;
++ }
++
++ disable_hc_int(_hc_regs,xfercompl);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel STALL interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd, int *must_free)
++{
++ struct urb *urb = _qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "STALL Received--\n", _hc->hc_num);
++
++ if (pipe_type == PIPE_CONTROL) {
++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
++ }
++
++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE);
++ /*
++ * USB protocol requires resetting the data toggle for bulk
++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
++ * setup command is issued to the endpoint. Anticipate the
++ * CLEAR_FEATURE command since a STALL has occurred and reset
++ * the data toggle now.
++ */
++ _hc->qh->data_toggle = 0;
++ }
++
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free);
++ disable_hc_int(_hc_regs,stall);
++
++ return 1;
++}
++
++/*
++ * Updates the state of the URB when a transfer has been stopped due to an
++ * abnormal condition before the transfer completes. Modifies the
++ * actual_length field of the URB to reflect the number of bytes that have
++ * actually been transferred via the host channel.
++ */
++static void update_urb_state_xfer_intr(dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ struct urb *_urb,
++ dwc_otg_qtd_t *_qtd,
++ dwc_otg_halt_status_e _halt_status)
++{
++ uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd,
++ _halt_status, NULL);
++ _urb->actual_length += bytes_transferred;
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet);
++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
++ DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n",
++ _urb->transfer_buffer_length);
++ }
++#endif
++}
++
++/**
++ * Handles a host channel NAK interrupt. This handler may be called in either
++ * DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NAK Received--\n", _hc->hc_num);
++
++ /*
++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
++ * interrupt. Re-start the SSPLIT transfer.
++ */
++ if (_hc->do_split) {
++ if (_hc->complete_split) {
++ _qtd->error_count = 0;
++ }
++ _qtd->complete_split = 0;
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
++ goto handle_nak_done;
++ }
++
++ switch (usb_pipetype(_qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ if (_hcd->core_if->dma_enable && _hc->ep_is_in) {
++ /*
++ * NAK interrupts are enabled on bulk/control IN
++ * transfers in DMA mode for the sole purpose of
++ * resetting the error count after a transaction error
++ * occurs. The core will continue transferring data.
++ */
++ _qtd->error_count = 0;
++ goto handle_nak_done;
++ }
++
++ /*
++ * NAK interrupts normally occur during OUT transfers in DMA
++ * or Slave mode. For IN transfers, more requests will be
++ * queued as request queue space is available.
++ */
++ _qtd->error_count = 0;
++
++ if (!_hc->qh->ping_state) {
++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
++ _qtd, DWC_OTG_HC_XFER_NAK);
++ save_data_toggle(_hc, _hc_regs, _qtd);
++ if (_qtd->urb->dev->speed == USB_SPEED_HIGH) {
++ _hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will
++ * start/continue.
++ */
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
++ break;
++ case PIPE_INTERRUPT:
++ _qtd->error_count = 0;
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free);
++ break;
++ case PIPE_ISOCHRONOUS:
++ /* Should never get called for isochronous transfers. */
++ BUG();
++ break;
++ }
++
++ handle_nak_done:
++ disable_hc_int(_hc_regs,nak);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel ACK interrupt. This interrupt is enabled when
++ * performing the PING protocol in Slave mode, when errors occur during
++ * either Slave mode or DMA mode, and during Start Split transactions.
++ */
++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "ACK Received--\n", _hc->hc_num);
++
++ if (_hc->do_split) {
++ /*
++ * Handle ACK on SSPLIT.
++ * ACK should not occur in CSPLIT.
++ */
++ if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
++ _qtd->ssplit_out_xfer_count = _hc->xfer_len;
++ }
++ if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) {
++ /* Don't need complete for isochronous out transfers. */
++ _qtd->complete_split = 1;
++ }
++
++ /* ISOC OUT */
++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) {
++ switch (_hc->xact_pos) {
++ case DWC_HCSPLIT_XACTPOS_ALL:
++ break;
++ case DWC_HCSPLIT_XACTPOS_END:
++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ _qtd->isoc_split_offset = 0;
++ break;
++ case DWC_HCSPLIT_XACTPOS_BEGIN:
++ case DWC_HCSPLIT_XACTPOS_MID:
++ /*
++ * For BEGIN or MID, calculate the length for
++ * the next microframe to determine the correct
++ * SSPLIT token, either MID or END.
++ */
++ do {
++ struct usb_iso_packet_descriptor *frame_desc;
++
++ frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index];
++ _qtd->isoc_split_offset += 188;
++
++ if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) {
++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
++ }
++ else {
++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
++ }
++
++ } while(0);
++ break;
++ }
++ } else {
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
++ }
++ } else {
++ _qtd->error_count = 0;
++
++ if (_hc->qh->ping_state) {
++ _hc->qh->ping_state = 0;
++ /*
++ * Halt the channel so the transfer can be re-started
++ * from the appropriate point. This only happens in
++ * Slave mode. In DMA mode, the ping_state is cleared
++ * when the transfer is started because the core
++ * automatically executes the PING, then the transfer.
++ */
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free);
++ } else {
++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ }
++ }
++
++ /*
++ * If the ACK occurred when _not_ in the PING state, let the channel
++ * continue transferring data after clearing the error count.
++ */
++
++ disable_hc_int(_hc_regs,ack);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel NYET interrupt. This interrupt should only occur on
++ * Bulk and Control OUT endpoints and for complete split transactions. If a
++ * NYET occurs at the same time as a Transfer Complete interrupt, it is
++ * handled in the xfercomp interrupt handler, not here. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NYET Received--\n", _hc->hc_num);
++
++ /*
++ * NYET on CSPLIT
++ * re-do the CSPLIT immediately on non-periodic
++ */
++ if ((_hc->do_split) && (_hc->complete_split)) {
++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
++ (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
++
++ if (dwc_full_frame_num(frnum) !=
++ dwc_full_frame_num(_hc->qh->sched_frame)) {
++ /*
++ * No longer in the same full speed frame.
++ * Treat this as a transaction error.
++ */
++#if 0
++ /** @todo Fix system performance so this can
++ * be treated as an error. Right now complete
++ * splits cannot be scheduled precisely enough
++ * due to other system activity, so this error
++ * occurs regularly in Slave mode.
++ */
++ _qtd->error_count++;
++#endif
++ _qtd->complete_split = 0;
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
++ /** @todo add support for isoc release */
++ goto handle_nyet_done;
++ }
++ }
++
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
++ goto handle_nyet_done;
++ }
++
++ _hc->qh->ping_state = 1;
++ _qtd->error_count = 0;
++
++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd,
++ DWC_OTG_HC_XFER_NYET);
++ save_data_toggle(_hc, _hc_regs, _qtd);
++
++ /*
++ * Halt the channel and re-start the transfer so the PING
++ * protocol will start.
++ */
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free);
++
++handle_nyet_done:
++ disable_hc_int(_hc_regs,nyet);
++ clear_hc_int(_hc_regs, nyet);
++ return 1;
++}
++
++/**
++ * Handles a host channel babble interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Babble Error--\n", _hc->hc_num);
++ if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW);
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free);
++ } else {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_BABBLE_ERR);
++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
++ }
++ disable_hc_int(_hc_regs,bblerr);
++ return 1;
++}
++
++/**
++ * Handles a host channel AHB error interrupt. This handler is only called in
++ * DMA mode.
++ */
++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t *_hc,
++ dwc_otg_hc_regs_t *_hc_regs,
++ dwc_otg_qtd_t *_qtd)
++{
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++ struct urb *urb = _qtd->urb;
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "AHB Error--\n", _hc->hc_num);
++
++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&_hc_regs->hcdma);
++
++ DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num);
++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_ERROR(" Endpoint type: %s\n",
++ ({char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL: pipetype = "CONTROL"; break;
++ case PIPE_BULK: pipetype = "BULK"; break;
++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
++ default: pipetype = "UNKNOWN"; break;
++ }; pipetype;}));
++ DWC_ERROR(" Speed: %s\n",
++ ({char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_HIGH: speed = "HIGH"; break;
++ case USB_SPEED_FULL: speed = "FULL"; break;
++ case USB_SPEED_LOW: speed = "LOW"; break;
++ default: speed = "UNKNOWN"; break;
++ }; speed;}));
++ DWC_ERROR(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->transfer_buffer, (void *)(u32)urb->transfer_dma);
++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)(u32)urb->setup_dma);
++ DWC_ERROR(" Interval: %d\n", urb->interval);
++
++ dwc_otg_hcd_complete_urb(_hcd, urb, -EIO);
++
++ /*
++ * Force a channel halt. Don't call halt_channel because that won't
++ * write to the HCCHARn register in DMA mode to force the halt.
++ */
++ dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR);
++
++ disable_hc_int(_hc_regs,ahberr);
++ return 1;
++}
++
++/**
++ * Handles a host channel transaction error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transaction Error--\n", _hc->hc_num);
++
++ switch (usb_pipetype(_qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ _qtd->error_count++;
++ if (!_hc->qh->ping_state) {
++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb,
++ _qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ save_data_toggle(_hc, _hc_regs, _qtd);
++ if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) {
++ _hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will start.
++ */
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
++ break;
++ case PIPE_INTERRUPT:
++ _qtd->error_count++;
++ if ((_hc->do_split) && (_hc->complete_split)) {
++ _qtd->complete_split = 0;
++ }
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free);
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++
++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
++ }
++ break;
++ }
++
++
++ disable_hc_int(_hc_regs,xacterr);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel frame overrun interrupt. This handler may be called
++ * in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Frame Overrun--\n", _hc->hc_num);
++
++ switch (usb_pipetype(_qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ break;
++ case PIPE_INTERRUPT:
++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free);
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN);
++
++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free);
++ }
++ break;
++ }
++
++ disable_hc_int(_hc_regs,frmovrun);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel data toggle error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Data Toggle Error--\n", _hc->hc_num);
++
++ if (_hc->ep_is_in) {
++ _qtd->error_count = 0;
++ } else {
++ DWC_ERROR("Data Toggle Error on OUT transfer,"
++ "channel %d\n", _hc->hc_num);
++ }
++
++ disable_hc_int(_hc_regs,datatglerr);
++
++ return 1;
++}
++
++#ifdef DEBUG
++/**
++ * This function is for debug only. It checks that a valid halt status is set
++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
++ * taken and a warning is issued.
++ * @return 1 if halt status is ok, 0 otherwise.
++ */
++static inline int halt_status_ok(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hcsplt_data_t hcsplt;
++
++ if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
++ /*
++ * This code is here only as a check. This condition should
++ * never happen. Ignore the halt if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz);
++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt);
++ DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
++ "hcint 0x%08x, hcintmsk 0x%08x, "
++ "hcsplt 0x%08x, qtd->complete_split %d\n",
++ __func__, _hc->hc_num, hcchar.d32, hctsiz.d32,
++ hcint.d32, hcintmsk.d32,
++ hcsplt.d32, _qtd->complete_split);
++
++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
++ __func__, _hc->hc_num);
++ DWC_WARN("\n");
++ clear_hc_int(_hc_regs,chhltd);
++ return 0;
++ }
++
++ /*
++ * This code is here only as a check. hcchar.chdis should
++ * never be set when the halt interrupt occurs. Halt the
++ * channel again if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
++ "hcchar 0x%08x, trying to halt again\n",
++ __func__, hcchar.d32);
++ clear_hc_int(_hc_regs,chhltd);
++ _hc->halt_pending = 0;
++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ return 0;
++ }
++
++ return 1;
++}
++#endif
++
++/**
++ * Handles a host Channel Halted interrupt in DMA mode. This handler
++ * determines the reason the channel halted and proceeds accordingly.
++ */
++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++
++ if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Just release the channel. A dequeue can happen on a
++ * transfer timeout. In the case of an AHB Error, the channel
++ * was forced to halt because there's no way to gracefully
++ * recover.
++ */
++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ return;
++ }
++
++ /* Read the HCINTn register to determine the cause for the halt. */
++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk);
++
++ if (hcint.b.xfercomp) {
++ /** @todo This is here because of a possible hardware bug. Spec
++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
++ * interrupt w/ACK bit set should occur, but I only see the
++ * XFERCOMP bit, even with it masked out. This is a workaround
++ * for that behavior. Should fix this when hardware is fixed.
++ */
++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) {
++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ }
++ handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.stall) {
++ handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.xacterr) {
++ /*
++ * Must handle xacterr before nak or ack. Could get a xacterr
++ * at the same time as either of these on a BULK/CONTROL OUT
++ * that started with a PING. The xacterr takes precedence.
++ */
++ handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.nyet) {
++ /*
++ * Must handle nyet before nak or ack. Could get a nyet at the
++ * same time as either of those on a BULK/CONTROL OUT that
++ * started with a PING. The nyet takes precedence.
++ */
++ handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.bblerr) {
++ handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.frmovrun) {
++ handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.datatglerr) {
++ handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ _hc->qh->data_toggle = 0;
++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ } else if (hcint.b.nak && !hcintmsk.b.nak) {
++ /*
++ * If nak is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the nak is handled by
++ * the nak interrupt handler, not here. Handle nak here for
++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
++ * rewinding the buffer pointer.
++ */
++ handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else if (hcint.b.ack && !hcintmsk.b.ack) {
++ /*
++ * If ack is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the ack is handled by
++ * the ack interrupt handler, not here. Handle ack here for
++ * split transfers. Start splits halt on ACK.
++ */
++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else {
++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * A periodic transfer halted with no other channel
++ * interrupts set. Assume it was halted by the core
++ * because it could not be completed in its scheduled
++ * (micro)frame.
++ */
++#ifdef DEBUG
++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
++ __func__, _hc->hc_num);
++#endif /* */
++ halt_channel(_hcd, _hc, _qtd,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free);
++ } else {
++#ifdef DEBUG
++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
++ "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n",
++ __func__, _hc->hc_num, hcint.b.nyet, hcint.d32,
++ dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts));
++#endif
++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ }
++ }
++}
++
++/**
++ * Handles a host channel Channel Halted interrupt.
++ *
++ * In slave mode, this handler is called only when the driver specifically
++ * requests a halt. This occurs during handling other host channel interrupts
++ * (e.g. nak, xacterr, stall, nyet, etc.).
++ *
++ * In DMA mode, this is the interrupt that occurs when the core has finished
++ * processing a transfer on a channel. Other host channel interrupts (except
++ * ahberr) are disabled in DMA mode.
++ */
++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd,
++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Channel Halted--\n", _hc->hc_num);
++
++ if (_hcd->core_if->dma_enable) {
++ handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free);
++ } else {
++#ifdef DEBUG
++ if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) {
++ return 1;
++ }
++#endif /* */
++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free);
++ }
++
++ return 1;
++}
++
++/** Handles interrupt for a specific Host Channel */
++int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num)
++{
++ int must_free = 0;
++ int retval = 0;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ dwc_hc_t *hc;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
++
++ hc = _dwc_otg_hcd->hc_ptr_array[_num];
++ hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num];
++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
++ hcint.d32 = hcint.d32 & hcintmsk.d32;
++
++ if (!_dwc_otg_hcd->core_if->dma_enable) {
++ if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) {
++ hcint.b.chhltd = 0;
++ }
++ }
++
++ if (hcint.b.xfercomp) {
++ retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ /*
++ * If NYET occurred at same time as Xfer Complete, the NYET is
++ * handled by the Xfer Complete interrupt handler. Don't want
++ * to call the NYET interrupt handler in this case.
++ */
++ hcint.b.nyet = 0;
++ }
++ if (hcint.b.chhltd) {
++ retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.ahberr) {
++ retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.stall) {
++ retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.nak) {
++ retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.ack) {
++ retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.nyet) {
++ retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.xacterr) {
++ retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.bblerr) {
++ retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.frmovrun) {
++ retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++ if (hcint.b.datatglerr) {
++ retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free);
++ }
++
++ /*
++ * Logic to free the qtd here, at the end of the hc intr
++ * processing, if the handling of this interrupt determined
++ * that it needs to be freed.
++ */
++ if (must_free) {
++ /* Free the qtd here now that we are done using it. */
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c
+@@ -0,0 +1,794 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 537387 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the functions to manage Queue Heads and Queue
++ * Transfer Descriptors.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++/**
++ * This function allocates and initializes a QH.
++ *
++ * @param _hcd The HCD state structure for the DWC OTG controller.
++ * @param[in] _urb Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ *
++ * @return Returns pointer to the newly allocated QH, or NULL on error. */
++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb)
++{
++ dwc_otg_qh_t *qh;
++
++ /* Allocate memory */
++ /** @todo add memflags argument */
++ qh = dwc_otg_hcd_qh_alloc ();
++ if (qh == NULL) {
++ return NULL;
++ }
++
++ dwc_otg_hcd_qh_init (_hcd, qh, _urb);
++ return qh;
++}
++
++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
++ * removed from a list. QTD list should already be empty if called from URB
++ * Dequeue.
++ *
++ * @param[in] _qh The QH to free.
++ */
++void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh)
++{
++ dwc_otg_qtd_t *qtd;
++ struct list_head *pos;
++ unsigned long flags;
++
++ /* Free each QTD in the QTD list */
++ local_irq_save (flags);
++ for (pos = _qh->qtd_list.next;
++ pos != &_qh->qtd_list;
++ pos = _qh->qtd_list.next)
++ {
++ list_del (pos);
++ qtd = dwc_list_to_qtd (pos);
++ dwc_otg_hcd_qtd_free (qtd);
++ }
++ local_irq_restore (flags);
++
++ kfree (_qh);
++ return;
++}
++
++/** Initializes a QH structure.
++ *
++ * @param[in] _hcd The HCD state structure for the DWC OTG controller.
++ * @param[in] _qh The QH to init.
++ * @param[in] _urb Holds the information about the device/endpoint that we need
++ * to initialize the QH. */
++#define SCHEDULE_SLOP 10
++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb)
++{
++ memset (_qh, 0, sizeof (dwc_otg_qh_t));
++
++ /* Initialize QH */
++ switch (usb_pipetype(_urb->pipe)) {
++ case PIPE_CONTROL:
++ _qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
++ break;
++ case PIPE_BULK:
++ _qh->ep_type = USB_ENDPOINT_XFER_BULK;
++ break;
++ case PIPE_ISOCHRONOUS:
++ _qh->ep_type = USB_ENDPOINT_XFER_ISOC;
++ break;
++ case PIPE_INTERRUPT:
++ _qh->ep_type = USB_ENDPOINT_XFER_INT;
++ break;
++ }
++
++ _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0;
++
++ _qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe)));
++ INIT_LIST_HEAD(&_qh->qtd_list);
++ INIT_LIST_HEAD(&_qh->qh_list_entry);
++ _qh->channel = NULL;
++
++ /* FS/LS Enpoint on HS Hub
++ * NOT virtual root hub */
++ _qh->do_split = 0;
++ _qh->speed = _urb->dev->speed;
++ if (((_urb->dev->speed == USB_SPEED_LOW) ||
++ (_urb->dev->speed == USB_SPEED_FULL)) &&
++ (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) {
++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
++ usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum,
++ _urb->dev->ttport);
++ _qh->do_split = 1;
++ }
++
++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT ||
++ _qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
++ /* Compute scheduling parameters once and save them. */
++ hprt0_data_t hprt;
++
++ /** @todo Account for split transfers in the bus time. */
++ int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp);
++ _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed,
++ usb_pipein(_urb->pipe),
++ (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount));
++
++ /* Start in a slightly future (micro)frame. */
++ _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP);
++ _qh->interval = _urb->interval;
++#if 0
++ /* Increase interrupt polling rate for debugging. */
++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ _qh->interval = 8;
++ }
++#endif
++ hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0);
++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
++ ((_urb->dev->speed == USB_SPEED_LOW) ||
++ (_urb->dev->speed == USB_SPEED_FULL)))
++ {
++ _qh->interval *= 8;
++ _qh->sched_frame |= 0x7;
++ _qh->start_split_frame = _qh->sched_frame;
++ }
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
++ _urb->dev->devnum);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
++ usb_pipeendpoint(_urb->pipe),
++ usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n",
++ ({ char *speed; switch (_urb->dev->speed) {
++ case USB_SPEED_LOW: speed = "low"; break;
++ case USB_SPEED_FULL: speed = "full"; break;
++ case USB_SPEED_HIGH: speed = "high"; break;
++ default: speed = "?"; break;
++ }; speed;}));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",
++ ({ char *type; switch (_qh->ep_type) {
++ case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break;
++ case USB_ENDPOINT_XFER_INT: type = "interrupt"; break;
++ case USB_ENDPOINT_XFER_CONTROL: type = "control"; break;
++ case USB_ENDPOINT_XFER_BULK: type = "bulk"; break;
++ default: type = "?"; break;
++ }; type;}));
++#ifdef DEBUG
++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
++ _qh->usecs);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
++ _qh->interval);
++ }
++#endif
++
++ return;
++}
++
++/**
++ * Microframe scheduler
++ * track the total use in hcd->frame_usecs
++ * keep each qh use in qh->frame_usecs
++ * when surrendering the qh then donate the time back
++ */
++const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 };
++
++/*
++ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
++ */
++int init_hcd_usecs(dwc_otg_hcd_t *_hcd)
++{
++ int i;
++ for (i=0; i<8; i++) {
++ _hcd->frame_usecs[i] = max_uframe_usecs[i];
++ }
++ return 0;
++}
++
++static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int i;
++ unsigned short utime;
++ int t_left;
++ int ret;
++ int done;
++
++ ret = -1;
++ utime = _qh->usecs;
++ t_left = utime;
++ i = 0;
++ done = 0;
++ while (done == 0) {
++ /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */
++ if (utime <= _hcd->frame_usecs[i]) {
++ _hcd->frame_usecs[i] -= utime;
++ _qh->frame_usecs[i] += utime;
++ t_left -= utime;
++ ret = i;
++ done = 1;
++ return ret;
++ } else {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ }
++ }
++ return ret;
++}
++
++/*
++ * use this for FS apps that can span multiple uframes
++ */
++static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int i;
++ int j;
++ unsigned short utime;
++ int t_left;
++ int ret;
++ int done;
++ unsigned short xtime;
++
++ ret = -1;
++ utime = _qh->usecs;
++ t_left = utime;
++ i = 0;
++ done = 0;
++loop:
++ while (done == 0) {
++ if(_hcd->frame_usecs[i] <= 0) {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ goto loop;
++ }
++
++ /*
++ * we need n consequtive slots
++ * so use j as a start slot j plus j+1 must be enough time (for now)
++ */
++ xtime= _hcd->frame_usecs[i];
++ for (j = i+1 ; j < 8 ; j++ ) {
++ /*
++ * if we add this frame remaining time to xtime we may
++ * be OK, if not we need to test j for a complete frame
++ */
++ if ((xtime+_hcd->frame_usecs[j]) < utime) {
++ if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) {
++ j = 8;
++ ret = -1;
++ continue;
++ }
++ }
++ if (xtime >= utime) {
++ ret = i;
++ j = 8; /* stop loop with a good value ret */
++ continue;
++ }
++ /* add the frame time to x time */
++ xtime += _hcd->frame_usecs[j];
++ /* we must have a fully available next frame or break */
++ if ((xtime < utime)
++ && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) {
++ ret = -1;
++ j = 8; /* stop loop with a bad value ret */
++ continue;
++ }
++ }
++ if (ret >= 0) {
++ t_left = utime;
++ for (j = i; (t_left>0) && (j < 8); j++ ) {
++ t_left -= _hcd->frame_usecs[j];
++ if ( t_left <= 0 ) {
++ _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left;
++ _hcd->frame_usecs[j]= -t_left;
++ ret = i;
++ done = 1;
++ } else {
++ _qh->frame_usecs[j] += _hcd->frame_usecs[j];
++ _hcd->frame_usecs[j] = 0;
++ }
++ }
++ } else {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ }
++ }
++ return ret;
++}
++
++static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int ret;
++ ret = -1;
++
++ if (_qh->speed == USB_SPEED_HIGH) {
++ /* if this is a hs transaction we need a full frame */
++ ret = find_single_uframe(_hcd, _qh);
++ } else {
++ /* if this is a fs transaction we may need a sequence of frames */
++ ret = find_multi_uframe(_hcd, _qh);
++ }
++ return ret;
++}
++
++/**
++ * Checks that the max transfer size allowed in a host channel is large enough
++ * to handle the maximum data transfer in a single (micro)frame for a periodic
++ * transfer.
++ *
++ * @param _hcd The HCD state structure for the DWC OTG controller.
++ * @param _qh QH for a periodic endpoint.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int check_max_xfer_size(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ int status;
++ uint32_t max_xfer_size;
++ uint32_t max_channel_xfer_size;
++
++ status = 0;
++
++ max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp);
++ max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size;
++
++ if (max_xfer_size > max_channel_xfer_size) {
++ DWC_NOTICE("%s: Periodic xfer length %d > "
++ "max xfer length for channel %d\n",
++ __func__, max_xfer_size, max_channel_xfer_size);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Schedules an interrupt or isochronous transfer in the periodic schedule.
++ *
++ * @param _hcd The HCD state structure for the DWC OTG controller.
++ * @param _qh QH for the periodic transfer. The QH should already contain the
++ * scheduling information.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int schedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ int status = 0;
++
++ int frame;
++ status = find_uframe(_hcd, _qh);
++ frame = -1;
++ if (status == 0) {
++ frame = 7;
++ } else {
++ if (status > 0 )
++ frame = status-1;
++ }
++
++ /* Set the new frame up */
++ if (frame > -1) {
++ _qh->sched_frame &= ~0x7;
++ _qh->sched_frame |= (frame & 7);
++ }
++
++ if (status != -1 )
++ status = 0;
++ if (status) {
++ DWC_NOTICE("%s: Insufficient periodic bandwidth for "
++ "periodic transfer.\n", __func__);
++ return status;
++ }
++
++ status = check_max_xfer_size(_hcd, _qh);
++ if (status) {
++ DWC_NOTICE("%s: Channel max transfer size too small "
++ "for periodic transfer.\n", __func__);
++ return status;
++ }
++
++ /* Always start in the inactive schedule. */
++ list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive);
++
++
++ /* Update claimed usecs per (micro)frame. */
++ _hcd->periodic_usecs += _qh->usecs;
++
++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += _qh->usecs / _qh->interval;
++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++;
++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
++ _qh, _qh->usecs, _qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++;
++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
++ _qh, _qh->usecs, _qh->interval);
++ }
++
++ return status;
++}
++
++/**
++ * This function adds a QH to either the non periodic or periodic schedule if
++ * it is not already in the schedule. If the QH is already in the schedule, no
++ * action is taken.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ unsigned long flags;
++ int status = 0;
++
++ local_irq_save(flags);
++
++ if (!list_empty(&_qh->qh_list_entry)) {
++ /* QH already in a schedule. */
++ goto done;
++ }
++
++ /* Add the new QH to the appropriate schedule */
++ if (dwc_qh_is_non_per(_qh)) {
++ /* Always start in the inactive schedule. */
++ list_add_tail(&_qh->qh_list_entry, &_hcd->non_periodic_sched_inactive);
++ } else {
++ status = schedule_periodic(_hcd, _qh);
++ }
++
++ done:
++ local_irq_restore(flags);
++
++ return status;
++}
++
++/**
++ * This function adds a QH to the non periodic deferred schedule.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ unsigned long flags;
++ local_irq_save(flags);
++ if (!list_empty(&_qh->qh_list_entry)) {
++ /* QH already in a schedule. */
++ goto done;
++ }
++
++ /* Add the new QH to the non periodic deferred schedule */
++ if (dwc_qh_is_non_per(_qh)) {
++ list_add_tail(&_qh->qh_list_entry,
++ &_hcd->non_periodic_sched_deferred);
++ }
++done:
++ local_irq_restore(flags);
++ return 0;
++}
++
++/**
++ * Removes an interrupt or isochronous transfer from the periodic schedule.
++ *
++ * @param _hcd The HCD state structure for the DWC OTG controller.
++ * @param _qh QH for the periodic transfer.
++ */
++static void deschedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ int i;
++ list_del_init(&_qh->qh_list_entry);
++
++
++ /* Update claimed usecs per (micro)frame. */
++ _hcd->periodic_usecs -= _qh->usecs;
++
++ for (i = 0; i < 8; i++) {
++ _hcd->frame_usecs[i] += _qh->frame_usecs[i];
++ _qh->frame_usecs[i] = 0;
++ }
++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= _qh->usecs / _qh->interval;
++
++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--;
++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
++ _qh, _qh->usecs, _qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--;
++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
++ _qh, _qh->usecs, _qh->interval);
++ }
++}
++
++/**
++ * Removes a QH from either the non-periodic or periodic schedule. Memory is
++ * not freed.
++ *
++ * @param[in] _hcd The HCD state structure.
++ * @param[in] _qh QH to remove from schedule. */
++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh)
++{
++ unsigned long flags;
++
++ local_irq_save(flags);
++
++ if (list_empty(&_qh->qh_list_entry)) {
++ /* QH is not in a schedule. */
++ goto done;
++ }
++
++ if (dwc_qh_is_non_per(_qh)) {
++ if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) {
++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next;
++ }
++ list_del_init(&_qh->qh_list_entry);
++ } else {
++ deschedule_periodic(_hcd, _qh);
++ }
++
++ done:
++ local_irq_restore(flags);
++}
++
++/**
++ * Defers a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the deferred non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ */
++int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay)
++{
++ int deact = 1;
++ unsigned long flags;
++ local_irq_save(flags);
++ if (dwc_qh_is_non_per(_qh)) {
++ _qh->sched_frame =
++ dwc_frame_num_inc(_hcd->frame_number,
++ delay);
++ _qh->channel = NULL;
++ _qh->qtd_in_process = NULL;
++ deact = 0;
++ dwc_otg_hcd_qh_remove(_hcd, _qh);
++ if (!list_empty(&_qh->qtd_list)) {
++ /* Add back to deferred non-periodic schedule. */
++ dwc_otg_hcd_qh_add_deferred(_hcd, _qh);
++ }
++ }
++ local_irq_restore(flags);
++ return deact;
++}
++
++/**
++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the inactive non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ *
++ * For periodic QHs, the QH is removed from the periodic queued schedule. If
++ * there are any QTDs still attached to the QH, the QH is added to either the
++ * periodic inactive schedule or the periodic ready schedule and its next
++ * scheduled frame is calculated. The QH is placed in the ready schedule if
++ * the scheduled frame has been reached already. Otherwise it's placed in the
++ * inactive schedule. If there are no QTDs attached to the QH, the QH is
++ * completely removed from the periodic schedule.
++ */
++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_next_periodic_split)
++{
++ unsigned long flags;
++ local_irq_save(flags);
++
++ if (dwc_qh_is_non_per(_qh)) {
++ dwc_otg_hcd_qh_remove(_hcd, _qh);
++ if (!list_empty(&_qh->qtd_list)) {
++ /* Add back to inactive non-periodic schedule. */
++ dwc_otg_hcd_qh_add(_hcd, _qh);
++ }
++ } else {
++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd));
++
++ if (_qh->do_split) {
++ /* Schedule the next continuing periodic split transfer */
++ if (sched_next_periodic_split) {
++
++ _qh->sched_frame = frame_number;
++ if (dwc_frame_num_le(frame_number,
++ dwc_frame_num_inc(_qh->start_split_frame, 1))) {
++ /*
++ * Allow one frame to elapse after start
++ * split microframe before scheduling
++ * complete split, but DONT if we are
++ * doing the next start split in the
++ * same frame for an ISOC out.
++ */
++ if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (_qh->ep_is_in != 0)) {
++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, 1);
++ }
++ }
++ } else {
++ _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame,
++ _qh->interval);
++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
++ _qh->sched_frame = frame_number;
++ }
++ _qh->sched_frame |= 0x7;
++ _qh->start_split_frame = _qh->sched_frame;
++ }
++ } else {
++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, _qh->interval);
++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
++ _qh->sched_frame = frame_number;
++ }
++ }
++
++ if (list_empty(&_qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(_hcd, _qh);
++ } else {
++ /*
++ * Remove from periodic_sched_queued and move to
++ * appropriate queue.
++ */
++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) {
++ list_move(&_qh->qh_list_entry,
++ &_hcd->periodic_sched_ready);
++ } else {
++ list_move(&_qh->qh_list_entry,
++ &_hcd->periodic_sched_inactive);
++ }
++ }
++ }
++
++ local_irq_restore(flags);
++}
++
++/**
++ * This function allocates and initializes a QTD.
++ *
++ * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up
++ * pointing to each other so each pair should have a unique correlation.
++ *
++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *_urb)
++{
++ dwc_otg_qtd_t *qtd;
++
++ qtd = dwc_otg_hcd_qtd_alloc ();
++ if (qtd == NULL) {
++ return NULL;
++ }
++
++ dwc_otg_hcd_qtd_init (qtd, _urb);
++ return qtd;
++}
++
++/**
++ * Initializes a QTD structure.
++ *
++ * @param[in] _qtd The QTD to initialize.
++ * @param[in] _urb The URB to use for initialization. */
++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *_qtd, struct urb *_urb)
++{
++ memset (_qtd, 0, sizeof (dwc_otg_qtd_t));
++ _qtd->urb = _urb;
++ if (usb_pipecontrol(_urb->pipe)) {
++ /*
++ * The only time the QTD data toggle is used is on the data
++ * phase of control transfers. This phase always starts with
++ * DATA1.
++ */
++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ _qtd->control_phase = DWC_OTG_CONTROL_SETUP;
++ }
++
++ /* start split */
++ _qtd->complete_split = 0;
++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ _qtd->isoc_split_offset = 0;
++
++ /* Store the qtd ptr in the urb to reference what QTD. */
++ _urb->hcpriv = _qtd;
++ return;
++}
++
++/**
++ * This function adds a QTD to the QTD-list of a QH. It will find the correct
++ * QH to place the QTD into. If it does not find a QH, then it will create a
++ * new QH. If the QH to which the QTD is added is not currently scheduled, it
++ * is placed into the proper schedule based on its EP type.
++ *
++ * @param[in] _qtd The QTD to add
++ * @param[in] _dwc_otg_hcd The DWC HCD structure
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd)
++{
++ struct usb_host_endpoint *ep;
++ dwc_otg_qh_t *qh;
++ unsigned long flags;
++ int retval = 0;
++ struct urb *urb = _qtd->urb;
++
++ local_irq_save(flags);
++
++ /*
++ * Get the QH which holds the QTD-list to insert to. Create QH if it
++ * doesn't exist.
++ */
++ ep = dwc_urb_to_endpoint(urb);
++ qh = (dwc_otg_qh_t *)ep->hcpriv;
++ if (qh == NULL) {
++ qh = dwc_otg_hcd_qh_create (_dwc_otg_hcd, urb);
++ if (qh == NULL) {
++ retval = -1;
++ goto done;
++ }
++ ep->hcpriv = qh;
++ }
++
++ _qtd->qtd_qh_ptr = qh;
++ retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh);
++ if (retval == 0) {
++ list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list);
++ }
++
++ done:
++ local_irq_restore(flags);
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.c
+@@ -0,0 +1,176 @@
++/******************************************************************************
++**
++** FILE NAME : dwc_otg_ifx.c
++** PROJECT : Twinpass/Danube
++** MODULES : DWC OTG USB
++**
++** DATE : 12 Auguest 2007
++** AUTHOR : Sung Winder
++** DESCRIPTION : Platform specific initialization.
++** COPYRIGHT : Copyright (c) 2007
++** Infineon Technologies AG
++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
++** Hsin-chu City, 300 Taiwan.
++**
++** This program is free software; you can redistribute it and/or modify
++** it under the terms of the GNU General Public License as published by
++** the Free Software Foundation; either version 2 of the License, or
++** (at your option) any later version.
++**
++** HISTORY
++** $Date $Author $Comment
++** 12 Auguest 2007 Sung Winder Initiate Version
++*******************************************************************************/
++#include "dwc_otg_ifx.h"
++
++#include <linux/platform_device.h>
++#include <linux/kernel.h>
++#include <linux/ioport.h>
++#include <linux/gpio.h>
++
++#include <asm/io.h>
++//#include <asm/mach-ifxmips/ifxmips.h>
++#include <xway.h>
++
++#define IFXMIPS_GPIO_BASE_ADDR (0xBE100B00)
++
++#define IFXMIPS_GPIO_P0_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0010))
++#define IFXMIPS_GPIO_P1_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0040))
++#define IFXMIPS_GPIO_P0_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0014))
++#define IFXMIPS_GPIO_P1_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0044))
++#define IFXMIPS_GPIO_P0_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0018))
++#define IFXMIPS_GPIO_P1_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0048))
++#define IFXMIPS_GPIO_P0_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x001C))
++#define IFXMIPS_GPIO_P1_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x004C))
++#define IFXMIPS_GPIO_P0_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0020))
++#define IFXMIPS_GPIO_P1_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0050))
++#define IFXMIPS_GPIO_P0_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0024))
++#define IFXMIPS_GPIO_P1_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0054))
++#define IFXMIPS_GPIO_P0_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0028))
++#define IFXMIPS_GPIO_P1_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0058))
++#define IFXMIPS_GPIO_P0_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x002C))
++#define IFXMIPS_GPIO_P1_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x005C))
++#define IFXMIPS_GPIO_P0_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0030))
++#define IFXMIPS_GPIO_P1_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0060))
++
++
++extern void lq_enable_irq(unsigned int irq_nr);
++#define writel lq_w32
++#define readl lq_r32
++void dwc_otg_power_on (void)
++{
++ // GPIOs
++ gpio_request(28, "USB_POWER");
++ gpio_direction_output(28, 1);
++ /*
++ writel(readl(IFXMIPS_GPIO_P0_DIR) | (0x4000), IFXMIPS_GPIO_P0_DIR);
++ writel(readl(IFXMIPS_GPIO_P0_OD) | (0x4000), IFXMIPS_GPIO_P0_OD);
++ writel(readl(IFXMIPS_GPIO_P0_ALTSEL0) & ~(0x4000), IFXMIPS_GPIO_P0_ALTSEL0);
++ writel(readl(IFXMIPS_GPIO_P0_ALTSEL1) & ~(0x4000), IFXMIPS_GPIO_P0_ALTSEL1);
++ writel(readl(IFXMIPS_GPIO_P0_OUT) | (0x4000), IFXMIPS_GPIO_P0_OUT);
++*/
++/* writel(readl(IFXMIPS_GPIO_P1_DIR) | (0x1000), IFXMIPS_GPIO_P1_DIR);
++ writel(readl(IFXMIPS_GPIO_P1_OD) | (0x1000), IFXMIPS_GPIO_P1_OD);
++ writel(readl(IFXMIPS_GPIO_P1_ALTSEL0) & ~(0x1000), IFXMIPS_GPIO_P1_ALTSEL0);
++ writel(readl(IFXMIPS_GPIO_P1_ALTSEL1) & ~(0x1000), IFXMIPS_GPIO_P1_ALTSEL1);
++ writel(readl(IFXMIPS_GPIO_P1_OUT) | (0x1000), IFXMIPS_GPIO_P1_OUT);
++*/
++ // clear power
++ //set_bit (0, DANUBE_PMU_PWDCR);
++ //set_bit (6, DANUBE_PMU_PWDCR);
++ writel(readl(DANUBE_PMU_PWDCR) | 0x41, DANUBE_PMU_PWDCR);
++
++ // set clock gating
++ //set_bit (4, (volatile unsigned long *)DANUBE_CGU_IFCCR);
++ //set_bit (5, (volatile unsigned long *)DANUBE_CGU_IFCCR);
++ writel(readl(DANUBE_CGU_IFCCR) | 0x30, DANUBE_CGU_IFCCR);
++
++ // set power
++ //clear_bit (0, (volatile unsigned long *)DANUBE_PMU_PWDCR);
++ writel(readl(DANUBE_PMU_PWDCR) & ~0x1, DANUBE_PMU_PWDCR);
++ //clear_bit (6, (volatile unsigned long *)DANUBE_PMU_PWDCR);
++ writel(readl(DANUBE_PMU_PWDCR) & ~0x40, DANUBE_PMU_PWDCR);
++ //clear_bit (15, (volatile unsigned long *)DANUBE_PMU_PWDCR);
++ writel(readl(DANUBE_PMU_PWDCR) & ~0x8000, DANUBE_PMU_PWDCR);
++ //writel(readl(DANUBE_PMU_PWDCR) & ~0x8041, DANUBE_PMU_PWDCR);
++
++#if 1//defined (DWC_HOST_ONLY)
++ // make the hardware be a host controller (default)
++ //clear_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
++ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_HDSEL_BIT), DANUBE_RCU_UBSCFG);
++
++ //#elif defined (DWC_DEVICE_ONLY)
++ /* set the controller to the device mode */
++ // set_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
++#else
++#error "For Danube/Twinpass, it should be HOST or Device Only."
++#endif
++
++ // set the HC's byte-order to big-endian
++ //set_bit (DANUBE_USBCFG_HOST_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
++ writel(readl(DANUBE_RCU_UBSCFG) | (1<<DANUBE_USBCFG_HOST_END_BIT), DANUBE_RCU_UBSCFG);
++ //clear_bit (DANUBE_USBCFG_SLV_END_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG);
++ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<<DANUBE_USBCFG_SLV_END_BIT), DANUBE_RCU_UBSCFG);
++ //writel(0x400, DANUBE_RCU_UBSCFG);
++
++ // PHY configurations.
++ writel (0x14014, (volatile unsigned long *)0xbe10103c);
++}
++
++static void release_platform_dev(struct device * dev)
++{
++ printk("IFX dwc_otg USB platform_dev release\n");
++ dev->parent = NULL;
++}
++
++static struct resource resources[] =
++{
++ [0] = {
++ .name = "dwc_otg_membase",
++ .start = IFX_USB_IOMEM_BASE,
++ .end = IFX_USB_IOMEM_BASE + IFX_USB_IOMEM_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ },
++ [1] = {
++ .name = "dwc_otg_irq",
++ .start = IFX_USB_IRQ,
++ .flags = IORESOURCE_IRQ,
++ },
++};
++
++static u64 dwc_dmamask = (u32)0x1fffffff;
++
++static struct platform_device platform_dev = {
++ .dev = {
++ .release = release_platform_dev,
++ .dma_mask = &dwc_dmamask,
++ },
++ .resource = resources,
++ .num_resources = ARRAY_SIZE(resources),
++};
++
++extern const char dwc_driver_name[];
++int ifx_usb_hc_init(unsigned long base_addr, int irq)
++{
++ if (platform_dev.dev.parent)
++ return -EBUSY;
++
++ /* finish seting up the platform device */
++ //resources[0].start = base_addr;
++ //resources[0].end = base_addr + SZ_256K;
++
++ //resources[1].start = irq;
++
++ /* The driver core will probe for us. We know sl811-hcd has been
++ * initialized already because of the link order dependency.
++ */
++ platform_dev.name = dwc_driver_name;
++ lq_enable_irq(resources[1].start);
++
++ return platform_device_register(&platform_dev);
++}
++
++void ifx_usb_hc_remove(void)
++{
++ platform_device_unregister(&platform_dev);
++}
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.h
+@@ -0,0 +1,79 @@
++/******************************************************************************
++**
++** FILE NAME : dwc_otg_ifx.h
++** PROJECT : Twinpass/Danube
++** MODULES : DWC OTG USB
++**
++** DATE : 12 April 2007
++** AUTHOR : Sung Winder
++** DESCRIPTION : Platform specific initialization.
++** COPYRIGHT : Copyright (c) 2007
++** Infineon Technologies AG
++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park,
++** Hsin-chu City, 300 Taiwan.
++**
++** This program is free software; you can redistribute it and/or modify
++** it under the terms of the GNU General Public License as published by
++** the Free Software Foundation; either version 2 of the License, or
++** (at your option) any later version.
++**
++** HISTORY
++** $Date $Author $Comment
++** 12 April 2007 Sung Winder Initiate Version
++*******************************************************************************/
++#if !defined(__DWC_OTG_IFX_H__)
++#define __DWC_OTG_IFX_H__
++
++#include <irq.h>
++
++// 20070316, winder added.
++#ifndef SZ_256K
++#define SZ_256K 0x00040000
++#endif
++
++extern void dwc_otg_power_on (void);
++
++/* FIXME: The current Linux-2.6 do not have these header files, but anyway, we need these. */
++// #include <asm/danube/danube.h>
++// #include <asm/ifx/irq.h>
++
++/* winder, I used the Danube parameter as default. *
++ * We could change this through module param. */
++#define IFX_USB_IOMEM_BASE 0x1e101000
++#define IFX_USB_IOMEM_SIZE SZ_256K
++#define IFX_USB_IRQ LQ_USB_INT
++
++/**
++ * This function is called to set correct clock gating and power.
++ * For Twinpass/Danube board.
++ */
++#ifndef DANUBE_RCU_BASE_ADDR
++#define DANUBE_RCU_BASE_ADDR (0xBF203000)
++#endif
++
++#ifndef DANUBE_CGU
++#define DANUBE_CGU (0xBF103000)
++#endif
++#ifndef DANUBE_CGU_IFCCR
++/***CGU Interface Clock Control Register***/
++#define DANUBE_CGU_IFCCR ((volatile u32*)(DANUBE_CGU+ 0x0018))
++#endif
++
++#ifndef DANUBE_PMU
++#define DANUBE_PMU (KSEG1+0x1F102000)
++#endif
++#ifndef DANUBE_PMU_PWDCR
++/* PMU Power down Control Register */
++#define DANUBE_PMU_PWDCR ((volatile u32*)(DANUBE_PMU+0x001C))
++#endif
++
++
++#define DANUBE_RCU_UBSCFG ((volatile u32*)(DANUBE_RCU_BASE_ADDR + 0x18))
++#define DANUBE_USBCFG_HDSEL_BIT 11 // 0:host, 1:device
++#define DANUBE_USBCFG_HOST_END_BIT 10 // 0:little_end, 1:big_end
++#define DANUBE_USBCFG_SLV_END_BIT 9 // 0:little_end, 1:big_end
++
++extern void lq_mask_and_ack_irq (unsigned int irq_nr);
++#define mask_and_ack_ifx_irq lq_mask_and_ack_irq
++
++#endif //__DWC_OTG_IFX_H__
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_plat.h
+@@ -0,0 +1,269 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 510301 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_PLAT_H__)
++#define __DWC_OTG_PLAT_H__
++
++#include <linux/types.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/delay.h>
++#include <asm/io.h>
++
++/**
++ * @file
++ *
++ * This file contains the Platform Specific constants, interfaces
++ * (functions and macros) for Linux.
++ *
++ */
++/*#if !defined(__LINUX__)
++#error "The contents of this file is Linux specific!!!"
++#endif
++*/
++#include <xway.h>
++#define writel lq_w32
++#define readl lq_r32
++
++/**
++ * Reads the content of a register.
++ *
++ * @param _reg address of register to read.
++ * @return contents of the register.
++ *
++
++ * Usage:<br>
++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
++ */
++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg)
++{
++ return readl(_reg);
++};
++
++/**
++ * Writes a register with a 32 bit value.
++ *
++ * @param _reg address of register to read.
++ * @param _value to write to _reg.
++ *
++ * Usage:<br>
++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
++ */
++static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value)
++{
++ writel( _value, _reg );
++};
++
++/**
++ * This function modifies bit values in a register. Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ *
++ * @param _reg address of register to read.
++ * @param _clear_mask bit mask to be cleared.
++ * @param _set_mask bit mask to be set.
++ *
++ * Usage:<br>
++ * <code> // Clear the SOF Interrupt Mask bit and <br>
++ * // set the OTG Interrupt mask bit, leaving all others as they were.
++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
++ */
++static __inline__
++ void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask)
++{
++ writel( (readl(_reg) & ~_clear_mask) | _set_mask, _reg );
++};
++
++
++/**
++ * Wrapper for the OS micro-second delay function.
++ * @param[in] _usecs Microseconds of delay
++ */
++static __inline__ void UDELAY( const uint32_t _usecs )
++{
++ udelay( _usecs );
++}
++
++/**
++ * Wrapper for the OS milli-second delay function.
++ * @param[in] _msecs milliseconds of delay
++ */
++static __inline__ void MDELAY( const uint32_t _msecs )
++{
++ mdelay( _msecs );
++}
++
++/**
++ * Wrapper for the Linux spin_lock. On the ARM (Integrator)
++ * spin_lock() is a nop.
++ *
++ * @param _lock Pointer to the spinlock.
++ */
++static __inline__ void SPIN_LOCK( spinlock_t *_lock )
++{
++ spin_lock(_lock);
++}
++
++/**
++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
++ * spin_lock() is a nop.
++ *
++ * @param _lock Pointer to the spinlock.
++ */
++static __inline__ void SPIN_UNLOCK( spinlock_t *_lock )
++{
++ spin_unlock(_lock);
++}
++
++/**
++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
++ * (Integrator) spin_lock() is a nop.
++ *
++ * @param _l Pointer to the spinlock.
++ * @param _f unsigned long for irq flags storage.
++ */
++#define SPIN_LOCK_IRQSAVE( _l, _f ) { \
++ spin_lock_irqsave(_l,_f); \
++ }
++
++/**
++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
++ * (Integrator) spin_lock() is a nop.
++ *
++ * @param _l Pointer to the spinlock.
++ * @param _f unsigned long for irq flags storage.
++ */
++#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\
++ spin_unlock_irqrestore(_l,_f); \
++ }
++
++
++/*
++ * Debugging support vanishes in non-debug builds.
++ */
++
++
++/**
++ * The Debug Level bit-mask variable.
++ */
++extern uint32_t g_dbg_lvl;
++/**
++ * Set the Debug Level variable.
++ */
++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new )
++{
++ uint32_t old = g_dbg_lvl;
++ g_dbg_lvl = _new;
++ return old;
++}
++
++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
++#define DBG_CIL (0x2)
++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
++ * messages */
++#define DBG_CILV (0x20)
++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
++ * messages */
++#define DBG_PCD (0x4)
++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
++ * messages */
++#define DBG_PCDV (0x40)
++/** When debug level has the DBG_HCD bit set, display Host debug messages */
++#define DBG_HCD (0x8)
++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
++ * messages */
++#define DBG_HCDV (0x80)
++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
++ * mode. */
++#define DBG_HCD_URB (0x800)
++
++/** When debug level has any bit set, display debug messages */
++#define DBG_ANY (0xFF)
++
++/** All debug messages off */
++#define DBG_OFF 0
++
++/** Prefix string for DWC_DEBUG print macros. */
++#define USB_DWC "DWC_otg: "
++
++/**
++ * Print a debug message when the Global debug level variable contains
++ * the bit defined in <code>lvl</code>.
++ *
++ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
++ * @param[in] x - like printf
++ *
++ * Example:<p>
++ * <code>
++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
++ * </code>
++ * <br>
++ * results in:<br>
++ * <code>
++ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
++ * </code>
++ */
++#ifdef DEBUG
++
++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
++
++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
++
++#else
++
++# define DWC_DEBUGPL(lvl, x...) do{}while(0)
++# define DWC_DEBUGP(x...)
++
++# define CHK_DEBUG_LEVEL(level) (0)
++
++#endif /*DEBUG*/
++
++/**
++ * Print an Error message.
++ */
++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
++/**
++ * Print a Warning message.
++ */
++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
++/**
++ * Print a notice (normal but significant message).
++ */
++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
++/**
++ * Basic message printing.
++ */
++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
++
++#endif
++
+--- /dev/null
++++ b/drivers/usb/dwc_otg/dwc_otg_regs.h
+@@ -0,0 +1,1797 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $
++ * $Revision: 1.1.1.1 $
++ * $Date: 2009-04-17 06:15:34 $
++ * $Change: 631780 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_REGS_H__
++#define __DWC_OTG_REGS_H__
++
++/**
++ * @file
++ *
++ * This file contains the data structures for accessing the DWC_otg core registers.
++ *
++ * The application interfaces with the HS OTG core by reading from and
++ * writing to the Control and Status Register (CSR) space through the
++ * AHB Slave interface. These registers are 32 bits wide, and the
++ * addresses are 32-bit-block aligned.
++ * CSRs are classified as follows:
++ * - Core Global Registers
++ * - Device Mode Registers
++ * - Device Global Registers
++ * - Device Endpoint Specific Registers
++ * - Host Mode Registers
++ * - Host Global Registers
++ * - Host Port CSRs
++ * - Host Channel Specific Registers
++ *
++ * Only the Core Global registers can be accessed in both Device and
++ * Host modes. When the HS OTG core is operating in one mode, either
++ * Device or Host, the application must not access registers from the
++ * other mode. When the core switches from one mode to another, the
++ * registers in the new mode of operation must be reprogrammed as they
++ * would be after a power-on reset.
++ */
++
++/****************************************************************************/
++/** DWC_otg Core registers .
++ * The dwc_otg_core_global_regs structure defines the size
++ * and relative field offsets for the Core Global registers.
++ */
++typedef struct dwc_otg_core_global_regs
++{
++ /** OTG Control and Status Register. <i>Offset: 000h</i> */
++ volatile uint32_t gotgctl;
++ /** OTG Interrupt Register. <i>Offset: 004h</i> */
++ volatile uint32_t gotgint;
++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
++ volatile uint32_t gahbcfg;
++#define DWC_GLBINTRMASK 0x0001
++#define DWC_DMAENABLE 0x0020
++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
++#define DWC_PTXEMPTYLVL_EMPTY 0x0100
++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
++
++
++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
++ volatile uint32_t gusbcfg;
++ /**Core Reset Register. <i>Offset: 010h</i> */
++ volatile uint32_t grstctl;
++ /**Core Interrupt Register. <i>Offset: 014h</i> */
++ volatile uint32_t gintsts;
++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
++ volatile uint32_t gintmsk;
++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
++ volatile uint32_t grxstsr;
++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
++ volatile uint32_t grxstsp;
++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
++ volatile uint32_t grxfsiz;
++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
++ volatile uint32_t gnptxfsiz;
++ /**Non Periodic Transmit FIFO/Queue Status Register (Read
++ * Only). <i>Offset: 02Ch</i> */
++ volatile uint32_t gnptxsts;
++ /**I2C Access Register. <i>Offset: 030h</i> */
++ volatile uint32_t gi2cctl;
++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
++ volatile uint32_t gpvndctl;
++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
++ volatile uint32_t ggpio;
++ /**User ID Register. <i>Offset: 03Ch</i> */
++ volatile uint32_t guid;
++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
++ volatile uint32_t gsnpsid;
++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
++ volatile uint32_t ghwcfg1;
++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
++ volatile uint32_t ghwcfg2;
++#define DWC_SLAVE_ONLY_ARCH 0
++#define DWC_EXT_DMA_ARCH 1
++#define DWC_INT_DMA_ARCH 2
++
++#define DWC_MODE_HNP_SRP_CAPABLE 0
++#define DWC_MODE_SRP_ONLY_CAPABLE 1
++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
++#define DWC_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_MODE_SRP_CAPABLE_HOST 5
++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
++
++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
++ volatile uint32_t ghwcfg3;
++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
++ volatile uint32_t ghwcfg4;
++ /** Reserved <i>Offset: 054h-0FFh</i> */
++ uint32_t reserved[43];
++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
++ volatile uint32_t hptxfsiz;
++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
++ otherwise Device Transmit FIFO#n Register.
++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
++ //volatile uint32_t dptxfsiz[15];
++ volatile uint32_t dptxfsiz_dieptxf[15];
++} dwc_otg_core_global_regs_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Control
++ * and Status Register (GOTGCTL). Set the bits using the bit
++ * fields then write the <i>d32</i> value to the register.
++ */
++typedef union gotgctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned reserved31_21 : 11;
++ unsigned currmod : 1;
++ unsigned bsesvld : 1;
++ unsigned asesvld : 1;
++ unsigned reserved17 : 1;
++ unsigned conidsts : 1;
++ unsigned reserved15_12 : 4;
++ unsigned devhnpen : 1;
++ unsigned hstsethnpen : 1;
++ unsigned hnpreq : 1;
++ unsigned hstnegscs : 1;
++ unsigned reserved7_2 : 6;
++ unsigned sesreq : 1;
++ unsigned sesreqscs : 1;
++ } b;
++} gotgctl_data_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Interrupt Register
++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
++ * value to the register.
++ */
++typedef union gotgint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Current Mode */
++ unsigned reserved31_20 : 12;
++ /** Debounce Done */
++ unsigned debdone : 1;
++ /** A-Device Timeout Change */
++ unsigned adevtoutchng : 1;
++ /** Host Negotiation Detected */
++ unsigned hstnegdet : 1;
++ unsigned reserver16_10 : 7;
++ /** Host Negotiation Success Status Change */
++ unsigned hstnegsucstschng : 1;
++ /** Session Request Success Status Change */
++ unsigned sesreqsucstschng : 1;
++ unsigned reserved3_7 : 5;
++ /** Session End Detected */
++ unsigned sesenddet : 1;
++ /** Current Mode */
++ unsigned reserved1_0 : 2;
++ } b;
++} gotgint_data_t;
++
++
++/**
++ * This union represents the bit fields of the Core AHB Configuration
++ * Register (GAHBCFG). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gahbcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
++ unsigned reserved9_31 : 23;
++ unsigned ptxfemplvl : 1;
++ unsigned nptxfemplvl_txfemplvl : 1;
++#define DWC_GAHBCFG_DMAENABLE 1
++ unsigned reserved : 1;
++ unsigned dmaenable : 1;
++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
++ unsigned hburstlen : 4;
++ unsigned glblintrmsk : 1;
++#define DWC_GAHBCFG_GLBINT_ENABLE 1
++
++ } b;
++} gahbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core USB Configuration
++ * Register (GUSBCFG). Set the bits using the bit fields then write
++ * the <i>d32</i> value to the register.
++ */
++typedef union gusbcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned corrupt_tx_packet: 1; /*fscz*/
++ unsigned force_device_mode: 1;
++ unsigned force_host_mode: 1;
++ unsigned reserved23_28 : 6;
++ unsigned term_sel_dl_pulse : 1;
++ unsigned ulpi_int_vbus_indicator : 1;
++ unsigned ulpi_ext_vbus_drv : 1;
++ unsigned ulpi_clk_sus_m : 1;
++ unsigned ulpi_auto_res : 1;
++ unsigned ulpi_fsls : 1;
++ unsigned otgutmifssel : 1;
++ unsigned phylpwrclksel : 1;
++ unsigned nptxfrwnden : 1;
++ unsigned usbtrdtim : 4;
++ unsigned hnpcap : 1;
++ unsigned srpcap : 1;
++ unsigned ddrsel : 1;
++ unsigned physel : 1;
++ unsigned fsintf : 1;
++ unsigned ulpi_utmi_sel : 1;
++ unsigned phyif : 1;
++ unsigned toutcal : 3;
++ } b;
++} gusbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core Reset Register
++ * (GRSTCTL). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union grstctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** AHB Master Idle. Indicates the AHB Master State
++ * Machine is in IDLE condition. */
++ unsigned ahbidle : 1;
++ /** DMA Request Signal. Indicated DMA request is in
++ * probress. Used for debug purpose. */
++ unsigned dmareq : 1;
++ /** Reserved */
++ unsigned reserved29_11 : 19;
++ /** TxFIFO Number (TxFNum) (Device and Host).
++ *
++ * This is the FIFO number which needs to be flushed,
++ * using the TxFIFO Flush bit. This field should not
++ * be changed until the TxFIFO Flush bit is cleared by
++ * the core.
++ * - 0x0 : Non Periodic TxFIFO Flush
++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
++ * or Periodic TxFIFO in host mode
++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
++ * - ...
++ * - 0xF : Periodic TxFIFO #15 Flush in device mode
++ * - 0x10: Flush all the Transmit NonPeriodic and
++ * Transmit Periodic FIFOs in the core
++ */
++ unsigned txfnum : 5;
++ /** TxFIFO Flush (TxFFlsh) (Device and Host).
++ *
++ * This bit is used to selectively flush a single or
++ * all transmit FIFOs. The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is writing into the TxFIFO nor the MAC
++ * is reading the data out of the FIFO. <p>The
++ * application should wait until the core clears this
++ * bit, before performing any operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned txfflsh : 1;
++ /** RxFIFO Flush (RxFFlsh) (Device and Host)
++ *
++ * The application can flush the entire Receive FIFO
++ * using this bit. <p>The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is reading from the RxFIFO nor the MAC
++ * is writing the data in to the FIFO. <p>The
++ * application should wait until the bit is cleared
++ * before performing any other operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned rxfflsh : 1;
++ /** In Token Sequence Learning Queue Flush
++ * (INTknQFlsh) (Device Only)
++ */
++ unsigned intknqflsh : 1;
++ /** Host Frame Counter Reset (Host Only)<br>
++ *
++ * The application can reset the (micro)frame number
++ * counter inside the core, using this bit. When the
++ * (micro)frame counter is reset, the subsequent SOF
++ * sent out by the core, will have a (micro)frame
++ * number of 0.
++ */
++ unsigned hstfrm : 1;
++ /** Hclk Soft Reset
++ *
++ * The application uses this bit to reset the control logic in
++ * the AHB clock domain. Only AHB clock domain pipelines are
++ * reset.
++ */
++ unsigned hsftrst : 1;
++ /** Core Soft Reset (CSftRst) (Device and Host)
++ *
++ * The application can flush the control logic in the
++ * entire core using this bit. This bit resets the
++ * pipelines in the AHB Clock domain as well as the
++ * PHY Clock domain.
++ *
++ * The state machines are reset to an IDLE state, the
++ * control bits in the CSRs are cleared, all the
++ * transmit FIFOs and the receive FIFO are flushed.
++ *
++ * The status mask bits that control the generation of
++ * the interrupt, are cleared, to clear the
++ * interrupt. The interrupt status bits are not
++ * cleared, so the application can get the status of
++ * any events that occurred in the core after it has
++ * set this bit.
++ *
++ * Any transactions on the AHB are terminated as soon
++ * as possible following the protocol. Any
++ * transactions on the USB are terminated immediately.
++ *
++ * The configuration settings in the CSRs are
++ * unchanged, so the software doesn't have to
++ * reprogram these registers (Device
++ * Configuration/Host Configuration/Core System
++ * Configuration/Core PHY Configuration).
++ *
++ * The application can write to this bit, any time it
++ * wants to reset the core. This is a self clearing
++ * bit and the core clears this bit after all the
++ * necessary logic is reset in the core, which may
++ * take several clocks, depending on the current state
++ * of the core.
++ */
++ unsigned csftrst : 1;
++ } b;
++} grstctl_t;
++
++
++/**
++ * This union represents the bit fields of the Core Interrupt Mask
++ * Register (GINTMSK). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned wkupintr : 1;
++ unsigned sessreqintr : 1;
++ unsigned disconnect : 1;
++ unsigned conidstschng : 1;
++ unsigned reserved27 : 1;
++ unsigned ptxfempty : 1;
++ unsigned hcintr : 1;
++ unsigned portintr : 1;
++ unsigned reserved22_23 : 2;
++ unsigned incomplisoout : 1;
++ unsigned incomplisoin : 1;
++ unsigned outepintr : 1;
++ unsigned inepintr : 1;
++ unsigned epmismatch : 1;
++ unsigned reserved16 : 1;
++ unsigned eopframe : 1;
++ unsigned isooutdrop : 1;
++ unsigned enumdone : 1;
++ unsigned usbreset : 1;
++ unsigned usbsuspend : 1;
++ unsigned erlysuspend : 1;
++ unsigned i2cintr : 1;
++ unsigned reserved8 : 1;
++ unsigned goutnakeff : 1;
++ unsigned ginnakeff : 1;
++ unsigned nptxfempty : 1;
++ unsigned rxstsqlvl : 1;
++ unsigned sofintr : 1;
++ unsigned otgintr : 1;
++ unsigned modemismatch : 1;
++ unsigned reserved0 : 1;
++ } b;
++} gintmsk_data_t;
++/**
++ * This union represents the bit fields of the Core Interrupt Register
++ * (GINTSTS). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union gintsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++#define DWC_SOF_INTR_MASK 0x0008
++ /** register bits */
++ struct
++ {
++#define DWC_HOST_MODE 1
++ unsigned wkupintr : 1;
++ unsigned sessreqintr : 1;
++ unsigned disconnect : 1;
++ unsigned conidstschng : 1;
++ unsigned reserved27 : 1;
++ unsigned ptxfempty : 1;
++ unsigned hcintr : 1;
++ unsigned portintr : 1;
++ unsigned reserved22_23 : 2;
++ unsigned incomplisoout : 1;
++ unsigned incomplisoin : 1;
++ unsigned outepintr : 1;
++ unsigned inepint: 1;
++ unsigned epmismatch : 1;
++ unsigned intokenrx : 1;
++ unsigned eopframe : 1;
++ unsigned isooutdrop : 1;
++ unsigned enumdone : 1;
++ unsigned usbreset : 1;
++ unsigned usbsuspend : 1;
++ unsigned erlysuspend : 1;
++ unsigned i2cintr : 1;
++ unsigned reserved8 : 1;
++ unsigned goutnakeff : 1;
++ unsigned ginnakeff : 1;
++ unsigned nptxfempty : 1;
++ unsigned rxstsqlvl : 1;
++ unsigned sofintr : 1;
++ unsigned otgintr : 1;
++ unsigned modemismatch : 1;
++ unsigned curmode : 1;
++ } b;
++} gintsts_data_t;
++
++
++/**
++ * This union represents the bit fields in the Device Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union device_grxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 7;
++ unsigned fn : 4;
++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
++
++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
++ unsigned pktsts : 4;
++ unsigned dpid : 2;
++ unsigned bcnt : 11;
++ unsigned epnum : 4;
++ } b;
++} device_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union host_grxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved31_21 : 11;
++#define DWC_GRXSTS_PKTSTS_IN 0x2
++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
++ unsigned pktsts : 4;
++ unsigned dpid : 2;
++ unsigned bcnt : 11;
++ unsigned chnum : 4;
++ } b;
++} host_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the <i>d32</i> element then
++ * read out the bits using the <i>b</i>it elements.
++ */
++typedef union fifosize_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned depth : 16;
++ unsigned startaddr : 16;
++ } b;
++} fifosize_data_t;
++
++/**
++ * This union represents the bit fields in the Non-Periodic Transmit
++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union gnptxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 1;
++ /** Top of the Non-Periodic Transmit Request Queue
++ * - bits 30:27 - Channel/EP Number
++ * - bits 26:25 - Token Type
++ * - bit 24 - Terminate (Last entry for the selected
++ * channel/EP)
++ * - 2'b00 - IN/OUT
++ * - 2'b01 - Zero Length OUT
++ * - 2'b10 - PING/Complete Split
++ * - 2'b11 - Channel Halt
++
++ */
++ unsigned nptxqtop_chnep : 4;
++ unsigned nptxqtop_token : 2;
++ unsigned nptxqtop_terminate : 1;
++ unsigned nptxqspcavail : 8;
++ unsigned nptxfspcavail : 16;
++ } b;
++} gnptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Transmit
++ * FIFO Status Register (DTXFSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union dtxfsts_data /* fscz */ //*
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 16;
++ unsigned txfspcavail : 16;
++ } b;
++} dtxfsts_data_t;
++
++/**
++ * This union represents the bit fields in the I2C Control Register
++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gi2cctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned bsydne : 1;
++ unsigned rw : 1;
++ unsigned reserved : 2;
++ unsigned i2cdevaddr : 2;
++ unsigned i2csuspctl : 1;
++ unsigned ack : 1;
++ unsigned i2cen : 1;
++ unsigned addr : 7;
++ unsigned regaddr : 8;
++ unsigned rwdata : 8;
++ } b;
++} gi2cctl_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config1
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg1_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned ep_dir15 : 2;
++ unsigned ep_dir14 : 2;
++ unsigned ep_dir13 : 2;
++ unsigned ep_dir12 : 2;
++ unsigned ep_dir11 : 2;
++ unsigned ep_dir10 : 2;
++ unsigned ep_dir9 : 2;
++ unsigned ep_dir8 : 2;
++ unsigned ep_dir7 : 2;
++ unsigned ep_dir6 : 2;
++ unsigned ep_dir5 : 2;
++ unsigned ep_dir4 : 2;
++ unsigned ep_dir3 : 2;
++ unsigned ep_dir2 : 2;
++ unsigned ep_dir1 : 2;
++ unsigned ep_dir0 : 2;
++ } b;
++} hwcfg1_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config2
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg2_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /* GHWCFG2 */
++ unsigned reserved31 : 1;
++ unsigned dev_token_q_depth : 5;
++ unsigned host_perio_tx_q_depth : 2;
++ unsigned nonperio_tx_q_depth : 2;
++ unsigned rx_status_q_depth : 2;
++ unsigned dynamic_fifo : 1;
++ unsigned perio_ep_supported : 1;
++ unsigned num_host_chan : 4;
++ unsigned num_dev_ep : 4;
++ unsigned fs_phy_type : 2;
++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
++ unsigned hs_phy_type : 2;
++ unsigned point2point : 1;
++ unsigned architecture : 2;
++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
++ unsigned op_mode : 3;
++ } b;
++} hwcfg2_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config3
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg3_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /* GHWCFG3 */
++ unsigned dfifo_depth : 16;
++ unsigned reserved15_13 : 3;
++ unsigned ahb_phy_clock_synch : 1;
++ unsigned synch_reset_type : 1;
++ unsigned optional_features : 1;
++ unsigned vendor_ctrl_if : 1;
++ unsigned i2c : 1;
++ unsigned otg_func : 1;
++ unsigned packet_size_cntr_width : 3;
++ unsigned xfer_size_cntr_width : 4;
++ } b;
++} hwcfg3_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config4
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg4_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++unsigned reserved31_30 : 2; /* fscz */
++ unsigned num_in_eps : 4;
++ unsigned ded_fifo_en : 1;
++
++ unsigned session_end_filt_en : 1;
++ unsigned b_valid_filt_en : 1;
++ unsigned a_valid_filt_en : 1;
++ unsigned vbus_valid_filt_en : 1;
++ unsigned iddig_filt_en : 1;
++ unsigned num_dev_mode_ctrl_ep : 4;
++ unsigned utmi_phy_data_width : 2;
++ unsigned min_ahb_freq : 9;
++ unsigned power_optimiz : 1;
++ unsigned num_dev_perio_in_ep : 4;
++ } b;
++} hwcfg4_data_t;
++
++////////////////////////////////////////////
++// Device Registers
++/**
++ * Device Global Registers. <i>Offsets 800h-BFFh</i>
++ *
++ * The following structures define the size and relative field offsets
++ * for the Device Mode Registers.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_global_regs
++{
++ /** Device Configuration Register. <i>Offset 800h</i> */
++ volatile uint32_t dcfg;
++ /** Device Control Register. <i>Offset: 804h</i> */
++ volatile uint32_t dctl;
++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
++ volatile uint32_t dsts;
++ /** Reserved. <i>Offset: 80Ch</i> */
++ uint32_t unused;
++ /** Device IN Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 810h</i> */
++ volatile uint32_t diepmsk;
++ /** Device OUT Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 814h</i> */
++ volatile uint32_t doepmsk;
++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
++ volatile uint32_t daint;
++ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
++ * 81Ch</i> */
++ volatile uint32_t daintmsk;
++ /** Device IN Token Queue Read Register-1 (Read Only).
++ * <i>Offset: 820h</i> */
++ volatile uint32_t dtknqr1;
++ /** Device IN Token Queue Read Register-2 (Read Only).
++ * <i>Offset: 824h</i> */
++ volatile uint32_t dtknqr2;
++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
++ volatile uint32_t dvbusdis;
++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
++ volatile uint32_t dvbuspulse;
++ /** Device IN Token Queue Read Register-3 (Read Only).
++ * Device Thresholding control register (Read/Write)
++ * <i>Offset: 830h</i> */
++ volatile uint32_t dtknqr3_dthrctl;
++ /** Device IN Token Queue Read Register-4 (Read Only). /
++ * Device IN EPs empty Inr. Mask Register (Read/Write)
++ * <i>Offset: 834h</i> */
++ volatile uint32_t dtknqr4_fifoemptymsk;
++} dwc_otg_device_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Device Configuration
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements. Write the
++ * <i>d32</i> member to the dcfg register.
++ */
++typedef union dcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved31_23 : 9;
++ /** In Endpoint Mis-match count */
++ unsigned epmscnt : 5;
++ unsigned reserved13_17 : 5;
++ /** Periodic Frame Interval */
++#define DWC_DCFG_FRAME_INTERVAL_80 0
++#define DWC_DCFG_FRAME_INTERVAL_85 1
++#define DWC_DCFG_FRAME_INTERVAL_90 2
++#define DWC_DCFG_FRAME_INTERVAL_95 3
++ unsigned perfrint : 2;
++ /** Device Addresses */
++ unsigned devaddr : 7;
++ unsigned reserved3 : 1;
++ /** Non Zero Length Status OUT Handshake */
++#define DWC_DCFG_SEND_STALL 1
++ unsigned nzstsouthshk : 1;
++ /** Device Speed */
++ unsigned devspd : 2;
++ } b;
++} dcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Device Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 20;
++ /** Power-On Programming Done */
++ unsigned pwronprgdone : 1;
++ /** Clear Global OUT NAK */
++ unsigned cgoutnak : 1;
++ /** Set Global OUT NAK */
++ unsigned sgoutnak : 1;
++ /** Clear Global Non-Periodic IN NAK */
++ unsigned cgnpinnak : 1;
++ /** Set Global Non-Periodic IN NAK */
++ unsigned sgnpinnak : 1;
++ /** Test Control */
++ unsigned tstctl : 3;
++ /** Global OUT NAK Status */
++ unsigned goutnaksts : 1;
++ /** Global Non-Periodic IN NAK Status */
++ unsigned gnpinnaksts : 1;
++ /** Soft Disconnect */
++ unsigned sftdiscon : 1;
++ /** Remote Wakeup */
++ unsigned rmtwkupsig : 1;
++ } b;
++} dctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device Status
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved22_31 : 10;
++ /** Frame or Microframe Number of the received SOF */
++ unsigned soffn : 14;
++ unsigned reserved4_7: 4;
++ /** Erratic Error */
++ unsigned errticerr : 1;
++ /** Enumerated Speed */
++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
++ unsigned enumspd : 2;
++ /** Suspend Status */
++ unsigned suspsts : 1;
++ } b;
++} dsts_data_t;
++
++
++/**
++ * This union represents the bit fields in the Device IN EP Interrupt
++ * Register and the Device IN EP Common Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union diepint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved07_31 : 23;
++ unsigned txfifoundrn : 1;
++ /** IN Endpoint HAK Effective mask */
++ unsigned emptyintr : 1;
++ /** IN Endpoint NAK Effective mask */
++ unsigned inepnakeff : 1;
++ /** IN Token Received with EP mismatch mask */
++ unsigned intknepmis : 1;
++ /** IN Token received with TxF Empty mask */
++ unsigned intktxfemp : 1;
++ /** TimeOUT Handshake mask (non-ISOC EPs) */
++ unsigned timeout : 1;
++ /** AHB Error mask */
++ unsigned ahberr : 1;
++ /** Endpoint disable mask */
++ unsigned epdisabled : 1;
++ /** Transfer complete mask */
++ unsigned xfercompl : 1;
++ } b;
++} diepint_data_t;
++/**
++ * This union represents the bit fields in the Device IN EP Common
++ * Interrupt Mask Register.
++ */
++typedef union diepint_data diepmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Device OUT EP Interrupt
++ * Registerand Device OUT EP Common Interrupt Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union doepint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved04_31 : 27;
++ /** OUT Token Received when Endpoint Disabled */
++ unsigned outtknepdis : 1;
++ /** Setup Phase Done (contorl EPs) */
++ unsigned setup : 1;
++ /** AHB Error */
++ unsigned ahberr : 1;
++ /** Endpoint disable */
++ unsigned epdisabled : 1;
++ /** Transfer complete */
++ unsigned xfercompl : 1;
++ } b;
++} doepint_data_t;
++/**
++ * This union represents the bit fields in the Device OUT EP Common
++ * Interrupt Mask Register.
++ */
++typedef union doepint_data doepmsk_data_t;
++
++
++/**
++ * This union represents the bit fields in the Device All EP Interrupt
++ * and Mask Registers.
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union daint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** OUT Endpoint bits */
++ unsigned out : 16;
++ /** IN Endpoint bits */
++ unsigned in : 16;
++ } ep;
++ struct {
++ /** OUT Endpoint bits */
++ unsigned outep15 : 1;
++ unsigned outep14 : 1;
++ unsigned outep13 : 1;
++ unsigned outep12 : 1;
++ unsigned outep11 : 1;
++ unsigned outep10 : 1;
++ unsigned outep9 : 1;
++ unsigned outep8 : 1;
++ unsigned outep7 : 1;
++ unsigned outep6 : 1;
++ unsigned outep5 : 1;
++ unsigned outep4 : 1;
++ unsigned outep3 : 1;
++ unsigned outep2 : 1;
++ unsigned outep1 : 1;
++ unsigned outep0 : 1;
++ /** IN Endpoint bits */
++ unsigned inep15 : 1;
++ unsigned inep14 : 1;
++ unsigned inep13 : 1;
++ unsigned inep12 : 1;
++ unsigned inep11 : 1;
++ unsigned inep10 : 1;
++ unsigned inep9 : 1;
++ unsigned inep8 : 1;
++ unsigned inep7 : 1;
++ unsigned inep6 : 1;
++ unsigned inep5 : 1;
++ unsigned inep4 : 1;
++ unsigned inep3 : 1;
++ unsigned inep2 : 1;
++ unsigned inep1 : 1;
++ unsigned inep0 : 1;
++ } b;
++} daint_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN Token Queue
++ * Read Registers.
++ * - Read the register into the <i>d32</i> member.
++ * - READ-ONLY Register
++ */
++typedef union dtknq1_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** EP Numbers of IN Tokens 0 ... 4 */
++ unsigned epnums0_5 : 24;
++ /** write pointer has wrapped. */
++ unsigned wrap_bit : 1;
++ /** Reserved */
++ unsigned reserved05_06 : 2;
++ /** In Token Queue Write Pointer */
++ unsigned intknwptr : 5;
++ }b;
++} dtknq1_data_t;
++
++/**
++ * This union represents Threshold control Register
++ * - Read and write the register into the <i>d32</i> member.
++ * - READ-WRITABLE Register
++ */
++typedef union dthrctl_data //* /*fscz */
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Reserved */
++ unsigned reserved26_31 : 6;
++ /** Rx Thr. Length */
++ unsigned rx_thr_len : 9;
++ /** Rx Thr. Enable */
++ unsigned rx_thr_en : 1;
++ /** Reserved */
++ unsigned reserved11_15 : 5;
++ /** Tx Thr. Length */
++ unsigned tx_thr_len : 9;
++ /** ISO Tx Thr. Enable */
++ unsigned iso_thr_en : 1;
++ /** non ISO Tx Thr. Enable */
++ unsigned non_iso_thr_en : 1;
++
++ }b;
++} dthrctl_data_t;
++
++/**
++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
++ * 900h-AFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_in_ep_regs
++{
++ /** Device IN Endpoint Control Register. <i>Offset:900h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t diepctl;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
++ uint32_t reserved04;
++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t diepint;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device IN Endpoint Transfer Size
++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t dieptsiz;
++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
++ * (ep_num * 20h) + 14h</i> */
++ volatile uint32_t diepdma;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 18h - 900h +
++ * (ep_num * 20h) + 1Ch</i>*/
++ volatile uint32_t dtxfsts;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 1Ch - 900h +
++ * (ep_num * 20h) + 1Ch</i>*/
++ uint32_t reserved18;
++} dwc_otg_dev_in_ep_regs_t;
++
++/**
++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
++ * B00h-CFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_out_ep_regs
++{
++ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t doepctl;
++ /** Device OUT Endpoint Frame number Register. <i>Offset:
++ * B00h + (ep_num * 20h) + 04h</i> */
++ volatile uint32_t doepfn;
++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t doepint;
++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
++ * B00h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t doeptsiz;
++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
++ * + (ep_num * 20h) + 14h</i> */
++ volatile uint32_t doepdma;
++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 18h - B00h +
++ * (ep_num * 20h) + 1Ch</i> */
++ uint32_t unused[2];
++} dwc_otg_dev_out_ep_regs_t;
++
++/**
++ * This union represents the bit fields in the Device EP Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union depctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Endpoint Enable */
++ unsigned epena : 1;
++ /** Endpoint Disable */
++ unsigned epdis : 1;
++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA1 Set Odd
++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to odd (micro) frame.
++ */
++ unsigned setd1pid : 1;
++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA0. Set Even
++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to even (micro)
++ * frame.
++ */
++ unsigned setd0pid : 1;
++ /** Set NAK */
++ unsigned snak : 1;
++ /** Clear NAK */
++ unsigned cnak : 1;
++ /** Tx Fifo Number
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned txfnum : 4;
++ /** Stall Handshake */
++ unsigned stall : 1;
++ /** Snoop Mode
++ * OUT EPn/OUT EP0
++ * IN EPn/IN EP0 - reserved */
++ unsigned snp : 1;
++ /** Endpoint Type
++ * 2'b00: Control
++ * 2'b01: Isochronous
++ * 2'b10: Bulk
++ * 2'b11: Interrupt */
++ unsigned eptype : 2;
++ /** NAK Status */
++ unsigned naksts : 1;
++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
++ * This field contains the PID of the packet going to
++ * be received or transmitted on this endpoint. The
++ * application should program the PID of the first
++ * packet going to be received or transmitted on this
++ * endpoint , after the endpoint is
++ * activated. Application use the SetD1PID and
++ * SetD0PID fields of this register to program either
++ * D0 or D1 PID.
++ *
++ * The encoding for this field is
++ * - 0: D0
++ * - 1: D1
++ */
++ unsigned dpid : 1;
++ /** USB Active Endpoint */
++ unsigned usbactep : 1;
++ /** Next Endpoint
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned nextep : 4;
++ /** Maximum Packet Size
++ * IN/OUT EPn
++ * IN/OUT EP0 - 2 bits
++ * 2'b00: 64 Bytes
++ * 2'b01: 32
++ * 2'b10: 16
++ * 2'b11: 8 */
++#define DWC_DEP0CTL_MPS_64 0
++#define DWC_DEP0CTL_MPS_32 1
++#define DWC_DEP0CTL_MPS_16 2
++#define DWC_DEP0CTL_MPS_8 3
++ unsigned mps : 11;
++ } b;
++} depctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 1;
++ /** Multi Count - Periodic IN endpoints */
++ unsigned mc : 2;
++ /** Packet Count */
++ unsigned pktcnt : 10;
++ /** Transfer size */
++ unsigned xfersize : 19;
++ } b;
++} deptsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP 0 Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz0_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved31 : 1;
++ /**Setup Packet Count (DOEPTSIZ0 Only) */
++ unsigned supcnt : 2;
++ /** Reserved */
++ unsigned reserved28_20 : 9;
++ /** Packet Count */
++ unsigned pktcnt : 1;
++ /** Reserved */
++ unsigned reserved18_7 : 12;
++ /** Transfer size */
++ unsigned xfersize : 7;
++ } b;
++} deptsiz0_data_t;
++
++
++/** Maximum number of Periodic FIFOs */
++#define MAX_PERIO_FIFOS 15
++/** Maximum number of TX FIFOs */
++#define MAX_TX_FIFOS 15
++/** Maximum number of Endpoints/HostChannels */
++#define MAX_EPS_CHANNELS 16
++//#define MAX_EPS_CHANNELS 4
++
++/**
++ * The dwc_otg_dev_if structure contains information needed to manage
++ * the DWC_otg controller acting in device mode. It represents the
++ * programming view of the device-specific aspects of the controller.
++ */
++typedef struct dwc_otg_dev_if {
++ /** Pointer to device Global registers.
++ * Device Global Registers starting at offset 800h
++ */
++ dwc_otg_device_global_regs_t *dev_global_regs;
++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
++
++ /**
++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
++ */
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_IN_EP_REG_OFFSET 0x900
++#define DWC_EP_REG_OFFSET 0x20
++
++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
++
++ /* Device configuration information*/
++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
++ //uint8_t num_eps; /**< Number of EPs range: 0-16 (includes EP0) */
++ //uint8_t num_perio_eps; /**< # of Periodic EP range: 0-15 */
++ /*fscz */
++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
++
++ /** Size of periodic FIFOs (Bytes) */
++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++ /** Size of Tx FIFOs (Bytes) */
++ uint16_t tx_fifo_size[MAX_TX_FIFOS];
++
++ /** Thresholding enable flags and length varaiables **/
++ uint16_t rx_thr_en;
++ uint16_t iso_tx_thr_en;
++ uint16_t non_iso_tx_thr_en;
++
++ uint16_t rx_thr_length;
++ uint16_t tx_thr_length;
++} dwc_otg_dev_if_t;
++
++/**
++ * This union represents the bit fields in the Power and Clock Gating Control
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union pcgcctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned reserved31_05 : 27;
++ /** PHY Suspended */
++ unsigned physuspended : 1;
++ /** Reset Power Down Modules */
++ unsigned rstpdwnmodule : 1;
++ /** Power Clamp */
++ unsigned pwrclmp : 1;
++ /** Gate Hclk */
++ unsigned gatehclk : 1;
++ /** Stop Pclk */
++ unsigned stoppclk : 1;
++ } b;
++} pcgcctl_data_t;
++
++/////////////////////////////////////////////////
++// Host Mode Register Structures
++//
++/**
++ * The Host Global Registers structure defines the size and relative
++ * field offsets for the Host Mode Global Registers. Host Global
++ * Registers offsets 400h-7FFh.
++*/
++typedef struct dwc_otg_host_global_regs
++{
++ /** Host Configuration Register. <i>Offset: 400h</i> */
++ volatile uint32_t hcfg;
++ /** Host Frame Interval Register. <i>Offset: 404h</i> */
++ volatile uint32_t hfir;
++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
++ volatile uint32_t hfnum;
++ /** Reserved. <i>Offset: 40Ch</i> */
++ uint32_t reserved40C;
++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
++ volatile uint32_t hptxsts;
++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
++ volatile uint32_t haint;
++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
++ volatile uint32_t haintmsk;
++} dwc_otg_host_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Configuration Register.
++ * Read the register into the <i>d32</i> member then set/clear the bits using
++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
++ */
++typedef union hcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Reserved */
++ //unsigned reserved31_03 : 29;
++ /** FS/LS Only Support */
++ unsigned fslssupp : 1;
++ /** FS/LS Phy Clock Select */
++#define DWC_HCFG_30_60_MHZ 0
++#define DWC_HCFG_48_MHZ 1
++#define DWC_HCFG_6_MHZ 2
++ unsigned fslspclksel : 2;
++ } b;
++} hcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfir_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned reserved : 16;
++ unsigned frint : 16;
++ } b;
++} hfir_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfnum_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned frrem : 16;
++#define DWC_HFNUM_MAX_FRNUM 0x3FFF
++ unsigned frnum : 16;
++ } b;
++} hfnum_data_t;
++
++typedef union hptxsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Top of the Periodic Transmit Request Queue
++ * - bit 24 - Terminate (last entry for the selected channel)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - Zero length
++ * - 2'b01 - Ping
++ * - 2'b10 - Disable
++ * - bits 30:27 - Channel Number
++ * - bit 31 - Odd/even microframe
++ */
++ unsigned ptxqtop_odd : 1;
++ unsigned ptxqtop_chnum : 4;
++ unsigned ptxqtop_token : 2;
++ unsigned ptxqtop_terminate : 1;
++ unsigned ptxqspcavail : 8;
++ unsigned ptxfspcavail : 16;
++ } b;
++} hptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Port Control and Status
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hprt0 register.
++ */
++typedef union hprt0_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved19_31 : 13;
++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
++ unsigned prtspd : 2;
++ unsigned prttstctl : 4;
++ unsigned prtpwr : 1;
++ unsigned prtlnsts : 2;
++ unsigned reserved9 : 1;
++ unsigned prtrst : 1;
++ unsigned prtsusp : 1;
++ unsigned prtres : 1;
++ unsigned prtovrcurrchng : 1;
++ unsigned prtovrcurract : 1;
++ unsigned prtenchng : 1;
++ unsigned prtena : 1;
++ unsigned prtconndet : 1;
++ unsigned prtconnsts : 1;
++ } b;
++} hprt0_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 16;
++ unsigned ch15 : 1;
++ unsigned ch14 : 1;
++ unsigned ch13 : 1;
++ unsigned ch12 : 1;
++ unsigned ch11 : 1;
++ unsigned ch10 : 1;
++ unsigned ch9 : 1;
++ unsigned ch8 : 1;
++ unsigned ch7 : 1;
++ unsigned ch6 : 1;
++ unsigned ch5 : 1;
++ unsigned ch4 : 1;
++ unsigned ch3 : 1;
++ unsigned ch2 : 1;
++ unsigned ch1 : 1;
++ unsigned ch0 : 1;
++ } b;
++ struct {
++ unsigned reserved : 16;
++ unsigned chint : 16;
++ } b2;
++} haint_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved : 16;
++ unsigned ch15 : 1;
++ unsigned ch14 : 1;
++ unsigned ch13 : 1;
++ unsigned ch12 : 1;
++ unsigned ch11 : 1;
++ unsigned ch10 : 1;
++ unsigned ch9 : 1;
++ unsigned ch8 : 1;
++ unsigned ch7 : 1;
++ unsigned ch6 : 1;
++ unsigned ch5 : 1;
++ unsigned ch4 : 1;
++ unsigned ch3 : 1;
++ unsigned ch2 : 1;
++ unsigned ch1 : 1;
++ unsigned ch0 : 1;
++ } b;
++ struct {
++ unsigned reserved : 16;
++ unsigned chint : 16;
++ } b2;
++} haintmsk_data_t;
++
++/**
++ * Host Channel Specific Registers. <i>500h-5FCh</i>
++ */
++typedef struct dwc_otg_hc_regs
++{
++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
++ volatile uint32_t hcchar;
++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
++ volatile uint32_t hcsplt;
++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
++ volatile uint32_t hcint;
++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
++ volatile uint32_t hcintmsk;
++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
++ volatile uint32_t hctsiz;
++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
++ volatile uint32_t hcdma;
++ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
++ uint32_t reserved[2];
++} dwc_otg_hc_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Characteristics
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++typedef union hcchar_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Channel enable */
++ unsigned chen : 1;
++ /** Channel disable */
++ unsigned chdis : 1;
++ /**
++ * Frame to transmit periodic transaction.
++ * 0: even, 1: odd
++ */
++ unsigned oddfrm : 1;
++ /** Device address */
++ unsigned devaddr : 7;
++ /** Packets per frame for periodic transfers. 0 is reserved. */
++ unsigned multicnt : 2;
++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
++ unsigned eptype : 2;
++ /** 0: Full/high speed device, 1: Low speed device */
++ unsigned lspddev : 1;
++ unsigned reserved : 1;
++ /** 0: OUT, 1: IN */
++ unsigned epdir : 1;
++ /** Endpoint number */
++ unsigned epnum : 4;
++ /** Maximum packet size in bytes */
++ unsigned mps : 11;
++ } b;
++} hcchar_data_t;
++
++typedef union hcsplt_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Split Enble */
++ unsigned spltena : 1;
++ /** Reserved */
++ unsigned reserved : 14;
++ /** Do Complete Split */
++ unsigned compsplt : 1;
++ /** Transaction Position */
++#define DWC_HCSPLIT_XACTPOS_MID 0
++#define DWC_HCSPLIT_XACTPOS_END 1
++#define DWC_HCSPLIT_XACTPOS_BEGIN 2
++#define DWC_HCSPLIT_XACTPOS_ALL 3
++ unsigned xactpos : 2;
++ /** Hub Address */
++ unsigned hubaddr : 7;
++ /** Port Address */
++ unsigned prtaddr : 7;
++ } b;
++} hcsplt_data_t;
++
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union hcint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Reserved */
++ unsigned reserved : 21;
++ /** Data Toggle Error */
++ unsigned datatglerr : 1;
++ /** Frame Overrun */
++ unsigned frmovrun : 1;
++ /** Babble Error */
++ unsigned bblerr : 1;
++ /** Transaction Err */
++ unsigned xacterr : 1;
++ /** NYET Response Received */
++ unsigned nyet : 1;
++ /** ACK Response Received */
++ unsigned ack : 1;
++ /** NAK Response Received */
++ unsigned nak : 1;
++ /** STALL Response Received */
++ unsigned stall : 1;
++ /** AHB Error */
++ unsigned ahberr : 1;
++ /** Channel Halted */
++ unsigned chhltd : 1;
++ /** Transfer Complete */
++ unsigned xfercomp : 1;
++ } b;
++} hcint_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Transfer Size
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++typedef union hctsiz_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Do PING protocol when 1 */
++ unsigned dopng : 1;
++ /**
++ * Packet ID for next data packet
++ * 0: DATA0
++ * 1: DATA2
++ * 2: DATA1
++ * 3: MDATA (non-Control), SETUP (Control)
++ */
++#define DWC_HCTSIZ_DATA0 0
++#define DWC_HCTSIZ_DATA1 2
++#define DWC_HCTSIZ_DATA2 1
++#define DWC_HCTSIZ_MDATA 3
++#define DWC_HCTSIZ_SETUP 3
++ unsigned pid : 2;
++ /** Data packets to transfer */
++ unsigned pktcnt : 10;
++ /** Total transfer size in bytes */
++ unsigned xfersize : 19;
++ } b;
++} hctsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Interrupt Mask
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcintmsk register.
++ */
++typedef union hcintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned reserved : 21;
++ unsigned datatglerr : 1;
++ unsigned frmovrun : 1;
++ unsigned bblerr : 1;
++ unsigned xacterr : 1;
++ unsigned nyet : 1;
++ unsigned ack : 1;
++ unsigned nak : 1;
++ unsigned stall : 1;
++ unsigned ahberr : 1;
++ unsigned chhltd : 1;
++ unsigned xfercompl : 1;
++ } b;
++} hcintmsk_data_t;
++
++/** OTG Host Interface Structure.
++ *
++ * The OTG Host Interface Structure structure contains information
++ * needed to manage the DWC_otg controller acting in host mode. It
++ * represents the programming view of the host-specific aspects of the
++ * controller.
++ */
++typedef struct dwc_otg_host_if {
++ /** Host Global Registers starting at offset 400h.*/
++ dwc_otg_host_global_regs_t *host_global_regs;
++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
++
++ /** Host Port 0 Control and Status Register */
++ volatile uint32_t *hprt0;
++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
++
++
++ /** Host Channel Specific Registers at offsets 500h-5FCh. */
++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
++#define DWC_OTG_CHAN_REGS_OFFSET 0x20
++
++
++ /* Host configuration information */
++ /** Number of Host Channels (range: 1-16) */
++ uint8_t num_host_channels;
++ /** Periodic EPs supported (0: no, 1: yes) */
++ uint8_t perio_eps_supported;
++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
++ uint16_t perio_tx_fifo_size;
++
++} dwc_otg_host_if_t;
++
++#endif
+--- a/arch/mips/lantiq/xway/Makefile
++++ b/arch/mips/lantiq/xway/Makefile
+@@ -4,3 +4,4 @@
+ obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o
+ obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o
+ obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o
++onj-y += dev-dwc_otg.o
+--- /dev/null
++++ b/arch/mips/lantiq/xway/dev-dwc_otg.c
+@@ -0,0 +1,64 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/string.h>
++#include <linux/mtd/physmap.h>
++#include <linux/kernel.h>
++#include <linux/reboot.h>
++#include <linux/platform_device.h>
++#include <linux/leds.h>
++#include <linux/etherdevice.h>
++#include <linux/reboot.h>
++#include <linux/time.h>
++#include <linux/io.h>
++#include <linux/gpio.h>
++#include <linux/leds.h>
++
++#include <asm/bootinfo.h>
++#include <asm/irq.h>
++
++#include <xway.h>
++#include <xway_irq.h>
++#include <lantiq_platform.h>
++
++static struct resource resources[] =
++{
++ [0] = {
++ .name = "dwc_otg_membase",
++ .start = IFX_USB_IOMEM_BASE,
++ .end = IFX_USB_IOMEM_BASE + IFX_USB_IOMEM_SIZE - 1,
++ .flags = IORESOURCE_MEM,
++ },
++ [1] = {
++ .name = "dwc_otg_irq",
++ .start = IFX_USB_IRQ,
++ .flags = IORESOURCE_IRQ,
++ },
++};
++
++static u64 dwc_dmamask = (u32)0x1fffffff;
++
++static struct platform_device platform_dev = {
++ .name = "dwc_otg",
++ .dev = {
++ .dma_mask = &dwc_dmamask,
++ },
++ .resource = resources,
++ .num_resources = ARRAY_SIZE(resources),
++};
++
++int __init
++xway_register_dwc(int pin)
++{
++ lq_enable_irq(resources[1].start);
++ return platform_device_register(&platform_dev);
++}
+--- /dev/null
++++ b/arch/mips/lantiq/xway/dev-dwc_otg.h
+@@ -0,0 +1,17 @@
++/*
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * Copyright (C) 2010 John Crispin <blogic@openwrt.org>
++ */
++
++#ifndef _LQ_DEV_DWC_H__
++#define _LQ_DEV_DWC_H__
++
++#include <lantiq_platform.h>
++
++extern void __init xway_register_dwc(int pin);
++
++#endif
+--- a/arch/mips/lantiq/xway/mach-arv45xx.c
++++ b/arch/mips/lantiq/xway/mach-arv45xx.c
+@@ -24,6 +24,7 @@
+ #include <lantiq_platform.h>
+
+ #include "devices.h"
++#include "dev-dwc_otg.h"
+
+ #define ARV452_LATCH_SWITCH (1 << 10)
+
+@@ -133,6 +134,7 @@
+ lq_register_pci(&lq_pci_data);
+ lq_register_wdt();
+ arv45xx_register_ethernet();
++ xway_register_dwc(14);
+ }
+
+ MIPS_MACHINE(LANTIQ_MACH_ARV4518,
+@@ -152,6 +154,7 @@
+ lq_register_pci(&lq_pci_data);
+ lq_register_wdt();
+ arv45xx_register_ethernet();
++ xway_register_dwc(28);
+ }
+
+ MIPS_MACHINE(LANTIQ_MACH_ARV452,
diff --git a/target/linux/lantiq/patches/809-mt-vpe.patch b/target/linux/lantiq/patches/809-mt-vpe.patch
new file mode 100644
index 0000000000..07312c7747
--- /dev/null
+++ b/target/linux/lantiq/patches/809-mt-vpe.patch
@@ -0,0 +1,1173 @@
+--- a/arch/mips/Kconfig
++++ b/arch/mips/Kconfig
+@@ -1669,6 +1669,28 @@ config MIPS_VPE_LOADER
+ Includes a loader for loading an elf relocatable object
+ onto another VPE and running it.
+
++config IFX_VPE_EXT
++ bool "IFX APRP Extensions"
++ depends on MIPS_VPE_LOADER
++ default y
++ help
++ IFX included extensions in APRP
++
++config PERFCTRS
++ bool "34K Performance counters"
++ depends on MIPS_MT && PROC_FS
++ default n
++ help
++ 34K Performance counter through /proc
++
++config MTSCHED
++ bool "Support mtsched priority configuration for TCs"
++ depends on MIPS_MT && PROC_FS
++ default y
++ help
++ Support for mtsched priority configuration for TCs through
++ /proc/mips/mtsched
++
+ config MIPS_MT_SMTC_IM_BACKSTOP
+ bool "Use per-TC register bits as backstop for inhibited IM bits"
+ depends on MIPS_MT_SMTC
+--- a/arch/mips/include/asm/mipsmtregs.h
++++ b/arch/mips/include/asm/mipsmtregs.h
+@@ -28,14 +28,34 @@
+ #define read_c0_vpeconf0() __read_32bit_c0_register($1, 2)
+ #define write_c0_vpeconf0(val) __write_32bit_c0_register($1, 2, val)
+
++#define read_c0_vpeconf1() __read_32bit_c0_register($1, 3)
++#define write_c0_vpeconf1(val) __write_32bit_c0_register($1, 3, val)
++
++#define read_c0_vpeschedule() __read_32bit_c0_register($1, 5)
++#define write_c0_vpeschedule(val) __write_32bit_c0_register($1, 5, val)
++
++#define read_c0_vpeschefback() __read_32bit_c0_register($1, 6)
++#define write_c0_vpeschefback(val) __write_32bit_c0_register($1, 6, val)
++
++#define read_c0_vpeopt() __read_32bit_c0_register($1, 7)
++#define write_c0_vpeopt(val) __write_32bit_c0_register($1, 7, val)
++
+ #define read_c0_tcstatus() __read_32bit_c0_register($2, 1)
+ #define write_c0_tcstatus(val) __write_32bit_c0_register($2, 1, val)
+
+ #define read_c0_tcbind() __read_32bit_c0_register($2, 2)
++#define write_c0_tcbind(val) __write_32bit_c0_register($2, 2, val)
+
+ #define read_c0_tccontext() __read_32bit_c0_register($2, 5)
+ #define write_c0_tccontext(val) __write_32bit_c0_register($2, 5, val)
+
++#define read_c0_tcschedule() __read_32bit_c0_register($2, 6)
++#define write_c0_tcschedule(val) __write_32bit_c0_register($2, 6, val)
++
++#define read_c0_tcschefback() __read_32bit_c0_register($2, 7)
++#define write_c0_tcschefback(val) __write_32bit_c0_register($2, 7, val)
++
++
+ #else /* Assembly */
+ /*
+ * Macros for use in assembly language code
+@@ -74,6 +94,8 @@
+ #define MVPCONTROL_STLB_SHIFT 2
+ #define MVPCONTROL_STLB (_ULCAST_(1) << MVPCONTROL_STLB_SHIFT)
+
++#define MVPCONTROL_CPA_SHIFT 3
++#define MVPCONTROL_CPA (_ULCAST_(1) << MVPCONTROL_CPA_SHIFT)
+
+ /* MVPConf0 fields */
+ #define MVPCONF0_PTC_SHIFT 0
+@@ -84,6 +106,8 @@
+ #define MVPCONF0_TCA ( _ULCAST_(1) << MVPCONF0_TCA_SHIFT)
+ #define MVPCONF0_PTLBE_SHIFT 16
+ #define MVPCONF0_PTLBE (_ULCAST_(0x3ff) << MVPCONF0_PTLBE_SHIFT)
++#define MVPCONF0_PCP_SHIFT 27
++#define MVPCONF0_PCP (_ULCAST_(1) << MVPCONF0_PCP_SHIFT)
+ #define MVPCONF0_TLBS_SHIFT 29
+ #define MVPCONF0_TLBS (_ULCAST_(1) << MVPCONF0_TLBS_SHIFT)
+ #define MVPCONF0_M_SHIFT 31
+@@ -121,9 +145,25 @@
+ #define VPECONF0_VPA (_ULCAST_(1) << VPECONF0_VPA_SHIFT)
+ #define VPECONF0_MVP_SHIFT 1
+ #define VPECONF0_MVP (_ULCAST_(1) << VPECONF0_MVP_SHIFT)
++#define VPECONF0_ICS_SHIFT 16
++#define VPECONF0_ICS (_ULCAST_(1) << VPECONF0_ICS_SHIFT)
++#define VPECONF0_DCS_SHIFT 17
++#define VPECONF0_DCS (_ULCAST_(1) << VPECONF0_DCS_SHIFT)
+ #define VPECONF0_XTC_SHIFT 21
+ #define VPECONF0_XTC (_ULCAST_(0xff) << VPECONF0_XTC_SHIFT)
+
++/* VPEOpt fields */
++#define VPEOPT_DWX_SHIFT 0
++#define VPEOPT_IWX_SHIFT 8
++#define VPEOPT_IWX0 ( _ULCAST_(0x1) << VPEOPT_IWX_SHIFT)
++#define VPEOPT_IWX1 ( _ULCAST_(0x2) << VPEOPT_IWX_SHIFT)
++#define VPEOPT_IWX2 ( _ULCAST_(0x4) << VPEOPT_IWX_SHIFT)
++#define VPEOPT_IWX3 ( _ULCAST_(0x8) << VPEOPT_IWX_SHIFT)
++#define VPEOPT_DWX0 ( _ULCAST_(0x1) << VPEOPT_DWX_SHIFT)
++#define VPEOPT_DWX1 ( _ULCAST_(0x2) << VPEOPT_DWX_SHIFT)
++#define VPEOPT_DWX2 ( _ULCAST_(0x4) << VPEOPT_DWX_SHIFT)
++#define VPEOPT_DWX3 ( _ULCAST_(0x8) << VPEOPT_DWX_SHIFT)
++
+ /* TCStatus fields (per TC) */
+ #define TCSTATUS_TASID (_ULCAST_(0xff))
+ #define TCSTATUS_IXMT_SHIFT 10
+@@ -350,6 +390,14 @@ do { \
+ #define write_vpe_c0_vpecontrol(val) mttc0(1, 1, val)
+ #define read_vpe_c0_vpeconf0() mftc0(1, 2)
+ #define write_vpe_c0_vpeconf0(val) mttc0(1, 2, val)
++#define read_vpe_c0_vpeschedule() mftc0(1, 5)
++#define write_vpe_c0_vpeschedule(val) mttc0(1, 5, val)
++#define read_vpe_c0_vpeschefback() mftc0(1, 6)
++#define write_vpe_c0_vpeschefback(val) mttc0(1, 6, val)
++#define read_vpe_c0_vpeopt() mftc0(1, 7)
++#define write_vpe_c0_vpeopt(val) mttc0(1, 7, val)
++#define read_vpe_c0_wired() mftc0(6, 0)
++#define write_vpe_c0_wired(val) mttc0(6, 0, val)
+ #define read_vpe_c0_count() mftc0(9, 0)
+ #define write_vpe_c0_count(val) mttc0(9, 0, val)
+ #define read_vpe_c0_status() mftc0(12, 0)
+@@ -381,6 +429,12 @@ do { \
+ #define write_tc_c0_tchalt(val) mttc0(2, 4, val)
+ #define read_tc_c0_tccontext() mftc0(2, 5)
+ #define write_tc_c0_tccontext(val) mttc0(2, 5, val)
++#define read_tc_c0_tcschedule() mftc0(2, 6)
++#define write_tc_c0_tcschedule(val) mttc0(2, 6, val)
++#define read_tc_c0_tcschefback() mftc0(2, 7)
++#define write_tc_c0_tcschefback(val) mttc0(2, 7, val)
++#define read_tc_c0_entryhi() mftc0(10, 0)
++#define write_tc_c0_entryhi(val) mttc0(10, 0, val)
+
+ /* GPR */
+ #define read_tc_gpr_sp() mftgpr(29)
+--- a/arch/mips/kernel/Makefile
++++ b/arch/mips/kernel/Makefile
+@@ -84,7 +84,8 @@ obj-$(CONFIG_MIPS32_O32) += binfmt_elfo3
+
+ obj-$(CONFIG_KGDB) += kgdb.o
+ obj-$(CONFIG_PROC_FS) += proc.o
+-
++obj-$(CONFIG_MTSCHED) += mtsched_proc.o
++obj-$(CONFIG_PERFCTRS) += perf_proc.o
+ obj-$(CONFIG_64BIT) += cpu-bugs64.o
+
+ obj-$(CONFIG_I8253) += i8253.o
+--- a/arch/mips/kernel/mips-mt.c
++++ b/arch/mips/kernel/mips-mt.c
+@@ -21,26 +21,95 @@
+ #include <asm/cacheflush.h>
+
+ int vpelimit;
+-
+ static int __init maxvpes(char *str)
+ {
+ get_option(&str, &vpelimit);
+-
+ return 1;
+ }
+-
+ __setup("maxvpes=", maxvpes);
+
+ int tclimit;
+-
+ static int __init maxtcs(char *str)
+ {
+ get_option(&str, &tclimit);
++ return 1;
++}
++__setup("maxtcs=", maxtcs);
+
++#ifdef CONFIG_IFX_VPE_EXT
++int stlb;
++static int __init istlbshared(char *str)
++{
++ get_option(&str, &stlb);
+ return 1;
+ }
++__setup("vpe_tlb_shared=", istlbshared);
+
+-__setup("maxtcs=", maxtcs);
++int vpe0_wired;
++static int __init vpe0wired(char *str)
++{
++ get_option(&str, &vpe0_wired);
++ return 1;
++}
++__setup("vpe0_wired_tlb_entries=", vpe0wired);
++
++int vpe1_wired;
++static int __init vpe1wired(char *str)
++{
++ get_option(&str, &vpe1_wired);
++ return 1;
++}
++__setup("vpe1_wired_tlb_entries=", vpe1wired);
++
++#ifdef CONFIG_MIPS_MT_SMTC
++extern int nostlb;
++#endif
++void configure_tlb(void)
++{
++ int vpeflags, tcflags, tlbsiz;
++ unsigned int config1val;
++ vpeflags = dvpe();
++ tcflags = dmt();
++ write_c0_vpeconf0((read_c0_vpeconf0() | VPECONF0_MVP));
++ write_c0_mvpcontrol((read_c0_mvpcontrol() | MVPCONTROL_VPC));
++ mips_ihb();
++ //printk("stlb = %d, vpe0_wired = %d vpe1_wired=%d\n", stlb,vpe0_wired, vpe1_wired);
++ if (stlb) {
++ if (!(read_c0_mvpconf0() & MVPCONF0_TLBS)) {
++ emt(tcflags);
++ evpe(vpeflags);
++ return;
++ }
++
++ write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
++ write_c0_wired(vpe0_wired + vpe1_wired);
++ if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
++ config1val = read_vpe_c0_config1();
++ tlbsiz = (((config1val >> 25) & 0x3f) + 1);
++ if (tlbsiz > 64)
++ tlbsiz = 64;
++ cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
++ }
++
++ }
++ else {
++ write_c0_mvpcontrol(read_c0_mvpcontrol() & ~MVPCONTROL_STLB);
++ write_c0_wired(vpe0_wired);
++ }
++
++ ehb();
++ write_c0_mvpcontrol((read_c0_mvpcontrol() & ~MVPCONTROL_VPC));
++ ehb();
++ local_flush_tlb_all();
++
++ printk("Wired TLB entries for Linux read_c0_wired() = %d\n", read_c0_wired());
++#ifdef CONFIG_MIPS_MT_SMTC
++ nostlb = !stlb;
++#endif
++ emt(tcflags);
++ evpe(vpeflags);
++}
++#endif
+
+ /*
+ * Dump new MIPS MT state for the core. Does not leave TCs halted.
+@@ -78,18 +147,18 @@ void mips_mt_regdump(unsigned long mvpct
+ if ((read_tc_c0_tcbind() & TCBIND_CURVPE) == i) {
+ printk(" VPE %d\n", i);
+ printk(" VPEControl : %08lx\n",
+- read_vpe_c0_vpecontrol());
++ read_vpe_c0_vpecontrol());
+ printk(" VPEConf0 : %08lx\n",
+- read_vpe_c0_vpeconf0());
++ read_vpe_c0_vpeconf0());
+ printk(" VPE%d.Status : %08lx\n",
+- i, read_vpe_c0_status());
++ i, read_vpe_c0_status());
+ printk(" VPE%d.EPC : %08lx %pS\n",
+- i, read_vpe_c0_epc(),
+- (void *) read_vpe_c0_epc());
++ i, read_vpe_c0_epc(),
++ (void *) read_vpe_c0_epc());
+ printk(" VPE%d.Cause : %08lx\n",
+- i, read_vpe_c0_cause());
++ i, read_vpe_c0_cause());
+ printk(" VPE%d.Config7 : %08lx\n",
+- i, read_vpe_c0_config7());
++ i, read_vpe_c0_config7());
+ break; /* Next VPE */
+ }
+ }
+@@ -287,6 +356,9 @@ void mips_mt_set_cpuoptions(void)
+ printk("Mapped %ld ITC cells starting at 0x%08x\n",
+ ((itcblkgrn & 0x7fe00000) >> 20), itc_base);
+ }
++#ifdef CONFIG_IFX_VPE_EXT
++ configure_tlb();
++#endif
+ }
+
+ /*
+--- a/arch/mips/kernel/proc.c
++++ b/arch/mips/kernel/proc.c
+@@ -7,6 +7,7 @@
+ #include <linux/kernel.h>
+ #include <linux/sched.h>
+ #include <linux/seq_file.h>
++#include <linux/proc_fs.h>
+ #include <asm/bootinfo.h>
+ #include <asm/cpu.h>
+ #include <asm/cpu-features.h>
+@@ -108,3 +109,19 @@ const struct seq_operations cpuinfo_op =
+ .stop = c_stop,
+ .show = show_cpuinfo,
+ };
++
++/*
++ * Support for MIPS/local /proc hooks in /proc/mips/
++ */
++
++static struct proc_dir_entry *mips_proc = NULL;
++
++struct proc_dir_entry *get_mips_proc_dir(void)
++{
++ /*
++ * This ought not to be preemptable.
++ */
++ if(mips_proc == NULL)
++ mips_proc = proc_mkdir("mips", NULL);
++ return(mips_proc);
++}
+--- a/arch/mips/kernel/smtc.c
++++ b/arch/mips/kernel/smtc.c
+@@ -1335,6 +1335,13 @@ void smtc_get_new_mmu_context(struct mm_
+ asid = asid_cache(cpu);
+
+ do {
++#ifdef CONFIG_IFX_VPE_EXT
++ /* If TLB is shared between AP and RP (AP is running SMTC),
++ leave out max ASID i.e., ASID_MASK for RP
++ */
++ if (!nostlb && ((asid & ASID_MASK) == (ASID_MASK - 1)))
++ asid++;
++#endif
+ if (!((asid += ASID_INC) & ASID_MASK) ) {
+ if (cpu_has_vtag_icache)
+ flush_icache_all();
+--- a/arch/mips/kernel/vpe.c
++++ b/arch/mips/kernel/vpe.c
+@@ -77,6 +77,58 @@ static struct kspd_notifications kspd_ev
+ static int kspd_events_reqd;
+ #endif
+
++#ifdef CONFIG_IFX_VPE_EXT
++static int is_sdepgm;
++extern int stlb;
++extern int vpe0_wired;
++extern int vpe1_wired;
++unsigned int vpe1_load_addr;
++
++static int __init load_address(char *str)
++{
++ get_option(&str, &vpe1_load_addr);
++ return 1;
++}
++__setup("vpe1_load_addr=", load_address);
++
++#include <asm/mipsmtregs.h>
++#define write_vpe_c0_wired(val) mttc0(6, 0, val)
++
++#ifndef COMMAND_LINE_SIZE
++# define COMMAND_LINE_SIZE 512
++#endif
++
++char command_line[COMMAND_LINE_SIZE * 2];
++
++static unsigned int vpe1_mem;
++static int __init vpe1mem(char *str)
++{
++ vpe1_mem = memparse(str, &str);
++ return 1;
++}
++__setup("vpe1_mem=", vpe1mem);
++
++uint32_t vpe1_wdog_ctr;
++static int __init wdog_ctr(char *str)
++{
++ get_option(&str, &vpe1_wdog_ctr);
++ return 1;
++}
++
++__setup("vpe1_wdog_ctr_addr=", wdog_ctr);
++EXPORT_SYMBOL(vpe1_wdog_ctr);
++
++uint32_t vpe1_wdog_timeout;
++static int __init wdog_timeout(char *str)
++{
++ get_option(&str, &vpe1_wdog_timeout);
++ return 1;
++}
++
++__setup("vpe1_wdog_timeout=", wdog_timeout);
++EXPORT_SYMBOL(vpe1_wdog_timeout);
++
++#endif
+ /* grab the likely amount of memory we will need. */
+ #ifdef CONFIG_MIPS_VPE_LOADER_TOM
+ #define P_SIZE (2 * 1024 * 1024)
+@@ -269,6 +321,13 @@ static void *alloc_progmem(unsigned long
+ void *addr;
+
+ #ifdef CONFIG_MIPS_VPE_LOADER_TOM
++#ifdef CONFIG_IFX_VPE_EXT
++ if (vpe1_load_addr) {
++ memset((void *)vpe1_load_addr, 0, len);
++ return (void *)vpe1_load_addr;
++ }
++#endif
++
+ /*
+ * This means you must tell Linux to use less memory than you
+ * physically have, for example by passing a mem= boot argument.
+@@ -747,6 +806,12 @@ static int vpe_run(struct vpe * v)
+ }
+
+ /* Write the address we want it to start running from in the TCPC register. */
++#if defined(CONFIG_IFX_VPE_EXT) && 0
++ if (stlb)
++ write_vpe_c0_wired(vpe0_wired + vpe1_wired);
++ else
++ write_vpe_c0_wired(vpe1_wired);
++#endif
+ write_tc_c0_tcrestart((unsigned long)v->__start);
+ write_tc_c0_tccontext((unsigned long)0);
+
+@@ -760,6 +825,20 @@ static int vpe_run(struct vpe * v)
+
+ write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
+
++#if defined(CONFIG_IFX_VPE_EXT) && 0
++ /*
++ * $a2 & $a3 are used to pass command line parameters to VPE1. $a2
++ * points to the start of the command line string and $a3 points to
++ * the end of the string. This convention is identical to the Linux
++ * kernel boot parameter passing mechanism. Please note that $a3 is
++ * used to pass physical memory size or 0 in SDE tool kit. So, if you
++ * are passing comand line parameters through $a2 & $a3 SDE programs
++ * don't work as desired.
++ */
++ mttgpr(6, command_line);
++ mttgpr(7, (command_line + strlen(command_line)));
++ if (is_sdepgm)
++#endif
+ /*
+ * The sde-kit passes 'memsize' to __start in $a3, so set something
+ * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
+@@ -834,6 +913,9 @@ static int find_vpe_symbols(struct vpe *
+ if ( (v->__start == 0) || (v->shared_ptr == NULL))
+ return -1;
+
++#ifdef CONFIG_IFX_VPE_EXT
++ is_sdepgm = 1;
++#endif
+ return 0;
+ }
+
+@@ -995,6 +1077,15 @@ static int vpe_elfload(struct vpe * v)
+ (unsigned long)v->load_addr + v->len);
+
+ if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
++#ifdef CONFIG_IFX_VPE_EXT
++ if (vpe1_load_addr) {
++ /* Conversion to KSEG1 is required ??? */
++ v->__start = KSEG1ADDR(vpe1_load_addr);
++ is_sdepgm = 0;
++ return 0;
++ }
++#endif
++
+ if (v->__start == 0) {
+ printk(KERN_WARNING "VPE loader: program does not contain "
+ "a __start symbol\n");
+@@ -1065,6 +1156,9 @@ static int vpe_open(struct inode *inode,
+ struct vpe_notifications *not;
+ struct vpe *v;
+ int ret;
++#ifdef CONFIG_IFX_VPE_EXT
++ int progsize;
++#endif
+
+ if (minor != iminor(inode)) {
+ /* assume only 1 device at the moment. */
+@@ -1091,14 +1185,23 @@ static int vpe_open(struct inode *inode,
+ cleanup_tc(get_tc(tclimit));
+ }
+
++#ifdef CONFIG_IFX_VPE_EXT
++ progsize = (vpe1_mem != 0) ? vpe1_mem : P_SIZE;
++ //printk("progsize = %x\n", progsize);
++ v->pbuffer = vmalloc(progsize);
++ v->plen = progsize;
++#else
+ /* this of-course trashes what was there before... */
+ v->pbuffer = vmalloc(P_SIZE);
+ v->plen = P_SIZE;
++#endif
+ v->load_addr = NULL;
+ v->len = 0;
+
++#if 0
+ v->uid = filp->f_cred->fsuid;
+ v->gid = filp->f_cred->fsgid;
++#endif
+
+ #ifdef CONFIG_MIPS_APSP_KSPD
+ /* get kspd to tell us when a syscall_exit happens */
+@@ -1351,6 +1454,133 @@ static void kspd_sp_exit( int sp_id)
+ cleanup_tc(get_tc(sp_id));
+ }
+ #endif
++#ifdef CONFIG_IFX_VPE_EXT
++int32_t vpe1_sw_start(void* sw_start_addr, uint32_t tcmask, uint32_t flags)
++{
++ enum vpe_state state;
++ struct vpe *v = get_vpe(tclimit);
++ struct vpe_notifications *not;
++
++ if (tcmask || flags) {
++ printk(KERN_WARNING "Currently tcmask and flags should be 0.\
++ other values not supported\n");
++ return -1;
++ }
++
++ state = xchg(&v->state, VPE_STATE_INUSE);
++ if (state != VPE_STATE_UNUSED) {
++ vpe_stop(v);
++
++ list_for_each_entry(not, &v->notify, list) {
++ not->stop(tclimit);
++ }
++ }
++
++ v->__start = (unsigned long)sw_start_addr;
++ is_sdepgm = 0;
++
++ if (!vpe_run(v)) {
++ printk(KERN_DEBUG "VPE loader: VPE1 running successfully\n");
++ return 0;
++ }
++ return -1;
++}
++
++EXPORT_SYMBOL(vpe1_sw_start);
++
++int32_t vpe1_sw_stop(uint32_t flags)
++{
++ struct vpe *v = get_vpe(tclimit);
++
++ if (!vpe_free(v)) {
++ printk(KERN_DEBUG "RP Stopped\n");
++ return 0;
++ }
++ else
++ return -1;
++}
++
++EXPORT_SYMBOL(vpe1_sw_stop);
++
++uint32_t vpe1_get_load_addr (uint32_t flags)
++{
++ return vpe1_load_addr;
++}
++
++EXPORT_SYMBOL(vpe1_get_load_addr);
++
++uint32_t vpe1_get_max_mem (uint32_t flags)
++{
++ if (!vpe1_mem)
++ return P_SIZE;
++ else
++ return vpe1_mem;
++}
++
++EXPORT_SYMBOL(vpe1_get_max_mem);
++
++void* vpe1_get_cmdline_argument(void)
++{
++ return saved_command_line;
++}
++
++EXPORT_SYMBOL(vpe1_get_cmdline_argument);
++
++int32_t vpe1_set_boot_param(char *field, char *value, char flags)
++{
++ char *ptr, string[64];
++ int start_off, end_off;
++ if (!field)
++ return -1;
++ strcpy(string, field);
++ if (value) {
++ strcat(string, "=");
++ strcat(string, value);
++ strcat(command_line, " ");
++ strcat(command_line, string);
++ }
++ else {
++ ptr = strstr(command_line, string);
++ if (ptr) {
++ start_off = ptr - command_line;
++ ptr += strlen(string);
++ while ((*ptr != ' ') && (*ptr != '\0'))
++ ptr++;
++ end_off = ptr - command_line;
++ command_line[start_off] = '\0';
++ strcat (command_line, command_line+end_off);
++ }
++ }
++ return 0;
++}
++
++EXPORT_SYMBOL(vpe1_set_boot_param);
++
++int32_t vpe1_get_boot_param(char *field, char **value, char flags)
++{
++ char *ptr, string[64];
++ int i = 0;
++ if (!field)
++ return -1;
++ if ((ptr = strstr(command_line, field))) {
++ ptr += strlen(field) + 1; /* including = */
++ while ((*ptr != ' ') && (*ptr != '\0'))
++ string[i++] = *ptr++;
++ string[i] = '\0';
++ *value = kmalloc((strlen(string) + 1), GFP_KERNEL);
++ if (*value != NULL)
++ strcpy(*value, string);
++ }
++ else
++ *value = NULL;
++
++ return 0;
++}
++
++EXPORT_SYMBOL(vpe1_get_boot_param);
++
++extern void configure_tlb(void);
++#endif
+
+ static ssize_t store_kill(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t len)
+@@ -1432,6 +1662,18 @@ static int __init vpe_module_init(void)
+ printk("VPE loader: not a MIPS MT capable processor\n");
+ return -ENODEV;
+ }
++#ifdef CONFIG_IFX_VPE_EXT
++#ifndef CONFIG_MIPS_MT_SMTC
++ configure_tlb();
++#endif
++#endif
++
++#ifndef CONFIG_MIPS_MT_SMTC
++ if (!vpelimit)
++ vpelimit = 1;
++ if (!tclimit)
++ tclimit = 1;
++#endif
+
+ if (vpelimit == 0) {
+ printk(KERN_WARNING "No VPEs reserved for AP/SP, not "
+@@ -1476,10 +1718,12 @@ static int __init vpe_module_init(void)
+ mtflags = dmt();
+ vpflags = dvpe();
+
++ back_to_back_c0_hazard();
++
+ /* Put MVPE's into 'configuration state' */
+ set_c0_mvpcontrol(MVPCONTROL_VPC);
+
+- /* dump_mtregs(); */
++ dump_mtregs();
+
+ val = read_c0_mvpconf0();
+ hw_tcs = (val & MVPCONF0_PTC) + 1;
+@@ -1491,6 +1735,7 @@ static int __init vpe_module_init(void)
+ * reschedule send IPIs or similar we might hang.
+ */
+ clear_c0_mvpcontrol(MVPCONTROL_VPC);
++ back_to_back_c0_hazard();
+ evpe(vpflags);
+ emt(mtflags);
+ local_irq_restore(flags);
+@@ -1516,6 +1761,7 @@ static int __init vpe_module_init(void)
+ }
+
+ v->ntcs = hw_tcs - tclimit;
++ write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1);
+
+ /* add the tc to the list of this vpe's tc's. */
+ list_add(&t->tc, &v->tc);
+@@ -1584,6 +1830,7 @@ static int __init vpe_module_init(void)
+ out_reenable:
+ /* release config state */
+ clear_c0_mvpcontrol(MVPCONTROL_VPC);
++ back_to_back_c0_hazard();
+
+ evpe(vpflags);
+ emt(mtflags);
+--- /dev/null
++++ b/arch/mips/kernel/mtsched_proc.c
+@@ -0,0 +1,279 @@
++/*
++ * /proc hooks for MIPS MT scheduling policy management for 34K cores
++ *
++ * This program is free software; you can distribute it and/or modify it
++ * under the terms of the GNU General Public License (Version 2) as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * for more details.
++ *
++ * You should have received a copy of the GNU General Public License along
++ * with this program; if not, write to the Free Software Foundation, Inc.,
++ * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
++ *
++ * Copyright (C) 2006 Mips Technologies, Inc
++ */
++
++#include <linux/kernel.h>
++
++#include <asm/cpu.h>
++#include <asm/processor.h>
++#include <asm/system.h>
++#include <asm/mipsregs.h>
++#include <asm/mipsmtregs.h>
++#include <asm/uaccess.h>
++#include <linux/proc_fs.h>
++
++static struct proc_dir_entry *mtsched_proc;
++
++#ifndef CONFIG_MIPS_MT_SMTC
++#define NTCS 2
++#else
++#define NTCS NR_CPUS
++#endif
++#define NVPES 2
++
++int lastvpe = 1;
++int lasttc = 8;
++
++static int proc_read_mtsched(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ int totalen = 0;
++ int len;
++
++ int i;
++ int vpe;
++ int mytc;
++ unsigned long flags;
++ unsigned int mtflags;
++ unsigned int haltstate;
++ unsigned int vpes_checked[NVPES];
++ unsigned int vpeschedule[NVPES];
++ unsigned int vpeschefback[NVPES];
++ unsigned int tcschedule[NTCS];
++ unsigned int tcschefback[NTCS];
++
++ /* Dump the state of the MIPS MT scheduling policy manager */
++ /* Inititalize control state */
++ for(i = 0; i < NVPES; i++) {
++ vpes_checked[i] = 0;
++ vpeschedule[i] = 0;
++ vpeschefback[i] = 0;
++ }
++ for(i = 0; i < NTCS; i++) {
++ tcschedule[i] = 0;
++ tcschefback[i] = 0;
++ }
++
++ /* Disable interrupts and multithreaded issue */
++ local_irq_save(flags);
++ mtflags = dvpe();
++
++ /* Then go through the TCs, halt 'em, and extract the values */
++ mytc = (read_c0_tcbind() & TCBIND_CURTC) >> TCBIND_CURTC_SHIFT;
++ for(i = 0; i < NTCS; i++) {
++ if(i == mytc) {
++ /* No need to halt ourselves! */
++ tcschedule[i] = read_c0_tcschedule();
++ tcschefback[i] = read_c0_tcschefback();
++ /* If VPE bound to TC hasn't been checked, do it */
++ vpe = read_c0_tcbind() & TCBIND_CURVPE;
++ if(!vpes_checked[vpe]) {
++ vpeschedule[vpe] = read_c0_vpeschedule();
++ vpeschefback[vpe] = read_c0_vpeschefback();
++ vpes_checked[vpe] = 1;
++ }
++ } else {
++ settc(i);
++ haltstate = read_tc_c0_tchalt();
++ write_tc_c0_tchalt(TCHALT_H);
++ mips_ihb();
++ tcschedule[i] = read_tc_c0_tcschedule();
++ tcschefback[i] = read_tc_c0_tcschefback();
++ /* If VPE bound to TC hasn't been checked, do it */
++ vpe = read_tc_c0_tcbind() & TCBIND_CURVPE;
++ if(!vpes_checked[vpe]) {
++ vpeschedule[vpe] = read_vpe_c0_vpeschedule();
++ vpeschefback[vpe] = read_vpe_c0_vpeschefback();
++ vpes_checked[vpe] = 1;
++ }
++ if(!haltstate) write_tc_c0_tchalt(0);
++ }
++ }
++ /* Re-enable MT and interrupts */
++ evpe(mtflags);
++ local_irq_restore(flags);
++
++ for(vpe=0; vpe < NVPES; vpe++) {
++ len = sprintf(page, "VPE[%d].VPEschedule = 0x%08x\n",
++ vpe, vpeschedule[vpe]);
++ totalen += len;
++ page += len;
++ len = sprintf(page, "VPE[%d].VPEschefback = 0x%08x\n",
++ vpe, vpeschefback[vpe]);
++ totalen += len;
++ page += len;
++ }
++ for(i=0; i < NTCS; i++) {
++ len = sprintf(page, "TC[%d].TCschedule = 0x%08x\n",
++ i, tcschedule[i]);
++ totalen += len;
++ page += len;
++ len = sprintf(page, "TC[%d].TCschefback = 0x%08x\n",
++ i, tcschefback[i]);
++ totalen += len;
++ page += len;
++ }
++ return totalen;
++}
++
++/*
++ * Write to perf counter registers based on text input
++ */
++
++#define TXTBUFSZ 1024
++
++static int proc_write_mtsched(struct file *file, const char *buffer,
++ unsigned long count, void *data)
++{
++ int len = 0;
++ char mybuf[TXTBUFSZ];
++ /* At most, we will set up 9 TCs and 2 VPEs, 11 entries in all */
++ char entity[1]; //, entity1[1];
++ int number[1];
++ unsigned long value[1];
++ int nparsed = 0 , index = 0;
++ unsigned long flags;
++ unsigned int mtflags;
++ unsigned int haltstate;
++ unsigned int tcbindval;
++
++ if(count >= TXTBUFSZ) len = TXTBUFSZ-1;
++ else len = count;
++ memset(mybuf,0,TXTBUFSZ);
++ if(copy_from_user(mybuf, buffer, len)) return -EFAULT;
++
++ nparsed = sscanf(mybuf, "%c%d %lx",
++ &entity[0] ,&number[0], &value[0]);
++
++ /*
++ * Having acquired the inputs, which might have
++ * generated exceptions and preemptions,
++ * program the registers.
++ */
++ /* Disable interrupts and multithreaded issue */
++ local_irq_save(flags);
++ mtflags = dvpe();
++
++ if(entity[index] == 't' ) {
++ /* Set TCSchedule or TCScheFBack of specified TC */
++ if(number[index] > NTCS) goto skip;
++ /* If it's our own TC, do it direct */
++ if(number[index] ==
++ ((read_c0_tcbind() & TCBIND_CURTC)
++ >> TCBIND_CURTC_SHIFT)) {
++ if(entity[index] == 't')
++ write_c0_tcschedule(value[index]);
++ else
++ write_c0_tcschefback(value[index]);
++ } else {
++ /* Otherwise, we do it via MTTR */
++ settc(number[index]);
++ haltstate = read_tc_c0_tchalt();
++ write_tc_c0_tchalt(TCHALT_H);
++ mips_ihb();
++ if(entity[index] == 't')
++ write_tc_c0_tcschedule(value[index]);
++ else
++ write_tc_c0_tcschefback(value[index]);
++ mips_ihb();
++ if(!haltstate) write_tc_c0_tchalt(0);
++ }
++ } else if(entity[index] == 'v') {
++ /* Set VPESchedule of specified VPE */
++ if(number[index] > NVPES) goto skip;
++ tcbindval = read_c0_tcbind();
++ /* Are we doing this to our current VPE? */
++ if((tcbindval & TCBIND_CURVPE) == number[index]) {
++ /* Then life is simple */
++ write_c0_vpeschedule(value[index]);
++ } else {
++ /*
++ * Bind ourselves to the other VPE long enough
++ * to program the bind value.
++ */
++ write_c0_tcbind((tcbindval & ~TCBIND_CURVPE)
++ | number[index]);
++ mips_ihb();
++ write_c0_vpeschedule(value[index]);
++ mips_ihb();
++ /* Restore previous binding */
++ write_c0_tcbind(tcbindval);
++ mips_ihb();
++ }
++ }
++
++ else if(entity[index] == 'r') {
++ unsigned int vpes_checked[2], vpe ,i , mytc;
++ vpes_checked[0] = vpes_checked[1] = 0;
++
++ /* Then go through the TCs, halt 'em, and extract the values */
++ mytc = (read_c0_tcbind() & TCBIND_CURTC) >> TCBIND_CURTC_SHIFT;
++
++ for(i = 0; i < NTCS; i++) {
++ if(i == mytc) {
++ /* No need to halt ourselves! */
++ write_c0_vpeschefback(0);
++ write_c0_tcschefback(0);
++ } else {
++ settc(i);
++ haltstate = read_tc_c0_tchalt();
++ write_tc_c0_tchalt(TCHALT_H);
++ mips_ihb();
++ write_tc_c0_tcschefback(0);
++ /* If VPE bound to TC hasn't been checked, do it */
++ vpe = read_tc_c0_tcbind() & TCBIND_CURVPE;
++ if(!vpes_checked[vpe]) {
++ write_vpe_c0_vpeschefback(0);
++ vpes_checked[vpe] = 1;
++ }
++ if(!haltstate) write_tc_c0_tchalt(0);
++ }
++ }
++ }
++ else {
++ printk ("\n Usage : <t/v><0/1> <Hex Value>\n Example : t0 0x01\n");
++ }
++
++skip:
++ /* Re-enable MT and interrupts */
++ evpe(mtflags);
++ local_irq_restore(flags);
++ return (len);
++}
++
++static int __init init_mtsched_proc(void)
++{
++ extern struct proc_dir_entry *get_mips_proc_dir(void);
++ struct proc_dir_entry *mips_proc_dir;
++
++ if (!cpu_has_mipsmt) {
++ printk("mtsched: not a MIPS MT capable processor\n");
++ return -ENODEV;
++ }
++
++ mips_proc_dir = get_mips_proc_dir();
++
++ mtsched_proc = create_proc_entry("mtsched", 0644, mips_proc_dir);
++ mtsched_proc->read_proc = proc_read_mtsched;
++ mtsched_proc->write_proc = proc_write_mtsched;
++
++ return 0;
++}
++
++/* Automagically create the entry */
++module_init(init_mtsched_proc);
+--- /dev/null
++++ b/arch/mips/kernel/perf_proc.c
+@@ -0,0 +1,191 @@
++/*
++ * /proc hooks for CPU performance counter support for SMTC kernel
++ * (and ultimately others)
++ * Copyright (C) 2006 Mips Technologies, Inc
++ */
++
++#include <linux/kernel.h>
++
++#include <asm/cpu.h>
++#include <asm/processor.h>
++#include <asm/system.h>
++#include <asm/mipsregs.h>
++#include <asm/uaccess.h>
++#include <linux/proc_fs.h>
++
++/*
++ * /proc diagnostic and statistics hooks
++ */
++
++
++/* Internal software-extended event counters */
++
++static unsigned long long extencount[4] = {0,0,0,0};
++
++static struct proc_dir_entry *perf_proc;
++
++static int proc_read_perf(char *page, char **start, off_t off,
++ int count, int *eof, void *data)
++{
++ int totalen = 0;
++ int len;
++
++ len = sprintf(page, "PerfCnt[0].Ctl : 0x%08x\n", read_c0_perfctrl0());
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[0].Cnt : %Lu\n",
++ extencount[0] + (unsigned long long)((unsigned)read_c0_perfcntr0()));
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[1].Ctl : 0x%08x\n", read_c0_perfctrl1());
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[1].Cnt : %Lu\n",
++ extencount[1] + (unsigned long long)((unsigned)read_c0_perfcntr1()));
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[2].Ctl : 0x%08x\n", read_c0_perfctrl2());
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[2].Cnt : %Lu\n",
++ extencount[2] + (unsigned long long)((unsigned)read_c0_perfcntr2()));
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[3].Ctl : 0x%08x\n", read_c0_perfctrl3());
++ totalen += len;
++ page += len;
++ len = sprintf(page, "PerfCnt[3].Cnt : %Lu\n",
++ extencount[3] + (unsigned long long)((unsigned)read_c0_perfcntr3()));
++ totalen += len;
++ page += len;
++
++ return totalen;
++}
++
++/*
++ * Write to perf counter registers based on text input
++ */
++
++#define TXTBUFSZ 1024
++
++static int proc_write_perf(struct file *file, const char *buffer,
++ unsigned long count, void *data)
++{
++ int len;
++ int nparsed;
++ int index;
++ char mybuf[TXTBUFSZ];
++
++ int which[4];
++ unsigned long control[4];
++ long long ctrdata[4];
++
++ if(count >= TXTBUFSZ) len = TXTBUFSZ-1;
++ else len = count;
++ memset(mybuf,0,TXTBUFSZ);
++ if(copy_from_user(mybuf, buffer, len)) return -EFAULT;
++
++ nparsed = sscanf(mybuf,
++ "%d %lx %Ld %d %lx %Ld %d %lx %Ld %d %lx %Ld",
++ &which[0], &control[0], &ctrdata[0],
++ &which[1], &control[1], &ctrdata[1],
++ &which[2], &control[2], &ctrdata[2],
++ &which[3], &control[3], &ctrdata[3]);
++
++ for(index = 0; nparsed >= 3; index++) {
++ switch (which[index]) {
++ case 0:
++ write_c0_perfctrl0(control[index]);
++ if(ctrdata[index] != -1) {
++ extencount[0] = (unsigned long long)ctrdata[index];
++ write_c0_perfcntr0((unsigned long)0);
++ }
++ break;
++ case 1:
++ write_c0_perfctrl1(control[index]);
++ if(ctrdata[index] != -1) {
++ extencount[1] = (unsigned long long)ctrdata[index];
++ write_c0_perfcntr1((unsigned long)0);
++ }
++ break;
++ case 2:
++ write_c0_perfctrl2(control[index]);
++ if(ctrdata[index] != -1) {
++ extencount[2] = (unsigned long long)ctrdata[index];
++ write_c0_perfcntr2((unsigned long)0);
++ }
++ break;
++ case 3:
++ write_c0_perfctrl3(control[index]);
++ if(ctrdata[index] != -1) {
++ extencount[3] = (unsigned long long)ctrdata[index];
++ write_c0_perfcntr3((unsigned long)0);
++ }
++ break;
++ }
++ nparsed -= 3;
++ }
++ return (len);
++}
++
++extern int (*perf_irq)(void);
++
++/*
++ * Invoked when timer interrupt vector picks up a perf counter overflow
++ */
++
++static int perf_proc_irq(void)
++{
++ unsigned long snapshot;
++
++ /*
++ * It would be nice to do this as a loop, but we don't have
++ * indirect access to CP0 registers.
++ */
++ snapshot = read_c0_perfcntr0();
++ if ((long)snapshot < 0) {
++ extencount[0] +=
++ (unsigned long long)((unsigned)read_c0_perfcntr0());
++ write_c0_perfcntr0(0);
++ }
++ snapshot = read_c0_perfcntr1();
++ if ((long)snapshot < 0) {
++ extencount[1] +=
++ (unsigned long long)((unsigned)read_c0_perfcntr1());
++ write_c0_perfcntr1(0);
++ }
++ snapshot = read_c0_perfcntr2();
++ if ((long)snapshot < 0) {
++ extencount[2] +=
++ (unsigned long long)((unsigned)read_c0_perfcntr2());
++ write_c0_perfcntr2(0);
++ }
++ snapshot = read_c0_perfcntr3();
++ if ((long)snapshot < 0) {
++ extencount[3] +=
++ (unsigned long long)((unsigned)read_c0_perfcntr3());
++ write_c0_perfcntr3(0);
++ }
++ return 0;
++}
++
++static int __init init_perf_proc(void)
++{
++ extern struct proc_dir_entry *get_mips_proc_dir(void);
++
++ struct proc_dir_entry *mips_proc_dir = get_mips_proc_dir();
++
++ write_c0_perfcntr0(0);
++ write_c0_perfcntr1(0);
++ write_c0_perfcntr2(0);
++ write_c0_perfcntr3(0);
++ perf_proc = create_proc_entry("perf", 0644, mips_proc_dir);
++ perf_proc->read_proc = proc_read_perf;
++ perf_proc->write_proc = proc_write_perf;
++ perf_irq = perf_proc_irq;
++
++ return 0;
++}
++
++/* Automagically create the entry */
++module_init(init_perf_proc);
diff --git a/target/linux/lantiq/patches/810-ar9-cache-split.patch b/target/linux/lantiq/patches/810-ar9-cache-split.patch
new file mode 100644
index 0000000000..9487f6ce43
--- /dev/null
+++ b/target/linux/lantiq/patches/810-ar9-cache-split.patch
@@ -0,0 +1,301 @@
+--- a/arch/mips/Kconfig
++++ b/arch/mips/Kconfig
+@@ -1706,6 +1706,28 @@
+ help
+ IFX included extensions in APRP
+
++config IFX_VPE_CACHE_SPLIT
++ bool "IFX Cache Split Ways"
++ depends on IFX_VPE_EXT
++ help
++ IFX extension for reserving (splitting) cache ways among VPEs. You must
++ give kernel command line arguments vpe_icache_shared=0 or
++ vpe_dcache_shared=0 to enable splitting of icache or dcache
++ respectively. Then you can specify which cache ways should be
++ assigned to which VPE. There are total 8 cache ways, 4 each
++ for dcache and icache: dcache_way0, dcache_way1,dcache_way2,
++ dcache_way3 and icache_way0,icache_way1, icache_way2,icache_way3.
++
++ For example, if you specify vpe_icache_shared=0 and icache_way2=1,
++ then the 3rd icache way will be assigned to VPE0 and denied in VPE1.
++
++ For icache, software is required to make at least one cache way available
++ for a VPE at all times i.e., one can't assign all the icache ways to one
++ VPE.
++
++ By default, vpe_dcache_shared and vpe_icache_shared are set to 1
++ (i.e., both icache and dcache are shared among VPEs)
++
+ config PERFCTRS
+ bool "34K Performance counters"
+ depends on MIPS_MT && PROC_FS
+--- a/arch/mips/kernel/vpe.c
++++ b/arch/mips/kernel/vpe.c
+@@ -128,6 +128,13 @@
+ EXPORT_SYMBOL(vpe1_wdog_timeout);
+
+ #endif
++
++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT /* Code for splitting the cache ways among VPEs. */
++extern int vpe_icache_shared,vpe_dcache_shared;
++extern int icache_way0,icache_way1,icache_way2,icache_way3;
++extern int dcache_way0,dcache_way1,dcache_way2,dcache_way3;
++#endif
++
+ /* grab the likely amount of memory we will need. */
+ #ifdef CONFIG_MIPS_VPE_LOADER_TOM
+ #define P_SIZE (2 * 1024 * 1024)
+@@ -866,6 +873,65 @@
+ /* enable this VPE */
+ write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
+
++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT
++ if ( (!vpe_icache_shared) || (!vpe_dcache_shared) ) {
++
++ /* PCP bit must be 1 to split the cache */
++ if(read_c0_mvpconf0() & MVPCONF0_PCP) {
++
++ if ( !vpe_icache_shared ){
++ write_vpe_c0_vpeconf0((read_vpe_c0_vpeconf0()) & ~VPECONF0_ICS);
++
++ /*
++ * If any cache way is 1, then that way is denied
++ * in VPE1. Otherwise assign that way to VPE1.
++ */
++ if (!icache_way0)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX0 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX0 );
++ if (!icache_way1)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX1 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX1 );
++ if (!icache_way2)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX2 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX2 );
++ if (!icache_way3)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX3 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX3 );
++ }
++
++ if ( !vpe_dcache_shared ) {
++ write_vpe_c0_vpeconf0((read_vpe_c0_vpeconf0()) & ~VPECONF0_DCS);
++
++ /*
++ * If any cache way is 1, then that way is denied
++ * in VPE1. Otherwise assign that way to VPE1.
++ */
++ if (!dcache_way0)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX0 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX0 );
++ if (!dcache_way1)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX1 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX1 );
++ if (!dcache_way2)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX2 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX2 );
++ if (!dcache_way3)
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX3 );
++ else
++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX3 );
++ }
++ }
++ }
++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */
++
+ /* clear out any left overs from a previous program */
+ write_vpe_c0_status(0);
+ write_vpe_c0_cause(0);
+--- a/arch/mips/mm/c-r4k.c
++++ b/arch/mips/mm/c-r4k.c
+@@ -1348,6 +1348,106 @@
+ __setup("coherentio", setcoherentio);
+ #endif
+
++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT /* Code for splitting the cache ways among VPEs. */
++
++#include <asm/mipsmtregs.h>
++
++/*
++ * By default, vpe_icache_shared and vpe_dcache_shared
++ * values are 1 i.e., both icache and dcache are shared
++ * among the VPEs.
++ */
++
++int vpe_icache_shared = 1;
++static int __init vpe_icache_shared_val(char *str)
++{
++ get_option(&str, &vpe_icache_shared);
++ return 1;
++}
++__setup("vpe_icache_shared=", vpe_icache_shared_val);
++EXPORT_SYMBOL(vpe_icache_shared);
++
++int vpe_dcache_shared = 1;
++static int __init vpe_dcache_shared_val(char *str)
++{
++ get_option(&str, &vpe_dcache_shared);
++ return 1;
++}
++__setup("vpe_dcache_shared=", vpe_dcache_shared_val);
++EXPORT_SYMBOL(vpe_dcache_shared);
++
++/*
++ * Software is required to make atleast one icache
++ * way available for a VPE at all times i.e., one
++ * can't assign all the icache ways to one VPE.
++ */
++
++int icache_way0 = 0;
++static int __init icache_way0_val(char *str)
++{
++ get_option(&str, &icache_way0);
++ return 1;
++}
++__setup("icache_way0=", icache_way0_val);
++
++int icache_way1 = 0;
++static int __init icache_way1_val(char *str)
++{
++ get_option(&str, &icache_way1);
++ return 1;
++}
++__setup("icache_way1=", icache_way1_val);
++
++int icache_way2 = 0;
++static int __init icache_way2_val(char *str)
++{
++ get_option(&str, &icache_way2);
++ return 1;
++}
++__setup("icache_way2=", icache_way2_val);
++
++int icache_way3 = 0;
++static int __init icache_way3_val(char *str)
++{
++ get_option(&str, &icache_way3);
++ return 1;
++}
++__setup("icache_way3=", icache_way3_val);
++
++int dcache_way0 = 0;
++static int __init dcache_way0_val(char *str)
++{
++ get_option(&str, &dcache_way0);
++ return 1;
++}
++__setup("dcache_way0=", dcache_way0_val);
++
++int dcache_way1 = 0;
++static int __init dcache_way1_val(char *str)
++{
++ get_option(&str, &dcache_way1);
++ return 1;
++}
++__setup("dcache_way1=", dcache_way1_val);
++
++int dcache_way2 = 0;
++static int __init dcache_way2_val(char *str)
++{
++ get_option(&str, &dcache_way2);
++ return 1;
++}
++__setup("dcache_way2=", dcache_way2_val);
++
++int dcache_way3 = 0;
++static int __init dcache_way3_val(char *str)
++{
++ get_option(&str, &dcache_way3);
++ return 1;
++}
++__setup("dcache_way3=", dcache_way3_val);
++
++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */
++
+ void __cpuinit r4k_cache_init(void)
+ {
+ extern void build_clear_page(void);
+@@ -1367,6 +1467,78 @@
+ break;
+ }
+
++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT
++ /*
++ * We split the cache ways appropriately among the VPEs
++ * based on cache ways values we received as command line
++ * arguments
++ */
++ if ( (!vpe_icache_shared) || (!vpe_dcache_shared) ){
++
++ /* PCP bit must be 1 to split the cache */
++ if(read_c0_mvpconf0() & MVPCONF0_PCP) {
++
++ /* Set CPA bit which enables us to modify VPEOpt register */
++ write_c0_mvpcontrol((read_c0_mvpcontrol()) | MVPCONTROL_CPA);
++
++ if ( !vpe_icache_shared ){
++ write_c0_vpeconf0((read_c0_vpeconf0()) & ~VPECONF0_ICS);
++ /*
++ * If any cache way is 1, then that way is denied
++ * in VPE0. Otherwise assign that way to VPE0.
++ */
++ printk(KERN_DEBUG "icache is split\n");
++ printk(KERN_DEBUG "icache_way0=%d icache_way1=%d icache_way2=%d icache_way3=%d\n",
++ icache_way0, icache_way1,icache_way2, icache_way3);
++ if (icache_way0)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX0 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX0 );
++ if (icache_way1)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX1 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX1 );
++ if (icache_way2)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX2 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX2 );
++ if (icache_way3)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX3 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX3 );
++ }
++
++ if ( !vpe_dcache_shared ) {
++ /*
++ * If any cache way is 1, then that way is denied
++ * in VPE0. Otherwise assign that way to VPE0.
++ */
++ printk(KERN_DEBUG "dcache is split\n");
++ printk(KERN_DEBUG "dcache_way0=%d dcache_way1=%d dcache_way2=%d dcache_way3=%d\n",
++ dcache_way0, dcache_way1, dcache_way2, dcache_way3);
++ write_c0_vpeconf0((read_c0_vpeconf0()) & ~VPECONF0_DCS);
++ if (dcache_way0)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX0 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX0 );
++ if (dcache_way1)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX1 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX1 );
++ if (dcache_way2)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX2 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX2 );
++ if (dcache_way3)
++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX3 );
++ else
++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX3 );
++ }
++ }
++ }
++
++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */
++
+ probe_pcache();
+ setup_scache();
+
diff --git a/target/linux/lantiq/patches/900-pci_ath5k_hook.patch b/target/linux/lantiq/patches/900-pci_ath5k_hook.patch
new file mode 100644
index 0000000000..f01cadc85e
--- /dev/null
+++ b/target/linux/lantiq/patches/900-pci_ath5k_hook.patch
@@ -0,0 +1,40 @@
+--- /dev/null
++++ b/arch/mips/include/asm/mach-lantiq/pci.h
+@@ -0,0 +1,14 @@
++/*
++ * lantiq SoCs specific PCI definitions
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ */
++
++#ifndef __ASM_MACH_LANTIQ_PCI_H
++#define __ASM_MACH_LANTIQ_PCI_H
++
++extern int (*ifxmips_pci_plat_dev_init)(struct pci_dev *dev);
++
++#endif
+--- a/arch/mips/pci/pci-lantiq.c
++++ b/arch/mips/pci/pci-lantiq.c
+@@ -68,6 +68,8 @@
+
+ u32 lq_pci_mapped_cfg;
+
++int (*lqpci_plat_dev_init)(struct pci_dev *dev) = NULL;
++
+ /* Since the PCI REQ pins can be reused for other functionality, make it possible
+ to exclude those from interpretation by the PCI controller */
+ static int lq_pci_req_mask = 0xf;
+@@ -126,6 +128,10 @@
+ printk ("WARNING: invalid interrupt pin %d\n", pin);
+ return 1;
+ }
++
++ if (lqpci_plat_dev_init)
++ return lqpci_plat_dev_init(dev);
++
+ return 0;
+ }
+
+