summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkaloz <kaloz@3c298f89-4303-0410-b956-a3cf2f4a3e73>2010-01-26 12:46:05 +0000
committerkaloz <kaloz@3c298f89-4303-0410-b956-a3cf2f4a3e73>2010-01-26 12:46:05 +0000
commit285ff19141818b8da76116d211c55ec01b4c6ef5 (patch)
treeeb804fc58a60e3f5b9d8ba00b3f1c81c24efc032
parentf7c2a3fc303114ddf861e20d7bd53789655a302b (diff)
cleanup patch
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19345 3c298f89-4303-0410-b956-a3cf2f4a3e73
-rw-r--r--toolchain/gcc/patches/4.4.1+cs/000-codesourcery_2009q3_68.patch15044
1 files changed, 0 insertions, 15044 deletions
diff --git a/toolchain/gcc/patches/4.4.1+cs/000-codesourcery_2009q3_68.patch b/toolchain/gcc/patches/4.4.1+cs/000-codesourcery_2009q3_68.patch
index a0432f4783..88be9a85ff 100644
--- a/toolchain/gcc/patches/4.4.1+cs/000-codesourcery_2009q3_68.patch
+++ b/toolchain/gcc/patches/4.4.1+cs/000-codesourcery_2009q3_68.patch
@@ -24081,15050 +24081,6 @@ diff -Nur a/gcc/fortran/cpp.c b/gcc/fortran/cpp.c
/* Callback called when -fworking-director and -E to emit working
directory in cpp output file. */
-diff -Nur a/gcc/fortran/gfortran.info b/gcc/fortran/gfortran.info
---- a/gcc/fortran/gfortran.info 2009-07-22 10:33:04.000000000 +0200
-+++ b/gcc/fortran/gfortran.info 1970-01-01 01:00:00.000000000 +0100
-@@ -1,15040 +0,0 @@
--This is doc/gfortran.info, produced by makeinfo version 4.13 from
--/d/gcc-4.4.1/gcc-4.4.1/gcc/fortran/gfortran.texi.
--
--Copyright (C) 1999-2008 Free Software Foundation, Inc.
--
-- Permission is granted to copy, distribute and/or modify this document
--under the terms of the GNU Free Documentation License, Version 1.2 or
--any later version published by the Free Software Foundation; with the
--Invariant Sections being "Funding Free Software", the Front-Cover Texts
--being (a) (see below), and with the Back-Cover Texts being (b) (see
--below). A copy of the license is included in the section entitled "GNU
--Free Documentation License".
--
-- (a) The FSF's Front-Cover Text is:
--
-- A GNU Manual
--
-- (b) The FSF's Back-Cover Text is:
--
-- You have freedom to copy and modify this GNU Manual, like GNU
--software. Copies published by the Free Software Foundation raise
--funds for GNU development.
--
--INFO-DIR-SECTION Software development
--START-INFO-DIR-ENTRY
--* gfortran: (gfortran). The GNU Fortran Compiler.
--END-INFO-DIR-ENTRY
-- This file documents the use and the internals of the GNU Fortran
--compiler, (`gfortran').
--
-- Published by the Free Software Foundation 51 Franklin Street, Fifth
--Floor Boston, MA 02110-1301 USA
--
-- Copyright (C) 1999-2008 Free Software Foundation, Inc.
--
-- Permission is granted to copy, distribute and/or modify this document
--under the terms of the GNU Free Documentation License, Version 1.2 or
--any later version published by the Free Software Foundation; with the
--Invariant Sections being "Funding Free Software", the Front-Cover Texts
--being (a) (see below), and with the Back-Cover Texts being (b) (see
--below). A copy of the license is included in the section entitled "GNU
--Free Documentation License".
--
-- (a) The FSF's Front-Cover Text is:
--
-- A GNU Manual
--
-- (b) The FSF's Back-Cover Text is:
--
-- You have freedom to copy and modify this GNU Manual, like GNU
--software. Copies published by the Free Software Foundation raise
--funds for GNU development.
--
--
--File: gfortran.info, Node: Top, Next: Introduction, Up: (dir)
--
--Introduction
--************
--
--This manual documents the use of `gfortran', the GNU Fortran compiler.
--You can find in this manual how to invoke `gfortran', as well as its
--features and incompatibilities.
--
--* Menu:
--
--* Introduction::
--
--Part I: Invoking GNU Fortran
--* Invoking GNU Fortran:: Command options supported by `gfortran'.
--* Runtime:: Influencing runtime behavior with environment variables.
--
--Part II: Language Reference
--* Fortran 2003 and 2008 status:: Fortran 2003 and 2008 features supported by GNU Fortran.
--* Compiler Characteristics:: KIND type parameters supported.
--* Extensions:: Language extensions implemented by GNU Fortran.
--* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
--* Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
--
--* Contributing:: How you can help.
--* Copying:: GNU General Public License says
-- how you can copy and share GNU Fortran.
--* GNU Free Documentation License::
-- How you can copy and share this manual.
--* Funding:: How to help assure continued work for free software.
--* Option Index:: Index of command line options
--* Keyword Index:: Index of concepts
--
--
--File: gfortran.info, Node: Introduction, Next: Invoking GNU Fortran, Prev: Top, Up: Top
--
--1 Introduction
--**************
--
--The GNU Fortran compiler front end was designed initially as a free
--replacement for, or alternative to, the unix `f95' command; `gfortran'
--is the command you'll use to invoke the compiler.
--
--* Menu:
--
--* About GNU Fortran:: What you should know about the GNU Fortran compiler.
--* GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
--* Preprocessing and conditional compilation:: The Fortran preprocessor
--* GNU Fortran and G77:: Why we chose to start from scratch.
--* Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
--* Standards:: Standards supported by GNU Fortran.
--
--
--File: gfortran.info, Node: About GNU Fortran, Next: GNU Fortran and GCC, Up: Introduction
--
--1.1 About GNU Fortran
--=====================
--
--The GNU Fortran compiler is still in an early state of development. It
--can generate code for most constructs and expressions, but much work
--remains to be done.
--
-- When the GNU Fortran compiler is finished, it will do everything you
--expect from any decent compiler:
--
-- * Read a user's program, stored in a file and containing
-- instructions written in Fortran 77, Fortran 90, Fortran 95,
-- Fortran 2003 or Fortran 2008. This file contains "source code".
--
-- * Translate the user's program into instructions a computer can
-- carry out more quickly than it takes to translate the instructions
-- in the first place. The result after compilation of a program is
-- "machine code", code designed to be efficiently translated and
-- processed by a machine such as your computer. Humans usually
-- aren't as good writing machine code as they are at writing Fortran
-- (or C++, Ada, or Java), because it is easy to make tiny mistakes
-- writing machine code.
--
-- * Provide the user with information about the reasons why the
-- compiler is unable to create a binary from the source code.
-- Usually this will be the case if the source code is flawed. The
-- Fortran 90 standard requires that the compiler can point out
-- mistakes to the user. An incorrect usage of the language causes
-- an "error message".
--
-- The compiler will also attempt to diagnose cases where the user's
-- program contains a correct usage of the language, but instructs
-- the computer to do something questionable. This kind of
-- diagnostics message is called a "warning message".
--
-- * Provide optional information about the translation passes from the
-- source code to machine code. This can help a user of the compiler
-- to find the cause of certain bugs which may not be obvious in the
-- source code, but may be more easily found at a lower level
-- compiler output. It also helps developers to find bugs in the
-- compiler itself.
--
-- * Provide information in the generated machine code that can make it
-- easier to find bugs in the program (using a debugging tool, called
-- a "debugger", such as the GNU Debugger `gdb').
--
-- * Locate and gather machine code already generated to perform
-- actions requested by statements in the user's program. This
-- machine code is organized into "modules" and is located and
-- "linked" to the user program.
--
-- The GNU Fortran compiler consists of several components:
--
-- * A version of the `gcc' command (which also might be installed as
-- the system's `cc' command) that also understands and accepts
-- Fortran source code. The `gcc' command is the "driver" program for
-- all the languages in the GNU Compiler Collection (GCC); With `gcc',
-- you can compile the source code of any language for which a front
-- end is available in GCC.
--
-- * The `gfortran' command itself, which also might be installed as the
-- system's `f95' command. `gfortran' is just another driver program,
-- but specifically for the Fortran compiler only. The difference
-- with `gcc' is that `gfortran' will automatically link the correct
-- libraries to your program.
--
-- * A collection of run-time libraries. These libraries contain the
-- machine code needed to support capabilities of the Fortran
-- language that are not directly provided by the machine code
-- generated by the `gfortran' compilation phase, such as intrinsic
-- functions and subroutines, and routines for interaction with files
-- and the operating system.
--
-- * The Fortran compiler itself, (`f951'). This is the GNU Fortran
-- parser and code generator, linked to and interfaced with the GCC
-- backend library. `f951' "translates" the source code to assembler
-- code. You would typically not use this program directly; instead,
-- the `gcc' or `gfortran' driver programs will call it for you.
--
--
--File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction
--
--1.2 GNU Fortran and GCC
--=======================
--
--GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC
--consists of a collection of front ends for various languages, which
--translate the source code into a language-independent form called
--"GENERIC". This is then processed by a common middle end which
--provides optimization, and then passed to one of a collection of back
--ends which generate code for different computer architectures and
--operating systems.
--
-- Functionally, this is implemented with a driver program (`gcc')
--which provides the command-line interface for the compiler. It calls
--the relevant compiler front-end program (e.g., `f951' for Fortran) for
--each file in the source code, and then calls the assembler and linker
--as appropriate to produce the compiled output. In a copy of GCC which
--has been compiled with Fortran language support enabled, `gcc' will
--recognize files with `.f', `.for', `.ftn', `.f90', `.f95', `.f03' and
--`.f08' extensions as Fortran source code, and compile it accordingly. A
--`gfortran' driver program is also provided, which is identical to `gcc'
--except that it automatically links the Fortran runtime libraries into
--the compiled program.
--
-- Source files with `.f', `.for', `.fpp', `.ftn', `.F', `.FOR',
--`.FPP', and `.FTN' extensions are treated as fixed form. Source files
--with `.f90', `.f95', `.f03', `.f08', `.F90', `.F95', `.F03' and `.F08'
--extensions are treated as free form. The capitalized versions of
--either form are run through preprocessing. Source files with the lower
--case `.fpp' extension are also run through preprocessing.
--
-- This manual specifically documents the Fortran front end, which
--handles the programming language's syntax and semantics. The aspects
--of GCC which relate to the optimization passes and the back-end code
--generation are documented in the GCC manual; see *note Introduction:
--(gcc)Top. The two manuals together provide a complete reference for
--the GNU Fortran compiler.
--
--
--File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction
--
--1.3 Preprocessing and conditional compilation
--=============================================
--
--Many Fortran compilers including GNU Fortran allow passing the source
--code through a C preprocessor (CPP; sometimes also called the Fortran
--preprocessor, FPP) to allow for conditional compilation. In the case of
--GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On
--systems with case-preserving file names, the preprocessor is
--automatically invoked if the filename extension is `.F', `.FOR',
--`.FTN', `.fpp', `.FPP', `.F90', `.F95', `.F03' or `.F08'. To manually
--invoke the preprocessor on any file, use `-cpp', to disable
--preprocessing on files where the preprocessor is run automatically, use
--`-nocpp'.
--
-- If a preprocessed file includes another file with the Fortran
--`INCLUDE' statement, the included file is not preprocessed. To
--preprocess included files, use the equivalent preprocessor statement
--`#include'.
--
-- If GNU Fortran invokes the preprocessor, `__GFORTRAN__' is defined
--and `__GNUC__', `__GNUC_MINOR__' and `__GNUC_PATCHLEVEL__' can be used
--to determine the version of the compiler. See *note Overview: (cpp)Top.
--for details.
--
-- While CPP is the de-facto standard for preprocessing Fortran code,
--Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
--Conditional Compilation, which is not widely used and not directly
--supported by the GNU Fortran compiler. You can use the program coco to
--preprocess such files (`http://users.erols.com/dnagle/coco.html').
--
--
--File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction
--
--1.4 GNU Fortran and G77
--=======================
--
--The GNU Fortran compiler is the successor to `g77', the Fortran 77
--front end included in GCC prior to version 4. It is an entirely new
--program that has been designed to provide Fortran 95 support and
--extensibility for future Fortran language standards, as well as
--providing backwards compatibility for Fortran 77 and nearly all of the
--GNU language extensions supported by `g77'.
--
--
--File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction
--
--1.5 Project Status
--==================
--
-- As soon as `gfortran' can parse all of the statements correctly,
-- it will be in the "larva" state. When we generate code, the
-- "puppa" state. When `gfortran' is done, we'll see if it will be a
-- beautiful butterfly, or just a big bug....
--
-- -Andy Vaught, April 2000
--
-- The start of the GNU Fortran 95 project was announced on the GCC
--homepage in March 18, 2000 (even though Andy had already been working
--on it for a while, of course).
--
-- The GNU Fortran compiler is able to compile nearly all
--standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
--including a number of standard and non-standard extensions, and can be
--used on real-world programs. In particular, the supported extensions
--include OpenMP, Cray-style pointers, and several Fortran 2003 and
--Fortran 2008 features such as enumeration, stream I/O, and some of the
--enhancements to allocatable array support from TR 15581. However, it is
--still under development and has a few remaining rough edges.
--
-- At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
--Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
--produces acceptable results on the LAPACK Test Suite
--(http://www.netlib.org/lapack/faq.html#1.21). It also provides
--respectable performance on the Polyhedron Fortran compiler benchmarks
--(http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels
--test
--(http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). It
--has been used to compile a number of large real-world programs,
--including the HIRLAM weather-forecasting code
--(http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum
--chemistry package (http://www.theochem.uwa.edu.au/tonto/); see
--`http://gcc.gnu.org/wiki/GfortranApps' for an extended list.
--
-- Among other things, the GNU Fortran compiler is intended as a
--replacement for G77. At this point, nearly all programs that could be
--compiled with G77 can be compiled with GNU Fortran, although there are
--a few minor known regressions.
--
-- The primary work remaining to be done on GNU Fortran falls into three
--categories: bug fixing (primarily regarding the treatment of invalid
--code and providing useful error messages), improving the compiler
--optimizations and the performance of compiled code, and extending the
--compiler to support future standards--in particular, Fortran 2003.
--
--
--File: gfortran.info, Node: Standards, Prev: Project Status, Up: Introduction
--
--1.6 Standards
--=============
--
--The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As
--such, it can also compile essentially all standard-compliant Fortran 90
--and Fortran 77 programs. It also supports the ISO/IEC TR-15581
--enhancements to allocatable arrays, and the OpenMP Application Program
--Interface v2.5 (http://www.openmp.org/drupal/mp-documents/spec25.pdf)
--specification.
--
-- In the future, the GNU Fortran compiler will also support ISO/IEC
--1539-1:2004 (Fortran 2003) and future Fortran standards. Partial support
--of that standard is already provided; the current status of Fortran 2003
--support is reported in the *note Fortran 2003 status:: section of the
--documentation.
--
-- The next version of the Fortran standard after Fortran 2003 is
--currently being developed and the GNU Fortran compiler supports some of
--its new features. This support is based on the latest draft of the
--standard (available from `http://www.nag.co.uk/sc22wg5/') and no
--guarantee of future compatibility is made, as the final standard might
--differ from the draft. For more information, see the *note Fortran 2008
--status:: section.
--
--
--File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top
--
--2 GNU Fortran Command Options
--*****************************
--
--The `gfortran' command supports all the options supported by the `gcc'
--command. Only options specific to GNU Fortran are documented here.
--
-- *Note GCC Command Options: (gcc)Invoking GCC, for information on the
--non-Fortran-specific aspects of the `gcc' command (and, therefore, the
--`gfortran' command).
--
-- All GCC and GNU Fortran options are accepted both by `gfortran' and
--by `gcc' (as well as any other drivers built at the same time, such as
--`g++'), since adding GNU Fortran to the GCC distribution enables
--acceptance of GNU Fortran options by all of the relevant drivers.
--
-- In some cases, options have positive and negative forms; the
--negative form of `-ffoo' would be `-fno-foo'. This manual documents
--only one of these two forms, whichever one is not the default.
--
--* Menu:
--
--* Option Summary:: Brief list of all `gfortran' options,
-- without explanations.
--* Fortran Dialect Options:: Controlling the variant of Fortran language
-- compiled.
--* Preprocessing Options:: Enable and customize preprocessing.
--* Error and Warning Options:: How picky should the compiler be?
--* Debugging Options:: Symbol tables, measurements, and debugging dumps.
--* Directory Options:: Where to find module files
--* Link Options :: Influencing the linking step
--* Runtime Options:: Influencing runtime behavior
--* Code Gen Options:: Specifying conventions for function calls, data layout
-- and register usage.
--* Environment Variables:: Environment variables that affect `gfortran'.
--
--
--File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran
--
--2.1 Option summary
--==================
--
--Here is a summary of all the options specific to GNU Fortran, grouped
--by type. Explanations are in the following sections.
--
--_Fortran Language Options_
-- *Note Options controlling Fortran dialect: Fortran Dialect Options.
-- -fall-intrinsics -ffree-form -fno-fixed-form
-- -fdollar-ok -fimplicit-none -fmax-identifier-length
-- -std=STD -fd-lines-as-code -fd-lines-as-comments
-- -ffixed-line-length-N -ffixed-line-length-none
-- -ffree-line-length-N -ffree-line-length-none
-- -fdefault-double-8 -fdefault-integer-8 -fdefault-real-8
-- -fcray-pointer -fopenmp -fno-range-check -fbackslash -fmodule-private
--
--_Preprocessing Options_
-- *Note Enable and customize preprocessing: Preprocessing Options.
-- -cpp -dD -dI -dM -dN -dU -fworking-directory
-- -imultilib DIR -iprefix FILE -isysroot DIR
-- -iquote -isystem DIR -nocpp -nostdinc -undef
-- -AQUESTION=ANSWER -A-QUESTION[=ANSWER]
-- -C -CC -DMACRO[=DEFN] -UMACRO -H -P
--
--_Error and Warning Options_
-- *Note Options to request or suppress errors and warnings: Error
-- and Warning Options.
-- -fmax-errors=N
-- -fsyntax-only -pedantic -pedantic-errors
-- -Wall -Waliasing -Wampersand -Warray-bounds -Wcharacter-truncation
-- -Wconversion -Wimplicit-interface -Wline-truncation -Wintrinsics-std
-- -Wsurprising -Wno-tabs -Wunderflow -Wunused-parameter -Wintrinsics-shadow
-- -Wno-align-commons
--
--_Debugging Options_
-- *Note Options for debugging your program or GNU Fortran: Debugging
-- Options.
-- -fdump-parse-tree -ffpe-trap=LIST
-- -fdump-core -fbacktrace
--
--_Directory Options_
-- *Note Options for directory search: Directory Options.
-- -IDIR -JDIR -MDIR
-- -fintrinsic-modules-path DIR
--
--_Link Options_
-- *Note Options for influencing the linking step: Link Options.
-- -static-libgfortran
--
--_Runtime Options_
-- *Note Options for influencing runtime behavior: Runtime Options.
-- -fconvert=CONVERSION -fno-range-check
-- -frecord-marker=LENGTH -fmax-subrecord-length=LENGTH
-- -fsign-zero
--
--_Code Generation Options_
-- *Note Options for code generation conventions: Code Gen Options.
-- -fno-automatic -ff2c -fno-underscoring
-- -fsecond-underscore
-- -fbounds-check -fcheck-array-temporaries -fmax-array-constructor =N
-- -fmax-stack-var-size=N
-- -fpack-derived -frepack-arrays -fshort-enums -fexternal-blas
-- -fblas-matmul-limit=N -frecursive -finit-local-zero
-- -finit-integer=N -finit-real=<ZERO|INF|-INF|NAN>
-- -finit-logical=<TRUE|FALSE> -finit-character=N -fno-align-commons
--
--
--* Menu:
--
--* Fortran Dialect Options:: Controlling the variant of Fortran language
-- compiled.
--* Preprocessing Options:: Enable and customize preprocessing.
--* Error and Warning Options:: How picky should the compiler be?
--* Debugging Options:: Symbol tables, measurements, and debugging dumps.
--* Directory Options:: Where to find module files
--* Link Options :: Influencing the linking step
--* Runtime Options:: Influencing runtime behavior
--* Code Gen Options:: Specifying conventions for function calls, data layout
-- and register usage.
--
--
--File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran
--
--2.2 Options controlling Fortran dialect
--=======================================
--
--The following options control the details of the Fortran dialect
--accepted by the compiler:
--
--`-ffree-form'
--
--`-ffixed-form'
-- Specify the layout used by the source file. The free form layout
-- was introduced in Fortran 90. Fixed form was traditionally used in
-- older Fortran programs. When neither option is specified, the
-- source form is determined by the file extension.
--
--`-fall-intrinsics'
-- This option causes all intrinsic procedures (including the
-- GNU-specific extensions) to be accepted. This can be useful with
-- `-std=f95' to force standard-compliance but get access to the full
-- range of intrinsics available with `gfortran'. As a consequence,
-- `-Wintrinsics-std' will be ignored and no user-defined procedure
-- with the same name as any intrinsic will be called except when it
-- is explicitly declared `EXTERNAL'.
--
--`-fd-lines-as-code'
--
--`-fd-lines-as-comments'
-- Enable special treatment for lines beginning with `d' or `D' in
-- fixed form sources. If the `-fd-lines-as-code' option is given
-- they are treated as if the first column contained a blank. If the
-- `-fd-lines-as-comments' option is given, they are treated as
-- comment lines.
--
--`-fdefault-double-8'
-- Set the `DOUBLE PRECISION' type to an 8 byte wide type. If
-- `-fdefault-real-8' is given, `DOUBLE PRECISION' would instead be
-- promoted to 16 bytes if possible, and `-fdefault-double-8' can be
-- used to prevent this. The kind of real constants like `1.d0' will
-- not be changed by `-fdefault-real-8' though, so also
-- `-fdefault-double-8' does not affect it.
--
--`-fdefault-integer-8'
-- Set the default integer and logical types to an 8 byte wide type.
-- Do nothing if this is already the default. This option also
-- affects the kind of integer constants like `42'.
--
--`-fdefault-real-8'
-- Set the default real type to an 8 byte wide type. Do nothing if
-- this is already the default. This option also affects the kind of
-- non-double real constants like `1.0', and does promote the default
-- width of `DOUBLE PRECISION' to 16 bytes if possible, unless
-- `-fdefault-double-8' is given, too.
--
--`-fdollar-ok'
-- Allow `$' as a valid character in a symbol name.
--
--`-fbackslash'
-- Change the interpretation of backslashes in string literals from a
-- single backslash character to "C-style" escape characters. The
-- following combinations are expanded `\a', `\b', `\f', `\n', `\r',
-- `\t', `\v', `\\', and `\0' to the ASCII characters alert,
-- backspace, form feed, newline, carriage return, horizontal tab,
-- vertical tab, backslash, and NUL, respectively. Additionally,
-- `\x'NN, `\u'NNNN and `\U'NNNNNNNN (where each N is a hexadecimal
-- digit) are translated into the Unicode characters corresponding to
-- the specified code points. All other combinations of a character
-- preceded by \ are unexpanded.
--
--`-fmodule-private'
-- Set the default accessibility of module entities to `PRIVATE'.
-- Use-associated entities will not be accessible unless they are
-- explicitly declared as `PUBLIC'.
--
--`-ffixed-line-length-N'
-- Set column after which characters are ignored in typical fixed-form
-- lines in the source file, and through which spaces are assumed (as
-- if padded to that length) after the ends of short fixed-form lines.
--
-- Popular values for N include 72 (the standard and the default), 80
-- (card image), and 132 (corresponding to "extended-source" options
-- in some popular compilers). N may also be `none', meaning that
-- the entire line is meaningful and that continued character
-- constants never have implicit spaces appended to them to fill out
-- the line. `-ffixed-line-length-0' means the same thing as
-- `-ffixed-line-length-none'.
--
--`-ffree-line-length-N'
-- Set column after which characters are ignored in typical free-form
-- lines in the source file. The default value is 132. N may be
-- `none', meaning that the entire line is meaningful.
-- `-ffree-line-length-0' means the same thing as
-- `-ffree-line-length-none'.
--
--`-fmax-identifier-length=N'
-- Specify the maximum allowed identifier length. Typical values are
-- 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
--
--`-fimplicit-none'
-- Specify that no implicit typing is allowed, unless overridden by
-- explicit `IMPLICIT' statements. This is the equivalent of adding
-- `implicit none' to the start of every procedure.
--
--`-fcray-pointer'
-- Enable the Cray pointer extension, which provides C-like pointer
-- functionality.
--
--`-fopenmp'
-- Enable the OpenMP extensions. This includes OpenMP `!$omp'
-- directives in free form and `c$omp', `*$omp' and `!$omp'
-- directives in fixed form, `!$' conditional compilation sentinels
-- in free form and `c$', `*$' and `!$' sentinels in fixed form, and
-- when linking arranges for the OpenMP runtime library to be linked
-- in. The option `-fopenmp' implies `-frecursive'.
--
--`-fno-range-check'
-- Disable range checking on results of simplification of constant
-- expressions during compilation. For example, GNU Fortran will give
-- an error at compile time when simplifying `a = 1. / 0'. With this
-- option, no error will be given and `a' will be assigned the value
-- `+Infinity'. If an expression evaluates to a value outside of the
-- relevant range of [`-HUGE()':`HUGE()'], then the expression will
-- be replaced by `-Inf' or `+Inf' as appropriate. Similarly, `DATA
-- i/Z'FFFFFFFF'/' will result in an integer overflow on most
-- systems, but with `-fno-range-check' the value will "wrap around"
-- and `i' will be initialized to -1 instead.
--
--`-std=STD'
-- Specify the standard to which the program is expected to conform,
-- which may be one of `f95', `f2003', `f2008', `gnu', or `legacy'.
-- The default value for STD is `gnu', which specifies a superset of
-- the Fortran 95 standard that includes all of the extensions
-- supported by GNU Fortran, although warnings will be given for
-- obsolete extensions not recommended for use in new code. The
-- `legacy' value is equivalent but without the warnings for obsolete
-- extensions, and may be useful for old non-standard programs. The
-- `f95', `f2003' and `f2008' values specify strict conformance to
-- the Fortran 95, Fortran 2003 and Fortran 2008 standards,
-- respectively; errors are given for all extensions beyond the
-- relevant language standard, and warnings are given for the Fortran
-- 77 features that are permitted but obsolescent in later standards.
--
--
--
--File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran
--
--2.3 Enable and customize preprocessing
--======================================
--
--Preprocessor related options. See section *note Preprocessing and
--conditional compilation:: for more detailed information on
--preprocessing in `gfortran'.
--
--`-cpp'
--
--`-nocpp'
-- Enable preprocessing. The preprocessor is automatically invoked if
-- the file extension is `.fpp', `.FPP', `.F', `.FOR', `.FTN',
-- `.F90', `.F95', `.F03' or `.F08'. Use this option to manually
-- enable preprocessing of any kind of Fortran file.
--
-- To disable preprocessing of files with any of the above listed
-- extensions, use the negative form: `-nocpp'.
--
-- The preprocessor is run in traditional mode, be aware that any
-- restrictions of the file-format, e.g. fixed-form line width, apply
-- for preprocessed output as well.
--
--`-dM'
-- Instead of the normal output, generate a list of `'#define''
-- directives for all the macros defined during the execution of the
-- preprocessor, including predefined macros. This gives you a way of
-- finding out what is predefined in your version of the preprocessor.
-- Assuming you have no file `foo.f90', the command
-- touch foo.f90; gfortran -cpp -dM foo.f90
-- will show all the predefined macros.
--
--`-dD'
-- Like `-dM' except in two respects: it does not include the
-- predefined macros, and it outputs both the `#define' directives
-- and the result of preprocessing. Both kinds of output go to the
-- standard output file.
--
--`-dN'
-- Like `-dD', but emit only the macro names, not their expansions.
--
--`-dU'
-- Like `dD' except that only macros that are expanded, or whose
-- definedness is tested in preprocessor directives, are output; the
-- output is delayed until the use or test of the macro; and
-- `'#undef'' directives are also output for macros tested but
-- undefined at the time.
--
--`-dI'
-- Output `'#include'' directives in addition to the result of
-- preprocessing.
--
--`-fworking-directory'
-- Enable generation of linemarkers in the preprocessor output that
-- will let the compiler know the current working directory at the
-- time of preprocessing. When this option is enabled, the
-- preprocessor will emit, after the initial linemarker, a second
-- linemarker with the current working directory followed by two
-- slashes. GCC will use this directory, when it's present in the
-- preprocessed input, as the directory emitted as the current
-- working directory in some debugging information formats. This
-- option is implicitly enabled if debugging information is enabled,
-- but this can be inhibited with the negated form
-- `-fno-working-directory'. If the `-P' flag is present in the
-- command line, this option has no effect, since no `#line'
-- directives are emitted whatsoever.
--
--`-idirafter DIR'
-- Search DIR for include files, but do it after all directories
-- specified with `-I' and the standard system directories have been
-- exhausted. DIR is treated as a system include directory. If dir
-- begins with `=', then the `=' will be replaced by the sysroot
-- prefix; see `--sysroot' and `-isysroot'.
--
--`-imultilib DIR'
-- Use DIR as a subdirectory of the directory containing
-- target-specific C++ headers.
--
--`-iprefix PREFIX'
-- Specify PREFIX as the prefix for subsequent `-iwithprefix'
-- options. If the PREFIX represents a directory, you should include
-- the final `'/''.
--
--`-isysroot DIR'
-- This option is like the `--sysroot' option, but applies only to
-- header files. See the `--sysroot' option for more information.
--
--`-iquote DIR'
-- Search DIR only for header files requested with `#include "file"';
-- they are not searched for `#include <file>', before all directories
-- specified by `-I' and before the standard system directories. If
-- DIR begins with `=', then the `=' will be replaced by the sysroot
-- prefix; see `--sysroot' and `-isysroot'.
--
--`-isystem DIR'
-- Search DIR for header files, after all directories specified by
-- `-I' but before the standard system directories. Mark it as a
-- system directory, so that it gets the same special treatment as is
-- applied to the standard system directories. If DIR begins with
-- `=', then the `=' will be replaced by the sysroot prefix; see
-- `--sysroot' and `-isysroot'.
--
--`-nostdinc'
-- Do not search the standard system directories for header files.
-- Only the directories you have specified with `-I' options (and the
-- directory of the current file, if appropriate) are searched.
--
--`-undef'
-- Do not predefine any system-specific or GCC-specific macros. The
-- standard predefined macros remain defined.
--
--`-APREDICATE=ANSWER'
-- Make an assertion with the predicate PREDICATE and answer ANSWER.
-- This form is preferred to the older form -A predicate(answer),
-- which is still supported, because it does not use shell special
-- characters.
--
--`-A-PREDICATE=ANSWER'
-- Cancel an assertion with the predicate PREDICATE and answer ANSWER.
--
--`-C'
-- Do not discard comments. All comments are passed through to the
-- output file, except for comments in processed directives, which
-- are deleted along with the directive.
--
-- You should be prepared for side effects when using `-C'; it causes
-- the preprocessor to treat comments as tokens in their own right.
-- For example, comments appearing at the start of what would be a
-- directive line have the effect of turning that line into an
-- ordinary source line, since the first token on the line is no
-- longer a `'#''.
--
-- Warning: this currently handles C-Style comments only. The
-- preprocessor does not yet recognize Fortran-style comments.
--
--`-CC'
-- Do not discard comments, including during macro expansion. This is
-- like `-C', except that comments contained within macros are also
-- passed through to the output file where the macro is expanded.
--
-- In addition to the side-effects of the `-C' option, the `-CC'
-- option causes all C++-style comments inside a macro to be
-- converted to C-style comments. This is to prevent later use of
-- that macro from inadvertently commenting out the remainder of the
-- source line. The `-CC' option is generally used to support lint
-- comments.
--
-- Warning: this currently handles C- and C++-Style comments only. The
-- preprocessor does not yet recognize Fortran-style comments.
--
--`-DNAME'
-- Predefine name as a macro, with definition `1'.
--
--`-DNAME=DEFINITION'
-- The contents of DEFINITION are tokenized and processed as if they
-- appeared during translation phase three in a `'#define'' directive.
-- In particular, the definition will be truncated by embedded newline
-- characters.
--
-- If you are invoking the preprocessor from a shell or shell-like
-- program you may need to use the shell's quoting syntax to protect
-- characters such as spaces that have a meaning in the shell syntax.
--
-- If you wish to define a function-like macro on the command line,
-- write its argument list with surrounding parentheses before the
-- equals sign (if any). Parentheses are meaningful to most shells,
-- so you will need to quote the option. With sh and csh,
-- `-D'name(args...)=definition'' works.
--
-- `-D' and `-U' options are processed in the order they are given on
-- the command line. All -imacros file and -include file options are
-- processed after all -D and -U options.
--
--`-H'
-- Print the name of each header file used, in addition to other
-- normal activities. Each name is indented to show how deep in the
-- `'#include'' stack it is.
--
--`-P'
-- Inhibit generation of linemarkers in the output from the
-- preprocessor. This might be useful when running the preprocessor
-- on something that is not C code, and will be sent to a program
-- which might be confused by the linemarkers.
--
--`-UNAME'
-- Cancel any previous definition of NAME, either built in or provided
-- with a `-D' option.
--
--
--File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran
--
--2.4 Options to request or suppress errors and warnings
--======================================================
--
--Errors are diagnostic messages that report that the GNU Fortran compiler
--cannot compile the relevant piece of source code. The compiler will
--continue to process the program in an attempt to report further errors
--to aid in debugging, but will not produce any compiled output.
--
-- Warnings are diagnostic messages that report constructions which are
--not inherently erroneous but which are risky or suggest there is likely
--to be a bug in the program. Unless `-Werror' is specified, they do not
--prevent compilation of the program.
--
-- You can request many specific warnings with options beginning `-W',
--for example `-Wimplicit' to request warnings on implicit declarations.
--Each of these specific warning options also has a negative form
--beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'.
--This manual lists only one of the two forms, whichever is not the
--default.
--
-- These options control the amount and kinds of errors and warnings
--produced by GNU Fortran:
--
--`-fmax-errors=N'
-- Limits the maximum number of error messages to N, at which point
-- GNU Fortran bails out rather than attempting to continue
-- processing the source code. If N is 0, there is no limit on the
-- number of error messages produced.
--
--`-fsyntax-only'
-- Check the code for syntax errors, but don't actually compile it.
-- This will generate module files for each module present in the
-- code, but no other output file.
--
--`-pedantic'
-- Issue warnings for uses of extensions to Fortran 95. `-pedantic'
-- also applies to C-language constructs where they occur in GNU
-- Fortran source files, such as use of `\e' in a character constant
-- within a directive like `#include'.
--
-- Valid Fortran 95 programs should compile properly with or without
-- this option. However, without this option, certain GNU extensions
-- and traditional Fortran features are supported as well. With this
-- option, many of them are rejected.
--
-- Some users try to use `-pedantic' to check programs for
-- conformance. They soon find that it does not do quite what they
-- want--it finds some nonstandard practices, but not all. However,
-- improvements to GNU Fortran in this area are welcome.
--
-- This should be used in conjunction with `-std=f95', `-std=f2003'
-- or `-std=f2008'.
--
--`-pedantic-errors'
-- Like `-pedantic', except that errors are produced rather than
-- warnings.
--
--`-Wall'
-- Enables commonly used warning options pertaining to usage that we
-- recommend avoiding and that we believe are easy to avoid. This
-- currently includes `-Waliasing', `-Wampersand', `-Wsurprising',
-- `-Wintrinsics-std', `-Wno-tabs', `-Wintrinsic-shadow' and
-- `-Wline-truncation'.
--
--`-Waliasing'
-- Warn about possible aliasing of dummy arguments. Specifically, it
-- warns if the same actual argument is associated with a dummy
-- argument with `INTENT(IN)' and a dummy argument with `INTENT(OUT)'
-- in a call with an explicit interface.
--
-- The following example will trigger the warning.
-- interface
-- subroutine bar(a,b)
-- integer, intent(in) :: a
-- integer, intent(out) :: b
-- end subroutine
-- end interface
-- integer :: a
--
-- call bar(a,a)
--
--`-Wampersand'
-- Warn about missing ampersand in continued character constants. The
-- warning is given with `-Wampersand', `-pedantic', `-std=f95',
-- `-std=f2003' and `-std=f2008'. Note: With no ampersand given in a
-- continued character constant, GNU Fortran assumes continuation at
-- the first non-comment, non-whitespace character after the ampersand
-- that initiated the continuation.
--
--`-Warray-temporaries'
-- Warn about array temporaries generated by the compiler. The
-- information generated by this warning is sometimes useful in
-- optimization, in order to avoid such temporaries.
--
--`-Wcharacter-truncation'
-- Warn when a character assignment will truncate the assigned string.
--
--`-Wline-truncation'
-- Warn when a source code line will be truncated.
--
--`-Wconversion'
-- Warn about implicit conversions between different types.
--
--`-Wimplicit-interface'
-- Warn if a procedure is called without an explicit interface. Note
-- this only checks that an explicit interface is present. It does
-- not check that the declared interfaces are consistent across
-- program units.
--
--`-Wintrinsics-std'
-- Warn if `gfortran' finds a procedure named like an intrinsic not
-- available in the currently selected standard (with `-std') and
-- treats it as `EXTERNAL' procedure because of this.
-- `-fall-intrinsics' can be used to never trigger this behaviour and
-- always link to the intrinsic regardless of the selected standard.
--
--`-Wsurprising'
-- Produce a warning when "suspicious" code constructs are
-- encountered. While technically legal these usually indicate that
-- an error has been made.
--
-- This currently produces a warning under the following
-- circumstances:
--
-- * An INTEGER SELECT construct has a CASE that can never be
-- matched as its lower value is greater than its upper value.
--
-- * A LOGICAL SELECT construct has three CASE statements.
--
-- * A TRANSFER specifies a source that is shorter than the
-- destination.
--
-- * The type of a function result is declared more than once with
-- the same type. If `-pedantic' or standard-conforming mode is
-- enabled, this is an error.
--
--`-Wtabs'
-- By default, tabs are accepted as whitespace, but tabs are not
-- members of the Fortran Character Set. For continuation lines, a
-- tab followed by a digit between 1 and 9 is supported. `-Wno-tabs'
-- will cause a warning to be issued if a tab is encountered. Note,
-- `-Wno-tabs' is active for `-pedantic', `-std=f95', `-std=f2003',
-- `-std=f2008' and `-Wall'.
--
--`-Wunderflow'
-- Produce a warning when numerical constant expressions are
-- encountered, which yield an UNDERFLOW during compilation.
--
--`-Wintrinsic-shadow'
-- Warn if a user-defined procedure or module procedure has the same
-- name as an intrinsic; in this case, an explicit interface or
-- `EXTERNAL' or `INTRINSIC' declaration might be needed to get calls
-- later resolved to the desired intrinsic/procedure.
--
--`-Wunused-parameter'
-- Contrary to `gcc''s meaning of `-Wunused-parameter', `gfortran''s
-- implementation of this option does not warn about unused dummy
-- arguments, but about unused `PARAMETER' values.
-- `-Wunused-parameter' is not included in `-Wall' but is implied by
-- `-Wall -Wextra'.
--
--`-Walign-commons'
-- By default, `gfortran' warns about any occasion of variables being
-- padded for proper alignment inside a COMMON block. This warning
-- can be turned off via `-Wno-align-commons'. See also
-- `-falign-commons'.
--
--`-Werror'
-- Turns all warnings into errors.
--
-- *Note Options to Request or Suppress Errors and Warnings: (gcc)Error
--and Warning Options, for information on more options offered by the GBE
--shared by `gfortran', `gcc' and other GNU compilers.
--
-- Some of these have no effect when compiling programs written in
--Fortran.
--
--
--File: gfortran.info, Node: Debugging Options, Next: Directory Options, Prev: Error and Warning Options, Up: Invoking GNU Fortran
--
--2.5 Options for debugging your program or GNU Fortran
--=====================================================
--
--GNU Fortran has various special options that are used for debugging
--either your program or the GNU Fortran compiler.
--
--`-fdump-parse-tree'
-- Output the internal parse tree before starting code generation.
-- Only really useful for debugging the GNU Fortran compiler itself.
--
--`-ffpe-trap=LIST'
-- Specify a list of IEEE exceptions when a Floating Point Exception
-- (FPE) should be raised. On most systems, this will result in a
-- SIGFPE signal being sent and the program being interrupted,
-- producing a core file useful for debugging. LIST is a (possibly
-- empty) comma-separated list of the following IEEE exceptions:
-- `invalid' (invalid floating point operation, such as
-- `SQRT(-1.0)'), `zero' (division by zero), `overflow' (overflow in
-- a floating point operation), `underflow' (underflow in a floating
-- point operation), `precision' (loss of precision during operation)
-- and `denormal' (operation produced a denormal value).
--
-- Some of the routines in the Fortran runtime library, like
-- `CPU_TIME', are likely to trigger floating point exceptions when
-- `ffpe-trap=precision' is used. For this reason, the use of
-- `ffpe-trap=precision' is not recommended.
--
--`-fbacktrace'
-- Specify that, when a runtime error is encountered or a deadly
-- signal is emitted (segmentation fault, illegal instruction, bus
-- error or floating-point exception), the Fortran runtime library
-- should output a backtrace of the error. This option only has
-- influence for compilation of the Fortran main program.
--
--`-fdump-core'
-- Request that a core-dump file is written to disk when a runtime
-- error is encountered on systems that support core dumps. This
-- option is only effective for the compilation of the Fortran main
-- program.
--
-- *Note Options for Debugging Your Program or GCC: (gcc)Debugging
--Options, for more information on debugging options.
--
--
--File: gfortran.info, Node: Directory Options, Next: Link Options, Prev: Debugging Options, Up: Invoking GNU Fortran
--
--2.6 Options for directory search
--================================
--
--These options affect how GNU Fortran searches for files specified by
--the `INCLUDE' directive and where it searches for previously compiled
--modules.
--
-- It also affects the search paths used by `cpp' when used to
--preprocess Fortran source.
--
--`-IDIR'
-- These affect interpretation of the `INCLUDE' directive (as well as
-- of the `#include' directive of the `cpp' preprocessor).
--
-- Also note that the general behavior of `-I' and `INCLUDE' is
-- pretty much the same as of `-I' with `#include' in the `cpp'
-- preprocessor, with regard to looking for `header.gcc' files and
-- other such things.
--
-- This path is also used to search for `.mod' files when previously
-- compiled modules are required by a `USE' statement.
--
-- *Note Options for Directory Search: (gcc)Directory Options, for
-- information on the `-I' option.
--
--`-JDIR'
--
--`-MDIR'
-- This option specifies where to put `.mod' files for compiled
-- modules. It is also added to the list of directories to searched
-- by an `USE' statement.
--
-- The default is the current directory.
--
-- `-M' is deprecated to avoid conflicts with existing GCC options.
--
--`-fintrinsic-modules-path DIR'
-- This option specifies the location of pre-compiled intrinsic
-- modules, if they are not in the default location expected by the
-- compiler.
--
--
--File: gfortran.info, Node: Link Options, Next: Runtime Options, Prev: Directory Options, Up: Invoking GNU Fortran
--
--2.7 Influencing the linking step
--================================
--
--These options come into play when the compiler links object files into
--an executable output file. They are meaningless if the compiler is not
--doing a link step.
--
--`-static-libgfortran'
-- On systems that provide `libgfortran' as a shared and a static
-- library, this option forces the use of the static version. If no
-- shared version of `libgfortran' was built when the compiler was
-- configured, this option has no effect.
--
--
--File: gfortran.info, Node: Runtime Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GNU Fortran
--
--2.8 Influencing runtime behavior
--================================
--
--These options affect the runtime behavior of programs compiled with GNU
--Fortran.
--`-fconvert=CONVERSION'
-- Specify the representation of data for unformatted files. Valid
-- values for conversion are: `native', the default; `swap', swap
-- between big- and little-endian; `big-endian', use big-endian
-- representation for unformatted files; `little-endian', use
-- little-endian representation for unformatted files.
--
-- _This option has an effect only when used in the main program.
-- The `CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
-- variable override the default specified by `-fconvert'._
--
--`-fno-range-check'
-- Disable range checking of input values during integer `READ'
-- operations. For example, GNU Fortran will give an error if an
-- input value is outside of the relevant range of
-- [`-HUGE()':`HUGE()']. In other words, with `INTEGER (kind=4) :: i'
-- , attempting to read -2147483648 will give an error unless
-- `-fno-range-check' is given.
--
--`-frecord-marker=LENGTH'
-- Specify the length of record markers for unformatted files. Valid
-- values for LENGTH are 4 and 8. Default is 4. _This is different
-- from previous versions of `gfortran'_, which specified a default
-- record marker length of 8 on most systems. If you want to read or
-- write files compatible with earlier versions of `gfortran', use
-- `-frecord-marker=8'.
--
--`-fmax-subrecord-length=LENGTH'
-- Specify the maximum length for a subrecord. The maximum permitted
-- value for length is 2147483639, which is also the default. Only
-- really useful for use by the gfortran testsuite.
--
--`-fsign-zero'
-- When writing zero values, show the negative sign if the sign bit
-- is set. `fno-sign-zero' does not print the negative sign of zero
-- values for compatibility with F77. Default behavior is to show
-- the negative sign.
--
--
--File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran
--
--2.9 Options for code generation conventions
--===========================================
--
--These machine-independent options control the interface conventions
--used in code generation.
--
-- Most of them have both positive and negative forms; the negative form
--of `-ffoo' would be `-fno-foo'. In the table below, only one of the
--forms is listed--the one which is not the default. You can figure out
--the other form by either removing `no-' or adding it.
--
--`-fno-automatic'
-- Treat each program unit (except those marked as RECURSIVE) as if
-- the `SAVE' statement were specified for every local variable and
-- array referenced in it. Does not affect common blocks. (Some
-- Fortran compilers provide this option under the name `-static' or
-- `-save'.) The default, which is `-fautomatic', uses the stack for
-- local variables smaller than the value given by
-- `-fmax-stack-var-size'. Use the option `-frecursive' to use no
-- static memory.
--
--`-ff2c'
-- Generate code designed to be compatible with code generated by
-- `g77' and `f2c'.
--
-- The calling conventions used by `g77' (originally implemented in
-- `f2c') require functions that return type default `REAL' to
-- actually return the C type `double', and functions that return
-- type `COMPLEX' to return the values via an extra argument in the
-- calling sequence that points to where to store the return value.
-- Under the default GNU calling conventions, such functions simply
-- return their results as they would in GNU C--default `REAL'
-- functions return the C type `float', and `COMPLEX' functions
-- return the GNU C type `complex'. Additionally, this option
-- implies the `-fsecond-underscore' option, unless
-- `-fno-second-underscore' is explicitly requested.
--
-- This does not affect the generation of code that interfaces with
-- the `libgfortran' library.
--
-- _Caution:_ It is not a good idea to mix Fortran code compiled with
-- `-ff2c' with code compiled with the default `-fno-f2c' calling
-- conventions as, calling `COMPLEX' or default `REAL' functions
-- between program parts which were compiled with different calling
-- conventions will break at execution time.
--
-- _Caution:_ This will break code which passes intrinsic functions
-- of type default `REAL' or `COMPLEX' as actual arguments, as the
-- library implementations use the `-fno-f2c' calling conventions.
--
--`-fno-underscoring'
-- Do not transform names of entities specified in the Fortran source
-- file by appending underscores to them.
--
-- With `-funderscoring' in effect, GNU Fortran appends one
-- underscore to external names with no underscores. This is done to
-- ensure compatibility with code produced by many UNIX Fortran
-- compilers.
--
-- _Caution_: The default behavior of GNU Fortran is incompatible
-- with `f2c' and `g77', please use the `-ff2c' option if you want
-- object files compiled with GNU Fortran to be compatible with
-- object code created with these tools.
--
-- Use of `-fno-underscoring' is not recommended unless you are
-- experimenting with issues such as integration of GNU Fortran into
-- existing system environments (vis-a`-vis existing libraries, tools,
-- and so on).
--
-- For example, with `-funderscoring', and assuming other defaults
-- like `-fcase-lower' and that `j()' and `max_count()' are external
-- functions while `my_var' and `lvar' are local variables, a
-- statement like
-- I = J() + MAX_COUNT (MY_VAR, LVAR)
-- is implemented as something akin to:
-- i = j_() + max_count__(&my_var__, &lvar);
--
-- With `-fno-underscoring', the same statement is implemented as:
--
-- i = j() + max_count(&my_var, &lvar);
--
-- Use of `-fno-underscoring' allows direct specification of
-- user-defined names while debugging and when interfacing GNU Fortran
-- code with other languages.
--
-- Note that just because the names match does _not_ mean that the
-- interface implemented by GNU Fortran for an external name matches
-- the interface implemented by some other language for that same
-- name. That is, getting code produced by GNU Fortran to link to
-- code produced by some other compiler using this or any other
-- method can be only a small part of the overall solution--getting
-- the code generated by both compilers to agree on issues other than
-- naming can require significant effort, and, unlike naming
-- disagreements, linkers normally cannot detect disagreements in
-- these other areas.
--
-- Also, note that with `-fno-underscoring', the lack of appended
-- underscores introduces the very real possibility that a
-- user-defined external name will conflict with a name in a system
-- library, which could make finding unresolved-reference bugs quite
-- difficult in some cases--they might occur at program run time, and
-- show up only as buggy behavior at run time.
--
-- In future versions of GNU Fortran we hope to improve naming and
-- linking issues so that debugging always involves using the names
-- as they appear in the source, even if the names as seen by the
-- linker are mangled to prevent accidental linking between
-- procedures with incompatible interfaces.
--
--`-fsecond-underscore'
-- By default, GNU Fortran appends an underscore to external names.
-- If this option is used GNU Fortran appends two underscores to
-- names with underscores and one underscore to external names with
-- no underscores. GNU Fortran also appends two underscores to
-- internal names with underscores to avoid naming collisions with
-- external names.
--
-- This option has no effect if `-fno-underscoring' is in effect. It
-- is implied by the `-ff2c' option.
--
-- Otherwise, with this option, an external name such as `MAX_COUNT'
-- is implemented as a reference to the link-time external symbol
-- `max_count__', instead of `max_count_'. This is required for
-- compatibility with `g77' and `f2c', and is implied by use of the
-- `-ff2c' option.
--
--`-fbounds-check'
-- Enable generation of run-time checks for array subscripts and
-- against the declared minimum and maximum values. It also checks
-- array indices for assumed and deferred shape arrays against the
-- actual allocated bounds and ensures that all string lengths are
-- equal for character array constructors without an explicit
-- typespec.
--
-- Some checks require that `-fbounds-check' is set for the
-- compilation of the main program.
--
-- Note: In the future this may also include other forms of checking,
-- e.g., checking substring references.
--
--`fcheck-array-temporaries'
-- Warns at run time when for passing an actual argument a temporary
-- array had to be generated. The information generated by this
-- warning is sometimes useful in optimization, in order to avoid
-- such temporaries.
--
-- Note: The warning is only printed once per location.
--
--`-fmax-array-constructor=N'
-- This option can be used to increase the upper limit permitted in
-- array constructors. The code below requires this option to expand
-- the array at compile time.
--
-- `program test'
-- `implicit none'
-- `integer j'
-- `integer, parameter :: n = 100000'
-- `integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)'
-- `print '(10(I0,1X))', i'
-- `end program test'
--
-- _Caution: This option can lead to long compile times and
-- excessively large object files._
--
-- The default value for N is 65535.
--
--`-fmax-stack-var-size=N'
-- This option specifies the size in bytes of the largest array that
-- will be put on the stack; if the size is exceeded static memory is
-- used (except in procedures marked as RECURSIVE). Use the option
-- `-frecursive' to allow for recursive procedures which do not have
-- a RECURSIVE attribute or for parallel programs. Use
-- `-fno-automatic' to never use the stack.
--
-- This option currently only affects local arrays declared with
-- constant bounds, and may not apply to all character variables.
-- Future versions of GNU Fortran may improve this behavior.
--
-- The default value for N is 32768.
--
--`-fpack-derived'
-- This option tells GNU Fortran to pack derived type members as
-- closely as possible. Code compiled with this option is likely to
-- be incompatible with code compiled without this option, and may
-- execute slower.
--
--`-frepack-arrays'
-- In some circumstances GNU Fortran may pass assumed shape array
-- sections via a descriptor describing a noncontiguous area of
-- memory. This option adds code to the function prologue to repack
-- the data into a contiguous block at runtime.
--
-- This should result in faster accesses to the array. However it
-- can introduce significant overhead to the function call,
-- especially when the passed data is noncontiguous.
--
--`-fshort-enums'
-- This option is provided for interoperability with C code that was
-- compiled with the `-fshort-enums' option. It will make GNU
-- Fortran choose the smallest `INTEGER' kind a given enumerator set
-- will fit in, and give all its enumerators this kind.
--
--`-fexternal-blas'
-- This option will make `gfortran' generate calls to BLAS functions
-- for some matrix operations like `MATMUL', instead of using our own
-- algorithms, if the size of the matrices involved is larger than a
-- given limit (see `-fblas-matmul-limit'). This may be profitable
-- if an optimized vendor BLAS library is available. The BLAS
-- library will have to be specified at link time.
--
--`-fblas-matmul-limit=N'
-- Only significant when `-fexternal-blas' is in effect. Matrix
-- multiplication of matrices with size larger than (or equal to) N
-- will be performed by calls to BLAS functions, while others will be
-- handled by `gfortran' internal algorithms. If the matrices
-- involved are not square, the size comparison is performed using the
-- geometric mean of the dimensions of the argument and result
-- matrices.
--
-- The default value for N is 30.
--
--`-frecursive'
-- Allow indirect recursion by forcing all local arrays to be
-- allocated on the stack. This flag cannot be used together with
-- `-fmax-stack-var-size=' or `-fno-automatic'.
--
--`-finit-local-zero'
--
--`-finit-integer=N'
--
--`-finit-real=<ZERO|INF|-INF|NAN>'
--
--`-finit-logical=<TRUE|FALSE>'
--
--`-finit-character=N'
-- The `-finit-local-zero' option instructs the compiler to
-- initialize local `INTEGER', `REAL', and `COMPLEX' variables to
-- zero, `LOGICAL' variables to false, and `CHARACTER' variables to a
-- string of null bytes. Finer-grained initialization options are
-- provided by the `-finit-integer=N',
-- `-finit-real=<ZERO|INF|-INF|NAN>' (which also initializes the real
-- and imaginary parts of local `COMPLEX' variables),
-- `-finit-logical=<TRUE|FALSE>', and `-finit-character=N' (where N
-- is an ASCII character value) options. These options do not
-- initialize components of derived type variables, nor do they
-- initialize variables that appear in an `EQUIVALENCE' statement.
-- (This limitation may be removed in future releases).
--
-- Note that the `-finit-real=nan' option initializes `REAL' and
-- `COMPLEX' variables with a quiet NaN.
--
--`-falign-commons'
-- By default, `gfortran' enforces proper alignment of all variables
-- in a COMMON block by padding them as needed. On certain platforms
-- this is mandatory, on others it increases performance. If a COMMON
-- block is not declared with consistent data types everywhere, this
-- padding can cause trouble, and `-fno-align-commons ' can be used
-- to disable automatic alignment. The same form of this option
-- should be used for all files that share a COMMON block. To avoid
-- potential alignment issues in COMMON blocks, it is recommended to
-- order objects from largests to smallest.
--
-- *Note Options for Code Generation Conventions: (gcc)Code Gen
--Options, for information on more options offered by the GBE shared by
--`gfortran', `gcc', and other GNU compilers.
--
--
--File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran
--
--2.10 Environment variables affecting `gfortran'
--===============================================
--
--The `gfortran' compiler currently does not make use of any environment
--variables to control its operation above and beyond those that affect
--the operation of `gcc'.
--
-- *Note Environment Variables Affecting GCC: (gcc)Environment
--Variables, for information on environment variables.
--
-- *Note Runtime::, for environment variables that affect the run-time
--behavior of programs compiled with GNU Fortran.
--
--
--File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top
--
--3 Runtime: Influencing runtime behavior with environment variables
--*******************************************************************
--
--The behavior of the `gfortran' can be influenced by environment
--variables.
--
-- Malformed environment variables are silently ignored.
--
--* Menu:
--
--* GFORTRAN_STDIN_UNIT:: Unit number for standard input
--* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
--* GFORTRAN_STDERR_UNIT:: Unit number for standard error
--* GFORTRAN_USE_STDERR:: Send library output to standard error
--* GFORTRAN_TMPDIR:: Directory for scratch files
--* GFORTRAN_UNBUFFERED_ALL:: Don't buffer I/O for all units.
--* GFORTRAN_UNBUFFERED_PRECONNECTED:: Don't buffer I/O for preconnected units.
--* GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
--* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
--* GFORTRAN_DEFAULT_RECL:: Default record length for new files
--* GFORTRAN_LIST_SEPARATOR:: Separator for list output
--* GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
--* GFORTRAN_ERROR_DUMPCORE:: Dump core on run-time errors
--* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
--
--
--File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Up: Runtime
--
--3.1 `GFORTRAN_STDIN_UNIT'--Unit number for standard input
--=========================================================
--
--This environment variable can be used to select the unit number
--preconnected to standard input. This must be a positive integer. The
--default value is 5.
--
--
--File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime
--
--3.2 `GFORTRAN_STDOUT_UNIT'--Unit number for standard output
--===========================================================
--
--This environment variable can be used to select the unit number
--preconnected to standard output. This must be a positive integer. The
--default value is 6.
--
--
--File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_USE_STDERR, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime
--
--3.3 `GFORTRAN_STDERR_UNIT'--Unit number for standard error
--==========================================================
--
--This environment variable can be used to select the unit number
--preconnected to standard error. This must be a positive integer. The
--default value is 0.
--
--
--File: gfortran.info, Node: GFORTRAN_USE_STDERR, Next: GFORTRAN_TMPDIR, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime
--
--3.4 `GFORTRAN_USE_STDERR'--Send library output to standard error
--================================================================
--
--This environment variable controls where library output is sent. If
--the first letter is `y', `Y' or `1', standard error is used. If the
--first letter is `n', `N' or `0', standard output is used.
--
--
--File: gfortran.info, Node: GFORTRAN_TMPDIR, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_USE_STDERR, Up: Runtime
--
--3.5 `GFORTRAN_TMPDIR'--Directory for scratch files
--==================================================
--
--This environment variable controls where scratch files are created. If
--this environment variable is missing, GNU Fortran searches for the
--environment variable `TMP'. If this is also missing, the default is
--`/tmp'.
--
--
--File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_TMPDIR, Up: Runtime
--
--3.6 `GFORTRAN_UNBUFFERED_ALL'--Don't buffer I/O on all units
--============================================================
--
--This environment variable controls whether all I/O is unbuffered. If
--the first letter is `y', `Y' or `1', all I/O is unbuffered. This will
--slow down small sequential reads and writes. If the first letter is
--`n', `N' or `0', I/O is buffered. This is the default.
--
--
--File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime
--
--3.7 `GFORTRAN_UNBUFFERED_PRECONNECTED'--Don't buffer I/O on preconnected units
--==============================================================================
--
--The environment variable named `GFORTRAN_UNBUFFERED_PRECONNECTED'
--controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
--unbuffered. If the first letter is `y', `Y' or `1', I/O is unbuffered.
--This will slow down small sequential reads and writes. If the first
--letter is `n', `N' or `0', I/O is buffered. This is the default.
--
--
--File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime
--
--3.8 `GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
--===========================================================
--
--If the first letter is `y', `Y' or `1', filename and line numbers for
--runtime errors are printed. If the first letter is `n', `N' or `0',
--don't print filename and line numbers for runtime errors. The default
--is to print the location.
--
--
--File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime
--
--3.9 `GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
--=============================================================
--
--If the first letter is `y', `Y' or `1', a plus sign is printed where
--permitted by the Fortran standard. If the first letter is `n', `N' or
--`0', a plus sign is not printed in most cases. Default is not to print
--plus signs.
--
--
--File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime
--
--3.10 `GFORTRAN_DEFAULT_RECL'--Default record length for new files
--=================================================================
--
--This environment variable specifies the default record length, in
--bytes, for files which are opened without a `RECL' tag in the `OPEN'
--statement. This must be a positive integer. The default value is
--1073741824 bytes (1 GB).
--
--
--File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime
--
--3.11 `GFORTRAN_LIST_SEPARATOR'--Separator for list output
--=========================================================
--
--This environment variable specifies the separator when writing
--list-directed output. It may contain any number of spaces and at most
--one comma. If you specify this on the command line, be sure to quote
--spaces, as in
-- $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
-- when `a.out' is the compiled Fortran program that you want to run.
--Default is a single space.
--
--
--File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_DUMPCORE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime
--
--3.12 `GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
--================================================================
--
--By setting the `GFORTRAN_CONVERT_UNIT' variable, it is possible to
--change the representation of data for unformatted files. The syntax
--for the `GFORTRAN_CONVERT_UNIT' variable is:
-- GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
-- mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
-- exception: mode ':' unit_list | unit_list ;
-- unit_list: unit_spec | unit_list unit_spec ;
-- unit_spec: INTEGER | INTEGER '-' INTEGER ;
-- The variable consists of an optional default mode, followed by a
--list of optional exceptions, which are separated by semicolons from the
--preceding default and each other. Each exception consists of a format
--and a comma-separated list of units. Valid values for the modes are
--the same as for the `CONVERT' specifier:
--
-- `NATIVE' Use the native format. This is the default.
--
-- `SWAP' Swap between little- and big-endian.
--
-- `LITTLE_ENDIAN' Use the little-endian format for unformatted files.
--
-- `BIG_ENDIAN' Use the big-endian format for unformatted files.
-- A missing mode for an exception is taken to mean `BIG_ENDIAN'.
--Examples of values for `GFORTRAN_CONVERT_UNIT' are:
-- `'big_endian'' Do all unformatted I/O in big_endian mode.
--
-- `'little_endian;native:10-20,25'' Do all unformatted I/O in
-- little_endian mode, except for units 10 to 20 and 25, which are in
-- native format.
--
-- `'10-20'' Units 10 to 20 are big-endian, the rest is native.
--
-- Setting the environment variables should be done on the command line
--or via the `export' command for `sh'-compatible shells and via `setenv'
--for `csh'-compatible shells.
--
-- Example for `sh':
-- $ gfortran foo.f90
-- $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
--
-- Example code for `csh':
-- % gfortran foo.f90
-- % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
-- % ./a.out
--
-- Using anything but the native representation for unformatted data
--carries a significant speed overhead. If speed in this area matters to
--you, it is best if you use this only for data that needs to be portable.
--
-- *Note CONVERT specifier::, for an alternative way to specify the
--data representation for unformatted files. *Note Runtime Options::, for
--setting a default data representation for the whole program. The
--`CONVERT' specifier overrides the `-fconvert' compile options.
--
-- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
--environment variable will override the CONVERT specifier in the open
--statement_. This is to give control over data formats to users who do
--not have the source code of their program available.
--
--
--File: gfortran.info, Node: GFORTRAN_ERROR_DUMPCORE, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime
--
--3.13 `GFORTRAN_ERROR_DUMPCORE'--Dump core on run-time errors
--============================================================
--
--If the `GFORTRAN_ERROR_DUMPCORE' variable is set to `y', `Y' or `1'
--(only the first letter is relevant) then library run-time errors cause
--core dumps. To disable the core dumps, set the variable to `n', `N',
--`0'. Default is not to core dump unless the `-fdump-core' compile option
--was used.
--
--
--File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_ERROR_DUMPCORE, Up: Runtime
--
--3.14 `GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
--==================================================================
--
--If the `GFORTRAN_ERROR_BACKTRACE' variable is set to `y', `Y' or `1'
--(only the first letter is relevant) then a backtrace is printed when a
--run-time error occurs. To disable the backtracing, set the variable to
--`n', `N', `0'. Default is not to print a backtrace unless the
--`-fbacktrace' compile option was used.
--
--
--File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top
--
--4 Fortran 2003 and 2008 Status
--******************************
--
--* Menu:
--
--* Fortran 2003 status::
--* Fortran 2008 status::
--
--
--File: gfortran.info, Node: Fortran 2003 status, Next: Fortran 2008 status, Up: Fortran 2003 and 2008 status
--
--4.1 Fortran 2003 status
--=======================
--
--Although GNU Fortran focuses on implementing the Fortran 95 standard
--for the time being, a few Fortran 2003 features are currently available.
--
-- * Intrinsics `command_argument_count', `get_command',
-- `get_command_argument', `get_environment_variable', and
-- `move_alloc'.
--
-- * Array constructors using square brackets. That is, `[...]' rather
-- than `(/.../)'.
--
-- * `FLUSH' statement.
--
-- * `IOMSG=' specifier for I/O statements.
--
-- * Support for the declaration of enumeration constants via the
-- `ENUM' and `ENUMERATOR' statements. Interoperability with `gcc'
-- is guaranteed also for the case where the `-fshort-enums' command
-- line option is given.
--
-- * TR 15581:
-- * `ALLOCATABLE' dummy arguments.
--
-- * `ALLOCATABLE' function results
--
-- * `ALLOCATABLE' components of derived types
--
-- * The `OPEN' statement supports the `ACCESS='STREAM'' specifier,
-- allowing I/O without any record structure.
--
-- * Namelist input/output for internal files.
--
-- * The `PROTECTED' statement and attribute.
--
-- * The `VALUE' statement and attribute.
--
-- * The `VOLATILE' statement and attribute.
--
-- * The `IMPORT' statement, allowing to import host-associated derived
-- types.
--
-- * `USE' statement with `INTRINSIC' and `NON_INTRINSIC' attribute;
-- supported intrinsic modules: `ISO_FORTRAN_ENV', `OMP_LIB' and
-- `OMP_LIB_KINDS'.
--
-- * Renaming of operators in the `USE' statement.
--
-- * Interoperability with C (ISO C Bindings)
--
-- * BOZ as argument of INT, REAL, DBLE and CMPLX.
--
--
--
--File: gfortran.info, Node: Fortran 2008 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status
--
--4.2 Fortran 2008 status
--=======================
--
--The next version of the Fortran standard after Fortran 2003 is currently
--being worked on by the Working Group 5 of Sub-Committee 22 of the Joint
--Technical Committee 1 of the International Organization for
--Standardization (ISO) and the International Electrotechnical Commission
--(IEC). This group is known at WG5 (http://www.nag.co.uk/sc22wg5/). The
--next revision of the Fortran standard is informally referred to as
--Fortran 2008, reflecting its planned release year. The GNU Fortran
--compiler has support for some of the new features in Fortran 2008. This
--support is based on the latest draft, available from
--`http://www.nag.co.uk/sc22wg5/'. However, as the final standard may
--differ from the drafts, no guarantee of backward compatibility can be
--made and you should only use it for experimental purposes.
--
--
--File: gfortran.info, Node: Compiler Characteristics, Next: Extensions, Prev: Fortran 2003 and 2008 status, Up: Top
--
--5 Compiler Characteristics
--**************************
--
--This chapter describes certain characteristics of the GNU Fortran
--compiler, namely the KIND type parameter values supported.
--
--* Menu:
--
--* KIND Type Parameters::
--
--
--File: gfortran.info, Node: KIND Type Parameters, Up: Compiler Characteristics
--
--5.1 KIND Type Parameters
--========================
--
--The `KIND' type parameters supported by GNU Fortran for the primitive
--data types are:
--
--`INTEGER'
-- 1, 2, 4, 8*, 16*, default: 4 (1)
--
--`LOGICAL'
-- 1, 2, 4, 8*, 16*, default: 4 (1)
--
--`REAL'
-- 4, 8, 10**, 16**, default: 4 (2)
--
--`COMPLEX'
-- 4, 8, 10**, 16**, default: 4 (2)
--
--`CHARACTER'
-- 1, 4, default: 1
--
--
--* = not available on all systems
--** = not available on all systems; additionally 10 and 16 are never
--available at the same time
--(1) Unless -fdefault-integer-8 is used
--(2) Unless -fdefault-real-8 is used
--
--The `KIND' value matches the storage size in bytes, except for
--`COMPLEX' where the storage size is twice as much (or both real and
--imaginary part are a real value of the given size). It is recommended
--to use the `SELECT_*_KIND' intrinsics instead of the concrete values.
--
--
--File: gfortran.info, Node: Extensions, Next: Intrinsic Procedures, Prev: Compiler Characteristics, Up: Top
--
--6 Extensions
--************
--
--The two sections below detail the extensions to standard Fortran that
--are implemented in GNU Fortran, as well as some of the popular or
--historically important extensions that are not (or not yet) implemented.
--For the latter case, we explain the alternatives available to GNU
--Fortran users, including replacement by standard-conforming code or GNU
--extensions.
--
--* Menu:
--
--* Extensions implemented in GNU Fortran::
--* Extensions not implemented in GNU Fortran::
--
--
--File: gfortran.info, Node: Extensions implemented in GNU Fortran, Next: Extensions not implemented in GNU Fortran, Up: Extensions
--
--6.1 Extensions implemented in GNU Fortran
--=========================================
--
--GNU Fortran implements a number of extensions over standard Fortran.
--This chapter contains information on their syntax and meaning. There
--are currently two categories of GNU Fortran extensions, those that
--provide functionality beyond that provided by any standard, and those
--that are supported by GNU Fortran purely for backward compatibility
--with legacy compilers. By default, `-std=gnu' allows the compiler to
--accept both types of extensions, but to warn about the use of the
--latter. Specifying either `-std=f95', `-std=f2003' or `-std=f2008'
--disables both types of extensions, and `-std=legacy' allows both
--without warning.
--
--* Menu:
--
--* Old-style kind specifications::
--* Old-style variable initialization::
--* Extensions to namelist::
--* X format descriptor without count field::
--* Commas in FORMAT specifications::
--* Missing period in FORMAT specifications::
--* I/O item lists::
--* BOZ literal constants::
--* Real array indices::
--* Unary operators::
--* Implicitly convert LOGICAL and INTEGER values::
--* Hollerith constants support::
--* Cray pointers::
--* CONVERT specifier::
--* OpenMP::
--* Argument list functions::
--
--
--File: gfortran.info, Node: Old-style kind specifications, Next: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
--
--6.1.1 Old-style kind specifications
-------------------------------------
--
--GNU Fortran allows old-style kind specifications in declarations. These
--look like:
-- TYPESPEC*size x,y,z
-- where `TYPESPEC' is a basic type (`INTEGER', `REAL', etc.), and
--where `size' is a byte count corresponding to the storage size of a
--valid kind for that type. (For `COMPLEX' variables, `size' is the
--total size of the real and imaginary parts.) The statement then
--declares `x', `y' and `z' to be of type `TYPESPEC' with the appropriate
--kind. This is equivalent to the standard-conforming declaration
-- TYPESPEC(k) x,y,z
-- where `k' is the kind parameter suitable for the intended precision.
--As kind parameters are implementation-dependent, use the `KIND',
--`SELECTED_INT_KIND' and `SELECTED_REAL_KIND' intrinsics to retrieve the
--correct value, for instance `REAL*8 x' can be replaced by:
-- INTEGER, PARAMETER :: dbl = KIND(1.0d0)
-- REAL(KIND=dbl) :: x
--
--
--File: gfortran.info, Node: Old-style variable initialization, Next: Extensions to namelist, Prev: Old-style kind specifications, Up: Extensions implemented in GNU Fortran
--
--6.1.2 Old-style variable initialization
-----------------------------------------
--
--GNU Fortran allows old-style initialization of variables of the form:
-- INTEGER i/1/,j/2/
-- REAL x(2,2) /3*0.,1./
-- The syntax for the initializers is as for the `DATA' statement, but
--unlike in a `DATA' statement, an initializer only applies to the
--variable immediately preceding the initialization. In other words,
--something like `INTEGER I,J/2,3/' is not valid. This style of
--initialization is only allowed in declarations without double colons
--(`::'); the double colons were introduced in Fortran 90, which also
--introduced a standard syntax for initializing variables in type
--declarations.
--
-- Examples of standard-conforming code equivalent to the above example
--are:
-- ! Fortran 90
-- INTEGER :: i = 1, j = 2
-- REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
-- ! Fortran 77
-- INTEGER i, j
-- REAL x(2,2)
-- DATA i/1/, j/2/, x/3*0.,1./
--
-- Note that variables which are explicitly initialized in declarations
--or in `DATA' statements automatically acquire the `SAVE' attribute.
--
--
--File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
--
--6.1.3 Extensions to namelist
------------------------------
--
--GNU Fortran fully supports the Fortran 95 standard for namelist I/O
--including array qualifiers, substrings and fully qualified derived
--types. The output from a namelist write is compatible with namelist
--read. The output has all names in upper case and indentation to column
--1 after the namelist name. Two extensions are permitted:
--
-- Old-style use of `$' instead of `&'
-- $MYNML
-- X(:)%Y(2) = 1.0 2.0 3.0
-- CH(1:4) = "abcd"
-- $END
--
-- It should be noted that the default terminator is `/' rather than
--`&END'.
--
-- Querying of the namelist when inputting from stdin. After at least
--one space, entering `?' sends to stdout the namelist name and the names
--of the variables in the namelist:
-- ?
--
-- &mynml
-- x
-- x%y
-- ch
-- &end
--
-- Entering `=?' outputs the namelist to stdout, as if `WRITE(*,NML =
--mynml)' had been called:
-- =?
--
-- &MYNML
-- X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
-- X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
-- X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
-- CH=abcd, /
--
-- To aid this dialog, when input is from stdin, errors send their
--messages to stderr and execution continues, even if `IOSTAT' is set.
--
-- `PRINT' namelist is permitted. This causes an error if `-std=f95'
--is used.
-- PROGRAM test_print
-- REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
-- NAMELIST /mynml/ x
-- PRINT mynml
-- END PROGRAM test_print
--
-- Expanded namelist reads are permitted. This causes an error if
--`-std=f95' is used. In the following example, the first element of the
--array will be given the value 0.00 and the two succeeding elements will
--be given the values 1.00 and 2.00.
-- &MYNML
-- X(1,1) = 0.00 , 1.00 , 2.00
-- /
--
--
--File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran
--
--6.1.4 `X' format descriptor without count field
-------------------------------------------------
--
--To support legacy codes, GNU Fortran permits the count field of the `X'
--edit descriptor in `FORMAT' statements to be omitted. When omitted,
--the count is implicitly assumed to be one.
--
-- PRINT 10, 2, 3
-- 10 FORMAT (I1, X, I1)
--
--
--File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran
--
--6.1.5 Commas in `FORMAT' specifications
-----------------------------------------
--
--To support legacy codes, GNU Fortran allows the comma separator to be
--omitted immediately before and after character string edit descriptors
--in `FORMAT' statements.
--
-- PRINT 10, 2, 3
-- 10 FORMAT ('FOO='I1' BAR='I2)
--
--
--File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran
--
--6.1.6 Missing period in `FORMAT' specifications
-------------------------------------------------
--
--To support legacy codes, GNU Fortran allows missing periods in format
--specifications if and only if `-std=legacy' is given on the command
--line. This is considered non-conforming code and is discouraged.
--
-- REAL :: value
-- READ(*,10) value
-- 10 FORMAT ('F4')
--
--
--File: gfortran.info, Node: I/O item lists, Next: BOZ literal constants, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran
--
--6.1.7 I/O item lists
----------------------
--
--To support legacy codes, GNU Fortran allows the input item list of the
--`READ' statement, and the output item lists of the `WRITE' and `PRINT'
--statements, to start with a comma.
--
--
--File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran
--
--6.1.8 BOZ literal constants
-----------------------------
--
--Besides decimal constants, Fortran also supports binary (`b'), octal
--(`o') and hexadecimal (`z') integer constants. The syntax is: `prefix
--quote digits quote', were the prefix is either `b', `o' or `z', quote
--is either `'' or `"' and the digits are for binary `0' or `1', for
--octal between `0' and `7', and for hexadecimal between `0' and `F'.
--(Example: `b'01011101''.)
--
-- Up to Fortran 95, BOZ literals were only allowed to initialize
--integer variables in DATA statements. Since Fortran 2003 BOZ literals
--are also allowed as argument of `REAL', `DBLE', `INT' and `CMPLX'; the
--result is the same as if the integer BOZ literal had been converted by
--`TRANSFER' to, respectively, `real', `double precision', `integer' or
--`complex'. As GNU Fortran extension the intrinsic procedures `FLOAT',
--`DFLOAT', `COMPLEX' and `DCMPLX' are treated alike.
--
-- As an extension, GNU Fortran allows hexadecimal BOZ literal
--constants to be specified using the `X' prefix, in addition to the
--standard `Z' prefix. The BOZ literal can also be specified by adding a
--suffix to the string, for example, `Z'ABC'' and `'ABC'Z' are equivalent.
--
-- Furthermore, GNU Fortran allows using BOZ literal constants outside
--DATA statements and the four intrinsic functions allowed by Fortran
--2003. In DATA statements, in direct assignments, where the right-hand
--side only contains a BOZ literal constant, and for old-style
--initializers of the form `integer i /o'0173'/', the constant is
--transferred as if `TRANSFER' had been used; for `COMPLEX' numbers, only
--the real part is initialized unless `CMPLX' is used. In all other
--cases, the BOZ literal constant is converted to an `INTEGER' value with
--the largest decimal representation. This value is then converted
--numerically to the type and kind of the variable in question. (For
--instance `real :: r = b'0000001' + 1' initializes `r' with `2.0'.) As
--different compilers implement the extension differently, one should be
--careful when doing bitwise initialization of non-integer variables.
--
-- Note that initializing an `INTEGER' variable with a statement such
--as `DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather
--than the desired result of -1 when `i' is a 32-bit integer on a system
--that supports 64-bit integers. The `-fno-range-check' option can be
--used as a workaround for legacy code that initializes integers in this
--manner.
--
--
--File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran
--
--6.1.9 Real array indices
--------------------------
--
--As an extension, GNU Fortran allows the use of `REAL' expressions or
--variables as array indices.
--
--
--File: gfortran.info, Node: Unary operators, Next: Implicitly convert LOGICAL and INTEGER values, Prev: Real array indices, Up: Extensions implemented in GNU Fortran
--
--6.1.10 Unary operators
------------------------
--
--As an extension, GNU Fortran allows unary plus and unary minus operators
--to appear as the second operand of binary arithmetic operators without
--the need for parenthesis.
--
-- X = Y * -Z
--
--
--File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran
--
--6.1.11 Implicitly convert `LOGICAL' and `INTEGER' values
----------------------------------------------------------
--
--As an extension for backwards compatibility with other compilers, GNU
--Fortran allows the implicit conversion of `LOGICAL' values to `INTEGER'
--values and vice versa. When converting from a `LOGICAL' to an
--`INTEGER', `.FALSE.' is interpreted as zero, and `.TRUE.' is
--interpreted as one. When converting from `INTEGER' to `LOGICAL', the
--value zero is interpreted as `.FALSE.' and any nonzero value is
--interpreted as `.TRUE.'.
--
-- LOGICAL :: l
-- l = 1
--
-- INTEGER :: i
-- i = .TRUE.
--
-- However, there is no implicit conversion of `INTEGER' values in
--`if'-statements, nor of `LOGICAL' or `INTEGER' values in I/O operations.
--
--
--File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran
--
--6.1.12 Hollerith constants support
------------------------------------
--
--GNU Fortran supports Hollerith constants in assignments, function
--arguments, and `DATA' and `ASSIGN' statements. A Hollerith constant is
--written as a string of characters preceded by an integer constant
--indicating the character count, and the letter `H' or `h', and stored
--in bytewise fashion in a numeric (`INTEGER', `REAL', or `complex') or
--`LOGICAL' variable. The constant will be padded or truncated to fit
--the size of the variable in which it is stored.
--
-- Examples of valid uses of Hollerith constants:
-- complex*16 x(2)
-- data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
-- x(1) = 16HABCDEFGHIJKLMNOP
-- call foo (4h abc)
--
-- Invalid Hollerith constants examples:
-- integer*4 a
-- a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
-- a = 0H ! At least one character is needed.
--
-- In general, Hollerith constants were used to provide a rudimentary
--facility for handling character strings in early Fortran compilers,
--prior to the introduction of `CHARACTER' variables in Fortran 77; in
--those cases, the standard-compliant equivalent is to convert the
--program to use proper character strings. On occasion, there may be a
--case where the intent is specifically to initialize a numeric variable
--with a given byte sequence. In these cases, the same result can be
--obtained by using the `TRANSFER' statement, as in this example.
-- INTEGER(KIND=4) :: a
-- a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
--
--
--File: gfortran.info, Node: Cray pointers, Next: CONVERT specifier, Prev: Hollerith constants support, Up: Extensions implemented in GNU Fortran
--
--6.1.13 Cray pointers
----------------------
--
--Cray pointers are part of a non-standard extension that provides a
--C-like pointer in Fortran. This is accomplished through a pair of
--variables: an integer "pointer" that holds a memory address, and a
--"pointee" that is used to dereference the pointer.
--
-- Pointer/pointee pairs are declared in statements of the form:
-- pointer ( <pointer> , <pointee> )
-- or,
-- pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
-- The pointer is an integer that is intended to hold a memory address.
--The pointee may be an array or scalar. A pointee can be an assumed
--size array--that is, the last dimension may be left unspecified by
--using a `*' in place of a value--but a pointee cannot be an assumed
--shape array. No space is allocated for the pointee.
--
-- The pointee may have its type declared before or after the pointer
--statement, and its array specification (if any) may be declared before,
--during, or after the pointer statement. The pointer may be declared as
--an integer prior to the pointer statement. However, some machines have
--default integer sizes that are different than the size of a pointer,
--and so the following code is not portable:
-- integer ipt
-- pointer (ipt, iarr)
-- If a pointer is declared with a kind that is too small, the compiler
--will issue a warning; the resulting binary will probably not work
--correctly, because the memory addresses stored in the pointers may be
--truncated. It is safer to omit the first line of the above example; if
--explicit declaration of ipt's type is omitted, then the compiler will
--ensure that ipt is an integer variable large enough to hold a pointer.
--
-- Pointer arithmetic is valid with Cray pointers, but it is not the
--same as C pointer arithmetic. Cray pointers are just ordinary
--integers, so the user is responsible for determining how many bytes to
--add to a pointer in order to increment it. Consider the following
--example:
-- real target(10)
-- real pointee(10)
-- pointer (ipt, pointee)
-- ipt = loc (target)
-- ipt = ipt + 1
-- The last statement does not set `ipt' to the address of `target(1)',
--as it would in C pointer arithmetic. Adding `1' to `ipt' just adds one
--byte to the address stored in `ipt'.
--
-- Any expression involving the pointee will be translated to use the
--value stored in the pointer as the base address.
--
-- To get the address of elements, this extension provides an intrinsic
--function `LOC()'. The `LOC()' function is equivalent to the `&'
--operator in C, except the address is cast to an integer type:
-- real ar(10)
-- pointer(ipt, arpte(10))
-- real arpte
-- ipt = loc(ar) ! Makes arpte is an alias for ar
-- arpte(1) = 1.0 ! Sets ar(1) to 1.0
-- The pointer can also be set by a call to the `MALLOC' intrinsic (see
--*note MALLOC::).
--
-- Cray pointees often are used to alias an existing variable. For
--example:
-- integer target(10)
-- integer iarr(10)
-- pointer (ipt, iarr)
-- ipt = loc(target)
-- As long as `ipt' remains unchanged, `iarr' is now an alias for
--`target'. The optimizer, however, will not detect this aliasing, so it
--is unsafe to use `iarr' and `target' simultaneously. Using a pointee
--in any way that violates the Fortran aliasing rules or assumptions is
--illegal. It is the user's responsibility to avoid doing this; the
--compiler works under the assumption that no such aliasing occurs.
--
-- Cray pointers will work correctly when there is no aliasing (i.e.,
--when they are used to access a dynamically allocated block of memory),
--and also in any routine where a pointee is used, but any variable with
--which it shares storage is not used. Code that violates these rules
--may not run as the user intends. This is not a bug in the optimizer;
--any code that violates the aliasing rules is illegal. (Note that this
--is not unique to GNU Fortran; any Fortran compiler that supports Cray
--pointers will "incorrectly" optimize code with illegal aliasing.)
--
-- There are a number of restrictions on the attributes that can be
--applied to Cray pointers and pointees. Pointees may not have the
--`ALLOCATABLE', `INTENT', `OPTIONAL', `DUMMY', `TARGET', `INTRINSIC', or
--`POINTER' attributes. Pointers may not have the `DIMENSION', `POINTER',
--`TARGET', `ALLOCATABLE', `EXTERNAL', or `INTRINSIC' attributes.
--Pointees may not occur in more than one pointer statement. A pointee
--cannot be a pointer. Pointees cannot occur in equivalence, common, or
--data statements.
--
-- A Cray pointer may also point to a function or a subroutine. For
--example, the following excerpt is valid:
-- implicit none
-- external sub
-- pointer (subptr,subpte)
-- external subpte
-- subptr = loc(sub)
-- call subpte()
-- [...]
-- subroutine sub
-- [...]
-- end subroutine sub
--
-- A pointer may be modified during the course of a program, and this
--will change the location to which the pointee refers. However, when
--pointees are passed as arguments, they are treated as ordinary
--variables in the invoked function. Subsequent changes to the pointer
--will not change the base address of the array that was passed.
--
--
--File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran
--
--6.1.14 `CONVERT' specifier
----------------------------
--
--GNU Fortran allows the conversion of unformatted data between little-
--and big-endian representation to facilitate moving of data between
--different systems. The conversion can be indicated with the `CONVERT'
--specifier on the `OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for
--an alternative way of specifying the data format via an environment
--variable.
--
-- Valid values for `CONVERT' are:
-- `CONVERT='NATIVE'' Use the native format. This is the default.
--
-- `CONVERT='SWAP'' Swap between little- and big-endian.
--
-- `CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
-- unformatted files.
--
-- `CONVERT='BIG_ENDIAN'' Use the big-endian representation for
-- unformatted files.
--
-- Using the option could look like this:
-- open(file='big.dat',form='unformatted',access='sequential', &
-- convert='big_endian')
--
-- The value of the conversion can be queried by using
--`INQUIRE(CONVERT=ch)'. The values returned are `'BIG_ENDIAN'' and
--`'LITTLE_ENDIAN''.
--
-- `CONVERT' works between big- and little-endian for `INTEGER' values
--of all supported kinds and for `REAL' on IEEE systems of kinds 4 and 8.
--Conversion between different "extended double" types on different
--architectures such as m68k and x86_64, which GNU Fortran supports as
--`REAL(KIND=10)' and `REAL(KIND=16)', will probably not work.
--
-- _Note that the values specified via the GFORTRAN_CONVERT_UNIT
--environment variable will override the CONVERT specifier in the open
--statement_. This is to give control over data formats to users who do
--not have the source code of their program available.
--
-- Using anything but the native representation for unformatted data
--carries a significant speed overhead. If speed in this area matters to
--you, it is best if you use this only for data that needs to be portable.
--
--
--File: gfortran.info, Node: OpenMP, Next: Argument list functions, Prev: CONVERT specifier, Up: Extensions implemented in GNU Fortran
--
--6.1.15 OpenMP
---------------
--
--OpenMP (Open Multi-Processing) is an application programming interface
--(API) that supports multi-platform shared memory multiprocessing
--programming in C/C++ and Fortran on many architectures, including Unix
--and Microsoft Windows platforms. It consists of a set of compiler
--directives, library routines, and environment variables that influence
--run-time behavior.
--
-- GNU Fortran strives to be compatible to the OpenMP Application
--Program Interface v2.5
--(http://www.openmp.org/drupal/mp-documents/spec25.pdf).
--
-- To enable the processing of the OpenMP directive `!$omp' in
--free-form source code; the `c$omp', `*$omp' and `!$omp' directives in
--fixed form; the `!$' conditional compilation sentinels in free form;
--and the `c$', `*$' and `!$' sentinels in fixed form, `gfortran' needs
--to be invoked with the `-fopenmp'. This also arranges for automatic
--linking of the GNU OpenMP runtime library *note libgomp: (libgomp)Top.
--
-- The OpenMP Fortran runtime library routines are provided both in a
--form of a Fortran 90 module named `omp_lib' and in a form of a Fortran
--`include' file named `omp_lib.h'.
--
-- An example of a parallelized loop taken from Appendix A.1 of the
--OpenMP Application Program Interface v2.5:
-- SUBROUTINE A1(N, A, B)
-- INTEGER I, N
-- REAL B(N), A(N)
-- !$OMP PARALLEL DO !I is private by default
-- DO I=2,N
-- B(I) = (A(I) + A(I-1)) / 2.0
-- ENDDO
-- !$OMP END PARALLEL DO
-- END SUBROUTINE A1
--
-- Please note:
-- * `-fopenmp' implies `-frecursive', i.e., all local arrays will be
-- allocated on the stack. When porting existing code to OpenMP, this
-- may lead to surprising results, especially to segmentation faults
-- if the stacksize is limited.
--
-- * On glibc-based systems, OpenMP enabled applications can not be
-- statically linked due to limitations of the underlying
-- pthreads-implementation. It might be possible to get a working
-- solution if `-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
-- is added to the command line. However, this is not supported by
-- `gcc' and thus not recommended.
--
--
--File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran
--
--6.1.16 Argument list functions `%VAL', `%REF' and `%LOC'
----------------------------------------------------------
--
--GNU Fortran supports argument list functions `%VAL', `%REF' and `%LOC'
--statements, for backward compatibility with g77. It is recommended
--that these should be used only for code that is accessing facilities
--outside of GNU Fortran, such as operating system or windowing
--facilities. It is best to constrain such uses to isolated portions of a
--program-portions that deal specifically and exclusively with low-level,
--system-dependent facilities. Such portions might well provide a
--portable interface for use by the program as a whole, but are
--themselves not portable, and should be thoroughly tested each time they
--are rebuilt using a new compiler or version of a compiler.
--
-- `%VAL' passes a scalar argument by value, `%REF' passes it by
--reference and `%LOC' passes its memory location. Since gfortran
--already passes scalar arguments by reference, `%REF' is in effect a
--do-nothing. `%LOC' has the same effect as a fortran pointer.
--
-- An example of passing an argument by value to a C subroutine foo.:
-- C
-- C prototype void foo_ (float x);
-- C
-- external foo
-- real*4 x
-- x = 3.14159
-- call foo (%VAL (x))
-- end
--
-- For details refer to the g77 manual
--`http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top'.
--
-- Also, the gfortran testsuite c_by_val.f and its partner c_by_val.c
--are worth a look.
--
--
--File: gfortran.info, Node: Extensions not implemented in GNU Fortran, Prev: Extensions implemented in GNU Fortran, Up: Extensions
--
--6.2 Extensions not implemented in GNU Fortran
--=============================================
--
--The long history of the Fortran language, its wide use and broad
--userbase, the large number of different compiler vendors and the lack of
--some features crucial to users in the first standards have lead to the
--existence of a number of important extensions to the language. While
--some of the most useful or popular extensions are supported by the GNU
--Fortran compiler, not all existing extensions are supported. This
--section aims at listing these extensions and offering advice on how
--best make code that uses them running with the GNU Fortran compiler.
--
--* Menu:
--
--* STRUCTURE and RECORD::
--* ENCODE and DECODE statements::
--
--
--File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
--
--6.2.1 `STRUCTURE' and `RECORD'
--------------------------------
--
--Structures are user-defined aggregate data types; this functionality was
--standardized in Fortran 90 with an different syntax, under the name of
--"derived types". Here is an example of code using the non portable
--structure syntax:
--
-- ! Declaring a structure named ``item'' and containing three fields:
-- ! an integer ID, an description string and a floating-point price.
-- STRUCTURE /item/
-- INTEGER id
-- CHARACTER(LEN=200) description
-- REAL price
-- END STRUCTURE
--
-- ! Define two variables, an single record of type ``item''
-- ! named ``pear'', and an array of items named ``store_catalog''
-- RECORD /item/ pear, store_catalog(100)
--
-- ! We can directly access the fields of both variables
-- pear.id = 92316
-- pear.description = "juicy D'Anjou pear"
-- pear.price = 0.15
-- store_catalog(7).id = 7831
-- store_catalog(7).description = "milk bottle"
-- store_catalog(7).price = 1.2
--
-- ! We can also manipulate the whole structure
-- store_catalog(12) = pear
-- print *, store_catalog(12)
--
--This code can easily be rewritten in the Fortran 90 syntax as following:
--
-- ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
-- ! ``TYPE name ... END TYPE''
-- TYPE item
-- INTEGER id
-- CHARACTER(LEN=200) description
-- REAL price
-- END TYPE
--
-- ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
-- TYPE(item) pear, store_catalog(100)
--
-- ! Instead of using a dot (.) to access fields of a record, the
-- ! standard syntax uses a percent sign (%)
-- pear%id = 92316
-- pear%description = "juicy D'Anjou pear"
-- pear%price = 0.15
-- store_catalog(7)%id = 7831
-- store_catalog(7)%description = "milk bottle"
-- store_catalog(7)%price = 1.2
--
-- ! Assignments of a whole variable don't change
-- store_catalog(12) = pear
-- print *, store_catalog(12)
--
--
--File: gfortran.info, Node: ENCODE and DECODE statements, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran
--
--6.2.2 `ENCODE' and `DECODE' statements
----------------------------------------
--
--GNU Fortran doesn't support the `ENCODE' and `DECODE' statements.
--These statements are best replaced by `READ' and `WRITE' statements
--involving internal files (`CHARACTER' variables and arrays), which have
--been part of the Fortran standard since Fortran 77. For example,
--replace a code fragment like
--
-- INTEGER*1 LINE(80)
-- REAL A, B, C
-- c ... Code that sets LINE
-- DECODE (80, 9000, LINE) A, B, C
-- 9000 FORMAT (1X, 3(F10.5))
--
--with the following:
--
-- CHARACTER(LEN=80) LINE
-- REAL A, B, C
-- c ... Code that sets LINE
-- READ (UNIT=LINE, FMT=9000) A, B, C
-- 9000 FORMAT (1X, 3(F10.5))
--
-- Similarly, replace a code fragment like
--
-- INTEGER*1 LINE(80)
-- REAL A, B, C
-- c ... Code that sets A, B and C
-- ENCODE (80, 9000, LINE) A, B, C
-- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
--
--with the following:
--
-- INTEGER*1 LINE(80)
-- REAL A, B, C
-- c ... Code that sets A, B and C
-- WRITE (UNIT=LINE, FMT=9000) A, B, C
-- 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
--
--
--File: gfortran.info, Node: Intrinsic Procedures, Next: Intrinsic Modules, Prev: Extensions, Up: Top
--
--7 Intrinsic Procedures
--**********************
--
--* Menu:
--
--* Introduction: Introduction to Intrinsics
--* `ABORT': ABORT, Abort the program
--* `ABS': ABS, Absolute value
--* `ACCESS': ACCESS, Checks file access modes
--* `ACHAR': ACHAR, Character in ASCII collating sequence
--* `ACOS': ACOS, Arccosine function
--* `ACOSH': ACOSH, Hyperbolic arccosine function
--* `ADJUSTL': ADJUSTL, Left adjust a string
--* `ADJUSTR': ADJUSTR, Right adjust a string
--* `AIMAG': AIMAG, Imaginary part of complex number
--* `AINT': AINT, Truncate to a whole number
--* `ALARM': ALARM, Set an alarm clock
--* `ALL': ALL, Determine if all values are true
--* `ALLOCATED': ALLOCATED, Status of allocatable entity
--* `AND': AND, Bitwise logical AND
--* `ANINT': ANINT, Nearest whole number
--* `ANY': ANY, Determine if any values are true
--* `ASIN': ASIN, Arcsine function
--* `ASINH': ASINH, Hyperbolic arcsine function
--* `ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair
--* `ATAN': ATAN, Arctangent function
--* `ATAN2': ATAN2, Arctangent function
--* `ATANH': ATANH, Hyperbolic arctangent function
--* `BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0
--* `BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1
--* `BESSEL_JN': BESSEL_JN, Bessel function of the first kind
--* `BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0
--* `BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1
--* `BESSEL_YN': BESSEL_YN, Bessel function of the second kind
--* `BIT_SIZE': BIT_SIZE, Bit size inquiry function
--* `BTEST': BTEST, Bit test function
--* `C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer
--* `C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer
--* `C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
--* `C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure
--* `C_LOC': C_LOC, Obtain the C address of an object
--* `C_SIZEOF': C_SIZEOF, Size in bytes of an expression
--* `CEILING': CEILING, Integer ceiling function
--* `CHAR': CHAR, Integer-to-character conversion function
--* `CHDIR': CHDIR, Change working directory
--* `CHMOD': CHMOD, Change access permissions of files
--* `CMPLX': CMPLX, Complex conversion function
--* `COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
--* `COMPLEX': COMPLEX, Complex conversion function
--* `CONJG': CONJG, Complex conjugate function
--* `COS': COS, Cosine function
--* `COSH': COSH, Hyperbolic cosine function
--* `COUNT': COUNT, Count occurrences of TRUE in an array
--* `CPU_TIME': CPU_TIME, CPU time subroutine
--* `CSHIFT': CSHIFT, Circular shift elements of an array
--* `CTIME': CTIME, Subroutine (or function) to convert a time into a string
--* `DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
--* `DBLE': DBLE, Double precision conversion function
--* `DCMPLX': DCMPLX, Double complex conversion function
--* `DFLOAT': DFLOAT, Double precision conversion function
--* `DIGITS': DIGITS, Significant digits function
--* `DIM': DIM, Positive difference
--* `DOT_PRODUCT': DOT_PRODUCT, Dot product function
--* `DPROD': DPROD, Double product function
--* `DREAL': DREAL, Double real part function
--* `DTIME': DTIME, Execution time subroutine (or function)
--* `EOSHIFT': EOSHIFT, End-off shift elements of an array
--* `EPSILON': EPSILON, Epsilon function
--* `ERF': ERF, Error function
--* `ERFC': ERFC, Complementary error function
--* `ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function
--* `ETIME': ETIME, Execution time subroutine (or function)
--* `EXIT': EXIT, Exit the program with status.
--* `EXP': EXP, Exponential function
--* `EXPONENT': EXPONENT, Exponent function
--* `FDATE': FDATE, Subroutine (or function) to get the current time as a string
--* `FGET': FGET, Read a single character in stream mode from stdin
--* `FGETC': FGETC, Read a single character in stream mode
--* `FLOAT': FLOAT, Convert integer to default real
--* `FLOOR': FLOOR, Integer floor function
--* `FLUSH': FLUSH, Flush I/O unit(s)
--* `FNUM': FNUM, File number function
--* `FPUT': FPUT, Write a single character in stream mode to stdout
--* `FPUTC': FPUTC, Write a single character in stream mode
--* `FRACTION': FRACTION, Fractional part of the model representation
--* `FREE': FREE, Memory de-allocation subroutine
--* `FSEEK': FSEEK, Low level file positioning subroutine
--* `FSTAT': FSTAT, Get file status
--* `FTELL': FTELL, Current stream position
--* `GAMMA': GAMMA, Gamma function
--* `GERROR': GERROR, Get last system error message
--* `GETARG': GETARG, Get command line arguments
--* `GET_COMMAND': GET_COMMAND, Get the entire command line
--* `GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
--* `GETCWD': GETCWD, Get current working directory
--* `GETENV': GETENV, Get an environmental variable
--* `GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
--* `GETGID': GETGID, Group ID function
--* `GETLOG': GETLOG, Get login name
--* `GETPID': GETPID, Process ID function
--* `GETUID': GETUID, User ID function
--* `GMTIME': GMTIME, Convert time to GMT info
--* `HOSTNM': HOSTNM, Get system host name
--* `HUGE': HUGE, Largest number of a kind
--* `HYPOT': HYPOT, Euclidian distance function
--* `IACHAR': IACHAR, Code in ASCII collating sequence
--* `IAND': IAND, Bitwise logical and
--* `IARGC': IARGC, Get the number of command line arguments
--* `IBCLR': IBCLR, Clear bit
--* `IBITS': IBITS, Bit extraction
--* `IBSET': IBSET, Set bit
--* `ICHAR': ICHAR, Character-to-integer conversion function
--* `IDATE': IDATE, Current local time (day/month/year)
--* `IEOR': IEOR, Bitwise logical exclusive or
--* `IERRNO': IERRNO, Function to get the last system error number
--* `INDEX': INDEX intrinsic, Position of a substring within a string
--* `INT': INT, Convert to integer type
--* `INT2': INT2, Convert to 16-bit integer type
--* `INT8': INT8, Convert to 64-bit integer type
--* `IOR': IOR, Bitwise logical or
--* `IRAND': IRAND, Integer pseudo-random number
--* `IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value
--* `IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value
--* `ISATTY': ISATTY, Whether a unit is a terminal device
--* `ISHFT': ISHFT, Shift bits
--* `ISHFTC': ISHFTC, Shift bits circularly
--* `ISNAN': ISNAN, Tests for a NaN
--* `ITIME': ITIME, Current local time (hour/minutes/seconds)
--* `KILL': KILL, Send a signal to a process
--* `KIND': KIND, Kind of an entity
--* `LBOUND': LBOUND, Lower dimension bounds of an array
--* `LEADZ': LEADZ, Number of leading zero bits of an integer
--* `LEN': LEN, Length of a character entity
--* `LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters
--* `LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function
--* `LGE': LGE, Lexical greater than or equal
--* `LGT': LGT, Lexical greater than
--* `LINK': LINK, Create a hard link
--* `LLE': LLE, Lexical less than or equal
--* `LLT': LLT, Lexical less than
--* `LNBLNK': LNBLNK, Index of the last non-blank character in a string
--* `LOC': LOC, Returns the address of a variable
--* `LOG': LOG, Logarithm function
--* `LOG10': LOG10, Base 10 logarithm function
--* `LOGICAL': LOGICAL, Convert to logical type
--* `LONG': LONG, Convert to integer type
--* `LSHIFT': LSHIFT, Left shift bits
--* `LSTAT': LSTAT, Get file status
--* `LTIME': LTIME, Convert time to local time info
--* `MALLOC': MALLOC, Dynamic memory allocation function
--* `MATMUL': MATMUL, matrix multiplication
--* `MAX': MAX, Maximum value of an argument list
--* `MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind
--* `MAXLOC': MAXLOC, Location of the maximum value within an array
--* `MAXVAL': MAXVAL, Maximum value of an array
--* `MCLOCK': MCLOCK, Time function
--* `MCLOCK8': MCLOCK8, Time function (64-bit)
--* `MERGE': MERGE, Merge arrays
--* `MIN': MIN, Minimum value of an argument list
--* `MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind
--* `MINLOC': MINLOC, Location of the minimum value within an array
--* `MINVAL': MINVAL, Minimum value of an array
--* `MOD': MOD, Remainder function
--* `MODULO': MODULO, Modulo function
--* `MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another
--* `MVBITS': MVBITS, Move bits from one integer to another
--* `NEAREST': NEAREST, Nearest representable number
--* `NEW_LINE': NEW_LINE, New line character
--* `NINT': NINT, Nearest whole number
--* `NOT': NOT, Logical negation
--* `NULL': NULL, Function that returns an disassociated pointer
--* `OR': OR, Bitwise logical OR
--* `PACK': PACK, Pack an array into an array of rank one
--* `PERROR': PERROR, Print system error message
--* `PRECISION': PRECISION, Decimal precision of a real kind
--* `PRESENT': PRESENT, Determine whether an optional dummy argument is specified
--* `PRODUCT': PRODUCT, Product of array elements
--* `RADIX': RADIX, Base of a data model
--* `RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
--* `RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence
--* `RAND': RAND, Real pseudo-random number
--* `RANGE': RANGE, Decimal exponent range
--* `RAN': RAN, Real pseudo-random number
--* `REAL': REAL, Convert to real type
--* `RENAME': RENAME, Rename a file
--* `REPEAT': REPEAT, Repeated string concatenation
--* `RESHAPE': RESHAPE, Function to reshape an array
--* `RRSPACING': RRSPACING, Reciprocal of the relative spacing
--* `RSHIFT': RSHIFT, Right shift bits
--* `SCALE': SCALE, Scale a real value
--* `SCAN': SCAN, Scan a string for the presence of a set of characters
--* `SECNDS': SECNDS, Time function
--* `SECOND': SECOND, CPU time function
--* `SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind
--* `SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind
--* `SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind
--* `SET_EXPONENT': SET_EXPONENT, Set the exponent of the model
--* `SHAPE': SHAPE, Determine the shape of an array
--* `SIGN': SIGN, Sign copying function
--* `SIGNAL': SIGNAL, Signal handling subroutine (or function)
--* `SIN': SIN, Sine function
--* `SINH': SINH, Hyperbolic sine function
--* `SIZE': SIZE, Function to determine the size of an array
--* `SIZEOF': SIZEOF, Determine the size in bytes of an expression
--* `SLEEP': SLEEP, Sleep for the specified number of seconds
--* `SNGL': SNGL, Convert double precision real to default real
--* `SPACING': SPACING, Smallest distance between two numbers of a given type
--* `SPREAD': SPREAD, Add a dimension to an array
--* `SQRT': SQRT, Square-root function
--* `SRAND': SRAND, Reinitialize the random number generator
--* `STAT': STAT, Get file status
--* `SUM': SUM, Sum of array elements
--* `SYMLNK': SYMLNK, Create a symbolic link
--* `SYSTEM': SYSTEM, Execute a shell command
--* `SYSTEM_CLOCK': SYSTEM_CLOCK, Time function
--* `TAN': TAN, Tangent function
--* `TANH': TANH, Hyperbolic tangent function
--* `TIME': TIME, Time function
--* `TIME8': TIME8, Time function (64-bit)
--* `TINY': TINY, Smallest positive number of a real kind
--* `TRAILZ': TRAILZ, Number of trailing zero bits of an integer
--* `TRANSFER': TRANSFER, Transfer bit patterns
--* `TRANSPOSE': TRANSPOSE, Transpose an array of rank two
--* `TRIM': TRIM, Remove trailing blank characters of a string
--* `TTYNAM': TTYNAM, Get the name of a terminal device.
--* `UBOUND': UBOUND, Upper dimension bounds of an array
--* `UMASK': UMASK, Set the file creation mask
--* `UNLINK': UNLINK, Remove a file from the file system
--* `UNPACK': UNPACK, Unpack an array of rank one into an array
--* `VERIFY': VERIFY, Scan a string for the absence of a set of characters
--* `XOR': XOR, Bitwise logical exclusive or
--
--
--File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures
--
--7.1 Introduction to intrinsic procedures
--========================================
--
--The intrinsic procedures provided by GNU Fortran include all of the
--intrinsic procedures required by the Fortran 95 standard, a set of
--intrinsic procedures for backwards compatibility with G77, and a
--selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
--standards. Any conflict between a description here and a description in
--either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
--2008 standard is unintentional, and the standard(s) should be considered
--authoritative.
--
-- The enumeration of the `KIND' type parameter is processor defined in
--the Fortran 95 standard. GNU Fortran defines the default integer type
--and default real type by `INTEGER(KIND=4)' and `REAL(KIND=4)',
--respectively. The standard mandates that both data types shall have
--another kind, which have more precision. On typical target
--architectures supported by `gfortran', this kind type parameter is
--`KIND=8'. Hence, `REAL(KIND=8)' and `DOUBLE PRECISION' are equivalent.
--In the description of generic intrinsic procedures, the kind type
--parameter will be specified by `KIND=*', and in the description of
--specific names for an intrinsic procedure the kind type parameter will
--be explicitly given (e.g., `REAL(KIND=4)' or `REAL(KIND=8)'). Finally,
--for brevity the optional `KIND=' syntax will be omitted.
--
-- Many of the intrinsic procedures take one or more optional arguments.
--This document follows the convention used in the Fortran 95 standard,
--and denotes such arguments by square brackets.
--
-- GNU Fortran offers the `-std=f95' and `-std=gnu' options, which can
--be used to restrict the set of intrinsic procedures to a given
--standard. By default, `gfortran' sets the `-std=gnu' option, and so
--all intrinsic procedures described here are accepted. There is one
--caveat. For a select group of intrinsic procedures, `g77' implemented
--both a function and a subroutine. Both classes have been implemented
--in `gfortran' for backwards compatibility with `g77'. It is noted here
--that these functions and subroutines cannot be intermixed in a given
--subprogram. In the descriptions that follow, the applicable standard
--for each intrinsic procedure is noted.
--
--
--File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures
--
--7.2 `ABORT' -- Abort the program
--================================
--
--_Description_:
-- `ABORT' causes immediate termination of the program. On operating
-- systems that support a core dump, `ABORT' will produce a core dump
-- even if the option `-fno-dump-core' is in effect, which is
-- suitable for debugging purposes.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL ABORT'
--
--_Return value_:
-- Does not return.
--
--_Example_:
-- program test_abort
-- integer :: i = 1, j = 2
-- if (i /= j) call abort
-- end program test_abort
--
--_See also_:
-- *note EXIT::, *note KILL::
--
--
--
--File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures
--
--7.3 `ABS' -- Absolute value
--===========================
--
--_Description_:
-- `ABS(A)' computes the absolute value of `A'.
--
--_Standard_:
-- Fortran 77 and later, has overloads that are GNU extensions
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ABS(A)'
--
--_Arguments_:
-- A The type of the argument shall be an `INTEGER',
-- `REAL', or `COMPLEX'.
--
--_Return value_:
-- The return value is of the same type and kind as the argument
-- except the return value is `REAL' for a `COMPLEX' argument.
--
--_Example_:
-- program test_abs
-- integer :: i = -1
-- real :: x = -1.e0
-- complex :: z = (-1.e0,0.e0)
-- i = abs(i)
-- x = abs(x)
-- x = abs(z)
-- end program test_abs
--
--_Specific names_:
-- Name Argument Return type Standard
-- `CABS(A)' `COMPLEX(4) `REAL(4)' Fortran 77 and
-- Z' later
-- `DABS(A)' `REAL(8) `REAL(8)' Fortran 77 and
-- X' later
-- `IABS(A)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
-- I' later
-- `ZABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- Z'
-- `CDABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- Z'
--
--
--File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures
--
--7.4 `ACCESS' -- Checks file access modes
--========================================
--
--_Description_:
-- `ACCESS(NAME, MODE)' checks whether the file NAME exists, is
-- readable, writable or executable. Except for the executable check,
-- `ACCESS' can be replaced by Fortran 95's `INQUIRE'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = ACCESS(NAME, MODE)'
--
--_Arguments_:
-- NAME Scalar `CHARACTER' of default kind with the
-- file name. Tailing blank are ignored unless
-- the character `achar(0)' is present, then all
-- characters up to and excluding `achar(0)' are
-- used as file name.
-- MODE Scalar `CHARACTER' of default kind with the
-- file access mode, may be any concatenation of
-- `"r"' (readable), `"w"' (writable) and `"x"'
-- (executable), or `" "' to check for existence.
--
--_Return value_:
-- Returns a scalar `INTEGER', which is `0' if the file is accessible
-- in the given mode; otherwise or if an invalid argument has been
-- given for `MODE' the value `1' is returned.
--
--_Example_:
-- program access_test
-- implicit none
-- character(len=*), parameter :: file = 'test.dat'
-- character(len=*), parameter :: file2 = 'test.dat '//achar(0)
-- if(access(file,' ') == 0) print *, trim(file),' is exists'
-- if(access(file,'r') == 0) print *, trim(file),' is readable'
-- if(access(file,'w') == 0) print *, trim(file),' is writable'
-- if(access(file,'x') == 0) print *, trim(file),' is executable'
-- if(access(file2,'rwx') == 0) &
-- print *, trim(file2),' is readable, writable and executable'
-- end program access_test
--
--_Specific names_:
--
--_See also_:
--
--
--File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures
--
--7.5 `ACHAR' -- Character in ASCII collating sequence
--====================================================
--
--_Description_:
-- `ACHAR(I)' returns the character located at position `I' in the
-- ASCII collating sequence.
--
--_Standard_:
-- Fortran 77 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ACHAR(I [, KIND])'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `CHARACTER' with a length of one. If
-- the KIND argument is present, the return value is of the specified
-- kind and of the default kind otherwise.
--
--_Example_:
-- program test_achar
-- character c
-- c = achar(32)
-- end program test_achar
--
--_Note_:
-- See *note ICHAR:: for a discussion of converting between numerical
-- values and formatted string representations.
--
--_See also_:
-- *note CHAR::, *note IACHAR::, *note ICHAR::
--
--
--
--File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures
--
--7.6 `ACOS' -- Arccosine function
--================================
--
--_Description_:
-- `ACOS(X)' computes the arccosine of X (inverse of `COS(X)').
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ACOS(X)'
--
--_Arguments_:
-- X The type shall be `REAL' with a magnitude that
-- is less than or equal to one.
--
--_Return value_:
-- The return value is of type `REAL' and it lies in the range 0
-- \leq \acos(x) \leq \pi. The return value if of the same kind as X.
--
--_Example_:
-- program test_acos
-- real(8) :: x = 0.866_8
-- x = acos(x)
-- end program test_acos
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DACOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--_See also_:
-- Inverse function: *note COS::
--
--
--
--File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures
--
--7.7 `ACOSH' -- Hyperbolic arccosine function
--============================================
--
--_Description_:
-- `ACOSH(X)' computes the hyperbolic arccosine of X (inverse of
-- `COSH(X)').
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ACOSH(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value has the same type and kind as X
--
--_Example_:
-- PROGRAM test_acosh
-- REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
-- WRITE (*,*) ACOSH(x)
-- END PROGRAM
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DACOSH(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--_See also_:
-- Inverse function: *note COSH::
--
--
--File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures
--
--7.8 `ADJUSTL' -- Left adjust a string
--=====================================
--
--_Description_:
-- `ADJUSTL(STRING)' will left adjust a string by removing leading
-- spaces. Spaces are inserted at the end of the string as needed.
--
--_Standard_:
-- Fortran 90 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ADJUSTL(STRING)'
--
--_Arguments_:
-- STRING The type shall be `CHARACTER'.
--
--_Return value_:
-- The return value is of type `CHARACTER' and of the same kind as
-- STRING where leading spaces are removed and the same number of
-- spaces are inserted on the end of STRING.
--
--_Example_:
-- program test_adjustl
-- character(len=20) :: str = ' gfortran'
-- str = adjustl(str)
-- print *, str
-- end program test_adjustl
--
--_See also_:
-- *note ADJUSTR::, *note TRIM::
--
--
--File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures
--
--7.9 `ADJUSTR' -- Right adjust a string
--======================================
--
--_Description_:
-- `ADJUSTR(STRING)' will right adjust a string by removing trailing
-- spaces. Spaces are inserted at the start of the string as needed.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ADJUSTR(STRING)'
--
--_Arguments_:
-- STR The type shall be `CHARACTER'.
--
--_Return value_:
-- The return value is of type `CHARACTER' and of the same kind as
-- STRING where trailing spaces are removed and the same number of
-- spaces are inserted at the start of STRING.
--
--_Example_:
-- program test_adjustr
-- character(len=20) :: str = 'gfortran'
-- str = adjustr(str)
-- print *, str
-- end program test_adjustr
--
--_See also_:
-- *note ADJUSTL::, *note TRIM::
--
--
--File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures
--
--7.10 `AIMAG' -- Imaginary part of complex number
--================================================
--
--_Description_:
-- `AIMAG(Z)' yields the imaginary part of complex argument `Z'. The
-- `IMAG(Z)' and `IMAGPART(Z)' intrinsic functions are provided for
-- compatibility with `g77', and their use in new code is strongly
-- discouraged.
--
--_Standard_:
-- Fortran 77 and later, has overloads that are GNU extensions
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = AIMAG(Z)'
--
--_Arguments_:
-- Z The type of the argument shall be `COMPLEX'.
--
--_Return value_:
-- The return value is of type `REAL' with the kind type parameter of
-- the argument.
--
--_Example_:
-- program test_aimag
-- complex(4) z4
-- complex(8) z8
-- z4 = cmplx(1.e0_4, 0.e0_4)
-- z8 = cmplx(0.e0_8, 1.e0_8)
-- print *, aimag(z4), dimag(z8)
-- end program test_aimag
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DIMAG(Z)' `COMPLEX(8) `REAL(8)' GNU extension
-- Z'
-- `IMAG(Z)' `COMPLEX Z' `REAL' GNU extension
-- `IMAGPART(Z)' `COMPLEX Z' `REAL' GNU extension
--
--
--File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures
--
--7.11 `AINT' -- Truncate to a whole number
--=========================================
--
--_Description_:
-- `AINT(A [, KIND])' truncates its argument to a whole number.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = AINT(A [, KIND])'
--
--_Arguments_:
-- A The type of the argument shall be `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `REAL' with the kind type parameter of
-- the argument if the optional KIND is absent; otherwise, the kind
-- type parameter will be given by KIND. If the magnitude of X is
-- less than one, `AINT(X)' returns zero. If the magnitude is equal
-- to or greater than one then it returns the largest whole number
-- that does not exceed its magnitude. The sign is the same as the
-- sign of X.
--
--_Example_:
-- program test_aint
-- real(4) x4
-- real(8) x8
-- x4 = 1.234E0_4
-- x8 = 4.321_8
-- print *, aint(x4), dint(x8)
-- x8 = aint(x4,8)
-- end program test_aint
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DINT(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--
--File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures
--
--7.12 `ALARM' -- Execute a routine after a given delay
--=====================================================
--
--_Description_:
-- `ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
-- HANDLER to be executed after a delay of SECONDS by using
-- `alarm(2)' to set up a signal and `signal(2)' to catch it. If
-- STATUS is supplied, it will be returned with the number of seconds
-- remaining until any previously scheduled alarm was due to be
-- delivered, or zero if there was no previously scheduled alarm.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL ALARM(SECONDS, HANDLER [, STATUS])'
--
--_Arguments_:
-- SECONDS The type of the argument shall be a scalar
-- `INTEGER'. It is `INTENT(IN)'.
-- HANDLER Signal handler (`INTEGER FUNCTION' or
-- `SUBROUTINE') or dummy/global `INTEGER'
-- scalar. The scalar values may be either
-- `SIG_IGN=1' to ignore the alarm generated or
-- `SIG_DFL=0' to set the default action. It is
-- `INTENT(IN)'.
-- STATUS (Optional) STATUS shall be a scalar variable
-- of the default `INTEGER' kind. It is
-- `INTENT(OUT)'.
--
--_Example_:
-- program test_alarm
-- external handler_print
-- integer i
-- call alarm (3, handler_print, i)
-- print *, i
-- call sleep(10)
-- end program test_alarm
-- This will cause the external routine HANDLER_PRINT to be called
-- after 3 seconds.
--
--
--File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures
--
--7.13 `ALL' -- All values in MASK along DIM are true
--===================================================
--
--_Description_:
-- `ALL(MASK [, DIM])' determines if all the values are true in MASK
-- in the array along dimension DIM.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = ALL(MASK [, DIM])'
--
--_Arguments_:
-- MASK The type of the argument shall be `LOGICAL' and
-- it shall not be scalar.
-- DIM (Optional) DIM shall be a scalar integer with
-- a value that lies between one and the rank of
-- MASK.
--
--_Return value_:
-- `ALL(MASK)' returns a scalar value of type `LOGICAL' where the
-- kind type parameter is the same as the kind type parameter of
-- MASK. If DIM is present, then `ALL(MASK, DIM)' returns an array
-- with the rank of MASK minus 1. The shape is determined from the
-- shape of MASK where the DIM dimension is elided.
--
-- (A)
-- `ALL(MASK)' is true if all elements of MASK are true. It
-- also is true if MASK has zero size; otherwise, it is false.
--
-- (B)
-- If the rank of MASK is one, then `ALL(MASK,DIM)' is equivalent
-- to `ALL(MASK)'. If the rank is greater than one, then
-- `ALL(MASK,DIM)' is determined by applying `ALL' to the array
-- sections.
--
--_Example_:
-- program test_all
-- logical l
-- l = all((/.true., .true., .true./))
-- print *, l
-- call section
-- contains
-- subroutine section
-- integer a(2,3), b(2,3)
-- a = 1
-- b = 1
-- b(2,2) = 2
-- print *, all(a .eq. b, 1)
-- print *, all(a .eq. b, 2)
-- end subroutine section
-- end program test_all
--
--
--File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures
--
--7.14 `ALLOCATED' -- Status of an allocatable entity
--===================================================
--
--_Description_:
-- `ALLOCATED(ARRAY)' checks the status of whether X is allocated.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = ALLOCATED(ARRAY)'
--
--_Arguments_:
-- ARRAY The argument shall be an `ALLOCATABLE' array.
--
--_Return value_:
-- The return value is a scalar `LOGICAL' with the default logical
-- kind type parameter. If ARRAY is allocated, `ALLOCATED(ARRAY)' is
-- `.TRUE.'; otherwise, it returns `.FALSE.'
--
--_Example_:
-- program test_allocated
-- integer :: i = 4
-- real(4), allocatable :: x(:)
-- if (.not. allocated(x)) allocate(x(i))
-- end program test_allocated
--
--
--File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures
--
--7.15 `AND' -- Bitwise logical AND
--=================================
--
--_Description_:
-- Bitwise logical `AND'.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. For integer arguments, programmers should consider
-- the use of the *note IAND:: intrinsic defined by the Fortran
-- standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = AND(I, J)'
--
--_Arguments_:
-- I The type shall be either a scalar `INTEGER'
-- type or a scalar `LOGICAL' type.
-- J The type shall be the same as the type of I.
--
--_Return value_:
-- The return type is either a scalar `INTEGER' or a scalar
-- `LOGICAL'. If the kind type parameters differ, then the smaller
-- kind type is implicitly converted to larger kind, and the return
-- has the larger kind.
--
--_Example_:
-- PROGRAM test_and
-- LOGICAL :: T = .TRUE., F = .FALSE.
-- INTEGER :: a, b
-- DATA a / Z'F' /, b / Z'3' /
--
-- WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
-- WRITE (*,*) AND(a, b)
-- END PROGRAM
--
--_See also_:
-- Fortran 95 elemental function: *note IAND::
--
--
--File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures
--
--7.16 `ANINT' -- Nearest whole number
--====================================
--
--_Description_:
-- `ANINT(A [, KIND])' rounds its argument to the nearest whole
-- number.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ANINT(A [, KIND])'
--
--_Arguments_:
-- A The type of the argument shall be `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type real with the kind type parameter of
-- the argument if the optional KIND is absent; otherwise, the kind
-- type parameter will be given by KIND. If A is greater than zero,
-- `ANINT(A)' returns `AINT(X+0.5)'. If A is less than or equal to
-- zero then it returns `AINT(X-0.5)'.
--
--_Example_:
-- program test_anint
-- real(4) x4
-- real(8) x8
-- x4 = 1.234E0_4
-- x8 = 4.321_8
-- print *, anint(x4), dnint(x8)
-- x8 = anint(x4,8)
-- end program test_anint
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DNINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and
-- later
--
--
--File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures
--
--7.17 `ANY' -- Any value in MASK along DIM is true
--=================================================
--
--_Description_:
-- `ANY(MASK [, DIM])' determines if any of the values in the logical
-- array MASK along dimension DIM are `.TRUE.'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = ANY(MASK [, DIM])'
--
--_Arguments_:
-- MASK The type of the argument shall be `LOGICAL' and
-- it shall not be scalar.
-- DIM (Optional) DIM shall be a scalar integer with
-- a value that lies between one and the rank of
-- MASK.
--
--_Return value_:
-- `ANY(MASK)' returns a scalar value of type `LOGICAL' where the
-- kind type parameter is the same as the kind type parameter of
-- MASK. If DIM is present, then `ANY(MASK, DIM)' returns an array
-- with the rank of MASK minus 1. The shape is determined from the
-- shape of MASK where the DIM dimension is elided.
--
-- (A)
-- `ANY(MASK)' is true if any element of MASK is true;
-- otherwise, it is false. It also is false if MASK has zero
-- size.
--
-- (B)
-- If the rank of MASK is one, then `ANY(MASK,DIM)' is equivalent
-- to `ANY(MASK)'. If the rank is greater than one, then
-- `ANY(MASK,DIM)' is determined by applying `ANY' to the array
-- sections.
--
--_Example_:
-- program test_any
-- logical l
-- l = any((/.true., .true., .true./))
-- print *, l
-- call section
-- contains
-- subroutine section
-- integer a(2,3), b(2,3)
-- a = 1
-- b = 1
-- b(2,2) = 2
-- print *, any(a .eq. b, 1)
-- print *, any(a .eq. b, 2)
-- end subroutine section
-- end program test_any
--
--
--File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures
--
--7.18 `ASIN' -- Arcsine function
--===============================
--
--_Description_:
-- `ASIN(X)' computes the arcsine of its X (inverse of `SIN(X)').
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ASIN(X)'
--
--_Arguments_:
-- X The type shall be `REAL', and a magnitude that
-- is less than or equal to one.
--
--_Return value_:
-- The return value is of type `REAL' and it lies in the range -\pi /
-- 2 \leq \asin (x) \leq \pi / 2. The kind type parameter is the
-- same as X.
--
--_Example_:
-- program test_asin
-- real(8) :: x = 0.866_8
-- x = asin(x)
-- end program test_asin
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DASIN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--_See also_:
-- Inverse function: *note SIN::
--
--
--
--File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures
--
--7.19 `ASINH' -- Hyperbolic arcsine function
--===========================================
--
--_Description_:
-- `ASINH(X)' computes the hyperbolic arcsine of X (inverse of
-- `SINH(X)').
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ASINH(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value is of the same type and kind as X.
--
--_Example_:
-- PROGRAM test_asinh
-- REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
-- WRITE (*,*) ASINH(x)
-- END PROGRAM
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DASINH(X)' `REAL(8) X' `REAL(8)' GNU extension.
--
--_See also_:
-- Inverse function: *note SINH::
--
--
--File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures
--
--7.20 `ASSOCIATED' -- Status of a pointer or pointer/target pair
--===============================================================
--
--_Description_:
-- `ASSOCIATED(POINTER [, TARGET])' determines the status of the
-- pointer POINTER or if POINTER is associated with the target TARGET.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = ASSOCIATED(POINTER [, TARGET])'
--
--_Arguments_:
-- POINTER POINTER shall have the `POINTER' attribute and
-- it can be of any type.
-- TARGET (Optional) TARGET shall be a pointer or a
-- target. It must have the same type, kind type
-- parameter, and array rank as POINTER.
-- The association status of neither POINTER nor TARGET shall be
-- undefined.
--
--_Return value_:
-- `ASSOCIATED(POINTER)' returns a scalar value of type `LOGICAL(4)'.
-- There are several cases:
-- (A) When the optional TARGET is not present then
-- `ASSOCIATED(POINTER)' is true if POINTER is associated with a
-- target; otherwise, it returns false.
--
-- (B) If TARGET is present and a scalar target, the result is true if
-- TARGET is not a zero-sized storage sequence and the target
-- associated with POINTER occupies the same storage units. If
-- POINTER is disassociated, the result is false.
--
-- (C) If TARGET is present and an array target, the result is true if
-- TARGET and POINTER have the same shape, are not zero-sized
-- arrays, are arrays whose elements are not zero-sized storage
-- sequences, and TARGET and POINTER occupy the same storage
-- units in array element order. As in case(B), the result is
-- false, if POINTER is disassociated.
--
-- (D) If TARGET is present and an scalar pointer, the result is true
-- if TARGET is associated with POINTER, the target associated
-- with TARGET are not zero-sized storage sequences and occupy
-- the same storage units. The result is false, if either
-- TARGET or POINTER is disassociated.
--
-- (E) If TARGET is present and an array pointer, the result is true if
-- target associated with POINTER and the target associated with
-- TARGET have the same shape, are not zero-sized arrays, are
-- arrays whose elements are not zero-sized storage sequences,
-- and TARGET and POINTER occupy the same storage units in array
-- element order. The result is false, if either TARGET or
-- POINTER is disassociated.
--
--_Example_:
-- program test_associated
-- implicit none
-- real, target :: tgt(2) = (/1., 2./)
-- real, pointer :: ptr(:)
-- ptr => tgt
-- if (associated(ptr) .eqv. .false.) call abort
-- if (associated(ptr,tgt) .eqv. .false.) call abort
-- end program test_associated
--
--_See also_:
-- *note NULL::
--
--
--File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures
--
--7.21 `ATAN' -- Arctangent function
--==================================
--
--_Description_:
-- `ATAN(X)' computes the arctangent of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ATAN(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' and it lies in the range - \pi
-- / 2 \leq \atan (x) \leq \pi / 2.
--
--_Example_:
-- program test_atan
-- real(8) :: x = 2.866_8
-- x = atan(x)
-- end program test_atan
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DATAN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--_See also_:
-- Inverse function: *note TAN::
--
--
--
--File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures
--
--7.22 `ATAN2' -- Arctangent function
--===================================
--
--_Description_:
-- `ATAN2(Y, X)' computes the arctangent of the complex number X + i
-- Y.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ATAN2(Y, X)'
--
--_Arguments_:
-- Y The type shall be `REAL'.
-- X The type and kind type parameter shall be the
-- same as Y. If Y is zero, then X must be
-- nonzero.
--
--_Return value_:
-- The return value has the same type and kind type parameter as Y.
-- It is the principal value of the complex number X + i Y. If X is
-- nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
-- The sign is positive if Y is positive. If Y is zero, then the
-- return value is zero if X is positive and \pi if X is negative.
-- Finally, if X is zero, then the magnitude of the result is \pi/2.
--
--_Example_:
-- program test_atan2
-- real(4) :: x = 1.e0_4, y = 0.5e0_4
-- x = atan2(y,x)
-- end program test_atan2
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DATAN2(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--
--File: gfortran.info, Node: ATANH, Next: BESSEL_J0, Prev: ATAN2, Up: Intrinsic Procedures
--
--7.23 `ATANH' -- Hyperbolic arctangent function
--==============================================
--
--_Description_:
-- `ATANH(X)' computes the hyperbolic arctangent of X (inverse of
-- `TANH(X)').
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ATANH(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value has same type and kind as X.
--
--_Example_:
-- PROGRAM test_atanh
-- REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
-- WRITE (*,*) ATANH(x)
-- END PROGRAM
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DATANH(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--_See also_:
-- Inverse function: *note TANH::
--
--
--File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: ATANH, Up: Intrinsic Procedures
--
--7.24 `BESSEL_J0' -- Bessel function of the first kind of order 0
--================================================================
--
--_Description_:
-- `BESSEL_J0(X)' computes the Bessel function of the first kind of
-- order 0 of X. This function is available under the name `BESJ0' as
-- a GNU extension.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_J0(X)'
--
--_Arguments_:
-- X The type shall be `REAL', and it shall be
-- scalar.
--
--_Return value_:
-- The return value is of type `REAL' and lies in the range -
-- 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X.
--
--_Example_:
-- program test_besj0
-- real(8) :: x = 0.0_8
-- x = bessel_j0(x)
-- end program test_besj0
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESJ0(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures
--
--7.25 `BESSEL_J1' -- Bessel function of the first kind of order 1
--================================================================
--
--_Description_:
-- `BESSEL_J1(X)' computes the Bessel function of the first kind of
-- order 1 of X. This function is available under the name `BESJ1' as
-- a GNU extension.
--
--_Standard_:
-- Fortran 2008
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_J1(X)'
--
--_Arguments_:
-- X The type shall be `REAL', and it shall be
-- scalar.
--
--_Return value_:
-- The return value is of type `REAL' and it lies in the range -
-- 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as
-- X.
--
--_Example_:
-- program test_besj1
-- real(8) :: x = 1.0_8
-- x = bessel_j1(x)
-- end program test_besj1
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESJ1(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures
--
--7.26 `BESSEL_JN' -- Bessel function of the first kind
--=====================================================
--
--_Description_:
-- `BESSEL_JN(N, X)' computes the Bessel function of the first kind of
-- order N of X. This function is available under the name `BESJN' as
-- a GNU extension.
--
-- If both arguments are arrays, their ranks and shapes shall conform.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_JN(N, X)'
--
--_Arguments_:
-- N Shall be a scalar or an array of type
-- `INTEGER'.
-- X Shall be a scalar or an array of type `REAL'.
--
--_Return value_:
-- The return value is a scalar of type `REAL'. It has the same kind
-- as X.
--
--_Example_:
-- program test_besjn
-- real(8) :: x = 1.0_8
-- x = bessel_jn(5,x)
-- end program test_besjn
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESJN(X)' `INTEGER N' `REAL(8)' GNU extension
-- `REAL(8) X'
--
--
--File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures
--
--7.27 `BESSEL_Y0' -- Bessel function of the second kind of order 0
--=================================================================
--
--_Description_:
-- `BESSEL_Y0(X)' computes the Bessel function of the second kind of
-- order 0 of X. This function is available under the name `BESY0' as
-- a GNU extension.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_Y0(X)'
--
--_Arguments_:
-- X The type shall be `REAL', and it shall be
-- scalar.
--
--_Return value_:
-- The return value is a scalar of type `REAL'. It has the same kind
-- as X.
--
--_Example_:
-- program test_besy0
-- real(8) :: x = 0.0_8
-- x = bessel_y0(x)
-- end program test_besy0
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESY0(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures
--
--7.28 `BESSEL_Y1' -- Bessel function of the second kind of order 1
--=================================================================
--
--_Description_:
-- `BESSEL_Y1(X)' computes the Bessel function of the second kind of
-- order 1 of X. This function is available under the name `BESY1' as
-- a GNU extension.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_Y1(X)'
--
--_Arguments_:
-- X The type shall be `REAL', and it shall be
-- scalar.
--
--_Return value_:
-- The return value is a scalar of type `REAL'. It has the same kind
-- as X.
--
--_Example_:
-- program test_besy1
-- real(8) :: x = 1.0_8
-- x = bessel_y1(x)
-- end program test_besy1
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESY1(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: BESSEL_YN, Next: BIT_SIZE, Prev: BESSEL_Y1, Up: Intrinsic Procedures
--
--7.29 `BESSEL_YN' -- Bessel function of the second kind
--======================================================
--
--_Description_:
-- `BESSEL_YN(N, X)' computes the Bessel function of the second kind
-- of order N of X. This function is available under the name `BESYN'
-- as a GNU extension.
--
-- If both arguments are arrays, their ranks and shapes shall conform.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BESSEL_YN(N, X)'
--
--_Arguments_:
-- N Shall be a scalar or an array of type
-- `INTEGER'.
-- X Shall be a scalar or an array of type `REAL'.
--
--_Return value_:
-- The return value is a scalar of type `REAL'. It has the same kind
-- as X.
--
--_Example_:
-- program test_besyn
-- real(8) :: x = 1.0_8
-- x = bessel_yn(5,x)
-- end program test_besyn
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DBESYN(N,X)' `INTEGER N' `REAL(8)' GNU extension
-- `REAL(8)
-- X'
--
--
--File: gfortran.info, Node: BIT_SIZE, Next: BTEST, Prev: BESSEL_YN, Up: Intrinsic Procedures
--
--7.30 `BIT_SIZE' -- Bit size inquiry function
--============================================
--
--_Description_:
-- `BIT_SIZE(I)' returns the number of bits (integer precision plus
-- sign bit) represented by the type of I. The result of
-- `BIT_SIZE(I)' is independent of the actual value of I.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = BIT_SIZE(I)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER'
--
--_Example_:
-- program test_bit_size
-- integer :: i = 123
-- integer :: size
-- size = bit_size(i)
-- print *, size
-- end program test_bit_size
--
--
--File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BIT_SIZE, Up: Intrinsic Procedures
--
--7.31 `BTEST' -- Bit test function
--=================================
--
--_Description_:
-- `BTEST(I,POS)' returns logical `.TRUE.' if the bit at POS in I is
-- set. The counting of the bits starts at 0.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = BTEST(I, POS)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- POS The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `LOGICAL'
--
--_Example_:
-- program test_btest
-- integer :: i = 32768 + 1024 + 64
-- integer :: pos
-- logical :: bool
-- do pos=0,16
-- bool = btest(i, pos)
-- print *, pos, bool
-- end do
-- end program test_btest
--
--
--File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures
--
--7.32 `C_ASSOCIATED' -- Status of a C pointer
--============================================
--
--_Description_:
-- `C_ASSOCIATED(c_prt_1[, c_ptr_2])' determines the status of the C
-- pointer C_PTR_1 or if C_PTR_1 is associated with the target
-- C_PTR_2.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])'
--
--_Arguments_:
-- C_PTR_1 Scalar of the type `C_PTR' or `C_FUNPTR'.
-- C_PTR_2 (Optional) Scalar of the same type as C_PTR_1.
--
--_Return value_:
-- The return value is of type `LOGICAL'; it is `.false.' if either
-- C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
-- different addresses.
--
--_Example_:
-- subroutine association_test(a,b)
-- use iso_c_binding, only: c_associated, c_loc, c_ptr
-- implicit none
-- real, pointer :: a
-- type(c_ptr) :: b
-- if(c_associated(b, c_loc(a))) &
-- stop 'b and a do not point to same target'
-- end subroutine association_test
--
--_See also_:
-- *note C_LOC::, *note C_FUNLOC::
--
--
--File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures
--
--7.33 `C_FUNLOC' -- Obtain the C address of a procedure
--======================================================
--
--_Description_:
-- `C_FUNLOC(x)' determines the C address of the argument.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = C_FUNLOC(x)'
--
--_Arguments_:
-- X Interoperable function or pointer to such
-- function.
--
--_Return value_:
-- The return value is of type `C_FUNPTR' and contains the C address
-- of the argument.
--
--_Example_:
-- module x
-- use iso_c_binding
-- implicit none
-- contains
-- subroutine sub(a) bind(c)
-- real(c_float) :: a
-- a = sqrt(a)+5.0
-- end subroutine sub
-- end module x
-- program main
-- use iso_c_binding
-- use x
-- implicit none
-- interface
-- subroutine my_routine(p) bind(c,name='myC_func')
-- import :: c_funptr
-- type(c_funptr), intent(in) :: p
-- end subroutine
-- end interface
-- call my_routine(c_funloc(sub))
-- end program main
--
--_See also_:
-- *note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
-- C_F_PROCPOINTER::
--
--
--File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures
--
--7.34 `C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
--==================================================================
--
--_Description_:
-- `C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
-- pointer CPTR to the Fortran procedure pointer FPTR.
--
-- Note: Due to the currently lacking support of procedure pointers
-- in GNU Fortran this function is not fully operable.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL C_F_PROCPOINTER(cptr, fptr)'
--
--_Arguments_:
-- CPTR scalar of the type `C_FUNPTR'. It is
-- `INTENT(IN)'.
-- FPTR procedure pointer interoperable with CPTR. It
-- is `INTENT(OUT)'.
--
--_Example_:
-- program main
-- use iso_c_binding
-- implicit none
-- abstract interface
-- function func(a)
-- import :: c_float
-- real(c_float), intent(in) :: a
-- real(c_float) :: func
-- end function
-- end interface
-- interface
-- function getIterFunc() bind(c,name="getIterFunc")
-- import :: c_funptr
-- type(c_funptr) :: getIterFunc
-- end function
-- end interface
-- type(c_funptr) :: cfunptr
-- procedure(func), pointer :: myFunc
-- cfunptr = getIterFunc()
-- call c_f_procpointer(cfunptr, myFunc)
-- end program main
--
--_See also_:
-- *note C_LOC::, *note C_F_POINTER::
--
--
--File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures
--
--7.35 `C_F_POINTER' -- Convert C into Fortran pointer
--====================================================
--
--_Description_:
-- `C_F_POINTER(CPTR, FPTR[, SHAPE])' Assign the target the C pointer
-- CPTR to the Fortran pointer FPTR and specify its shape.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'
--
--_Arguments_:
-- CPTR scalar of the type `C_PTR'. It is `INTENT(IN)'.
-- FPTR pointer interoperable with CPTR. It is
-- `INTENT(OUT)'.
-- SHAPE (Optional) Rank-one array of type `INTEGER'
-- with `INTENT(IN)'. It shall be present if and
-- only if FPTR is an array. The size must be
-- equal to the rank of FPTR.
--
--_Example_:
-- program main
-- use iso_c_binding
-- implicit none
-- interface
-- subroutine my_routine(p) bind(c,name='myC_func')
-- import :: c_ptr
-- type(c_ptr), intent(out) :: p
-- end subroutine
-- end interface
-- type(c_ptr) :: cptr
-- real,pointer :: a(:)
-- call my_routine(cptr)
-- call c_f_pointer(cptr, a, [12])
-- end program main
--
--_See also_:
-- *note C_LOC::, *note C_F_PROCPOINTER::
--
--
--File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures
--
--7.36 `C_LOC' -- Obtain the C address of an object
--=================================================
--
--_Description_:
-- `C_LOC(X)' determines the C address of the argument.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = C_LOC(X)'
--
--_Arguments_:
-- X Associated scalar pointer or interoperable
-- scalar or allocated allocatable variable with
-- `TARGET' attribute.
--
--_Return value_:
-- The return value is of type `C_PTR' and contains the C address of
-- the argument.
--
--_Example_:
-- subroutine association_test(a,b)
-- use iso_c_binding, only: c_associated, c_loc, c_ptr
-- implicit none
-- real, pointer :: a
-- type(c_ptr) :: b
-- if(c_associated(b, c_loc(a))) &
-- stop 'b and a do not point to same target'
-- end subroutine association_test
--
--_See also_:
-- *note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
-- C_F_PROCPOINTER::
--
--
--File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures
--
--7.37 `C_SIZEOF' -- Size in bytes of an expression
--=================================================
--
--_Description_:
-- `C_SIZEOF(X)' calculates the number of bytes of storage the
-- expression `X' occupies.
--
--_Standard_:
-- Fortran 2008
--
--_Class_:
-- Intrinsic function
--
--_Syntax_:
-- `N = C_SIZEOF(X)'
--
--_Arguments_:
-- X The argument shall be of any type, rank or
-- shape.
--
--_Return value_:
-- The return value is of type integer and of the system-dependent
-- kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
-- number of bytes occupied by the argument. If the argument has the
-- `POINTER' attribute, the number of bytes of the storage area
-- pointed to is returned. If the argument is of a derived type with
-- `POINTER' or `ALLOCATABLE' components, the return value doesn't
-- account for the sizes of the data pointed to by these components.
--
--_Example_:
-- use iso_c_binding
-- integer(c_int) :: i
-- real(c_float) :: r, s(5)
-- print *, (c_sizeof(s)/c_sizeof(r) == 5)
-- end
-- The example will print `.TRUE.' unless you are using a platform
-- where default `REAL' variables are unusually padded.
--
--_See also_:
-- *note SIZEOF::
--
--
--File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures
--
--7.38 `CEILING' -- Integer ceiling function
--==========================================
--
--_Description_:
-- `CEILING(A)' returns the least integer greater than or equal to A.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = CEILING(A [, KIND])'
--
--_Arguments_:
-- A The type shall be `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER(KIND)' if KIND is present and
-- a default-kind `INTEGER' otherwise.
--
--_Example_:
-- program test_ceiling
-- real :: x = 63.29
-- real :: y = -63.59
-- print *, ceiling(x) ! returns 64
-- print *, ceiling(y) ! returns -63
-- end program test_ceiling
--
--_See also_:
-- *note FLOOR::, *note NINT::
--
--
--
--File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures
--
--7.39 `CHAR' -- Character conversion function
--============================================
--
--_Description_:
-- `CHAR(I [, KIND])' returns the character represented by the
-- integer I.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = CHAR(I [, KIND])'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `CHARACTER(1)'
--
--_Example_:
-- program test_char
-- integer :: i = 74
-- character(1) :: c
-- c = char(i)
-- print *, i, c ! returns 'J'
-- end program test_char
--
--_Note_:
-- See *note ICHAR:: for a discussion of converting between numerical
-- values and formatted string representations.
--
--_See also_:
-- *note ACHAR::, *note IACHAR::, *note ICHAR::
--
--
--
--File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures
--
--7.40 `CHDIR' -- Change working directory
--========================================
--
--_Description_:
-- Change current working directory to a specified path.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL CHDIR(NAME [, STATUS])'
-- `STATUS = CHDIR(NAME)'
--
--_Arguments_:
-- NAME The type shall be `CHARACTER' of default kind
-- and shall specify a valid path within the file
-- system.
-- STATUS (Optional) `INTEGER' status flag of the default
-- kind. Returns 0 on success, and a system
-- specific and nonzero error code otherwise.
--
--_Example_:
-- PROGRAM test_chdir
-- CHARACTER(len=255) :: path
-- CALL getcwd(path)
-- WRITE(*,*) TRIM(path)
-- CALL chdir("/tmp")
-- CALL getcwd(path)
-- WRITE(*,*) TRIM(path)
-- END PROGRAM
--
--_See also_:
-- *note GETCWD::
--
--
--File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures
--
--7.41 `CHMOD' -- Change access permissions of files
--==================================================
--
--_Description_:
-- `CHMOD' changes the permissions of a file. This function invokes
-- `/bin/chmod' and might therefore not work on all platforms.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL CHMOD(NAME, MODE[, STATUS])'
-- `STATUS = CHMOD(NAME, MODE)'
--
--_Arguments_:
-- NAME Scalar `CHARACTER' of default kind with the
-- file name. Trailing blanks are ignored unless
-- the character `achar(0)' is present, then all
-- characters up to and excluding `achar(0)' are
-- used as the file name.
-- MODE Scalar `CHARACTER' of default kind giving the
-- file permission. MODE uses the same syntax as
-- the MODE argument of `/bin/chmod'.
-- STATUS (optional) scalar `INTEGER', which is `0' on
-- success and nonzero otherwise.
--
--_Return value_:
-- In either syntax, STATUS is set to `0' on success and nonzero
-- otherwise.
--
--_Example_:
-- `CHMOD' as subroutine
-- program chmod_test
-- implicit none
-- integer :: status
-- call chmod('test.dat','u+x',status)
-- print *, 'Status: ', status
-- end program chmod_test
-- `CHMOD' as function:
-- program chmod_test
-- implicit none
-- integer :: status
-- status = chmod('test.dat','u+x')
-- print *, 'Status: ', status
-- end program chmod_test
--
--
--
--File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures
--
--7.42 `CMPLX' -- Complex conversion function
--===========================================
--
--_Description_:
-- `CMPLX(X [, Y [, KIND]])' returns a complex number where X is
-- converted to the real component. If Y is present it is converted
-- to the imaginary component. If Y is not present then the
-- imaginary component is set to 0.0. If X is complex then Y must
-- not be present.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = CMPLX(X [, Y [, KIND]])'
--
--_Arguments_:
-- X The type may be `INTEGER', `REAL', or
-- `COMPLEX'.
-- Y (Optional; only allowed if X is not
-- `COMPLEX'.) May be `INTEGER' or `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of `COMPLEX' type, with a kind equal to KIND
-- if it is specified. If KIND is not specified, the result is of
-- the default `COMPLEX' kind, regardless of the kinds of X and Y.
--
--_Example_:
-- program test_cmplx
-- integer :: i = 42
-- real :: x = 3.14
-- complex :: z
-- z = cmplx(i, x)
-- print *, z, cmplx(x)
-- end program test_cmplx
--
--_See also_:
-- *note COMPLEX::
--
--
--File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPLEX, Prev: CMPLX, Up: Intrinsic Procedures
--
--7.43 `COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
--=====================================================================
--
--_Description_:
-- `COMMAND_ARGUMENT_COUNT()' returns the number of arguments passed
-- on the command line when the containing program was invoked.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = COMMAND_ARGUMENT_COUNT()'
--
--_Arguments_:
-- None
--
--_Return value_:
-- The return value is of type `INTEGER(4)'
--
--_Example_:
-- program test_command_argument_count
-- integer :: count
-- count = command_argument_count()
-- print *, count
-- end program test_command_argument_count
--
--_See also_:
-- *note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::
--
--
--File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures
--
--7.44 `COMPLEX' -- Complex conversion function
--=============================================
--
--_Description_:
-- `COMPLEX(X, Y)' returns a complex number where X is converted to
-- the real component and Y is converted to the imaginary component.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = COMPLEX(X, Y)'
--
--_Arguments_:
-- X The type may be `INTEGER' or `REAL'.
-- Y The type may be `INTEGER' or `REAL'.
--
--_Return value_:
-- If X and Y are both of `INTEGER' type, then the return value is of
-- default `COMPLEX' type.
--
-- If X and Y are of `REAL' type, or one is of `REAL' type and one is
-- of `INTEGER' type, then the return value is of `COMPLEX' type with
-- a kind equal to that of the `REAL' argument with the highest
-- precision.
--
--_Example_:
-- program test_complex
-- integer :: i = 42
-- real :: x = 3.14
-- print *, complex(i, x)
-- end program test_complex
--
--_See also_:
-- *note CMPLX::
--
--
--File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures
--
--7.45 `CONJG' -- Complex conjugate function
--==========================================
--
--_Description_:
-- `CONJG(Z)' returns the conjugate of Z. If Z is `(x, y)' then the
-- result is `(x, -y)'
--
--_Standard_:
-- Fortran 77 and later, has overloads that are GNU extensions
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `Z = CONJG(Z)'
--
--_Arguments_:
-- Z The type shall be `COMPLEX'.
--
--_Return value_:
-- The return value is of type `COMPLEX'.
--
--_Example_:
-- program test_conjg
-- complex :: z = (2.0, 3.0)
-- complex(8) :: dz = (2.71_8, -3.14_8)
-- z= conjg(z)
-- print *, z
-- dz = dconjg(dz)
-- print *, dz
-- end program test_conjg
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DCONJG(Z)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- Z'
--
--
--File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures
--
--7.46 `COS' -- Cosine function
--=============================
--
--_Description_:
-- `COS(X)' computes the cosine of X.
--
--_Standard_:
-- Fortran 77 and later, has overloads that are GNU extensions
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = COS(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value is of type `REAL' and it lies in the range -1
-- \leq \cos (x) \leq 1. The kind type parameter is the same as X.
--
--_Example_:
-- program test_cos
-- real :: x = 0.0
-- x = cos(x)
-- end program test_cos
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DCOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
-- `CCOS(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and
-- X' later
-- `ZCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
-- `CDCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
--
--_See also_:
-- Inverse function: *note ACOS::
--
--
--
--File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures
--
--7.47 `COSH' -- Hyperbolic cosine function
--=========================================
--
--_Description_:
-- `COSH(X)' computes the hyperbolic cosine of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `X = COSH(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' and it is positive ( \cosh (x)
-- \geq 0 ). For a `REAL' argument X, \cosh (x) \geq 1 . The
-- return value is of the same kind as X.
--
--_Example_:
-- program test_cosh
-- real(8) :: x = 1.0_8
-- x = cosh(x)
-- end program test_cosh
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DCOSH(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
--
--_See also_:
-- Inverse function: *note ACOSH::
--
--
--
--File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures
--
--7.48 `COUNT' -- Count function
--==============================
--
--_Description_:
-- `COUNT(MASK [, DIM [, KIND]])' counts the number of `.TRUE.'
-- elements of MASK along the dimension of DIM. If DIM is omitted it
-- is taken to be `1'. DIM is a scalar of type `INTEGER' in the
-- range of 1 /leq DIM /leq n) where n is the rank of MASK.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = COUNT(MASK [, DIM [, KIND]])'
--
--_Arguments_:
-- MASK The type shall be `LOGICAL'.
-- DIM (Optional) The type shall be `INTEGER'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind. The result
-- has a rank equal to that of MASK.
--
--_Example_:
-- program test_count
-- integer, dimension(2,3) :: a, b
-- logical, dimension(2,3) :: mask
-- a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
-- b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
-- print '(3i3)', a(1,:)
-- print '(3i3)', a(2,:)
-- print *
-- print '(3i3)', b(1,:)
-- print '(3i3)', b(2,:)
-- print *
-- mask = a.ne.b
-- print '(3l3)', mask(1,:)
-- print '(3l3)', mask(2,:)
-- print *
-- print '(3i3)', count(mask)
-- print *
-- print '(3i3)', count(mask, 1)
-- print *
-- print '(3i3)', count(mask, 2)
-- end program test_count
--
--
--File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures
--
--7.49 `CPU_TIME' -- CPU elapsed time in seconds
--==============================================
--
--_Description_:
-- Returns a `REAL' value representing the elapsed CPU time in
-- seconds. This is useful for testing segments of code to determine
-- execution time.
--
-- If a time source is available, time will be reported with
-- microsecond resolution. If no time source is available, TIME is
-- set to `-1.0'.
--
-- Note that TIME may contain a, system dependent, arbitrary offset
-- and may not start with `0.0'. For `CPU_TIME', the absolute value
-- is meaningless, only differences between subsequent calls to this
-- subroutine, as shown in the example below, should be used.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL CPU_TIME(TIME)'
--
--_Arguments_:
-- TIME The type shall be `REAL' with `INTENT(OUT)'.
--
--_Return value_:
-- None
--
--_Example_:
-- program test_cpu_time
-- real :: start, finish
-- call cpu_time(start)
-- ! put code to test here
-- call cpu_time(finish)
-- print '("Time = ",f6.3," seconds.")',finish-start
-- end program test_cpu_time
--
--_See also_:
-- *note SYSTEM_CLOCK::, *note DATE_AND_TIME::
--
--
--File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures
--
--7.50 `CSHIFT' -- Circular shift elements of an array
--====================================================
--
--_Description_:
-- `CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
-- elements of ARRAY along the dimension of DIM. If DIM is omitted
-- it is taken to be `1'. DIM is a scalar of type `INTEGER' in the
-- range of 1 /leq DIM /leq n) where n is the rank of ARRAY. If the
-- rank of ARRAY is one, then all elements of ARRAY are shifted by
-- SHIFT places. If rank is greater than one, then all complete rank
-- one sections of ARRAY along the given dimension are shifted.
-- Elements shifted out one end of each rank one section are shifted
-- back in the other end.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'
--
--_Arguments_:
-- ARRAY Shall be an array of any type.
-- SHIFT The type shall be `INTEGER'.
-- DIM The type shall be `INTEGER'.
--
--_Return value_:
-- Returns an array of same type and rank as the ARRAY argument.
--
--_Example_:
-- program test_cshift
-- integer, dimension(3,3) :: a
-- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
-- print '(3i3)', a(1,:)
-- print '(3i3)', a(2,:)
-- print '(3i3)', a(3,:)
-- a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
-- print *
-- print '(3i3)', a(1,:)
-- print '(3i3)', a(2,:)
-- print '(3i3)', a(3,:)
-- end program test_cshift
--
--
--File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures
--
--7.51 `CTIME' -- Convert a time into a string
--============================================
--
--_Description_:
-- `CTIME' converts a system time value, such as returned by
-- `TIME8()', to a string of the form `Sat Aug 19 18:13:14 1995'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL CTIME(TIME, RESULT)'.
-- `RESULT = CTIME(TIME)', (not recommended).
--
--_Arguments_:
-- TIME The type shall be of type `INTEGER(KIND=8)'.
-- RESULT The type shall be of type `CHARACTER' and of
-- default kind.
--
--_Return value_:
-- The converted date and time as a string.
--
--_Example_:
-- program test_ctime
-- integer(8) :: i
-- character(len=30) :: date
-- i = time8()
--
-- ! Do something, main part of the program
--
-- call ctime(i,date)
-- print *, 'Program was started on ', date
-- end program test_ctime
--
--_See Also_:
-- *note GMTIME::, *note LTIME::, *note TIME::, *note TIME8::
--
--
--File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures
--
--7.52 `DATE_AND_TIME' -- Date and time subroutine
--================================================
--
--_Description_:
-- `DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
-- date and time information from the real-time system clock. DATE is
-- `INTENT(OUT)' and has form ccyymmdd. TIME is `INTENT(OUT)' and
-- has form hhmmss.sss. ZONE is `INTENT(OUT)' and has form (+-)hhmm,
-- representing the difference with respect to Coordinated Universal
-- Time (UTC). Unavailable time and date parameters return blanks.
--
-- VALUES is `INTENT(OUT)' and provides the following:
--
-- `VALUE(1)': The year
-- `VALUE(2)': The month
-- `VALUE(3)': The day of the month
-- `VALUE(4)': Time difference with UTC
-- in minutes
-- `VALUE(5)': The hour of the day
-- `VALUE(6)': The minutes of the hour
-- `VALUE(7)': The seconds of the minute
-- `VALUE(8)': The milliseconds of the
-- second
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'
--
--_Arguments_:
-- DATE (Optional) The type shall be `CHARACTER(LEN=8)'
-- or larger, and of default kind.
-- TIME (Optional) The type shall be
-- `CHARACTER(LEN=10)' or larger, and of default
-- kind.
-- ZONE (Optional) The type shall be `CHARACTER(LEN=5)'
-- or larger, and of default kind.
-- VALUES (Optional) The type shall be `INTEGER(8)'.
--
--_Return value_:
-- None
--
--_Example_:
-- program test_time_and_date
-- character(8) :: date
-- character(10) :: time
-- character(5) :: zone
-- integer,dimension(8) :: values
-- ! using keyword arguments
-- call date_and_time(date,time,zone,values)
-- call date_and_time(DATE=date,ZONE=zone)
-- call date_and_time(TIME=time)
-- call date_and_time(VALUES=values)
-- print '(a,2x,a,2x,a)', date, time, zone
-- print '(8i5))', values
-- end program test_time_and_date
--
--_See also_:
-- *note CPU_TIME::, *note SYSTEM_CLOCK::
--
--
--File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures
--
--7.53 `DBLE' -- Double conversion function
--=========================================
--
--_Description_:
-- `DBLE(A)' Converts A to double precision real type.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DBLE(A)'
--
--_Arguments_:
-- A The type shall be `INTEGER', `REAL', or
-- `COMPLEX'.
--
--_Return value_:
-- The return value is of type double precision real.
--
--_Example_:
-- program test_dble
-- real :: x = 2.18
-- integer :: i = 5
-- complex :: z = (2.3,1.14)
-- print *, dble(x), dble(i), dble(z)
-- end program test_dble
--
--_See also_:
-- *note DFLOAT::, *note FLOAT::, *note REAL::
--
--
--File: gfortran.info, Node: DCMPLX, Next: DFLOAT, Prev: DBLE, Up: Intrinsic Procedures
--
--7.54 `DCMPLX' -- Double complex conversion function
--===================================================
--
--_Description_:
-- `DCMPLX(X [,Y])' returns a double complex number where X is
-- converted to the real component. If Y is present it is converted
-- to the imaginary component. If Y is not present then the
-- imaginary component is set to 0.0. If X is complex then Y must
-- not be present.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DCMPLX(X [, Y])'
--
--_Arguments_:
-- X The type may be `INTEGER', `REAL', or
-- `COMPLEX'.
-- Y (Optional if X is not `COMPLEX'.) May be
-- `INTEGER' or `REAL'.
--
--_Return value_:
-- The return value is of type `COMPLEX(8)'
--
--_Example_:
-- program test_dcmplx
-- integer :: i = 42
-- real :: x = 3.14
-- complex :: z
-- z = cmplx(i, x)
-- print *, dcmplx(i)
-- print *, dcmplx(x)
-- print *, dcmplx(z)
-- print *, dcmplx(x,i)
-- end program test_dcmplx
--
--
--File: gfortran.info, Node: DFLOAT, Next: DIGITS, Prev: DCMPLX, Up: Intrinsic Procedures
--
--7.55 `DFLOAT' -- Double conversion function
--===========================================
--
--_Description_:
-- `DFLOAT(A)' Converts A to double precision real type.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DFLOAT(A)'
--
--_Arguments_:
-- A The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type double precision real.
--
--_Example_:
-- program test_dfloat
-- integer :: i = 5
-- print *, dfloat(i)
-- end program test_dfloat
--
--_See also_:
-- *note DBLE::, *note FLOAT::, *note REAL::
--
--
--File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DFLOAT, Up: Intrinsic Procedures
--
--7.56 `DIGITS' -- Significant binary digits function
--===================================================
--
--_Description_:
-- `DIGITS(X)' returns the number of significant binary digits of the
-- internal model representation of X. For example, on a system
-- using a 32-bit floating point representation, a default real
-- number would likely return 24.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = DIGITS(X)'
--
--_Arguments_:
-- X The type may be `INTEGER' or `REAL'.
--
--_Return value_:
-- The return value is of type `INTEGER'.
--
--_Example_:
-- program test_digits
-- integer :: i = 12345
-- real :: x = 3.143
-- real(8) :: y = 2.33
-- print *, digits(i)
-- print *, digits(x)
-- print *, digits(y)
-- end program test_digits
--
--
--File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures
--
--7.57 `DIM' -- Positive difference
--=================================
--
--_Description_:
-- `DIM(X,Y)' returns the difference `X-Y' if the result is positive;
-- otherwise returns zero.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DIM(X, Y)'
--
--_Arguments_:
-- X The type shall be `INTEGER' or `REAL'
-- Y The type shall be the same type and kind as X.
--
--_Return value_:
-- The return value is of type `INTEGER' or `REAL'.
--
--_Example_:
-- program test_dim
-- integer :: i
-- real(8) :: x
-- i = dim(4, 15)
-- x = dim(4.345_8, 2.111_8)
-- print *, i
-- print *, x
-- end program test_dim
--
--_Specific names_:
-- Name Argument Return type Standard
-- `IDIM(X,Y)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
-- X,Y' later
-- `DDIM(X,Y)' `REAL(8) `REAL(8)' Fortran 77 and
-- X,Y' later
--
--
--File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures
--
--7.58 `DOT_PRODUCT' -- Dot product function
--==========================================
--
--_Description_:
-- `DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
-- multiplication of two vectors VECTOR_A and VECTOR_B. The two
-- vectors may be either numeric or logical and must be arrays of
-- rank one and of equal size. If the vectors are `INTEGER' or
-- `REAL', the result is `SUM(VECTOR_A*VECTOR_B)'. If the vectors are
-- `COMPLEX', the result is `SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the
-- vectors are `LOGICAL', the result is `ANY(VECTOR_A .AND.
-- VECTOR_B)'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'
--
--_Arguments_:
-- VECTOR_A The type shall be numeric or `LOGICAL', rank 1.
-- VECTOR_B The type shall be numeric if VECTOR_A is of
-- numeric type or `LOGICAL' if VECTOR_A is of
-- type `LOGICAL'. VECTOR_B shall be a rank-one
-- array.
--
--_Return value_:
-- If the arguments are numeric, the return value is a scalar of
-- numeric type, `INTEGER', `REAL', or `COMPLEX'. If the arguments
-- are `LOGICAL', the return value is `.TRUE.' or `.FALSE.'.
--
--_Example_:
-- program test_dot_prod
-- integer, dimension(3) :: a, b
-- a = (/ 1, 2, 3 /)
-- b = (/ 4, 5, 6 /)
-- print '(3i3)', a
-- print *
-- print '(3i3)', b
-- print *
-- print *, dot_product(a,b)
-- end program test_dot_prod
--
--
--File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures
--
--7.59 `DPROD' -- Double product function
--=======================================
--
--_Description_:
-- `DPROD(X,Y)' returns the product `X*Y'.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DPROD(X, Y)'
--
--_Arguments_:
-- X The type shall be `REAL'.
-- Y The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL(8)'.
--
--_Example_:
-- program test_dprod
-- real :: x = 5.2
-- real :: y = 2.3
-- real(8) :: d
-- d = dprod(x,y)
-- print *, d
-- end program test_dprod
--
--
--File: gfortran.info, Node: DREAL, Next: DTIME, Prev: DPROD, Up: Intrinsic Procedures
--
--7.60 `DREAL' -- Double real part function
--=========================================
--
--_Description_:
-- `DREAL(Z)' returns the real part of complex variable Z.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = DREAL(A)'
--
--_Arguments_:
-- A The type shall be `COMPLEX(8)'.
--
--_Return value_:
-- The return value is of type `REAL(8)'.
--
--_Example_:
-- program test_dreal
-- complex(8) :: z = (1.3_8,7.2_8)
-- print *, dreal(z)
-- end program test_dreal
--
--_See also_:
-- *note AIMAG::
--
--
--
--File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DREAL, Up: Intrinsic Procedures
--
--7.61 `DTIME' -- Execution time subroutine (or function)
--=======================================================
--
--_Description_:
-- `DTIME(TARRAY, RESULT)' initially returns the number of seconds of
-- runtime since the start of the process's execution in RESULT.
-- TARRAY returns the user and system components of this time in
-- `TARRAY(1)' and `TARRAY(2)' respectively. RESULT is equal to
-- `TARRAY(1) + TARRAY(2)'.
--
-- Subsequent invocations of `DTIME' return values accumulated since
-- the previous invocation.
--
-- On some systems, the underlying timings are represented using
-- types with sufficiently small limits that overflows (wrap around)
-- are possible, such as 32-bit types. Therefore, the values returned
-- by this intrinsic might be, or become, negative, or numerically
-- less than previous values, during a single run of the compiled
-- program.
--
-- Please note, that this implementation is thread safe if used
-- within OpenMP directives, i.e., its state will be consistent while
-- called from multiple threads. However, if `DTIME' is called from
-- multiple threads, the result is still the time since the last
-- invocation. This may not give the intended results. If possible,
-- use `CPU_TIME' instead.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- TARRAY and RESULT are `INTENT(OUT)' and provide the following:
--
-- `TARRAY(1)': User time in seconds.
-- `TARRAY(2)': System time in seconds.
-- `RESULT': Run time since start in
-- seconds.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL DTIME(TARRAY, RESULT)'.
-- `RESULT = DTIME(TARRAY)', (not recommended).
--
--_Arguments_:
-- TARRAY The type shall be `REAL, DIMENSION(2)'.
-- RESULT The type shall be `REAL'.
--
--_Return value_:
-- Elapsed time in seconds since the last invocation or since the
-- start of program execution if not called before.
--
--_Example_:
-- program test_dtime
-- integer(8) :: i, j
-- real, dimension(2) :: tarray
-- real :: result
-- call dtime(tarray, result)
-- print *, result
-- print *, tarray(1)
-- print *, tarray(2)
-- do i=1,100000000 ! Just a delay
-- j = i * i - i
-- end do
-- call dtime(tarray, result)
-- print *, result
-- print *, tarray(1)
-- print *, tarray(2)
-- end program test_dtime
--
--_See also_:
-- *note CPU_TIME::
--
--
--
--File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures
--
--7.62 `EOSHIFT' -- End-off shift elements of an array
--====================================================
--
--_Description_:
-- `EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
-- on elements of ARRAY along the dimension of DIM. If DIM is
-- omitted it is taken to be `1'. DIM is a scalar of type `INTEGER'
-- in the range of 1 /leq DIM /leq n) where n is the rank of ARRAY.
-- If the rank of ARRAY is one, then all elements of ARRAY are
-- shifted by SHIFT places. If rank is greater than one, then all
-- complete rank one sections of ARRAY along the given dimension are
-- shifted. Elements shifted out one end of each rank one section
-- are dropped. If BOUNDARY is present then the corresponding value
-- of from BOUNDARY is copied back in the other end. If BOUNDARY is
-- not present then the following are copied in depending on the type
-- of ARRAY.
--
-- _Array _Boundary Value_
-- Type_
-- Numeric 0 of the type and kind of ARRAY.
-- Logical `.FALSE.'.
-- Character(LEN)LEN blanks.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'
--
--_Arguments_:
-- ARRAY May be any type, not scalar.
-- SHIFT The type shall be `INTEGER'.
-- BOUNDARY Same type as ARRAY.
-- DIM The type shall be `INTEGER'.
--
--_Return value_:
-- Returns an array of same type and rank as the ARRAY argument.
--
--_Example_:
-- program test_eoshift
-- integer, dimension(3,3) :: a
-- a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
-- print '(3i3)', a(1,:)
-- print '(3i3)', a(2,:)
-- print '(3i3)', a(3,:)
-- a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
-- print *
-- print '(3i3)', a(1,:)
-- print '(3i3)', a(2,:)
-- print '(3i3)', a(3,:)
-- end program test_eoshift
--
--
--File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures
--
--7.63 `EPSILON' -- Epsilon function
--==================================
--
--_Description_:
-- `EPSILON(X)' returns the smallest number E of the same kind as X
-- such that 1 + E > 1.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = EPSILON(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of same type as the argument.
--
--_Example_:
-- program test_epsilon
-- real :: x = 3.143
-- real(8) :: y = 2.33
-- print *, EPSILON(x)
-- print *, EPSILON(y)
-- end program test_epsilon
--
--
--File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures
--
--7.64 `ERF' -- Error function
--============================
--
--_Description_:
-- `ERF(X)' computes the error function of X.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ERF(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL', of the same kind as X and lies
-- in the range -1 \leq erf (x) \leq 1 .
--
--_Example_:
-- program test_erf
-- real(8) :: x = 0.17_8
-- x = erf(x)
-- end program test_erf
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DERF(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures
--
--7.65 `ERFC' -- Error function
--=============================
--
--_Description_:
-- `ERFC(X)' computes the complementary error function of X.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ERFC(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' and of the same kind as X. It
-- lies in the range 0 \leq erfc (x) \leq 2 .
--
--_Example_:
-- program test_erfc
-- real(8) :: x = 0.17_8
-- x = erfc(x)
-- end program test_erfc
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DERFC(X)' `REAL(8) X' `REAL(8)' GNU extension
--
--
--File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures
--
--7.66 `ERFC_SCALED' -- Error function
--====================================
--
--_Description_:
-- `ERFC_SCALED(X)' computes the exponentially-scaled complementary
-- error function of X.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ERFC_SCALED(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' and of the same kind as X.
--
--_Example_:
-- program test_erfc_scaled
-- real(8) :: x = 0.17_8
-- x = erfc_scaled(x)
-- end program test_erfc_scaled
--
--
--File: gfortran.info, Node: ETIME, Next: EXIT, Prev: ERFC_SCALED, Up: Intrinsic Procedures
--
--7.67 `ETIME' -- Execution time subroutine (or function)
--=======================================================
--
--_Description_:
-- `ETIME(TARRAY, RESULT)' returns the number of seconds of runtime
-- since the start of the process's execution in RESULT. TARRAY
-- returns the user and system components of this time in `TARRAY(1)'
-- and `TARRAY(2)' respectively. RESULT is equal to `TARRAY(1) +
-- TARRAY(2)'.
--
-- On some systems, the underlying timings are represented using
-- types with sufficiently small limits that overflows (wrap around)
-- are possible, such as 32-bit types. Therefore, the values returned
-- by this intrinsic might be, or become, negative, or numerically
-- less than previous values, during a single run of the compiled
-- program.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- TARRAY and RESULT are `INTENT(OUT)' and provide the following:
--
-- `TARRAY(1)': User time in seconds.
-- `TARRAY(2)': System time in seconds.
-- `RESULT': Run time since start in seconds.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL ETIME(TARRAY, RESULT)'.
-- `RESULT = ETIME(TARRAY)', (not recommended).
--
--_Arguments_:
-- TARRAY The type shall be `REAL, DIMENSION(2)'.
-- RESULT The type shall be `REAL'.
--
--_Return value_:
-- Elapsed time in seconds since the start of program execution.
--
--_Example_:
-- program test_etime
-- integer(8) :: i, j
-- real, dimension(2) :: tarray
-- real :: result
-- call ETIME(tarray, result)
-- print *, result
-- print *, tarray(1)
-- print *, tarray(2)
-- do i=1,100000000 ! Just a delay
-- j = i * i - i
-- end do
-- call ETIME(tarray, result)
-- print *, result
-- print *, tarray(1)
-- print *, tarray(2)
-- end program test_etime
--
--_See also_:
-- *note CPU_TIME::
--
--
--
--File: gfortran.info, Node: EXIT, Next: EXP, Prev: ETIME, Up: Intrinsic Procedures
--
--7.68 `EXIT' -- Exit the program with status.
--============================================
--
--_Description_:
-- `EXIT' causes immediate termination of the program with status.
-- If status is omitted it returns the canonical _success_ for the
-- system. All Fortran I/O units are closed.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL EXIT([STATUS])'
--
--_Arguments_:
-- STATUS Shall be an `INTEGER' of the default kind.
--
--_Return value_:
-- `STATUS' is passed to the parent process on exit.
--
--_Example_:
-- program test_exit
-- integer :: STATUS = 0
-- print *, 'This program is going to exit.'
-- call EXIT(STATUS)
-- end program test_exit
--
--_See also_:
-- *note ABORT::, *note KILL::
--
--
--File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures
--
--7.69 `EXP' -- Exponential function
--==================================
--
--_Description_:
-- `EXP(X)' computes the base e exponential of X.
--
--_Standard_:
-- Fortran 77 and later, has overloads that are GNU extensions
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = EXP(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value has same type and kind as X.
--
--_Example_:
-- program test_exp
-- real :: x = 1.0
-- x = exp(x)
-- end program test_exp
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DEXP(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
-- later
-- `CEXP(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and
-- X' later
-- `ZEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
-- `CDEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
--
--
--File: gfortran.info, Node: EXPONENT, Next: FDATE, Prev: EXP, Up: Intrinsic Procedures
--
--7.70 `EXPONENT' -- Exponent function
--====================================
--
--_Description_:
-- `EXPONENT(X)' returns the value of the exponent part of X. If X is
-- zero the value returned is zero.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = EXPONENT(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type default `INTEGER'.
--
--_Example_:
-- program test_exponent
-- real :: x = 1.0
-- integer :: i
-- i = exponent(x)
-- print *, i
-- print *, exponent(0.0)
-- end program test_exponent
--
--
--File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXPONENT, Up: Intrinsic Procedures
--
--7.71 `FDATE' -- Get the current time as a string
--================================================
--
--_Description_:
-- `FDATE(DATE)' returns the current date (using the same format as
-- `CTIME') in DATE. It is equivalent to `CALL CTIME(DATE, TIME())'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- DATE is an `INTENT(OUT)' `CHARACTER' variable of the default kind.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FDATE(DATE)'.
-- `DATE = FDATE()', (not recommended).
--
--_Arguments_:
-- DATE The type shall be of type `CHARACTER' of the
-- default kind
--
--_Return value_:
-- The current date as a string.
--
--_Example_:
-- program test_fdate
-- integer(8) :: i, j
-- character(len=30) :: date
-- call fdate(date)
-- print *, 'Program started on ', date
-- do i = 1, 100000000 ! Just a delay
-- j = i * i - i
-- end do
-- call fdate(date)
-- print *, 'Program ended on ', date
-- end program test_fdate
--
--
--File: gfortran.info, Node: FLOAT, Next: FLOOR, Prev: FGETC, Up: Intrinsic Procedures
--
--7.72 `FLOAT' -- Convert integer to default real
--===============================================
--
--_Description_:
-- `FLOAT(A)' converts the integer A to a default real value.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = FLOAT(A)'
--
--_Arguments_:
-- A The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type default `REAL'.
--
--_Example_:
-- program test_float
-- integer :: i = 1
-- if (float(i) /= 1.) call abort
-- end program test_float
--
--_See also_:
-- *note DBLE::, *note DFLOAT::, *note REAL::
--
--
--File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures
--
--7.73 `FGET' -- Read a single character in stream mode from stdin
--================================================================
--
--_Description_:
-- Read a single character in stream mode from stdin by bypassing
-- normal formatted output. Stream I/O should not be mixed with
-- normal record-oriented (formatted or unformatted) I/O on the same
-- unit; the results are unpredictable.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- Note that the `FGET' intrinsic is provided for backwards
-- compatibility with `g77'. GNU Fortran provides the Fortran 2003
-- Stream facility. Programmers should consider the use of new
-- stream IO feature in new code for future portability. See also
-- *note Fortran 2003 status::.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FGET(C [, STATUS])'
--
--_Arguments_:
-- C The type shall be `CHARACTER' and of default
-- kind.
-- STATUS (Optional) status flag of type `INTEGER'.
-- Returns 0 on success, -1 on end-of-file, and a
-- system specific positive error code otherwise.
--
--_Example_:
-- PROGRAM test_fget
-- INTEGER, PARAMETER :: strlen = 100
-- INTEGER :: status, i = 1
-- CHARACTER(len=strlen) :: str = ""
--
-- WRITE (*,*) 'Enter text:'
-- DO
-- CALL fget(str(i:i), status)
-- if (status /= 0 .OR. i > strlen) exit
-- i = i + 1
-- END DO
-- WRITE (*,*) TRIM(str)
-- END PROGRAM
--
--_See also_:
-- *note FGETC::, *note FPUT::, *note FPUTC::
--
--
--File: gfortran.info, Node: FGETC, Next: FLOAT, Prev: FGET, Up: Intrinsic Procedures
--
--7.74 `FGETC' -- Read a single character in stream mode
--======================================================
--
--_Description_:
-- Read a single character in stream mode by bypassing normal
-- formatted output. Stream I/O should not be mixed with normal
-- record-oriented (formatted or unformatted) I/O on the same unit;
-- the results are unpredictable.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- Note that the `FGET' intrinsic is provided for backwards
-- compatibility with `g77'. GNU Fortran provides the Fortran 2003
-- Stream facility. Programmers should consider the use of new
-- stream IO feature in new code for future portability. See also
-- *note Fortran 2003 status::.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FGETC(UNIT, C [, STATUS])'
--
--_Arguments_:
-- UNIT The type shall be `INTEGER'.
-- C The type shall be `CHARACTER' and of default
-- kind.
-- STATUS (Optional) status flag of type `INTEGER'.
-- Returns 0 on success, -1 on end-of-file and a
-- system specific positive error code otherwise.
--
--_Example_:
-- PROGRAM test_fgetc
-- INTEGER :: fd = 42, status
-- CHARACTER :: c
--
-- OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
-- DO
-- CALL fgetc(fd, c, status)
-- IF (status /= 0) EXIT
-- call fput(c)
-- END DO
-- CLOSE(UNIT=fd)
-- END PROGRAM
--
--_See also_:
-- *note FGET::, *note FPUT::, *note FPUTC::
--
--
--File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FLOAT, Up: Intrinsic Procedures
--
--7.75 `FLOOR' -- Integer floor function
--======================================
--
--_Description_:
-- `FLOOR(A)' returns the greatest integer less than or equal to X.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = FLOOR(A [, KIND])'
--
--_Arguments_:
-- A The type shall be `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER(KIND)' if KIND is present and
-- of default-kind `INTEGER' otherwise.
--
--_Example_:
-- program test_floor
-- real :: x = 63.29
-- real :: y = -63.59
-- print *, floor(x) ! returns 63
-- print *, floor(y) ! returns -64
-- end program test_floor
--
--_See also_:
-- *note CEILING::, *note NINT::
--
--
--
--File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures
--
--7.76 `FLUSH' -- Flush I/O unit(s)
--=================================
--
--_Description_:
-- Flushes Fortran unit(s) currently open for output. Without the
-- optional argument, all units are flushed, otherwise just the unit
-- specified.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL FLUSH(UNIT)'
--
--_Arguments_:
-- UNIT (Optional) The type shall be `INTEGER'.
--
--_Note_:
-- Beginning with the Fortran 2003 standard, there is a `FLUSH'
-- statement that should be preferred over the `FLUSH' intrinsic.
--
--
--
--File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures
--
--7.77 `FNUM' -- File number function
--===================================
--
--_Description_:
-- `FNUM(UNIT)' returns the POSIX file descriptor number
-- corresponding to the open Fortran I/O unit `UNIT'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = FNUM(UNIT)'
--
--_Arguments_:
-- UNIT The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER'
--
--_Example_:
-- program test_fnum
-- integer :: i
-- open (unit=10, status = "scratch")
-- i = fnum(10)
-- print *, i
-- close (10)
-- end program test_fnum
--
--
--File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures
--
--7.78 `FPUT' -- Write a single character in stream mode to stdout
--================================================================
--
--_Description_:
-- Write a single character in stream mode to stdout by bypassing
-- normal formatted output. Stream I/O should not be mixed with
-- normal record-oriented (formatted or unformatted) I/O on the same
-- unit; the results are unpredictable.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- Note that the `FGET' intrinsic is provided for backwards
-- compatibility with `g77'. GNU Fortran provides the Fortran 2003
-- Stream facility. Programmers should consider the use of new
-- stream IO feature in new code for future portability. See also
-- *note Fortran 2003 status::.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FPUT(C [, STATUS])'
--
--_Arguments_:
-- C The type shall be `CHARACTER' and of default
-- kind.
-- STATUS (Optional) status flag of type `INTEGER'.
-- Returns 0 on success, -1 on end-of-file and a
-- system specific positive error code otherwise.
--
--_Example_:
-- PROGRAM test_fput
-- CHARACTER(len=10) :: str = "gfortran"
-- INTEGER :: i
-- DO i = 1, len_trim(str)
-- CALL fput(str(i:i))
-- END DO
-- END PROGRAM
--
--_See also_:
-- *note FPUTC::, *note FGET::, *note FGETC::
--
--
--File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures
--
--7.79 `FPUTC' -- Write a single character in stream mode
--=======================================================
--
--_Description_:
-- Write a single character in stream mode by bypassing normal
-- formatted output. Stream I/O should not be mixed with normal
-- record-oriented (formatted or unformatted) I/O on the same unit;
-- the results are unpredictable.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
-- Note that the `FGET' intrinsic is provided for backwards
-- compatibility with `g77'. GNU Fortran provides the Fortran 2003
-- Stream facility. Programmers should consider the use of new
-- stream IO feature in new code for future portability. See also
-- *note Fortran 2003 status::.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FPUTC(UNIT, C [, STATUS])'
--
--_Arguments_:
-- UNIT The type shall be `INTEGER'.
-- C The type shall be `CHARACTER' and of default
-- kind.
-- STATUS (Optional) status flag of type `INTEGER'.
-- Returns 0 on success, -1 on end-of-file and a
-- system specific positive error code otherwise.
--
--_Example_:
-- PROGRAM test_fputc
-- CHARACTER(len=10) :: str = "gfortran"
-- INTEGER :: fd = 42, i
--
-- OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
-- DO i = 1, len_trim(str)
-- CALL fputc(fd, str(i:i))
-- END DO
-- CLOSE(fd)
-- END PROGRAM
--
--_See also_:
-- *note FPUT::, *note FGET::, *note FGETC::
--
--
--File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures
--
--7.80 `FRACTION' -- Fractional part of the model representation
--==============================================================
--
--_Description_:
-- `FRACTION(X)' returns the fractional part of the model
-- representation of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `Y = FRACTION(X)'
--
--_Arguments_:
-- X The type of the argument shall be a `REAL'.
--
--_Return value_:
-- The return value is of the same type and kind as the argument.
-- The fractional part of the model representation of `X' is returned;
-- it is `X * RADIX(X)**(-EXPONENT(X))'.
--
--_Example_:
-- program test_fraction
-- real :: x
-- x = 178.1387e-4
-- print *, fraction(x), x * radix(x)**(-exponent(x))
-- end program test_fraction
--
--
--
--File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures
--
--7.81 `FREE' -- Frees memory
--===========================
--
--_Description_:
-- Frees memory previously allocated by `MALLOC()'. The `FREE'
-- intrinsic is an extension intended to be used with Cray pointers,
-- and is provided in GNU Fortran to allow user to compile legacy
-- code. For new code using Fortran 95 pointers, the memory
-- de-allocation intrinsic is `DEALLOCATE'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL FREE(PTR)'
--
--_Arguments_:
-- PTR The type shall be `INTEGER'. It represents the
-- location of the memory that should be
-- de-allocated.
--
--_Return value_:
-- None
--
--_Example_:
-- See `MALLOC' for an example.
--
--_See also_:
-- *note MALLOC::
--
--
--File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures
--
--7.82 `FSEEK' -- Low level file positioning subroutine
--=====================================================
--
--_Description_:
-- Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the
-- OFFSET is taken as an absolute value `SEEK_SET', if set to 1,
-- OFFSET is taken to be relative to the current position `SEEK_CUR',
-- and if set to 2 relative to the end of the file `SEEK_END'. On
-- error, STATUS is set to a nonzero value. If STATUS the seek fails
-- silently.
--
-- This intrinsic routine is not fully backwards compatible with
-- `g77'. In `g77', the `FSEEK' takes a statement label instead of a
-- STATUS variable. If FSEEK is used in old code, change
-- CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
-- to
-- INTEGER :: status
-- CALL FSEEK(UNIT, OFFSET, WHENCE, status)
-- IF (status /= 0) GOTO label
--
-- Please note that GNU Fortran provides the Fortran 2003 Stream
-- facility. Programmers should consider the use of new stream IO
-- feature in new code for future portability. See also *note Fortran
-- 2003 status::.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'
--
--_Arguments_:
-- UNIT Shall be a scalar of type `INTEGER'.
-- OFFSET Shall be a scalar of type `INTEGER'.
-- WHENCE Shall be a scalar of type `INTEGER'. Its
-- value shall be either 0, 1 or 2.
-- STATUS (Optional) shall be a scalar of type
-- `INTEGER(4)'.
--
--_Example_:
-- PROGRAM test_fseek
-- INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
-- INTEGER :: fd, offset, ierr
--
-- ierr = 0
-- offset = 5
-- fd = 10
--
-- OPEN(UNIT=fd, FILE="fseek.test")
-- CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
-- print *, FTELL(fd), ierr
--
-- CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
-- print *, FTELL(fd), ierr
--
-- CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
-- print *, FTELL(fd), ierr
--
-- CLOSE(UNIT=fd)
-- END PROGRAM
--
--_See also_:
-- *note FTELL::
--
--
--File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures
--
--7.83 `FSTAT' -- Get file status
--===============================
--
--_Description_:
-- `FSTAT' is identical to *note STAT::, except that information
-- about an already opened file is obtained.
--
-- The elements in `BUFF' are the same as described by *note STAT::.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FSTAT(UNIT, BUFF [, STATUS])'
--
--_Arguments_:
-- UNIT An open I/O unit number of type `INTEGER'.
-- BUFF The type shall be `INTEGER(4), DIMENSION(13)'.
-- STATUS (Optional) status flag of type `INTEGER(4)'.
-- Returns 0 on success and a system specific
-- error code otherwise.
--
--_Example_:
-- See *note STAT:: for an example.
--
--_See also_:
-- To stat a link: *note LSTAT::, to stat a file: *note STAT::
--
--
--File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures
--
--7.84 `FTELL' -- Current stream position
--=======================================
--
--_Description_:
-- Retrieves the current position within an open file.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL FTELL(UNIT, OFFSET)'
-- `OFFSET = FTELL(UNIT)'
--
--_Arguments_:
-- OFFSET Shall of type `INTEGER'.
-- UNIT Shall of type `INTEGER'.
--
--_Return value_:
-- In either syntax, OFFSET is set to the current offset of unit
-- number UNIT, or to -1 if the unit is not currently open.
--
--_Example_:
-- PROGRAM test_ftell
-- INTEGER :: i
-- OPEN(10, FILE="temp.dat")
-- CALL ftell(10,i)
-- WRITE(*,*) i
-- END PROGRAM
--
--_See also_:
-- *note FSEEK::
--
--
--File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures
--
--7.85 `GAMMA' -- Gamma function
--==============================
--
--_Description_:
-- `GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer
-- values of X the Gamma function simplifies to the factorial
-- function \Gamma(x)=(x-1)!.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `X = GAMMA(X)'
--
--_Arguments_:
-- X Shall be of type `REAL' and neither zero nor a
-- negative integer.
--
--_Return value_:
-- The return value is of type `REAL' of the same kind as X.
--
--_Example_:
-- program test_gamma
-- real :: x = 1.0
-- x = gamma(x) ! returns 1.0
-- end program test_gamma
--
--_Specific names_:
-- Name Argument Return type Standard
-- `GAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
-- `DGAMMA(X)' `REAL(8) X' `REAL(8)' GNU Extension
--
--_See also_:
-- Logarithm of the Gamma function: *note LOG_GAMMA::
--
--
--
--File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures
--
--7.86 `GERROR' -- Get last system error message
--==============================================
--
--_Description_:
-- Returns the system error message corresponding to the last system
-- error. This resembles the functionality of `strerror(3)' in C.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GERROR(RESULT)'
--
--_Arguments_:
-- RESULT Shall of type `CHARACTER' and of default
--
--_Example_:
-- PROGRAM test_gerror
-- CHARACTER(len=100) :: msg
-- CALL gerror(msg)
-- WRITE(*,*) msg
-- END PROGRAM
--
--_See also_:
-- *note IERRNO::, *note PERROR::
--
--
--File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures
--
--7.87 `GETARG' -- Get command line arguments
--===========================================
--
--_Description_:
-- Retrieve the POS-th argument that was passed on the command line
-- when the containing program was invoked.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. In new code, programmers should consider the use
-- of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
-- Fortran 2003 standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GETARG(POS, VALUE)'
--
--_Arguments_:
-- POS Shall be of type `INTEGER' and not wider than
-- the default integer kind; POS \geq 0
-- VALUE Shall be of type `CHARACTER' and of default
-- kind.
-- VALUE Shall be of type `CHARACTER'.
--
--_Return value_:
-- After `GETARG' returns, the VALUE argument holds the POSth command
-- line argument. If VALUE can not hold the argument, it is truncated
-- to fit the length of VALUE. If there are less than POS arguments
-- specified at the command line, VALUE will be filled with blanks.
-- If POS = 0, VALUE is set to the name of the program (on systems
-- that support this feature).
--
--_Example_:
-- PROGRAM test_getarg
-- INTEGER :: i
-- CHARACTER(len=32) :: arg
--
-- DO i = 1, iargc()
-- CALL getarg(i, arg)
-- WRITE (*,*) arg
-- END DO
-- END PROGRAM
--
--_See also_:
-- GNU Fortran 77 compatibility function: *note IARGC::
--
-- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
-- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
--
--
--File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures
--
--7.88 `GET_COMMAND' -- Get the entire command line
--=================================================
--
--_Description_:
-- Retrieve the entire command line that was used to invoke the
-- program.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GET_COMMAND(COMMAND)'
--
--_Arguments_:
-- COMMAND Shall be of type `CHARACTER' and of default
-- kind.
--
--_Return value_:
-- Stores the entire command line that was used to invoke the program
-- in COMMAND. If COMMAND is not large enough, the command will be
-- truncated.
--
--_Example_:
-- PROGRAM test_get_command
-- CHARACTER(len=255) :: cmd
-- CALL get_command(cmd)
-- WRITE (*,*) TRIM(cmd)
-- END PROGRAM
--
--_See also_:
-- *note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
--
--
--File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures
--
--7.89 `GET_COMMAND_ARGUMENT' -- Get command line arguments
--=========================================================
--
--_Description_:
-- Retrieve the NUMBER-th argument that was passed on the command
-- line when the containing program was invoked.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'
--
--_Arguments_:
-- NUMBER Shall be a scalar of type `INTEGER(4)', NUMBER
-- \geq 0
-- VALUE Shall be a scalar of type `CHARACTER' and of
-- default kind.
-- LENGTH (Option) Shall be a scalar of type
-- `INTEGER(4)'.
-- STATUS (Option) Shall be a scalar of type
-- `INTEGER(4)'.
--
--_Return value_:
-- After `GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
-- NUMBER-th command line argument. If VALUE can not hold the
-- argument, it is truncated to fit the length of VALUE. If there are
-- less than NUMBER arguments specified at the command line, VALUE
-- will be filled with blanks. If NUMBER = 0, VALUE is set to the
-- name of the program (on systems that support this feature). The
-- LENGTH argument contains the length of the NUMBER-th command line
-- argument. If the argument retrieval fails, STATUS is a positive
-- number; if VALUE contains a truncated command line argument,
-- STATUS is -1; and otherwise the STATUS is zero.
--
--_Example_:
-- PROGRAM test_get_command_argument
-- INTEGER :: i
-- CHARACTER(len=32) :: arg
--
-- i = 0
-- DO
-- CALL get_command_argument(i, arg)
-- IF (LEN_TRIM(arg) == 0) EXIT
--
-- WRITE (*,*) TRIM(arg)
-- i = i+1
-- END DO
-- END PROGRAM
--
--_See also_:
-- *note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::
--
--
--File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures
--
--7.90 `GETCWD' -- Get current working directory
--==============================================
--
--_Description_:
-- Get current working directory.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL GETCWD(C [, STATUS])'
--
--_Arguments_:
-- C The type shall be `CHARACTER' and of default
-- kind.
-- STATUS (Optional) status flag. Returns 0 on success,
-- a system specific and nonzero error code
-- otherwise.
--
--_Example_:
-- PROGRAM test_getcwd
-- CHARACTER(len=255) :: cwd
-- CALL getcwd(cwd)
-- WRITE(*,*) TRIM(cwd)
-- END PROGRAM
--
--_See also_:
-- *note CHDIR::
--
--
--File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures
--
--7.91 `GETENV' -- Get an environmental variable
--==============================================
--
--_Description_:
-- Get the VALUE of the environmental variable NAME.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. In new code, programmers should consider the use
-- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
-- Fortran 2003 standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GETENV(NAME, VALUE)'
--
--_Arguments_:
-- NAME Shall be of type `CHARACTER' and of default
-- kind.
-- VALUE Shall be of type `CHARACTER' and of default
-- kind.
--
--_Return value_:
-- Stores the value of NAME in VALUE. If VALUE is not large enough to
-- hold the data, it is truncated. If NAME is not set, VALUE will be
-- filled with blanks.
--
--_Example_:
-- PROGRAM test_getenv
-- CHARACTER(len=255) :: homedir
-- CALL getenv("HOME", homedir)
-- WRITE (*,*) TRIM(homedir)
-- END PROGRAM
--
--_See also_:
-- *note GET_ENVIRONMENT_VARIABLE::
--
--
--File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures
--
--7.92 `GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
--================================================================
--
--_Description_:
-- Get the VALUE of the environmental variable NAME.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
-- TRIM_NAME)'
--
--_Arguments_:
-- NAME Shall be a scalar of type `CHARACTER(1)'.
-- VALUE Shall be a scalar of type `CHARACTER(1)'.
-- LENGTH Shall be a scalar of type `INTEGER(4)'.
-- STATUS Shall be a scalar of type `INTEGER(4)'.
-- TRIM_NAME Shall be a scalar of type `LOGICAL(4)'.
--
--_Return value_:
-- Stores the value of NAME in VALUE. If VALUE is not large enough to
-- hold the data, it is truncated. If NAME is not set, VALUE will be
-- filled with blanks. Argument LENGTH contains the length needed for
-- storing the environment variable NAME or zero if it is not
-- present. STATUS is -1 if VALUE is present but too short for the
-- environment variable; it is 1 if the environment variable does not
-- exist and 2 if the processor does not support environment
-- variables; in all other cases STATUS is zero. If TRIM_NAME is
-- present with the value `.FALSE.', the trailing blanks in NAME are
-- significant; otherwise they are not part of the environment
-- variable name.
--
--_Example_:
-- PROGRAM test_getenv
-- CHARACTER(len=255) :: homedir
-- CALL get_environment_variable("HOME", homedir)
-- WRITE (*,*) TRIM(homedir)
-- END PROGRAM
--
--
--File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures
--
--7.93 `GETGID' -- Group ID function
--==================================
--
--_Description_:
-- Returns the numerical group ID of the current process.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = GETGID()'
--
--_Return value_:
-- The return value of `GETGID' is an `INTEGER' of the default kind.
--
--_Example_:
-- See `GETPID' for an example.
--
--_See also_:
-- *note GETPID::, *note GETUID::
--
--
--File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures
--
--7.94 `GETLOG' -- Get login name
--===============================
--
--_Description_:
-- Gets the username under which the program is running.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GETLOG(C)'
--
--_Arguments_:
-- C Shall be of type `CHARACTER' and of default
-- kind.
--
--_Return value_:
-- Stores the current user name in LOGIN. (On systems where POSIX
-- functions `geteuid' and `getpwuid' are not available, and the
-- `getlogin' function is not implemented either, this will return a
-- blank string.)
--
--_Example_:
-- PROGRAM TEST_GETLOG
-- CHARACTER(32) :: login
-- CALL GETLOG(login)
-- WRITE(*,*) login
-- END PROGRAM
--
--_See also_:
-- *note GETUID::
--
--
--File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures
--
--7.95 `GETPID' -- Process ID function
--====================================
--
--_Description_:
-- Returns the numerical process identifier of the current process.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = GETPID()'
--
--_Return value_:
-- The return value of `GETPID' is an `INTEGER' of the default kind.
--
--_Example_:
-- program info
-- print *, "The current process ID is ", getpid()
-- print *, "Your numerical user ID is ", getuid()
-- print *, "Your numerical group ID is ", getgid()
-- end program info
--
--_See also_:
-- *note GETGID::, *note GETUID::
--
--
--File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures
--
--7.96 `GETUID' -- User ID function
--=================================
--
--_Description_:
-- Returns the numerical user ID of the current process.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = GETUID()'
--
--_Return value_:
-- The return value of `GETUID' is an `INTEGER' of the default kind.
--
--_Example_:
-- See `GETPID' for an example.
--
--_See also_:
-- *note GETPID::, *note GETLOG::
--
--
--File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures
--
--7.97 `GMTIME' -- Convert time to GMT info
--=========================================
--
--_Description_:
-- Given a system time value TIME (as provided by the `TIME8()'
-- intrinsic), fills VALUES with values extracted from it appropriate
-- to the UTC time zone (Universal Coordinated Time, also known in
-- some countries as GMT, Greenwich Mean Time), using `gmtime(3)'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL GMTIME(TIME, VALUES)'
--
--_Arguments_:
-- TIME An `INTEGER' scalar expression corresponding
-- to a system time, with `INTENT(IN)'.
-- VALUES A default `INTEGER' array with 9 elements,
-- with `INTENT(OUT)'.
--
--_Return value_:
-- The elements of VALUES are assigned as follows:
-- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
-- seconds
--
-- 2. Minutes after the hour, range 0-59
--
-- 3. Hours past midnight, range 0-23
--
-- 4. Day of month, range 0-31
--
-- 5. Number of months since January, range 0-12
--
-- 6. Years since 1900
--
-- 7. Number of days since Sunday, range 0-6
--
-- 8. Days since January 1
--
-- 9. Daylight savings indicator: positive if daylight savings is in
-- effect, zero if not, and negative if the information is not
-- available.
--
--_See also_:
-- *note CTIME::, *note LTIME::, *note TIME::, *note TIME8::
--
--
--
--File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures
--
--7.98 `HOSTNM' -- Get system host name
--=====================================
--
--_Description_:
-- Retrieves the host name of the system on which the program is
-- running.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL HOSTNM(C [, STATUS])'
-- `STATUS = HOSTNM(NAME)'
--
--_Arguments_:
-- C Shall of type `CHARACTER' and of default kind.
-- STATUS (Optional) status flag of type `INTEGER'.
-- Returns 0 on success, or a system specific
-- error code otherwise.
--
--_Return value_:
-- In either syntax, NAME is set to the current hostname if it can be
-- obtained, or to a blank string otherwise.
--
--
--
--File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures
--
--7.99 `HUGE' -- Largest number of a kind
--=======================================
--
--_Description_:
-- `HUGE(X)' returns the largest number that is not an infinity in
-- the model of the type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = HUGE(X)'
--
--_Arguments_:
-- X Shall be of type `REAL' or `INTEGER'.
--
--_Return value_:
-- The return value is of the same type and kind as X
--
--_Example_:
-- program test_huge_tiny
-- print *, huge(0), huge(0.0), huge(0.0d0)
-- print *, tiny(0.0), tiny(0.0d0)
-- end program test_huge_tiny
--
--
--File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures
--
--7.100 `HYPOT' -- Euclidean distance function
--============================================
--
--_Description_:
-- `HYPOT(X,Y)' is the Euclidean distance function. It is equal to
-- \sqrtX^2 + Y^2, without undue underflow or overflow.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = HYPOT(X, Y)'
--
--_Arguments_:
-- X The type shall be `REAL'.
-- Y The type and kind type parameter shall be the
-- same as X.
--
--_Return value_:
-- The return value has the same type and kind type parameter as X.
--
--_Example_:
-- program test_hypot
-- real(4) :: x = 1.e0_4, y = 0.5e0_4
-- x = hypot(x,y)
-- end program test_hypot
--
--
--File: gfortran.info, Node: IACHAR, Next: IAND, Prev: HYPOT, Up: Intrinsic Procedures
--
--7.101 `IACHAR' -- Code in ASCII collating sequence
--==================================================
--
--_Description_:
-- `IACHAR(C)' returns the code for the ASCII character in the first
-- character position of `C'.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IACHAR(C [, KIND])'
--
--_Arguments_:
-- C Shall be a scalar `CHARACTER', with
-- `INTENT(IN)'
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_Example_:
-- program test_iachar
-- integer i
-- i = iachar(' ')
-- end program test_iachar
--
--_Note_:
-- See *note ICHAR:: for a discussion of converting between numerical
-- values and formatted string representations.
--
--_See also_:
-- *note ACHAR::, *note CHAR::, *note ICHAR::
--
--
--
--File: gfortran.info, Node: IAND, Next: IARGC, Prev: IACHAR, Up: Intrinsic Procedures
--
--7.102 `IAND' -- Bitwise logical and
--===================================
--
--_Description_:
-- Bitwise logical `AND'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IAND(I, J)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- J The type shall be `INTEGER', of the same kind
-- as I. (As a GNU extension, different kinds
-- are also permitted.)
--
--_Return value_:
-- The return type is `INTEGER', of the same kind as the arguments.
-- (If the argument kinds differ, it is of the same kind as the
-- larger argument.)
--
--_Example_:
-- PROGRAM test_iand
-- INTEGER :: a, b
-- DATA a / Z'F' /, b / Z'3' /
-- WRITE (*,*) IAND(a, b)
-- END PROGRAM
--
--_See also_:
-- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
-- IBCLR::, *note NOT::
--
--
--
--File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IAND, Up: Intrinsic Procedures
--
--7.103 `IARGC' -- Get the number of command line arguments
--=========================================================
--
--_Description_:
-- `IARGC()' returns the number of arguments passed on the command
-- line when the containing program was invoked.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. In new code, programmers should consider the use
-- of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
-- Fortran 2003 standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = IARGC()'
--
--_Arguments_:
-- None.
--
--_Return value_:
-- The number of command line arguments, type `INTEGER(4)'.
--
--_Example_:
-- See *note GETARG::
--
--_See also_:
-- GNU Fortran 77 compatibility subroutine: *note GETARG::
--
-- Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
-- GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
--
--
--File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures
--
--7.104 `IBCLR' -- Clear bit
--==========================
--
--_Description_:
-- `IBCLR' returns the value of I with the bit at position POS set to
-- zero.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IBCLR(I, POS)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- POS The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
-- IEOR::, *note MVBITS::
--
--
--
--File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures
--
--7.105 `IBITS' -- Bit extraction
--===============================
--
--_Description_:
-- `IBITS' extracts a field of length LEN from I, starting from bit
-- position POS and extending left for LEN bits. The result is
-- right-justified and the remaining bits are zeroed. The value of
-- `POS+LEN' must be less than or equal to the value `BIT_SIZE(I)'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IBITS(I, POS, LEN)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- POS The type shall be `INTEGER'.
-- LEN The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::,
-- *note IOR::, *note IEOR::
--
--
--File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures
--
--7.106 `IBSET' -- Set bit
--========================
--
--_Description_:
-- `IBSET' returns the value of I with the bit at position POS set to
-- one.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IBSET(I, POS)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- POS The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
-- IEOR::, *note MVBITS::
--
--
--
--File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures
--
--7.107 `ICHAR' -- Character-to-integer conversion function
--=========================================================
--
--_Description_:
-- `ICHAR(C)' returns the code for the character in the first
-- character position of `C' in the system's native character set.
-- The correspondence between characters and their codes is not
-- necessarily the same across different GNU Fortran implementations.
--
--_Standard_:
-- Fortan 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ICHAR(C [, KIND])'
--
--_Arguments_:
-- C Shall be a scalar `CHARACTER', with
-- `INTENT(IN)'
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_Example_:
-- program test_ichar
-- integer i
-- i = ichar(' ')
-- end program test_ichar
--
--_Note_:
-- No intrinsic exists to convert between a numeric value and a
-- formatted character string representation - for instance, given the
-- `CHARACTER' value `'154'', obtaining an `INTEGER' or `REAL' value
-- with the value 154, or vice versa. Instead, this functionality is
-- provided by internal-file I/O, as in the following example:
-- program read_val
-- integer value
-- character(len=10) string, string2
-- string = '154'
--
-- ! Convert a string to a numeric value
-- read (string,'(I10)') value
-- print *, value
--
-- ! Convert a value to a formatted string
-- write (string2,'(I10)') value
-- print *, string2
-- end program read_val
--
--_See also_:
-- *note ACHAR::, *note CHAR::, *note IACHAR::
--
--
--
--File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures
--
--7.108 `IDATE' -- Get current local time subroutine (day/month/year)
--===================================================================
--
--_Description_:
-- `IDATE(TARRAY)' Fills TARRAY with the numerical values at the
-- current local time. The day (in the range 1-31), month (in the
-- range 1-12), and year appear in elements 1, 2, and 3 of TARRAY,
-- respectively. The year has four significant digits.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL IDATE(VALUES)'
--
--_Arguments_:
-- VALUES The type shall be `INTEGER, DIMENSION(3)' and
-- the kind shall be the default integer kind.
--
--_Return value_:
-- Does not return anything.
--
--_Example_:
-- program test_idate
-- integer, dimension(3) :: tarray
-- call idate(tarray)
-- print *, tarray(1)
-- print *, tarray(2)
-- print *, tarray(3)
-- end program test_idate
--
--
--File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures
--
--7.109 `IEOR' -- Bitwise logical exclusive or
--============================================
--
--_Description_:
-- `IEOR' returns the bitwise boolean exclusive-OR of I and J.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IEOR(I, J)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- J The type shall be `INTEGER', of the same kind
-- as I. (As a GNU extension, different kinds
-- are also permitted.)
--
--_Return value_:
-- The return type is `INTEGER', of the same kind as the arguments.
-- (If the argument kinds differ, it is of the same kind as the
-- larger argument.)
--
--_See also_:
-- *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
-- IBCLR::, *note NOT::
--
--
--File: gfortran.info, Node: IERRNO, Next: INDEX intrinsic, Prev: IEOR, Up: Intrinsic Procedures
--
--7.110 `IERRNO' -- Get the last system error number
--==================================================
--
--_Description_:
-- Returns the last system error number, as given by the C `errno()'
-- function.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = IERRNO()'
--
--_Arguments_:
-- None.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the default integer
-- kind.
--
--_See also_:
-- *note PERROR::
--
--
--File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IERRNO, Up: Intrinsic Procedures
--
--7.111 `INDEX' -- Position of a substring within a string
--========================================================
--
--_Description_:
-- Returns the position of the start of the first occurrence of string
-- SUBSTRING as a substring in STRING, counting from one. If
-- SUBSTRING is not present in STRING, zero is returned. If the BACK
-- argument is present and true, the return value is the start of the
-- last occurrence rather than the first.
--
--_Standard_:
-- Fortran 77 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'
--
--_Arguments_:
-- STRING Shall be a scalar `CHARACTER', with
-- `INTENT(IN)'
-- SUBSTRING Shall be a scalar `CHARACTER', with
-- `INTENT(IN)'
-- BACK (Optional) Shall be a scalar `LOGICAL', with
-- `INTENT(IN)'
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_See also_:
-- *note SCAN::, *note VERIFY::
--
--
--File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures
--
--7.112 `INT' -- Convert to integer type
--======================================
--
--_Description_:
-- Convert to integer type
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = INT(A [, KIND))'
--
--_Arguments_:
-- A Shall be of type `INTEGER', `REAL', or
-- `COMPLEX'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- These functions return a `INTEGER' variable or array under the
-- following rules:
--
-- (A)
-- If A is of type `INTEGER', `INT(A) = A'
--
-- (B)
-- If A is of type `REAL' and |A| < 1, `INT(A)' equals `0'. If
-- |A| \geq 1, then `INT(A)' equals the largest integer that
-- does not exceed the range of A and whose sign is the same as
-- the sign of A.
--
-- (C)
-- If A is of type `COMPLEX', rule B is applied to the real part
-- of A.
--
--_Example_:
-- program test_int
-- integer :: i = 42
-- complex :: z = (-3.7, 1.0)
-- print *, int(i)
-- print *, int(z), int(z,8)
-- end program
--
--_Specific names_:
-- Name Argument Return type Standard
-- `IFIX(A)' `REAL(4) A' `INTEGER' Fortran 77 and
-- later
-- `IDINT(A)' `REAL(8) A' `INTEGER' Fortran 77 and
-- later
--
--
--
--File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures
--
--7.113 `INT2' -- Convert to 16-bit integer type
--==============================================
--
--_Description_:
-- Convert to a `KIND=2' integer type. This is equivalent to the
-- standard `INT' intrinsic with an optional argument of `KIND=2',
-- and is only included for backwards compatibility.
--
-- The `SHORT' intrinsic is equivalent to `INT2'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = INT2(A)'
--
--_Arguments_:
-- A Shall be of type `INTEGER', `REAL', or
-- `COMPLEX'.
--
--_Return value_:
-- The return value is a `INTEGER(2)' variable.
--
--_See also_:
-- *note INT::, *note INT8::, *note LONG::
--
--
--File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures
--
--7.114 `INT8' -- Convert to 64-bit integer type
--==============================================
--
--_Description_:
-- Convert to a `KIND=8' integer type. This is equivalent to the
-- standard `INT' intrinsic with an optional argument of `KIND=8',
-- and is only included for backwards compatibility.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = INT8(A)'
--
--_Arguments_:
-- A Shall be of type `INTEGER', `REAL', or
-- `COMPLEX'.
--
--_Return value_:
-- The return value is a `INTEGER(8)' variable.
--
--_See also_:
-- *note INT::, *note INT2::, *note LONG::
--
--
--File: gfortran.info, Node: IOR, Next: IRAND, Prev: INT8, Up: Intrinsic Procedures
--
--7.115 `IOR' -- Bitwise logical or
--=================================
--
--_Description_:
-- `IOR' returns the bitwise boolean inclusive-OR of I and J.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IOR(I, J)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- J The type shall be `INTEGER', of the same kind
-- as I. (As a GNU extension, different kinds
-- are also permitted.)
--
--_Return value_:
-- The return type is `INTEGER', of the same kind as the arguments.
-- (If the argument kinds differ, it is of the same kind as the
-- larger argument.)
--
--_See also_:
-- *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
-- IBCLR::, *note NOT::
--
--
--File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IOR, Up: Intrinsic Procedures
--
--7.116 `IRAND' -- Integer pseudo-random number
--=============================================
--
--_Description_:
-- `IRAND(FLAG)' returns a pseudo-random number from a uniform
-- distribution between 0 and a system-dependent limit (which is in
-- most cases 2147483647). If FLAG is 0, the next number in the
-- current sequence is returned; if FLAG is 1, the generator is
-- restarted by `CALL SRAND(0)'; if FLAG has any other value, it is
-- used as a new seed with `SRAND'.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. It implements a simple modulo generator as provided
-- by `g77'. For new code, one should consider the use of *note
-- RANDOM_NUMBER:: as it implements a superior algorithm.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = IRAND(I)'
--
--_Arguments_:
-- I Shall be a scalar `INTEGER' of kind 4.
--
--_Return value_:
-- The return value is of `INTEGER(kind=4)' type.
--
--_Example_:
-- program test_irand
-- integer,parameter :: seed = 86456
--
-- call srand(seed)
-- print *, irand(), irand(), irand(), irand()
-- print *, irand(seed), irand(), irand(), irand()
-- end program test_irand
--
--
--
--File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures
--
--7.117 `IS_IOSTAT_END' -- Test for end-of-file value
--===================================================
--
--_Description_:
-- `IS_IOSTAT_END' tests whether an variable has the value of the I/O
-- status "end of file". The function is equivalent to comparing the
-- variable with the `IOSTAT_END' parameter of the intrinsic module
-- `ISO_FORTRAN_ENV'.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IS_IOSTAT_END(I)'
--
--_Arguments_:
-- I Shall be of the type `INTEGER'.
--
--_Return value_:
-- Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has
-- the value which indicates an end of file condition for IOSTAT=
-- specifiers, and is `.FALSE.' otherwise.
--
--_Example_:
-- PROGRAM iostat
-- IMPLICIT NONE
-- INTEGER :: stat, i
-- OPEN(88, FILE='test.dat')
-- READ(88, *, IOSTAT=stat) i
-- IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
-- END PROGRAM
--
--
--File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures
--
--7.118 `IS_IOSTAT_EOR' -- Test for end-of-record value
--=====================================================
--
--_Description_:
-- `IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
-- status "end of record". The function is equivalent to comparing the
-- variable with the `IOSTAT_EOR' parameter of the intrinsic module
-- `ISO_FORTRAN_ENV'.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = IS_IOSTAT_EOR(I)'
--
--_Arguments_:
-- I Shall be of the type `INTEGER'.
--
--_Return value_:
-- Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has
-- the value which indicates an end of file condition for IOSTAT=
-- specifiers, and is `.FALSE.' otherwise.
--
--_Example_:
-- PROGRAM iostat
-- IMPLICIT NONE
-- INTEGER :: stat, i(50)
-- OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
-- READ(88, IOSTAT=stat) i
-- IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
-- END PROGRAM
--
--
--File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures
--
--7.119 `ISATTY' -- Whether a unit is a terminal device.
--======================================================
--
--_Description_:
-- Determine whether a unit is connected to a terminal device.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = ISATTY(UNIT)'
--
--_Arguments_:
-- UNIT Shall be a scalar `INTEGER'.
--
--_Return value_:
-- Returns `.TRUE.' if the UNIT is connected to a terminal device,
-- `.FALSE.' otherwise.
--
--_Example_:
-- PROGRAM test_isatty
-- INTEGER(kind=1) :: unit
-- DO unit = 1, 10
-- write(*,*) isatty(unit=unit)
-- END DO
-- END PROGRAM
--
--_See also_:
-- *note TTYNAM::
--
--
--File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures
--
--7.120 `ISHFT' -- Shift bits
--===========================
--
--_Description_:
-- `ISHFT' returns a value corresponding to I with all of the bits
-- shifted SHIFT places. A value of SHIFT greater than zero
-- corresponds to a left shift, a value of zero corresponds to no
-- shift, and a value less than zero corresponds to a right shift.
-- If the absolute value of SHIFT is greater than `BIT_SIZE(I)', the
-- value is undefined. Bits shifted out from the left end or right
-- end are lost; zeros are shifted in from the opposite end.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ISHFT(I, SHIFT)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- SHIFT The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note ISHFTC::
--
--
--File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures
--
--7.121 `ISHFTC' -- Shift bits circularly
--=======================================
--
--_Description_:
-- `ISHFTC' returns a value corresponding to I with the rightmost
-- SIZE bits shifted circularly SHIFT places; that is, bits shifted
-- out one end are shifted into the opposite end. A value of SHIFT
-- greater than zero corresponds to a left shift, a value of zero
-- corresponds to no shift, and a value less than zero corresponds to
-- a right shift. The absolute value of SHIFT must be less than
-- SIZE. If the SIZE argument is omitted, it is taken to be
-- equivalent to `BIT_SIZE(I)'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = ISHFTC(I, SHIFT [, SIZE])'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- SHIFT The type shall be `INTEGER'.
-- SIZE (Optional) The type shall be `INTEGER'; the
-- value must be greater than zero and less than
-- or equal to `BIT_SIZE(I)'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note ISHFT::
--
--
--File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures
--
--7.122 `ISNAN' -- Test for a NaN
--===============================
--
--_Description_:
-- `ISNAN' tests whether a floating-point value is an IEEE
-- Not-a-Number (NaN).
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `ISNAN(X)'
--
--_Arguments_:
-- X Variable of the type `REAL'.
--
--_Return value_:
-- Returns a default-kind `LOGICAL'. The returned value is `TRUE' if
-- X is a NaN and `FALSE' otherwise.
--
--_Example_:
-- program test_nan
-- implicit none
-- real :: x
-- x = -1.0
-- x = sqrt(x)
-- if (isnan(x)) stop '"x" is a NaN'
-- end program test_nan
--
--
--File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures
--
--7.123 `ITIME' -- Get current local time subroutine (hour/minutes/seconds)
--=========================================================================
--
--_Description_:
-- `IDATE(VALUES)' Fills VALUES with the numerical values at the
-- current local time. The hour (in the range 1-24), minute (in the
-- range 1-60), and seconds (in the range 1-60) appear in elements 1,
-- 2, and 3 of VALUES, respectively.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL ITIME(VALUES)'
--
--_Arguments_:
-- VALUES The type shall be `INTEGER, DIMENSION(3)' and
-- the kind shall be the default integer kind.
--
--_Return value_:
-- Does not return anything.
--
--_Example_:
-- program test_itime
-- integer, dimension(3) :: tarray
-- call itime(tarray)
-- print *, tarray(1)
-- print *, tarray(2)
-- print *, tarray(3)
-- end program test_itime
--
--
--File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures
--
--7.124 `KILL' -- Send a signal to a process
--==========================================
--
--_Description_:
--
--_Standard_:
-- Sends the signal specified by SIGNAL to the process PID. See
-- `kill(2)'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL KILL(C, VALUE [, STATUS])'
--
--_Arguments_:
-- C Shall be a scalar `INTEGER', with `INTENT(IN)'
-- VALUE Shall be a scalar `INTEGER', with `INTENT(IN)'
-- STATUS (Optional) status flag of type `INTEGER(4)' or
-- `INTEGER(8)'. Returns 0 on success, or a
-- system-specific error code otherwise.
--
--_See also_:
-- *note ABORT::, *note EXIT::
--
--
--File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures
--
--7.125 `KIND' -- Kind of an entity
--=================================
--
--_Description_:
-- `KIND(X)' returns the kind value of the entity X.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `K = KIND(X)'
--
--_Arguments_:
-- X Shall be of type `LOGICAL', `INTEGER', `REAL',
-- `COMPLEX' or `CHARACTER'.
--
--_Return value_:
-- The return value is a scalar of type `INTEGER' and of the default
-- integer kind.
--
--_Example_:
-- program test_kind
-- integer,parameter :: kc = kind(' ')
-- integer,parameter :: kl = kind(.true.)
--
-- print *, "The default character kind is ", kc
-- print *, "The default logical kind is ", kl
-- end program test_kind
--
--
--
--File: gfortran.info, Node: LBOUND, Next: LEADZ, Prev: KIND, Up: Intrinsic Procedures
--
--7.126 `LBOUND' -- Lower dimension bounds of an array
--====================================================
--
--_Description_:
-- Returns the lower bounds of an array, or a single lower bound
-- along the DIM dimension.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = LBOUND(ARRAY [, DIM [, KIND]])'
--
--_Arguments_:
-- ARRAY Shall be an array, of any type.
-- DIM (Optional) Shall be a scalar `INTEGER'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind. If DIM is
-- absent, the result is an array of the lower bounds of ARRAY. If
-- DIM is present, the result is a scalar corresponding to the lower
-- bound of the array along that dimension. If ARRAY is an
-- expression rather than a whole array or array structure component,
-- or if it has a zero extent along the relevant dimension, the lower
-- bound is taken to be 1.
--
--_See also_:
-- *note UBOUND::
--
--
--File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LBOUND, Up: Intrinsic Procedures
--
--7.127 `LEADZ' -- Number of leading zero bits of an integer
--==========================================================
--
--_Description_:
-- `LEADZ' returns the number of leading zero bits of an integer.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LEADZ(I)'
--
--_Arguments_:
-- I Shall be of type `INTEGER'.
--
--_Return value_:
-- The type of the return value is the default `INTEGER'. If all the
-- bits of `I' are zero, the result value is `BIT_SIZE(I)'.
--
--_Example_:
-- PROGRAM test_leadz
-- WRITE (*,*) LEADZ(1) ! prints 8 if BITSIZE(I) has the value 32
-- END PROGRAM
--
--_See also_:
-- *note BIT_SIZE::, *note TRAILZ::
--
--
--File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures
--
--7.128 `LEN' -- Length of a character entity
--===========================================
--
--_Description_:
-- Returns the length of a character string. If STRING is an array,
-- the length of an element of STRING is returned. Note that STRING
-- need not be defined when this intrinsic is invoked, since only the
-- length, not the content, of STRING is needed.
--
--_Standard_:
-- Fortran 77 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `L = LEN(STRING [, KIND])'
--
--_Arguments_:
-- STRING Shall be a scalar or array of type
-- `CHARACTER', with `INTENT(IN)'
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_See also_:
-- *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::
--
--
--File: gfortran.info, Node: LEN_TRIM, Next: LOG_GAMMA, Prev: LEN, Up: Intrinsic Procedures
--
--7.129 `LEN_TRIM' -- Length of a character entity without trailing blank characters
--==================================================================================
--
--_Description_:
-- Returns the length of a character string, ignoring any trailing
-- blanks.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LEN_TRIM(STRING [, KIND])'
--
--_Arguments_:
-- STRING Shall be a scalar of type `CHARACTER', with
-- `INTENT(IN)'
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_See also_:
-- *note LEN::, *note ADJUSTL::, *note ADJUSTR::
--
--
--File: gfortran.info, Node: LGE, Next: LGT, Prev: LOG_GAMMA, Up: Intrinsic Procedures
--
--7.130 `LGE' -- Lexical greater than or equal
--============================================
--
--_Description_:
-- Determines whether one string is lexically greater than or equal to
-- another string, where the two strings are interpreted as containing
-- ASCII character codes. If the String A and String B are not the
-- same length, the shorter is compared as if spaces were appended to
-- it to form a value that has the same length as the longer.
--
-- In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
-- and `LLT' differ from the corresponding intrinsic operators
-- `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
-- processor's character ordering (which is not ASCII on some
-- targets), whereas the former always use the ASCII ordering.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LGE(STRING_A, STRING_B)'
--
--_Arguments_:
-- STRING_A Shall be of default `CHARACTER' type.
-- STRING_B Shall be of default `CHARACTER' type.
--
--_Return value_:
-- Returns `.TRUE.' if `STRING_A >= STRING_B', and `.FALSE.'
-- otherwise, based on the ASCII ordering.
--
--_See also_:
-- *note LGT::, *note LLE::, *note LLT::
--
--
--File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures
--
--7.131 `LGT' -- Lexical greater than
--===================================
--
--_Description_:
-- Determines whether one string is lexically greater than another
-- string, where the two strings are interpreted as containing ASCII
-- character codes. If the String A and String B are not the same
-- length, the shorter is compared as if spaces were appended to it
-- to form a value that has the same length as the longer.
--
-- In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
-- and `LLT' differ from the corresponding intrinsic operators
-- `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
-- processor's character ordering (which is not ASCII on some
-- targets), whereas the former always use the ASCII ordering.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LGT(STRING_A, STRING_B)'
--
--_Arguments_:
-- STRING_A Shall be of default `CHARACTER' type.
-- STRING_B Shall be of default `CHARACTER' type.
--
--_Return value_:
-- Returns `.TRUE.' if `STRING_A > STRING_B', and `.FALSE.'
-- otherwise, based on the ASCII ordering.
--
--_See also_:
-- *note LGE::, *note LLE::, *note LLT::
--
--
--File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures
--
--7.132 `LINK' -- Create a hard link
--==================================
--
--_Description_:
-- Makes a (hard) link from file PATH1 to PATH2. A null character
-- (`CHAR(0)') can be used to mark the end of the names in PATH1 and
-- PATH2; otherwise, trailing blanks in the file names are ignored.
-- If the STATUS argument is supplied, it contains 0 on success or a
-- nonzero error code upon return; see `link(2)'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL LINK(PATH1, PATH2 [, STATUS])'
-- `STATUS = LINK(PATH1, PATH2)'
--
--_Arguments_:
-- PATH1 Shall be of default `CHARACTER' type.
-- PATH2 Shall be of default `CHARACTER' type.
-- STATUS (Optional) Shall be of default `INTEGER' type.
--
--_See also_:
-- *note SYMLNK::, *note UNLINK::
--
--
--File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures
--
--7.133 `LLE' -- Lexical less than or equal
--=========================================
--
--_Description_:
-- Determines whether one string is lexically less than or equal to
-- another string, where the two strings are interpreted as
-- containing ASCII character codes. If the String A and String B
-- are not the same length, the shorter is compared as if spaces were
-- appended to it to form a value that has the same length as the
-- longer.
--
-- In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
-- and `LLT' differ from the corresponding intrinsic operators
-- `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
-- processor's character ordering (which is not ASCII on some
-- targets), whereas the former always use the ASCII ordering.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LLE(STRING_A, STRING_B)'
--
--_Arguments_:
-- STRING_A Shall be of default `CHARACTER' type.
-- STRING_B Shall be of default `CHARACTER' type.
--
--_Return value_:
-- Returns `.TRUE.' if `STRING_A <= STRING_B', and `.FALSE.'
-- otherwise, based on the ASCII ordering.
--
--_See also_:
-- *note LGE::, *note LGT::, *note LLT::
--
--
--File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures
--
--7.134 `LLT' -- Lexical less than
--================================
--
--_Description_:
-- Determines whether one string is lexically less than another
-- string, where the two strings are interpreted as containing ASCII
-- character codes. If the String A and String B are not the same
-- length, the shorter is compared as if spaces were appended to it
-- to form a value that has the same length as the longer.
--
-- In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
-- and `LLT' differ from the corresponding intrinsic operators
-- `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
-- processor's character ordering (which is not ASCII on some
-- targets), whereas the former always use the ASCII ordering.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LLT(STRING_A, STRING_B)'
--
--_Arguments_:
-- STRING_A Shall be of default `CHARACTER' type.
-- STRING_B Shall be of default `CHARACTER' type.
--
--_Return value_:
-- Returns `.TRUE.' if `STRING_A < STRING_B', and `.FALSE.'
-- otherwise, based on the ASCII ordering.
--
--_See also_:
-- *note LGE::, *note LGT::, *note LLE::
--
--
--File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures
--
--7.135 `LNBLNK' -- Index of the last non-blank character in a string
--===================================================================
--
--_Description_:
-- Returns the length of a character string, ignoring any trailing
-- blanks. This is identical to the standard `LEN_TRIM' intrinsic,
-- and is only included for backwards compatibility.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LNBLNK(STRING)'
--
--_Arguments_:
-- STRING Shall be a scalar of type `CHARACTER', with
-- `INTENT(IN)'
--
--_Return value_:
-- The return value is of `INTEGER(kind=4)' type.
--
--_See also_:
-- *note INDEX intrinsic::, *note LEN_TRIM::
--
--
--File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures
--
--7.136 `LOC' -- Returns the address of a variable
--================================================
--
--_Description_:
-- `LOC(X)' returns the address of X as an integer.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = LOC(X)'
--
--_Arguments_:
-- X Variable of any type.
--
--_Return value_:
-- The return value is of type `INTEGER', with a `KIND' corresponding
-- to the size (in bytes) of a memory address on the target machine.
--
--_Example_:
-- program test_loc
-- integer :: i
-- real :: r
-- i = loc(r)
-- print *, i
-- end program test_loc
--
--
--File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures
--
--7.137 `LOG' -- Logarithm function
--=================================
--
--_Description_:
-- `LOG(X)' computes the logarithm of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LOG(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value is of type `REAL' or `COMPLEX'. The kind type
-- parameter is the same as X. If X is `COMPLEX', the imaginary part
-- \omega is in the range -\pi \leq \omega \leq \pi.
--
--_Example_:
-- program test_log
-- real(8) :: x = 1.0_8
-- complex :: z = (1.0, 2.0)
-- x = log(x)
-- z = log(z)
-- end program test_log
--
--_Specific names_:
-- Name Argument Return type Standard
-- `ALOG(X)' `REAL(4) X' `REAL(4)' f95, gnu
-- `DLOG(X)' `REAL(8) X' `REAL(8)' f95, gnu
-- `CLOG(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu
-- X'
-- `ZLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
-- X'
-- `CDLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
-- X'
--
--
--File: gfortran.info, Node: LOG10, Next: LOGICAL, Prev: LOG, Up: Intrinsic Procedures
--
--7.138 `LOG10' -- Base 10 logarithm function
--===========================================
--
--_Description_:
-- `LOG10(X)' computes the base 10 logarithm of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LOG10(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' or `COMPLEX'. The kind type
-- parameter is the same as X.
--
--_Example_:
-- program test_log10
-- real(8) :: x = 10.0_8
-- x = log10(x)
-- end program test_log10
--
--_Specific names_:
-- Name Argument Return type Standard
-- `ALOG10(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
-- later
-- `DLOG10(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
-- later
--
--
--File: gfortran.info, Node: LOG_GAMMA, Next: LGE, Prev: LEN_TRIM, Up: Intrinsic Procedures
--
--7.139 `LOG_GAMMA' -- Logarithm of the Gamma function
--====================================================
--
--_Description_:
-- `LOG_GAMMA(X)' computes the natural logarithm of the absolute value
-- of the Gamma (\Gamma) function.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `X = LOG_GAMMA(X)'
--
--_Arguments_:
-- X Shall be of type `REAL' and neither zero nor a
-- negative integer.
--
--_Return value_:
-- The return value is of type `REAL' of the same kind as X.
--
--_Example_:
-- program test_log_gamma
-- real :: x = 1.0
-- x = lgamma(x) ! returns 0.0
-- end program test_log_gamma
--
--_Specific names_:
-- Name Argument Return type Standard
-- `LGAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
-- `ALGAMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
-- `DLGAMA(X)' `REAL(8) X' `REAL(8)' GNU Extension
--
--_See also_:
-- Gamma function: *note GAMMA::
--
--
--
--File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG10, Up: Intrinsic Procedures
--
--7.140 `LOGICAL' -- Convert to logical type
--==========================================
--
--_Description_:
-- Converts one kind of `LOGICAL' variable to another.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LOGICAL(L [, KIND])'
--
--_Arguments_:
-- L The type shall be `LOGICAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is a `LOGICAL' value equal to L, with a kind
-- corresponding to KIND, or of the default logical kind if KIND is
-- not given.
--
--_See also_:
-- *note INT::, *note REAL::, *note CMPLX::
--
--
--File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures
--
--7.141 `LONG' -- Convert to integer type
--=======================================
--
--_Description_:
-- Convert to a `KIND=4' integer type, which is the same size as a C
-- `long' integer. This is equivalent to the standard `INT'
-- intrinsic with an optional argument of `KIND=4', and is only
-- included for backwards compatibility.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LONG(A)'
--
--_Arguments_:
-- A Shall be of type `INTEGER', `REAL', or
-- `COMPLEX'.
--
--_Return value_:
-- The return value is a `INTEGER(4)' variable.
--
--_See also_:
-- *note INT::, *note INT2::, *note INT8::
--
--
--File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures
--
--7.142 `LSHIFT' -- Left shift bits
--=================================
--
--_Description_:
-- `LSHIFT' returns a value corresponding to I with all of the bits
-- shifted left by SHIFT places. If the absolute value of SHIFT is
-- greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
-- out from the left end are lost; zeros are shifted in from the
-- opposite end.
--
-- This function has been superseded by the `ISHFT' intrinsic, which
-- is standard in Fortran 95 and later.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = LSHIFT(I, SHIFT)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- SHIFT The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note ISHFT::, *note ISHFTC::, *note RSHIFT::
--
--
--
--File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures
--
--7.143 `LSTAT' -- Get file status
--================================
--
--_Description_:
-- `LSTAT' is identical to *note STAT::, except that if path is a
-- symbolic link, then the link itself is statted, not the file that
-- it refers to.
--
-- The elements in `BUFF' are the same as described by *note STAT::.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL LSTAT(FILE, BUFF [, STATUS])'
--
--_Arguments_:
-- FILE The type shall be `CHARACTER' of the default
-- kind, a valid path within the file system.
-- BUFF The type shall be `INTEGER(4), DIMENSION(13)'.
-- STATUS (Optional) status flag of type `INTEGER(4)'.
-- Returns 0 on success and a system specific
-- error code otherwise.
--
--_Example_:
-- See *note STAT:: for an example.
--
--_See also_:
-- To stat an open file: *note FSTAT::, to stat a file: *note STAT::
--
--
--File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures
--
--7.144 `LTIME' -- Convert time to local time info
--================================================
--
--_Description_:
-- Given a system time value STIME (as provided by the `TIME8()'
-- intrinsic), fills TARRAY with values extracted from it appropriate
-- to the local time zone using `localtime(3)'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL LTIME(STIME, TARRAY)'
--
--_Arguments_:
-- STIME An `INTEGER' scalar expression corresponding
-- to a system time, with `INTENT(IN)'.
-- TARRAY A default `INTEGER' array with 9 elements,
-- with `INTENT(OUT)'.
--
--_Return value_:
-- The elements of TARRAY are assigned as follows:
-- 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
-- seconds
--
-- 2. Minutes after the hour, range 0-59
--
-- 3. Hours past midnight, range 0-23
--
-- 4. Day of month, range 0-31
--
-- 5. Number of months since January, range 0-12
--
-- 6. Years since 1900
--
-- 7. Number of days since Sunday, range 0-6
--
-- 8. Days since January 1
--
-- 9. Daylight savings indicator: positive if daylight savings is in
-- effect, zero if not, and negative if the information is not
-- available.
--
--_See also_:
-- *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8::
--
--
--
--File: gfortran.info, Node: MALLOC, Next: MATMUL, Prev: LTIME, Up: Intrinsic Procedures
--
--7.145 `MALLOC' -- Allocate dynamic memory
--=========================================
--
--_Description_:
-- `MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
-- the address of the allocated memory. The `MALLOC' intrinsic is an
-- extension intended to be used with Cray pointers, and is provided
-- in GNU Fortran to allow the user to compile legacy code. For new
-- code using Fortran 95 pointers, the memory allocation intrinsic is
-- `ALLOCATE'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `PTR = MALLOC(SIZE)'
--
--_Arguments_:
-- SIZE The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER(K)', with K such that
-- variables of type `INTEGER(K)' have the same size as C pointers
-- (`sizeof(void *)').
--
--_Example_:
-- The following example demonstrates the use of `MALLOC' and `FREE'
-- with Cray pointers.
--
-- program test_malloc
-- implicit none
-- integer i
-- real*8 x(*), z
-- pointer(ptr_x,x)
--
-- ptr_x = malloc(20*8)
-- do i = 1, 20
-- x(i) = sqrt(1.0d0 / i)
-- end do
-- z = 0
-- do i = 1, 20
-- z = z + x(i)
-- print *, z
-- end do
-- call free(ptr_x)
-- end program test_malloc
--
--_See also_:
-- *note FREE::
--
--
--File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MALLOC, Up: Intrinsic Procedures
--
--7.146 `MATMUL' -- matrix multiplication
--=======================================
--
--_Description_:
-- Performs a matrix multiplication on numeric or logical arguments.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = MATMUL(MATRIX_A, MATRIX_B)'
--
--_Arguments_:
-- MATRIX_A An array of `INTEGER', `REAL', `COMPLEX', or
-- `LOGICAL' type, with a rank of one or two.
-- MATRIX_B An array of `INTEGER', `REAL', or `COMPLEX'
-- type if MATRIX_A is of a numeric type;
-- otherwise, an array of `LOGICAL' type. The
-- rank shall be one or two, and the first (or
-- only) dimension of MATRIX_B shall be equal to
-- the last (or only) dimension of MATRIX_A.
--
--_Return value_:
-- The matrix product of MATRIX_A and MATRIX_B. The type and kind of
-- the result follow the usual type and kind promotion rules, as for
-- the `*' or `.AND.' operators.
--
--_See also_:
--
--
--File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures
--
--7.147 `MAX' -- Maximum value of an argument list
--================================================
--
--_Description_:
-- Returns the argument with the largest (most positive) value.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = MAX(A1, A2 [, A3 [, ...]])'
--
--_Arguments_:
-- A1 The type shall be `INTEGER' or `REAL'.
-- A2, A3, An expression of the same type and kind as A1.
-- ... (As a GNU extension, arguments of different
-- kinds are permitted.)
--
--_Return value_:
-- The return value corresponds to the maximum value among the
-- arguments, and has the same type and kind as the first argument.
--
--_Specific names_:
-- Name Argument Return type Standard
-- `MAX0(I)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
-- I' later
-- `AMAX0(I)' `INTEGER(4) `REAL(MAX(X))'Fortran 77 and
-- I' later
-- `MAX1(X)' `REAL X' `INT(MAX(X))' Fortran 77 and
-- later
-- `AMAX1(X)' `REAL(4) `REAL(4)' Fortran 77 and
-- X' later
-- `DMAX1(X)' `REAL(8) `REAL(8)' Fortran 77 and
-- X' later
--
--_See also_:
-- *note MAXLOC:: *note MAXVAL::, *note MIN::
--
--
--
--File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures
--
--7.148 `MAXEXPONENT' -- Maximum exponent of a real kind
--======================================================
--
--_Description_:
-- `MAXEXPONENT(X)' returns the maximum exponent in the model of the
-- type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = MAXEXPONENT(X)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the default integer
-- kind.
--
--_Example_:
-- program exponents
-- real(kind=4) :: x
-- real(kind=8) :: y
--
-- print *, minexponent(x), maxexponent(x)
-- print *, minexponent(y), maxexponent(y)
-- end program exponents
--
--
--File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures
--
--7.149 `MAXLOC' -- Location of the maximum value within an array
--===============================================================
--
--_Description_:
-- Determines the location of the element in the array with the
-- maximum value, or, if the DIM argument is supplied, determines the
-- locations of the maximum element along each row of the array in the
-- DIM direction. If MASK is present, only the elements for which
-- MASK is `.TRUE.' are considered. If more than one element in the
-- array has the maximum value, the location returned is that of the
-- first such element in array element order. If the array has zero
-- size, or all of the elements of MASK are `.FALSE.', then the
-- result is an array of zeroes. Similarly, if DIM is supplied and
-- all of the elements of MASK along a given row are zero, the result
-- value for that row is zero.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = MAXLOC(ARRAY, DIM [, MASK])'
-- `RESULT = MAXLOC(ARRAY [, MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL',
-- or `CHARACTER'.
-- DIM (Optional) Shall be a scalar of type
-- `INTEGER', with a value between one and the
-- rank of ARRAY, inclusive. It may not be an
-- optional dummy argument.
-- MASK Shall be an array of type `LOGICAL', and
-- conformable with ARRAY.
--
--_Return value_:
-- If DIM is absent, the result is a rank-one array with a length
-- equal to the rank of ARRAY. If DIM is present, the result is an
-- array with a rank one less than the rank of ARRAY, and a size
-- corresponding to the size of ARRAY with the DIM dimension removed.
-- If DIM is present and ARRAY has a rank of one, the result is a
-- scalar. In all cases, the result is of default `INTEGER' type.
--
--_See also_:
-- *note MAX::, *note MAXVAL::
--
--
--
--File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures
--
--7.150 `MAXVAL' -- Maximum value of an array
--===========================================
--
--_Description_:
-- Determines the maximum value of the elements in an array value,
-- or, if the DIM argument is supplied, determines the maximum value
-- along each row of the array in the DIM direction. If MASK is
-- present, only the elements for which MASK is `.TRUE.' are
-- considered. If the array has zero size, or all of the elements of
-- MASK are `.FALSE.', then the result is `-HUGE(ARRAY)' if ARRAY is
-- numeric, or a string of nulls if ARRAY is of character type.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = MAXVAL(ARRAY, DIM [, MASK])'
-- `RESULT = MAXVAL(ARRAY [, MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL',
-- or `CHARACTER'.
-- DIM (Optional) Shall be a scalar of type
-- `INTEGER', with a value between one and the
-- rank of ARRAY, inclusive. It may not be an
-- optional dummy argument.
-- MASK Shall be an array of type `LOGICAL', and
-- conformable with ARRAY.
--
--_Return value_:
-- If DIM is absent, or if ARRAY has a rank of one, the result is a
-- scalar. If DIM is present, the result is an array with a rank one
-- less than the rank of ARRAY, and a size corresponding to the size
-- of ARRAY with the DIM dimension removed. In all cases, the result
-- is of the same type and kind as ARRAY.
--
--_See also_:
-- *note MAX::, *note MAXLOC::
--
--
--File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures
--
--7.151 `MCLOCK' -- Time function
--===============================
--
--_Description_:
-- Returns the number of clock ticks since the start of the process,
-- based on the UNIX function `clock(3)'.
--
-- This intrinsic is not fully portable, such as to systems with
-- 32-bit `INTEGER' types but supporting times wider than 32 bits.
-- Therefore, the values returned by this intrinsic might be, or
-- become, negative, or numerically less than previous values, during
-- a single run of the compiled program.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = MCLOCK()'
--
--_Return value_:
-- The return value is a scalar of type `INTEGER(4)', equal to the
-- number of clock ticks since the start of the process, or `-1' if
-- the system does not support `clock(3)'.
--
--_See also_:
-- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
-- *note TIME::
--
--
--
--File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures
--
--7.152 `MCLOCK8' -- Time function (64-bit)
--=========================================
--
--_Description_:
-- Returns the number of clock ticks since the start of the process,
-- based on the UNIX function `clock(3)'.
--
-- _Warning:_ this intrinsic does not increase the range of the timing
-- values over that returned by `clock(3)'. On a system with a 32-bit
-- `clock(3)', `MCLOCK8()' will return a 32-bit value, even though it
-- is converted to a 64-bit `INTEGER(8)' value. That means overflows
-- of the 32-bit value can still occur. Therefore, the values
-- returned by this intrinsic might be or become negative or
-- numerically less than previous values during a single run of the
-- compiled program.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = MCLOCK8()'
--
--_Return value_:
-- The return value is a scalar of type `INTEGER(8)', equal to the
-- number of clock ticks since the start of the process, or `-1' if
-- the system does not support `clock(3)'.
--
--_See also_:
-- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
-- *note TIME8::
--
--
--
--File: gfortran.info, Node: MERGE, Next: MIN, Prev: MCLOCK8, Up: Intrinsic Procedures
--
--7.153 `MERGE' -- Merge variables
--================================
--
--_Description_:
-- Select values from two arrays according to a logical mask. The
-- result is equal to TSOURCE if MASK is `.TRUE.', or equal to
-- FSOURCE if it is `.FALSE.'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = MERGE(TSOURCE, FSOURCE, MASK)'
--
--_Arguments_:
-- TSOURCE May be of any type.
-- FSOURCE Shall be of the same type and type parameters
-- as TSOURCE.
-- MASK Shall be of type `LOGICAL'.
--
--_Return value_:
-- The result is of the same type and type parameters as TSOURCE.
--
--
--
--File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE, Up: Intrinsic Procedures
--
--7.154 `MIN' -- Minimum value of an argument list
--================================================
--
--_Description_:
-- Returns the argument with the smallest (most negative) value.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = MIN(A1, A2 [, A3, ...])'
--
--_Arguments_:
-- A1 The type shall be `INTEGER' or `REAL'.
-- A2, A3, An expression of the same type and kind as A1.
-- ... (As a GNU extension, arguments of different
-- kinds are permitted.)
--
--_Return value_:
-- The return value corresponds to the maximum value among the
-- arguments, and has the same type and kind as the first argument.
--
--_Specific names_:
-- Name Argument Return type Standard
-- `MIN0(I)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
-- I' later
-- `AMIN0(I)' `INTEGER(4) `REAL(MIN(X))'Fortran 77 and
-- I' later
-- `MIN1(X)' `REAL X' `INT(MIN(X))' Fortran 77 and
-- later
-- `AMIN1(X)' `REAL(4) `REAL(4)' Fortran 77 and
-- X' later
-- `DMIN1(X)' `REAL(8) `REAL(8)' Fortran 77 and
-- X' later
--
--_See also_:
-- *note MAX::, *note MINLOC::, *note MINVAL::
--
--
--File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures
--
--7.155 `MINEXPONENT' -- Minimum exponent of a real kind
--======================================================
--
--_Description_:
-- `MINEXPONENT(X)' returns the minimum exponent in the model of the
-- type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = MINEXPONENT(X)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the default integer
-- kind.
--
--_Example_:
-- See `MAXEXPONENT' for an example.
--
--
--File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures
--
--7.156 `MINLOC' -- Location of the minimum value within an array
--===============================================================
--
--_Description_:
-- Determines the location of the element in the array with the
-- minimum value, or, if the DIM argument is supplied, determines the
-- locations of the minimum element along each row of the array in the
-- DIM direction. If MASK is present, only the elements for which
-- MASK is `.TRUE.' are considered. If more than one element in the
-- array has the minimum value, the location returned is that of the
-- first such element in array element order. If the array has zero
-- size, or all of the elements of MASK are `.FALSE.', then the
-- result is an array of zeroes. Similarly, if DIM is supplied and
-- all of the elements of MASK along a given row are zero, the result
-- value for that row is zero.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = MINLOC(ARRAY, DIM [, MASK])'
-- `RESULT = MINLOC(ARRAY [, MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL',
-- or `CHARACTER'.
-- DIM (Optional) Shall be a scalar of type
-- `INTEGER', with a value between one and the
-- rank of ARRAY, inclusive. It may not be an
-- optional dummy argument.
-- MASK Shall be an array of type `LOGICAL', and
-- conformable with ARRAY.
--
--_Return value_:
-- If DIM is absent, the result is a rank-one array with a length
-- equal to the rank of ARRAY. If DIM is present, the result is an
-- array with a rank one less than the rank of ARRAY, and a size
-- corresponding to the size of ARRAY with the DIM dimension removed.
-- If DIM is present and ARRAY has a rank of one, the result is a
-- scalar. In all cases, the result is of default `INTEGER' type.
--
--_See also_:
-- *note MIN::, *note MINVAL::
--
--
--
--File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures
--
--7.157 `MINVAL' -- Minimum value of an array
--===========================================
--
--_Description_:
-- Determines the minimum value of the elements in an array value,
-- or, if the DIM argument is supplied, determines the minimum value
-- along each row of the array in the DIM direction. If MASK is
-- present, only the elements for which MASK is `.TRUE.' are
-- considered. If the array has zero size, or all of the elements of
-- MASK are `.FALSE.', then the result is `HUGE(ARRAY)' if ARRAY is
-- numeric, or a string of `CHAR(255)' characters if ARRAY is of
-- character type.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = MINVAL(ARRAY, DIM [, MASK])'
-- `RESULT = MINVAL(ARRAY [, MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL',
-- or `CHARACTER'.
-- DIM (Optional) Shall be a scalar of type
-- `INTEGER', with a value between one and the
-- rank of ARRAY, inclusive. It may not be an
-- optional dummy argument.
-- MASK Shall be an array of type `LOGICAL', and
-- conformable with ARRAY.
--
--_Return value_:
-- If DIM is absent, or if ARRAY has a rank of one, the result is a
-- scalar. If DIM is present, the result is an array with a rank one
-- less than the rank of ARRAY, and a size corresponding to the size
-- of ARRAY with the DIM dimension removed. In all cases, the result
-- is of the same type and kind as ARRAY.
--
--_See also_:
-- *note MIN::, *note MINLOC::
--
--
--
--File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures
--
--7.158 `MOD' -- Remainder function
--=================================
--
--_Description_:
-- `MOD(A,P)' computes the remainder of the division of A by P. It is
-- calculated as `A - (INT(A/P) * P)'.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = MOD(A, P)'
--
--_Arguments_:
-- A Shall be a scalar of type `INTEGER' or `REAL'
-- P Shall be a scalar of the same type as A and not
-- equal to zero
--
--_Return value_:
-- The kind of the return value is the result of cross-promoting the
-- kinds of the arguments.
--
--_Example_:
-- program test_mod
-- print *, mod(17,3)
-- print *, mod(17.5,5.5)
-- print *, mod(17.5d0,5.5)
-- print *, mod(17.5,5.5d0)
--
-- print *, mod(-17,3)
-- print *, mod(-17.5,5.5)
-- print *, mod(-17.5d0,5.5)
-- print *, mod(-17.5,5.5d0)
--
-- print *, mod(17,-3)
-- print *, mod(17.5,-5.5)
-- print *, mod(17.5d0,-5.5)
-- print *, mod(17.5,-5.5d0)
-- end program test_mod
--
--_Specific names_:
-- Name Arguments Return type Standard
-- `AMOD(A,P)' `REAL(4)' `REAL(4)' Fortran 95 and
-- later
-- `DMOD(A,P)' `REAL(8)' `REAL(8)' Fortran 95 and
-- later
--
--
--File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures
--
--7.159 `MODULO' -- Modulo function
--=================================
--
--_Description_:
-- `MODULO(A,P)' computes the A modulo P.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = MODULO(A, P)'
--
--_Arguments_:
-- A Shall be a scalar of type `INTEGER' or `REAL'
-- P Shall be a scalar of the same type and kind as
-- A
--
--_Return value_:
-- The type and kind of the result are those of the arguments.
-- If A and P are of type `INTEGER':
-- `MODULO(A,P)' has the value R such that `A=Q*P+R', where Q is
-- an integer and R is between 0 (inclusive) and P (exclusive).
--
-- If A and P are of type `REAL':
-- `MODULO(A,P)' has the value of `A - FLOOR (A / P) * P'.
-- In all cases, if P is zero the result is processor-dependent.
--
--_Example_:
-- program test_modulo
-- print *, modulo(17,3)
-- print *, modulo(17.5,5.5)
--
-- print *, modulo(-17,3)
-- print *, modulo(-17.5,5.5)
--
-- print *, modulo(17,-3)
-- print *, modulo(17.5,-5.5)
-- end program
--
--
--
--File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures
--
--7.160 `MOVE_ALLOC' -- Move allocation from one object to another
--================================================================
--
--_Description_:
-- `MOVE_ALLOC(SRC, DEST)' moves the allocation from SRC to DEST.
-- SRC will become deallocated in the process.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL MOVE_ALLOC(SRC, DEST)'
--
--_Arguments_:
-- SRC `ALLOCATABLE', `INTENT(INOUT)', may be of any
-- type and kind.
-- DEST `ALLOCATABLE', `INTENT(OUT)', shall be of the
-- same type, kind and rank as SRC.
--
--_Return value_:
-- None
--
--_Example_:
-- program test_move_alloc
-- integer, allocatable :: a(:), b(:)
--
-- allocate(a(3))
-- a = [ 1, 2, 3 ]
-- call move_alloc(a, b)
-- print *, allocated(a), allocated(b)
-- print *, b
-- end program test_move_alloc
--
--
--File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures
--
--7.161 `MVBITS' -- Move bits from one integer to another
--=======================================================
--
--_Description_:
-- Moves LEN bits from positions FROMPOS through `FROMPOS+LEN-1' of
-- FROM to positions TOPOS through `TOPOS+LEN-1' of TO. The portion
-- of argument TO not affected by the movement of bits is unchanged.
-- The values of `FROMPOS+LEN-1' and `TOPOS+LEN-1' must be less than
-- `BIT_SIZE(FROM)'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental subroutine
--
--_Syntax_:
-- `CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'
--
--_Arguments_:
-- FROM The type shall be `INTEGER'.
-- FROMPOS The type shall be `INTEGER'.
-- LEN The type shall be `INTEGER'.
-- TO The type shall be `INTEGER', of the same kind
-- as FROM.
-- TOPOS The type shall be `INTEGER'.
--
--_See also_:
-- *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
-- IOR::, *note IEOR::
--
--
--File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures
--
--7.162 `NEAREST' -- Nearest representable number
--===============================================
--
--_Description_:
-- `NEAREST(X, S)' returns the processor-representable number nearest
-- to `X' in the direction indicated by the sign of `S'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = NEAREST(X, S)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
-- S (Optional) shall be of type `REAL' and not
-- equal to zero.
--
--_Return value_:
-- The return value is of the same type as `X'. If `S' is positive,
-- `NEAREST' returns the processor-representable number greater than
-- `X' and nearest to it. If `S' is negative, `NEAREST' returns the
-- processor-representable number smaller than `X' and nearest to it.
--
--_Example_:
-- program test_nearest
-- real :: x, y
-- x = nearest(42.0, 1.0)
-- y = nearest(42.0, -1.0)
-- write (*,"(3(G20.15))") x, y, x - y
-- end program test_nearest
--
--
--File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures
--
--7.163 `NEW_LINE' -- New line character
--======================================
--
--_Description_:
-- `NEW_LINE(C)' returns the new-line character.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = NEW_LINE(C)'
--
--_Arguments_:
-- C The argument shall be a scalar or array of the
-- type `CHARACTER'.
--
--_Return value_:
-- Returns a CHARACTER scalar of length one with the new-line
-- character of the same kind as parameter C.
--
--_Example_:
-- program newline
-- implicit none
-- write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
-- end program newline
--
--
--File: gfortran.info, Node: NINT, Next: NOT, Prev: NEW_LINE, Up: Intrinsic Procedures
--
--7.164 `NINT' -- Nearest whole number
--====================================
--
--_Description_:
-- `NINT(X)' rounds its argument to the nearest whole number.
--
--_Standard_:
-- Fortran 77 and later, with KIND argument Fortran 90 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = NINT(X [, KIND])'
--
--_Arguments_:
-- X The type of the argument shall be `REAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- Returns A with the fractional portion of its magnitude eliminated
-- by rounding to the nearest whole number and with its sign
-- preserved, converted to an `INTEGER' of the default kind.
--
--_Example_:
-- program test_nint
-- real(4) x4
-- real(8) x8
-- x4 = 1.234E0_4
-- x8 = 4.321_8
-- print *, nint(x4), idnint(x8)
-- end program test_nint
--
--_Specific names_:
-- Name Argument Standard
-- `IDNINT(X)' `REAL(8)' Fortran 95 and
-- later
--
--_See also_:
-- *note CEILING::, *note FLOOR::
--
--
--
--File: gfortran.info, Node: NOT, Next: NULL, Prev: NINT, Up: Intrinsic Procedures
--
--7.165 `NOT' -- Logical negation
--===============================
--
--_Description_:
-- `NOT' returns the bitwise boolean inverse of I.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = NOT(I)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
--
--_Return value_:
-- The return type is `INTEGER', of the same kind as the argument.
--
--_See also_:
-- *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
-- IBSET::, *note IBCLR::
--
--
--
--File: gfortran.info, Node: NULL, Next: OR, Prev: NOT, Up: Intrinsic Procedures
--
--7.166 `NULL' -- Function that returns an disassociated pointer
--==============================================================
--
--_Description_:
-- Returns a disassociated pointer.
--
-- If MOLD is present, a dissassociated pointer of the same type is
-- returned, otherwise the type is determined by context.
--
-- In Fortran 95, MOLD is optional. Please note that Fortran 2003
-- includes cases where it is required.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `PTR => NULL([MOLD])'
--
--_Arguments_:
-- MOLD (Optional) shall be a pointer of any
-- association status and of any type.
--
--_Return value_:
-- A disassociated pointer.
--
--_Example_:
-- REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
--
--_See also_:
-- *note ASSOCIATED::
--
--
--File: gfortran.info, Node: OR, Next: PACK, Prev: NULL, Up: Intrinsic Procedures
--
--7.167 `OR' -- Bitwise logical OR
--================================
--
--_Description_:
-- Bitwise logical `OR'.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. For integer arguments, programmers should consider
-- the use of the *note IOR:: intrinsic defined by the Fortran
-- standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = OR(X, Y)'
--
--_Arguments_:
-- X The type shall be either a scalar `INTEGER'
-- type or a scalar `LOGICAL' type.
-- Y The type shall be the same as the type of X.
--
--_Return value_:
-- The return type is either a scalar `INTEGER' or a scalar
-- `LOGICAL'. If the kind type parameters differ, then the smaller
-- kind type is implicitly converted to larger kind, and the return
-- has the larger kind.
--
--_Example_:
-- PROGRAM test_or
-- LOGICAL :: T = .TRUE., F = .FALSE.
-- INTEGER :: a, b
-- DATA a / Z'F' /, b / Z'3' /
--
-- WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
-- WRITE (*,*) OR(a, b)
-- END PROGRAM
--
--_See also_:
-- Fortran 95 elemental function: *note IOR::
--
--
--File: gfortran.info, Node: PACK, Next: PERROR, Prev: OR, Up: Intrinsic Procedures
--
--7.168 `PACK' -- Pack an array into an array of rank one
--=======================================================
--
--_Description_:
-- Stores the elements of ARRAY in an array of rank one.
--
-- The beginning of the resulting array is made up of elements whose
-- MASK equals `TRUE'. Afterwards, positions are filled with elements
-- taken from VECTOR.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = PACK(ARRAY, MASK[,VECTOR]'
--
--_Arguments_:
-- ARRAY Shall be an array of any type.
-- MASK Shall be an array of type `LOGICAL' and of the
-- same size as ARRAY. Alternatively, it may be a
-- `LOGICAL' scalar.
-- VECTOR (Optional) shall be an array of the same type
-- as ARRAY and of rank one. If present, the
-- number of elements in VECTOR shall be equal to
-- or greater than the number of true elements in
-- MASK. If MASK is scalar, the number of
-- elements in VECTOR shall be equal to or
-- greater than the number of elements in ARRAY.
--
--_Return value_:
-- The result is an array of rank one and the same type as that of
-- ARRAY. If VECTOR is present, the result size is that of VECTOR,
-- the number of `TRUE' values in MASK otherwise.
--
--_Example_:
-- Gathering nonzero elements from an array:
-- PROGRAM test_pack_1
-- INTEGER :: m(6)
-- m = (/ 1, 0, 0, 0, 5, 0 /)
-- WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
-- END PROGRAM
--
-- Gathering nonzero elements from an array and appending elements
-- from VECTOR:
-- PROGRAM test_pack_2
-- INTEGER :: m(4)
-- m = (/ 1, 0, 0, 2 /)
-- WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
-- END PROGRAM
--
--_See also_:
-- *note UNPACK::
--
--
--File: gfortran.info, Node: PERROR, Next: PRECISION, Prev: PACK, Up: Intrinsic Procedures
--
--7.169 `PERROR' -- Print system error message
--============================================
--
--_Description_:
-- Prints (on the C `stderr' stream) a newline-terminated error
-- message corresponding to the last system error. This is prefixed by
-- STRING, a colon and a space. See `perror(3)'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL PERROR(STRING)'
--
--_Arguments_:
-- STRING A scalar of type `CHARACTER' and of the
-- default kind.
--
--_See also_:
-- *note IERRNO::
--
--
--File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: PERROR, Up: Intrinsic Procedures
--
--7.170 `PRECISION' -- Decimal precision of a real kind
--=====================================================
--
--_Description_:
-- `PRECISION(X)' returns the decimal precision in the model of the
-- type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = PRECISION(X)'
--
--_Arguments_:
-- X Shall be of type `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the default integer
-- kind.
--
--_Example_:
-- program prec_and_range
-- real(kind=4) :: x(2)
-- complex(kind=8) :: y
--
-- print *, precision(x), range(x)
-- print *, precision(y), range(y)
-- end program prec_and_range
--
--
--File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures
--
--7.171 `PRESENT' -- Determine whether an optional dummy argument is specified
--============================================================================
--
--_Description_:
-- Determines whether an optional dummy argument is present.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = PRESENT(A)'
--
--_Arguments_:
-- A May be of any type and may be a pointer,
-- scalar or array value, or a dummy procedure.
-- It shall be the name of an optional dummy
-- argument accessible within the current
-- subroutine or function.
--
--_Return value_:
-- Returns either `TRUE' if the optional argument A is present, or
-- `FALSE' otherwise.
--
--_Example_:
-- PROGRAM test_present
-- WRITE(*,*) f(), f(42) ! "F T"
-- CONTAINS
-- LOGICAL FUNCTION f(x)
-- INTEGER, INTENT(IN), OPTIONAL :: x
-- f = PRESENT(x)
-- END FUNCTION
-- END PROGRAM
--
--
--File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures
--
--7.172 `PRODUCT' -- Product of array elements
--============================================
--
--_Description_:
-- Multiplies the elements of ARRAY along dimension DIM if the
-- corresponding element in MASK is `TRUE'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = PRODUCT(ARRAY[, MASK])' `RESULT = PRODUCT(ARRAY, DIM[,
-- MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL' or
-- `COMPLEX'.
-- DIM (Optional) shall be a scalar of type `INTEGER'
-- with a value in the range from 1 to n, where n
-- equals the rank of ARRAY.
-- MASK (Optional) shall be of type `LOGICAL' and
-- either be a scalar or an array of the same
-- shape as ARRAY.
--
--_Return value_:
-- The result is of the same type as ARRAY.
--
-- If DIM is absent, a scalar with the product of all elements in
-- ARRAY is returned. Otherwise, an array of rank n-1, where n equals
-- the rank of ARRAY, and a shape similar to that of ARRAY with
-- dimension DIM dropped is returned.
--
--_Example_:
-- PROGRAM test_product
-- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
-- print *, PRODUCT(x) ! all elements, product = 120
-- print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
-- END PROGRAM
--
--_See also_:
-- *note SUM::
--
--
--File: gfortran.info, Node: RADIX, Next: RANDOM_NUMBER, Prev: PRODUCT, Up: Intrinsic Procedures
--
--7.173 `RADIX' -- Base of a model number
--=======================================
--
--_Description_:
-- `RADIX(X)' returns the base of the model representing the entity X.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = RADIX(X)'
--
--_Arguments_:
-- X Shall be of type `INTEGER' or `REAL'
--
--_Return value_:
-- The return value is a scalar of type `INTEGER' and of the default
-- integer kind.
--
--_Example_:
-- program test_radix
-- print *, "The radix for the default integer kind is", radix(0)
-- print *, "The radix for the default real kind is", radix(0.0)
-- end program test_radix
--
--
--
--File: gfortran.info, Node: RAN, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures
--
--7.174 `RAN' -- Real pseudo-random number
--========================================
--
--_Description_:
-- For compatibility with HP FORTRAN 77/iX, the `RAN' intrinsic is
-- provided as an alias for `RAND'. See *note RAND:: for complete
-- documentation.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_See also_:
-- *note RAND::, *note RANDOM_NUMBER::
--
--
--File: gfortran.info, Node: RAND, Next: RANGE, Prev: RANDOM_SEED, Up: Intrinsic Procedures
--
--7.175 `RAND' -- Real pseudo-random number
--=========================================
--
--_Description_:
-- `RAND(FLAG)' returns a pseudo-random number from a uniform
-- distribution between 0 and 1. If FLAG is 0, the next number in the
-- current sequence is returned; if FLAG is 1, the generator is
-- restarted by `CALL SRAND(0)'; if FLAG has any other value, it is
-- used as a new seed with `SRAND'.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. It implements a simple modulo generator as provided
-- by `g77'. For new code, one should consider the use of *note
-- RANDOM_NUMBER:: as it implements a superior algorithm.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = RAND(FLAG)'
--
--_Arguments_:
-- FLAG Shall be a scalar `INTEGER' of kind 4.
--
--_Return value_:
-- The return value is of `REAL' type and the default kind.
--
--_Example_:
-- program test_rand
-- integer,parameter :: seed = 86456
--
-- call srand(seed)
-- print *, rand(), rand(), rand(), rand()
-- print *, rand(seed), rand(), rand(), rand()
-- end program test_rand
--
--_See also_:
-- *note SRAND::, *note RANDOM_NUMBER::
--
--
--
--File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RADIX, Up: Intrinsic Procedures
--
--7.176 `RANDOM_NUMBER' -- Pseudo-random number
--=============================================
--
--_Description_:
-- Returns a single pseudorandom number or an array of pseudorandom
-- numbers from the uniform distribution over the range 0 \leq x < 1.
--
-- The runtime-library implements George Marsaglia's KISS (Keep It
-- Simple Stupid) random number generator (RNG). This RNG combines:
-- 1. The congruential generator x(n) = 69069 \cdot x(n-1) +
-- 1327217885 with a period of 2^32,
--
-- 2. A 3-shift shift-register generator with a period of 2^32 - 1,
--
-- 3. Two 16-bit multiply-with-carry generators with a period of
-- 597273182964842497 > 2^59.
-- The overall period exceeds 2^123.
--
-- Please note, this RNG is thread safe if used within OpenMP
-- directives, i.e., its state will be consistent while called from
-- multiple threads. However, the KISS generator does not create
-- random numbers in parallel from multiple sources, but in sequence
-- from a single source. If an OpenMP-enabled application heavily
-- relies on random numbers, one should consider employing a
-- dedicated parallel random number generator instead.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `RANDOM_NUMBER(HARVEST)'
--
--_Arguments_:
-- HARVEST Shall be a scalar or an array of type `REAL'.
--
--_Example_:
-- program test_random_number
-- REAL :: r(5,5)
-- CALL init_random_seed() ! see example of RANDOM_SEED
-- CALL RANDOM_NUMBER(r)
-- end program
--
--_See also_:
-- *note RANDOM_SEED::
--
--
--File: gfortran.info, Node: RANDOM_SEED, Next: RAND, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures
--
--7.177 `RANDOM_SEED' -- Initialize a pseudo-random number sequence
--=================================================================
--
--_Description_:
-- Restarts or queries the state of the pseudorandom number generator
-- used by `RANDOM_NUMBER'.
--
-- If `RANDOM_SEED' is called without arguments, it is initialized to
-- a default state. The example below shows how to initialize the
-- random seed based on the system's time.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL RANDOM_SEED(SIZE, PUT, GET)'
--
--_Arguments_:
-- SIZE (Optional) Shall be a scalar and of type
-- default `INTEGER', with `INTENT(OUT)'. It
-- specifies the minimum size of the arrays used
-- with the PUT and GET arguments.
-- PUT (Optional) Shall be an array of type default
-- `INTEGER' and rank one. It is `INTENT(IN)' and
-- the size of the array must be larger than or
-- equal to the number returned by the SIZE
-- argument.
-- GET (Optional) Shall be an array of type default
-- `INTEGER' and rank one. It is `INTENT(OUT)'
-- and the size of the array must be larger than
-- or equal to the number returned by the SIZE
-- argument.
--
--_Example_:
-- SUBROUTINE init_random_seed()
-- INTEGER :: i, n, clock
-- INTEGER, DIMENSION(:), ALLOCATABLE :: seed
--
-- CALL RANDOM_SEED(size = n)
-- ALLOCATE(seed(n))
--
-- CALL SYSTEM_CLOCK(COUNT=clock)
--
-- seed = clock + 37 * (/ (i - 1, i = 1, n) /)
-- CALL RANDOM_SEED(PUT = seed)
--
-- DEALLOCATE(seed)
-- END SUBROUTINE
--
--_See also_:
-- *note RANDOM_NUMBER::
--
--
--File: gfortran.info, Node: RANGE, Next: RAN, Prev: RAND, Up: Intrinsic Procedures
--
--7.178 `RANGE' -- Decimal exponent range
--=======================================
--
--_Description_:
-- `RANGE(X)' returns the decimal exponent range in the model of the
-- type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = RANGE(X)'
--
--_Arguments_:
-- X Shall be of type `INTEGER', `REAL' or
-- `COMPLEX'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the default integer
-- kind.
--
--_Example_:
-- See `PRECISION' for an example.
--
--
--File: gfortran.info, Node: REAL, Next: RENAME, Prev: RAN, Up: Intrinsic Procedures
--
--7.179 `REAL' -- Convert to real type
--====================================
--
--_Description_:
-- `REAL(X [, KIND])' converts its argument X to a real type. The
-- `REALPART(X)' function is provided for compatibility with `g77',
-- and its use is strongly discouraged.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = REAL(X [, KIND])'
-- `RESULT = REALPART(Z)'
--
--_Arguments_:
-- X Shall be `INTEGER', `REAL', or `COMPLEX'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- These functions return a `REAL' variable or array under the
-- following rules:
--
-- (A)
-- `REAL(X)' is converted to a default real type if X is an
-- integer or real variable.
--
-- (B)
-- `REAL(X)' is converted to a real type with the kind type
-- parameter of X if X is a complex variable.
--
-- (C)
-- `REAL(X, KIND)' is converted to a real type with kind type
-- parameter KIND if X is a complex, integer, or real variable.
--
--_Example_:
-- program test_real
-- complex :: x = (1.0, 2.0)
-- print *, real(x), real(x,8), realpart(x)
-- end program test_real
--
--_See also_:
-- *note DBLE::, *note DFLOAT::, *note FLOAT::
--
--
--
--File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures
--
--7.180 `RENAME' -- Rename a file
--===============================
--
--_Description_:
-- Renames a file from file PATH1 to PATH2. A null character
-- (`CHAR(0)') can be used to mark the end of the names in PATH1 and
-- PATH2; otherwise, trailing blanks in the file names are ignored.
-- If the STATUS argument is supplied, it contains 0 on success or a
-- nonzero error code upon return; see `rename(2)'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL RENAME(PATH1, PATH2 [, STATUS])'
-- `STATUS = RENAME(PATH1, PATH2)'
--
--_Arguments_:
-- PATH1 Shall be of default `CHARACTER' type.
-- PATH2 Shall be of default `CHARACTER' type.
-- STATUS (Optional) Shall be of default `INTEGER' type.
--
--_See also_:
-- *note LINK::
--
--
--
--File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures
--
--7.181 `REPEAT' -- Repeated string concatenation
--===============================================
--
--_Description_:
-- Concatenates NCOPIES copies of a string.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = REPEAT(STRING, NCOPIES)'
--
--_Arguments_:
-- STRING Shall be scalar and of type `CHARACTER'.
-- NCOPIES Shall be scalar and of type `INTEGER'.
--
--_Return value_:
-- A new scalar of type `CHARACTER' built up from NCOPIES copies of
-- STRING.
--
--_Example_:
-- program test_repeat
-- write(*,*) repeat("x", 5) ! "xxxxx"
-- end program
--
--
--File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures
--
--7.182 `RESHAPE' -- Function to reshape an array
--===============================================
--
--_Description_:
-- Reshapes SOURCE to correspond to SHAPE. If necessary, the new
-- array may be padded with elements from PAD or permuted as defined
-- by ORDER.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'
--
--_Arguments_:
-- SOURCE Shall be an array of any type.
-- SHAPE Shall be of type `INTEGER' and an array of
-- rank one. Its values must be positive or zero.
-- PAD (Optional) shall be an array of the same type
-- as SOURCE.
-- ORDER (Optional) shall be of type `INTEGER' and an
-- array of the same shape as SHAPE. Its values
-- shall be a permutation of the numbers from 1
-- to n, where n is the size of SHAPE. If ORDER
-- is absent, the natural ordering shall be
-- assumed.
--
--_Return value_:
-- The result is an array of shape SHAPE with the same type as SOURCE.
--
--_Example_:
-- PROGRAM test_reshape
-- INTEGER, DIMENSION(4) :: x
-- WRITE(*,*) SHAPE(x) ! prints "4"
-- WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
-- END PROGRAM
--
--_See also_:
-- *note SHAPE::
--
--
--File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures
--
--7.183 `RRSPACING' -- Reciprocal of the relative spacing
--=======================================================
--
--_Description_:
-- `RRSPACING(X)' returns the reciprocal of the relative spacing of
-- model numbers near X.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = RRSPACING(X)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
--
--_Return value_:
-- The return value is of the same type and kind as X. The value
-- returned is equal to `ABS(FRACTION(X)) *
-- FLOAT(RADIX(X))**DIGITS(X)'.
--
--_See also_:
-- *note SPACING::
--
--
--File: gfortran.info, Node: RSHIFT, Next: SCALE, Prev: RRSPACING, Up: Intrinsic Procedures
--
--7.184 `RSHIFT' -- Right shift bits
--==================================
--
--_Description_:
-- `RSHIFT' returns a value corresponding to I with all of the bits
-- shifted right by SHIFT places. If the absolute value of SHIFT is
-- greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
-- out from the left end are lost; zeros are shifted in from the
-- opposite end.
--
-- This function has been superseded by the `ISHFT' intrinsic, which
-- is standard in Fortran 95 and later.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = RSHIFT(I, SHIFT)'
--
--_Arguments_:
-- I The type shall be `INTEGER'.
-- SHIFT The type shall be `INTEGER'.
--
--_Return value_:
-- The return value is of type `INTEGER' and of the same kind as I.
--
--_See also_:
-- *note ISHFT::, *note ISHFTC::, *note LSHIFT::
--
--
--
--File: gfortran.info, Node: SCALE, Next: SCAN, Prev: RSHIFT, Up: Intrinsic Procedures
--
--7.185 `SCALE' -- Scale a real value
--===================================
--
--_Description_:
-- `SCALE(X,I)' returns `X * RADIX(X)**I'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SCALE(X, I)'
--
--_Arguments_:
-- X The type of the argument shall be a `REAL'.
-- I The type of the argument shall be a `INTEGER'.
--
--_Return value_:
-- The return value is of the same type and kind as X. Its value is
-- `X * RADIX(X)**I'.
--
--_Example_:
-- program test_scale
-- real :: x = 178.1387e-4
-- integer :: i = 5
-- print *, scale(x,i), x*radix(x)**i
-- end program test_scale
--
--
--
--File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures
--
--7.186 `SCAN' -- Scan a string for the presence of a set of characters
--=====================================================================
--
--_Description_:
-- Scans a STRING for any of the characters in a SET of characters.
--
-- If BACK is either absent or equals `FALSE', this function returns
-- the position of the leftmost character of STRING that is in SET.
-- If BACK equals `TRUE', the rightmost position is returned. If no
-- character of SET is found in STRING, the result is zero.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SCAN(STRING, SET[, BACK [, KIND]])'
--
--_Arguments_:
-- STRING Shall be of type `CHARACTER'.
-- SET Shall be of type `CHARACTER'.
-- BACK (Optional) shall be of type `LOGICAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_Example_:
-- PROGRAM test_scan
-- WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
-- WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
-- WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
-- END PROGRAM
--
--_See also_:
-- *note INDEX intrinsic::, *note VERIFY::
--
--
--File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures
--
--7.187 `SECNDS' -- Time function
--===============================
--
--_Description_:
-- `SECNDS(X)' gets the time in seconds from the real-time system
-- clock. X is a reference time, also in seconds. If this is zero,
-- the time in seconds from midnight is returned. This function is
-- non-standard and its use is discouraged.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = SECNDS (X)'
--
--_Arguments_:
-- T Shall be of type `REAL(4)'.
-- X Shall be of type `REAL(4)'.
--
--_Return value_:
-- None
--
--_Example_:
-- program test_secnds
-- integer :: i
-- real(4) :: t1, t2
-- print *, secnds (0.0) ! seconds since midnight
-- t1 = secnds (0.0) ! reference time
-- do i = 1, 10000000 ! do something
-- end do
-- t2 = secnds (t1) ! elapsed time
-- print *, "Something took ", t2, " seconds."
-- end program test_secnds
--
--
--File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures
--
--7.188 `SECOND' -- CPU time function
--===================================
--
--_Description_:
-- Returns a `REAL(4)' value representing the elapsed CPU time in
-- seconds. This provides the same functionality as the standard
-- `CPU_TIME' intrinsic, and is only included for backwards
-- compatibility.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL SECOND(TIME)'
-- `TIME = SECOND()'
--
--_Arguments_:
-- TIME Shall be of type `REAL(4)'.
--
--_Return value_:
-- In either syntax, TIME is set to the process's current runtime in
-- seconds.
--
--_See also_:
-- *note CPU_TIME::
--
--
--
--File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures
--
--7.189 `SELECTED_CHAR_KIND' -- Choose character kind
--===================================================
--
--_Description_:
-- `SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
-- set named NAME, if a character set with such a name is supported,
-- or -1 otherwise. Currently, supported character sets include
-- "ASCII" and "DEFAULT", which are equivalent.
--
--_Standard_:
-- Fortran 2003 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = SELECTED_CHAR_KIND(NAME)'
--
--_Arguments_:
-- NAME Shall be a scalar and of the default character
-- type.
--
--_Example_:
-- program ascii_kind
-- integer,parameter :: ascii = selected_char_kind("ascii")
-- character(kind=ascii, len=26) :: s
--
-- s = ascii_"abcdefghijklmnopqrstuvwxyz"
-- print *, s
-- end program ascii_kind
--
--
--File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures
--
--7.190 `SELECTED_INT_KIND' -- Choose integer kind
--================================================
--
--_Description_:
-- `SELECTED_INT_KIND(I)' return the kind value of the smallest
-- integer type that can represent all values ranging from -10^I
-- (exclusive) to 10^I (exclusive). If there is no integer kind that
-- accommodates this range, `SELECTED_INT_KIND' returns -1.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = SELECTED_INT_KIND(I)'
--
--_Arguments_:
-- I Shall be a scalar and of type `INTEGER'.
--
--_Example_:
-- program large_integers
-- integer,parameter :: k5 = selected_int_kind(5)
-- integer,parameter :: k15 = selected_int_kind(15)
-- integer(kind=k5) :: i5
-- integer(kind=k15) :: i15
--
-- print *, huge(i5), huge(i15)
--
-- ! The following inequalities are always true
-- print *, huge(i5) >= 10_k5**5-1
-- print *, huge(i15) >= 10_k15**15-1
-- end program large_integers
--
--
--File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures
--
--7.191 `SELECTED_REAL_KIND' -- Choose real kind
--==============================================
--
--_Description_:
-- `SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
-- type with decimal precision of at least `P' digits and exponent
-- range greater at least `R'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = SELECTED_REAL_KIND(P, R)'
--
--_Arguments_:
-- P (Optional) shall be a scalar and of type
-- `INTEGER'.
-- R (Optional) shall be a scalar and of type
-- `INTEGER'.
-- At least one argument shall be present.
--
--_Return value_:
-- `SELECTED_REAL_KIND' returns the value of the kind type parameter
-- of a real data type with decimal precision of at least `P' digits
-- and a decimal exponent range of at least `R'. If more than one
-- real data type meet the criteria, the kind of the data type with
-- the smallest decimal precision is returned. If no real data type
-- matches the criteria, the result is
-- -1 if the processor does not support a real data type with a
-- precision greater than or equal to `P'
--
-- -2 if the processor does not support a real type with an exponent
-- range greater than or equal to `R'
--
-- -3 if neither is supported.
--
--_Example_:
-- program real_kinds
-- integer,parameter :: p6 = selected_real_kind(6)
-- integer,parameter :: p10r100 = selected_real_kind(10,100)
-- integer,parameter :: r400 = selected_real_kind(r=400)
-- real(kind=p6) :: x
-- real(kind=p10r100) :: y
-- real(kind=r400) :: z
--
-- print *, precision(x), range(x)
-- print *, precision(y), range(y)
-- print *, precision(z), range(z)
-- end program real_kinds
--
--
--File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures
--
--7.192 `SET_EXPONENT' -- Set the exponent of the model
--=====================================================
--
--_Description_:
-- `SET_EXPONENT(X, I)' returns the real number whose fractional part
-- is that that of X and whose exponent part is I.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SET_EXPONENT(X, I)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
-- I Shall be of type `INTEGER'.
--
--_Return value_:
-- The return value is of the same type and kind as X. The real
-- number whose fractional part is that that of X and whose exponent
-- part if I is returned; it is `FRACTION(X) * RADIX(X)**I'.
--
--_Example_:
-- PROGRAM test_setexp
-- REAL :: x = 178.1387e-4
-- INTEGER :: i = 17
-- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
-- END PROGRAM
--
--
--
--File: gfortran.info, Node: SHAPE, Next: SIGN, Prev: SET_EXPONENT, Up: Intrinsic Procedures
--
--7.193 `SHAPE' -- Determine the shape of an array
--================================================
--
--_Description_:
-- Determines the shape of an array.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = SHAPE(SOURCE)'
--
--_Arguments_:
-- SOURCE Shall be an array or scalar of any type. If
-- SOURCE is a pointer it must be associated and
-- allocatable arrays must be allocated.
--
--_Return value_:
-- An `INTEGER' array of rank one with as many elements as SOURCE has
-- dimensions. The elements of the resulting array correspond to the
-- extend of SOURCE along the respective dimensions. If SOURCE is a
-- scalar, the result is the rank one array of size zero.
--
--_Example_:
-- PROGRAM test_shape
-- INTEGER, DIMENSION(-1:1, -1:2) :: A
-- WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
-- WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
-- END PROGRAM
--
--_See also_:
-- *note RESHAPE::, *note SIZE::
--
--
--File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHAPE, Up: Intrinsic Procedures
--
--7.194 `SIGN' -- Sign copying function
--=====================================
--
--_Description_:
-- `SIGN(A,B)' returns the value of A with the sign of B.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SIGN(A, B)'
--
--_Arguments_:
-- A Shall be of type `INTEGER' or `REAL'
-- B Shall be of the same type and kind as A
--
--_Return value_:
-- The kind of the return value is that of A and B. If B\ge 0 then
-- the result is `ABS(A)', else it is `-ABS(A)'.
--
--_Example_:
-- program test_sign
-- print *, sign(-12,1)
-- print *, sign(-12,0)
-- print *, sign(-12,-1)
--
-- print *, sign(-12.,1.)
-- print *, sign(-12.,0.)
-- print *, sign(-12.,-1.)
-- end program test_sign
--
--_Specific names_:
-- Name Arguments Return type Standard
-- `ISIGN(A,P)' `INTEGER(4)' `INTEGER(4)' f95, gnu
-- `DSIGN(A,P)' `REAL(8)' `REAL(8)' f95, gnu
--
--
--File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures
--
--7.195 `SIGNAL' -- Signal handling subroutine (or function)
--==========================================================
--
--_Description_:
-- `SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
-- HANDLER to be executed with a single integer argument when signal
-- NUMBER occurs. If HANDLER is an integer, it can be used to turn
-- off handling of signal NUMBER or revert to its default action.
-- See `signal(2)'.
--
-- If `SIGNAL' is called as a subroutine and the STATUS argument is
-- supplied, it is set to the value returned by `signal(2)'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
-- `STATUS = SIGNAL(NUMBER, HANDLER)'
--
--_Arguments_:
-- NUMBER Shall be a scalar integer, with `INTENT(IN)'
-- HANDLER Signal handler (`INTEGER FUNCTION' or
-- `SUBROUTINE') or dummy/global `INTEGER' scalar.
-- `INTEGER'. It is `INTENT(IN)'.
-- STATUS (Optional) STATUS shall be a scalar integer.
-- It has `INTENT(OUT)'.
--
--_Return value_:
-- The `SIGNAL' function returns the value returned by `signal(2)'.
--
--_Example_:
-- program test_signal
-- intrinsic signal
-- external handler_print
--
-- call signal (12, handler_print)
-- call signal (10, 1)
--
-- call sleep (30)
-- end program test_signal
--
--
--File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures
--
--7.196 `SIN' -- Sine function
--============================
--
--_Description_:
-- `SIN(X)' computes the sine of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SIN(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value has same type and kind as X.
--
--_Example_:
-- program test_sin
-- real :: x = 0.0
-- x = sin(x)
-- end program test_sin
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DSIN(X)' `REAL(8) X' `REAL(8)' f95, gnu
-- `CSIN(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu
-- X'
-- `ZSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
-- X'
-- `CDSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
-- X'
--
--_See also_:
-- *note ASIN::
--
--
--File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures
--
--7.197 `SINH' -- Hyperbolic sine function
--========================================
--
--_Description_:
-- `SINH(X)' computes the hyperbolic sine of X.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SINH(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL'.
--
--_Example_:
-- program test_sinh
-- real(8) :: x = - 1.0_8
-- x = sinh(x)
-- end program test_sinh
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DSINH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
-- later
--
--_See also_:
-- *note ASINH::
--
--
--File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures
--
--7.198 `SIZE' -- Determine the size of an array
--==============================================
--
--_Description_:
-- Determine the extent of ARRAY along a specified dimension DIM, or
-- the total number of elements in ARRAY if DIM is absent.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = SIZE(ARRAY[, DIM [, KIND]])'
--
--_Arguments_:
-- ARRAY Shall be an array of any type. If ARRAY is a
-- pointer it must be associated and allocatable
-- arrays must be allocated.
-- DIM (Optional) shall be a scalar of type `INTEGER'
-- and its value shall be in the range from 1 to
-- n, where n equals the rank of ARRAY.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_Example_:
-- PROGRAM test_size
-- WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
-- END PROGRAM
--
--_See also_:
-- *note SHAPE::, *note RESHAPE::
--
--
--File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures
--
--7.199 `SIZEOF' -- Size in bytes of an expression
--================================================
--
--_Description_:
-- `SIZEOF(X)' calculates the number of bytes of storage the
-- expression `X' occupies.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Intrinsic function
--
--_Syntax_:
-- `N = SIZEOF(X)'
--
--_Arguments_:
-- X The argument shall be of any type, rank or
-- shape.
--
--_Return value_:
-- The return value is of type integer and of the system-dependent
-- kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
-- number of bytes occupied by the argument. If the argument has the
-- `POINTER' attribute, the number of bytes of the storage area
-- pointed to is returned. If the argument is of a derived type with
-- `POINTER' or `ALLOCATABLE' components, the return value doesn't
-- account for the sizes of the data pointed to by these components.
--
--_Example_:
-- integer :: i
-- real :: r, s(5)
-- print *, (sizeof(s)/sizeof(r) == 5)
-- end
-- The example will print `.TRUE.' unless you are using a platform
-- where default `REAL' variables are unusually padded.
--
--_See also_:
-- *note C_SIZEOF::
--
--
--File: gfortran.info, Node: SLEEP, Next: SNGL, Prev: SIZEOF, Up: Intrinsic Procedures
--
--7.200 `SLEEP' -- Sleep for the specified number of seconds
--==========================================================
--
--_Description_:
-- Calling this subroutine causes the process to pause for SECONDS
-- seconds.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL SLEEP(SECONDS)'
--
--_Arguments_:
-- SECONDS The type shall be of default `INTEGER'.
--
--_Example_:
-- program test_sleep
-- call sleep(5)
-- end
--
--
--File: gfortran.info, Node: SNGL, Next: SPACING, Prev: SLEEP, Up: Intrinsic Procedures
--
--7.201 `SNGL' -- Convert double precision real to default real
--=============================================================
--
--_Description_:
-- `SNGL(A)' converts the double precision real A to a default real
-- value. This is an archaic form of `REAL' that is specific to one
-- type for A.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SNGL(A)'
--
--_Arguments_:
-- A The type shall be a double precision `REAL'.
--
--_Return value_:
-- The return value is of type default `REAL'.
--
--_See also_:
-- *note DBLE::
--
--
--File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SNGL, Up: Intrinsic Procedures
--
--7.202 `SPACING' -- Smallest distance between two numbers of a given type
--========================================================================
--
--_Description_:
-- Determines the distance between the argument X and the nearest
-- adjacent number of the same type.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SPACING(X)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
--
--_Return value_:
-- The result is of the same type as the input argument X.
--
--_Example_:
-- PROGRAM test_spacing
-- INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
-- INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
--
-- WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
-- WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
-- END PROGRAM
--
--_See also_:
-- *note RRSPACING::
--
--
--File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures
--
--7.203 `SPREAD' -- Add a dimension to an array
--=============================================
--
--_Description_:
-- Replicates a SOURCE array NCOPIES times along a specified
-- dimension DIM.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = SPREAD(SOURCE, DIM, NCOPIES)'
--
--_Arguments_:
-- SOURCE Shall be a scalar or an array of any type and
-- a rank less than seven.
-- DIM Shall be a scalar of type `INTEGER' with a
-- value in the range from 1 to n+1, where n
-- equals the rank of SOURCE.
-- NCOPIES Shall be a scalar of type `INTEGER'.
--
--_Return value_:
-- The result is an array of the same type as SOURCE and has rank n+1
-- where n equals the rank of SOURCE.
--
--_Example_:
-- PROGRAM test_spread
-- INTEGER :: a = 1, b(2) = (/ 1, 2 /)
-- WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
-- WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
-- END PROGRAM
--
--_See also_:
-- *note UNPACK::
--
--
--File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures
--
--7.204 `SQRT' -- Square-root function
--====================================
--
--_Description_:
-- `SQRT(X)' computes the square root of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = SQRT(X)'
--
--_Arguments_:
-- X The type shall be `REAL' or `COMPLEX'.
--
--_Return value_:
-- The return value is of type `REAL' or `COMPLEX'. The kind type
-- parameter is the same as X.
--
--_Example_:
-- program test_sqrt
-- real(8) :: x = 2.0_8
-- complex :: z = (1.0, 2.0)
-- x = sqrt(x)
-- z = sqrt(z)
-- end program test_sqrt
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DSQRT(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
-- later
-- `CSQRT(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 95 and
-- X' later
-- `ZSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
-- `CDSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
-- X'
--
--
--File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures
--
--7.205 `SRAND' -- Reinitialize the random number generator
--=========================================================
--
--_Description_:
-- `SRAND' reinitializes the pseudo-random number generator called by
-- `RAND' and `IRAND'. The new seed used by the generator is
-- specified by the required argument SEED.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL SRAND(SEED)'
--
--_Arguments_:
-- SEED Shall be a scalar `INTEGER(kind=4)'.
--
--_Return value_:
-- Does not return anything.
--
--_Example_:
-- See `RAND' and `IRAND' for examples.
--
--_Notes_:
-- The Fortran 2003 standard specifies the intrinsic `RANDOM_SEED' to
-- initialize the pseudo-random numbers generator and `RANDOM_NUMBER'
-- to generate pseudo-random numbers. Please note that in GNU
-- Fortran, these two sets of intrinsics (`RAND', `IRAND' and `SRAND'
-- on the one hand, `RANDOM_NUMBER' and `RANDOM_SEED' on the other
-- hand) access two independent pseudo-random number generators.
--
--_See also_:
-- *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::
--
--
--
--File: gfortran.info, Node: STAT, Next: SUM, Prev: SRAND, Up: Intrinsic Procedures
--
--7.206 `STAT' -- Get file status
--===============================
--
--_Description_:
-- This function returns information about a file. No permissions are
-- required on the file itself, but execute (search) permission is
-- required on all of the directories in path that lead to the file.
--
-- The elements that are obtained and stored in the array `BUFF':
-- `buff(1)' Device ID
-- `buff(2)' Inode number
-- `buff(3)' File mode
-- `buff(4)' Number of links
-- `buff(5)' Owner's uid
-- `buff(6)' Owner's gid
-- `buff(7)' ID of device containing directory entry for
-- file (0 if not available)
-- `buff(8)' File size (bytes)
-- `buff(9)' Last access time
-- `buff(10)' Last modification time
-- `buff(11)' Last file status change time
-- `buff(12)' Preferred I/O block size (-1 if not available)
-- `buff(13)' Number of blocks allocated (-1 if not
-- available)
--
-- Not all these elements are relevant on all systems. If an element
-- is not relevant, it is returned as 0.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL STAT(FILE,BUFF[,STATUS])'
--
--_Arguments_:
-- FILE The type shall be `CHARACTER', of the default
-- kind and a valid path within the file system.
-- BUFF The type shall be `INTEGER(4), DIMENSION(13)'.
-- STATUS (Optional) status flag of type `INTEGER(4)'.
-- Returns 0 on success and a system specific
-- error code otherwise.
--
--_Example_:
-- PROGRAM test_stat
-- INTEGER, DIMENSION(13) :: buff
-- INTEGER :: status
--
-- CALL STAT("/etc/passwd", buff, status)
--
-- IF (status == 0) THEN
-- WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
-- WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
-- WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
-- WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
-- WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
-- WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
-- WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
-- WRITE (*, FMT="('File size:', T30, I19)") buff(8)
-- WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
-- WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
-- WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
-- WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
-- WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
-- END IF
-- END PROGRAM
--
--_See also_:
-- To stat an open file: *note FSTAT::, to stat a link: *note LSTAT::
--
--
--File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STAT, Up: Intrinsic Procedures
--
--7.207 `SUM' -- Sum of array elements
--====================================
--
--_Description_:
-- Adds the elements of ARRAY along dimension DIM if the
-- corresponding element in MASK is `TRUE'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = SUM(ARRAY[, MASK])' `RESULT = SUM(ARRAY, DIM[, MASK])'
--
--_Arguments_:
-- ARRAY Shall be an array of type `INTEGER', `REAL' or
-- `COMPLEX'.
-- DIM (Optional) shall be a scalar of type `INTEGER'
-- with a value in the range from 1 to n, where n
-- equals the rank of ARRAY.
-- MASK (Optional) shall be of type `LOGICAL' and
-- either be a scalar or an array of the same
-- shape as ARRAY.
--
--_Return value_:
-- The result is of the same type as ARRAY.
--
-- If DIM is absent, a scalar with the sum of all elements in ARRAY
-- is returned. Otherwise, an array of rank n-1, where n equals the
-- rank of ARRAY,and a shape similar to that of ARRAY with dimension
-- DIM dropped is returned.
--
--_Example_:
-- PROGRAM test_sum
-- INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
-- print *, SUM(x) ! all elements, sum = 15
-- print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
-- END PROGRAM
--
--_See also_:
-- *note PRODUCT::
--
--
--File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures
--
--7.208 `SYMLNK' -- Create a symbolic link
--========================================
--
--_Description_:
-- Makes a symbolic link from file PATH1 to PATH2. A null character
-- (`CHAR(0)') can be used to mark the end of the names in PATH1 and
-- PATH2; otherwise, trailing blanks in the file names are ignored.
-- If the STATUS argument is supplied, it contains 0 on success or a
-- nonzero error code upon return; see `symlink(2)'. If the system
-- does not supply `symlink(2)', `ENOSYS' is returned.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL SYMLNK(PATH1, PATH2 [, STATUS])'
-- `STATUS = SYMLNK(PATH1, PATH2)'
--
--_Arguments_:
-- PATH1 Shall be of default `CHARACTER' type.
-- PATH2 Shall be of default `CHARACTER' type.
-- STATUS (Optional) Shall be of default `INTEGER' type.
--
--_See also_:
-- *note LINK::, *note UNLINK::
--
--
--
--File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures
--
--7.209 `SYSTEM' -- Execute a shell command
--=========================================
--
--_Description_:
-- Passes the command COMMAND to a shell (see `system(3)'). If
-- argument STATUS is present, it contains the value returned by
-- `system(3)', which is presumably 0 if the shell command succeeded.
-- Note that which shell is used to invoke the command is
-- system-dependent and environment-dependent.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL SYSTEM(COMMAND [, STATUS])'
-- `STATUS = SYSTEM(COMMAND)'
--
--_Arguments_:
-- COMMAND Shall be of default `CHARACTER' type.
-- STATUS (Optional) Shall be of default `INTEGER' type.
--
--_See also_:
--
--
--File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures
--
--7.210 `SYSTEM_CLOCK' -- Time function
--=====================================
--
--_Description_:
-- Determines the COUNT of milliseconds of wall clock time since the
-- Epoch (00:00:00 UTC, January 1, 1970) modulo COUNT_MAX, COUNT_RATE
-- determines the number of clock ticks per second. COUNT_RATE and
-- COUNT_MAX are constant and specific to `gfortran'.
--
-- If there is no clock, COUNT is set to `-HUGE(COUNT)', and
-- COUNT_RATE and COUNT_MAX are set to zero
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'
--
--_Arguments_:
--
--_Arguments_:
-- COUNT (Optional) shall be a scalar of type default
-- `INTEGER' with `INTENT(OUT)'.
-- COUNT_RATE (Optional) shall be a scalar of type default
-- `INTEGER' with `INTENT(OUT)'.
-- COUNT_MAX (Optional) shall be a scalar of type default
-- `INTEGER' with `INTENT(OUT)'.
--
--_Example_:
-- PROGRAM test_system_clock
-- INTEGER :: count, count_rate, count_max
-- CALL SYSTEM_CLOCK(count, count_rate, count_max)
-- WRITE(*,*) count, count_rate, count_max
-- END PROGRAM
--
--_See also_:
-- *note DATE_AND_TIME::, *note CPU_TIME::
--
--
--File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures
--
--7.211 `TAN' -- Tangent function
--===============================
--
--_Description_:
-- `TAN(X)' computes the tangent of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = TAN(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL'. The kind type parameter is
-- the same as X.
--
--_Example_:
-- program test_tan
-- real(8) :: x = 0.165_8
-- x = tan(x)
-- end program test_tan
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DTAN(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
-- later
--
--_See also_:
-- *note ATAN::
--
--
--File: gfortran.info, Node: TANH, Next: TIME, Prev: TAN, Up: Intrinsic Procedures
--
--7.212 `TANH' -- Hyperbolic tangent function
--===========================================
--
--_Description_:
-- `TANH(X)' computes the hyperbolic tangent of X.
--
--_Standard_:
-- Fortran 77 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `X = TANH(X)'
--
--_Arguments_:
-- X The type shall be `REAL'.
--
--_Return value_:
-- The return value is of type `REAL' and lies in the range - 1 \leq
-- tanh(x) \leq 1 .
--
--_Example_:
-- program test_tanh
-- real(8) :: x = 2.1_8
-- x = tanh(x)
-- end program test_tanh
--
--_Specific names_:
-- Name Argument Return type Standard
-- `DTANH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
-- later
--
--_See also_:
-- *note ATANH::
--
--
--File: gfortran.info, Node: TIME, Next: TIME8, Prev: TANH, Up: Intrinsic Procedures
--
--7.213 `TIME' -- Time function
--=============================
--
--_Description_:
-- Returns the current time encoded as an integer (in the manner of
-- the UNIX function `time(3)'). This value is suitable for passing to
-- `CTIME()', `GMTIME()', and `LTIME()'.
--
-- This intrinsic is not fully portable, such as to systems with
-- 32-bit `INTEGER' types but supporting times wider than 32 bits.
-- Therefore, the values returned by this intrinsic might be, or
-- become, negative, or numerically less than previous values, during
-- a single run of the compiled program.
--
-- See *note TIME8::, for information on a similar intrinsic that
-- might be portable to more GNU Fortran implementations, though to
-- fewer Fortran compilers.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = TIME()'
--
--_Return value_:
-- The return value is a scalar of type `INTEGER(4)'.
--
--_See also_:
-- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
-- *note TIME8::
--
--
--
--File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures
--
--7.214 `TIME8' -- Time function (64-bit)
--=======================================
--
--_Description_:
-- Returns the current time encoded as an integer (in the manner of
-- the UNIX function `time(3)'). This value is suitable for passing to
-- `CTIME()', `GMTIME()', and `LTIME()'.
--
-- _Warning:_ this intrinsic does not increase the range of the timing
-- values over that returned by `time(3)'. On a system with a 32-bit
-- `time(3)', `TIME8()' will return a 32-bit value, even though it is
-- converted to a 64-bit `INTEGER(8)' value. That means overflows of
-- the 32-bit value can still occur. Therefore, the values returned
-- by this intrinsic might be or become negative or numerically less
-- than previous values during a single run of the compiled program.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = TIME8()'
--
--_Return value_:
-- The return value is a scalar of type `INTEGER(8)'.
--
--_See also_:
-- *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::,
-- *note TIME::
--
--
--
--File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures
--
--7.215 `TINY' -- Smallest positive number of a real kind
--=======================================================
--
--_Description_:
-- `TINY(X)' returns the smallest positive (non zero) number in the
-- model of the type of `X'.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = TINY(X)'
--
--_Arguments_:
-- X Shall be of type `REAL'.
--
--_Return value_:
-- The return value is of the same type and kind as X
--
--_Example_:
-- See `HUGE' for an example.
--
--
--File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures
--
--7.216 `TRAILZ' -- Number of trailing zero bits of an integer
--============================================================
--
--_Description_:
-- `TRAILZ' returns the number of trailing zero bits of an integer.
--
--_Standard_:
-- Fortran 2008 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = TRAILZ(I)'
--
--_Arguments_:
-- I Shall be of type `INTEGER'.
--
--_Return value_:
-- The type of the return value is the default `INTEGER'. If all the
-- bits of `I' are zero, the result value is `BIT_SIZE(I)'.
--
--_Example_:
-- PROGRAM test_trailz
-- WRITE (*,*) TRAILZ(8) ! prints 3
-- END PROGRAM
--
--_See also_:
-- *note BIT_SIZE::, *note LEADZ::
--
--
--File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures
--
--7.217 `TRANSFER' -- Transfer bit patterns
--=========================================
--
--_Description_:
-- Interprets the bitwise representation of SOURCE in memory as if it
-- is the representation of a variable or array of the same type and
-- type parameters as MOLD.
--
-- This is approximately equivalent to the C concept of _casting_ one
-- type to another.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'
--
--_Arguments_:
-- SOURCE Shall be a scalar or an array of any type.
-- MOLD Shall be a scalar or an array of any type.
-- SIZE (Optional) shall be a scalar of type `INTEGER'.
--
--_Return value_:
-- The result has the same type as MOLD, with the bit level
-- representation of SOURCE. If SIZE is present, the result is a
-- one-dimensional array of length SIZE. If SIZE is absent but MOLD
-- is an array (of any size or shape), the result is a one-
-- dimensional array of the minimum length needed to contain the
-- entirety of the bitwise representation of SOURCE. If SIZE is
-- absent and MOLD is a scalar, the result is a scalar.
--
-- If the bitwise representation of the result is longer than that of
-- SOURCE, then the leading bits of the result correspond to those of
-- SOURCE and any trailing bits are filled arbitrarily.
--
-- When the resulting bit representation does not correspond to a
-- valid representation of a variable of the same type as MOLD, the
-- results are undefined, and subsequent operations on the result
-- cannot be guaranteed to produce sensible behavior. For example,
-- it is possible to create `LOGICAL' variables for which `VAR' and
-- `.NOT.VAR' both appear to be true.
--
--_Example_:
-- PROGRAM test_transfer
-- integer :: x = 2143289344
-- print *, transfer(x, 1.0) ! prints "NaN" on i686
-- END PROGRAM
--
--
--File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures
--
--7.218 `TRANSPOSE' -- Transpose an array of rank two
--===================================================
--
--_Description_:
-- Transpose an array of rank two. Element (i, j) of the result has
-- the value `MATRIX(j, i)', for all i, j.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = TRANSPOSE(MATRIX)'
--
--_Arguments_:
-- MATRIX Shall be an array of any type and have a rank
-- of two.
--
--_Return value_:
-- The result has the same type as MATRIX, and has shape `(/ m, n /)'
-- if MATRIX has shape `(/ n, m /)'.
--
--
--File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures
--
--7.219 `TRIM' -- Remove trailing blank characters of a string
--============================================================
--
--_Description_:
-- Removes trailing blank characters of a string.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = TRIM(STRING)'
--
--_Arguments_:
-- STRING Shall be a scalar of type `CHARACTER'.
--
--_Return value_:
-- A scalar of type `CHARACTER' which length is that of STRING less
-- the number of trailing blanks.
--
--_Example_:
-- PROGRAM test_trim
-- CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
-- WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
-- END PROGRAM
--
--_See also_:
-- *note ADJUSTL::, *note ADJUSTR::
--
--
--File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures
--
--7.220 `TTYNAM' -- Get the name of a terminal device.
--====================================================
--
--_Description_:
-- Get the name of a terminal device. For more information, see
-- `ttyname(3)'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL TTYNAM(UNIT, NAME)'
-- `NAME = TTYNAM(UNIT)'
--
--_Arguments_:
-- UNIT Shall be a scalar `INTEGER'.
-- NAME Shall be of type `CHARACTER'.
--
--_Example_:
-- PROGRAM test_ttynam
-- INTEGER :: unit
-- DO unit = 1, 10
-- IF (isatty(unit=unit)) write(*,*) ttynam(unit)
-- END DO
-- END PROGRAM
--
--_See also_:
-- *note ISATTY::
--
--
--File: gfortran.info, Node: UBOUND, Next: UMASK, Prev: TTYNAM, Up: Intrinsic Procedures
--
--7.221 `UBOUND' -- Upper dimension bounds of an array
--====================================================
--
--_Description_:
-- Returns the upper bounds of an array, or a single upper bound
-- along the DIM dimension.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Inquiry function
--
--_Syntax_:
-- `RESULT = UBOUND(ARRAY [, DIM [, KIND]])'
--
--_Arguments_:
-- ARRAY Shall be an array, of any type.
-- DIM (Optional) Shall be a scalar `INTEGER'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind. If DIM is
-- absent, the result is an array of the upper bounds of ARRAY. If
-- DIM is present, the result is a scalar corresponding to the upper
-- bound of the array along that dimension. If ARRAY is an
-- expression rather than a whole array or array structure component,
-- or if it has a zero extent along the relevant dimension, the upper
-- bound is taken to be the number of elements along the relevant
-- dimension.
--
--_See also_:
-- *note LBOUND::
--
--
--File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UBOUND, Up: Intrinsic Procedures
--
--7.222 `UMASK' -- Set the file creation mask
--===========================================
--
--_Description_:
-- Sets the file creation mask to MASK and returns the old value in
-- argument OLD if it is supplied. See `umask(2)'.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine
--
--_Syntax_:
-- `CALL UMASK(MASK [, OLD])'
--
--_Arguments_:
-- MASK Shall be a scalar of type `INTEGER'.
-- MASK (Optional) Shall be a scalar of type `INTEGER'.
--
--
--
--File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures
--
--7.223 `UNLINK' -- Remove a file from the file system
--====================================================
--
--_Description_:
-- Unlinks the file PATH. A null character (`CHAR(0)') can be used to
-- mark the end of the name in PATH; otherwise, trailing blanks in
-- the file name are ignored. If the STATUS argument is supplied, it
-- contains 0 on success or a nonzero error code upon return; see
-- `unlink(2)'.
--
-- This intrinsic is provided in both subroutine and function forms;
-- however, only one form can be used in any given program unit.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Subroutine, function
--
--_Syntax_:
-- `CALL UNLINK(PATH [, STATUS])'
-- `STATUS = UNLINK(PATH)'
--
--_Arguments_:
-- PATH Shall be of default `CHARACTER' type.
-- STATUS (Optional) Shall be of default `INTEGER' type.
--
--_See also_:
-- *note LINK::, *note SYMLNK::
--
--
--File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures
--
--7.224 `UNPACK' -- Unpack an array of rank one into an array
--===========================================================
--
--_Description_:
-- Store the elements of VECTOR in an array of higher rank.
--
--_Standard_:
-- Fortran 95 and later
--
--_Class_:
-- Transformational function
--
--_Syntax_:
-- `RESULT = UNPACK(VECTOR, MASK, FIELD)'
--
--_Arguments_:
-- VECTOR Shall be an array of any type and rank one. It
-- shall have at least as many elements as MASK
-- has `TRUE' values.
-- MASK Shall be an array of type `LOGICAL'.
-- FIELD Shall be of the same type as VECTOR and have
-- the same shape as MASK.
--
--_Return value_:
-- The resulting array corresponds to FIELD with `TRUE' elements of
-- MASK replaced by values from VECTOR in array element order.
--
--_Example_:
-- PROGRAM test_unpack
-- integer :: vector(2) = (/1,1/)
-- logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
-- integer :: field(2,2) = 0, unity(2,2)
--
-- ! result: unity matrix
-- unity = unpack(vector, reshape(mask, (/2,2/)), field)
-- END PROGRAM
--
--_See also_:
-- *note PACK::, *note SPREAD::
--
--
--File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures
--
--7.225 `VERIFY' -- Scan a string for the absence of a set of characters
--======================================================================
--
--_Description_:
-- Verifies that all the characters in a SET are present in a STRING.
--
-- If BACK is either absent or equals `FALSE', this function returns
-- the position of the leftmost character of STRING that is not in
-- SET. If BACK equals `TRUE', the rightmost position is returned. If
-- all characters of SET are found in STRING, the result is zero.
--
--_Standard_:
-- Fortran 95 and later, with KIND argument Fortran 2003 and later
--
--_Class_:
-- Elemental function
--
--_Syntax_:
-- `RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'
--
--_Arguments_:
-- STRING Shall be of type `CHARACTER'.
-- SET Shall be of type `CHARACTER'.
-- BACK (Optional) shall be of type `LOGICAL'.
-- KIND (Optional) An `INTEGER' initialization
-- expression indicating the kind parameter of
-- the result.
--
--_Return value_:
-- The return value is of type `INTEGER' and of kind KIND. If KIND is
-- absent, the return value is of default integer kind.
--
--_Example_:
-- PROGRAM test_verify
-- WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
-- WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
-- WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
-- WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
-- WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
-- END PROGRAM
--
--_See also_:
-- *note SCAN::, *note INDEX intrinsic::
--
--
--File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures
--
--7.226 `XOR' -- Bitwise logical exclusive OR
--===========================================
--
--_Description_:
-- Bitwise logical exclusive or.
--
-- This intrinsic routine is provided for backwards compatibility with
-- GNU Fortran 77. For integer arguments, programmers should consider
-- the use of the *note IEOR:: intrinsic defined by the Fortran
-- standard.
--
--_Standard_:
-- GNU extension
--
--_Class_:
-- Function
--
--_Syntax_:
-- `RESULT = XOR(X, Y)'
--
--_Arguments_:
-- X The type shall be either a scalar `INTEGER'
-- type or a scalar `LOGICAL' type.
-- Y The type shall be the same as the type of I.
--
--_Return value_:
-- The return type is either a scalar `INTEGER' or a scalar
-- `LOGICAL'. If the kind type parameters differ, then the smaller
-- kind type is implicitly converted to larger kind, and the return
-- has the larger kind.
--
--_Example_:
-- PROGRAM test_xor
-- LOGICAL :: T = .TRUE., F = .FALSE.
-- INTEGER :: a, b
-- DATA a / Z'F' /, b / Z'3' /
--
-- WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
-- WRITE (*,*) XOR(a, b)
-- END PROGRAM
--
--_See also_:
-- Fortran 95 elemental function: *note IEOR::
--
--
--File: gfortran.info, Node: Intrinsic Modules, Next: Contributing, Prev: Intrinsic Procedures, Up: Top
--
--8 Intrinsic Modules
--*******************
--
--8.1 `ISO_FORTRAN_ENV'
--=====================
--
--_Standard_:
-- Fortran 2003 and later
--
-- The `ISO_FORTRAN_ENV' module provides the following scalar
--default-integer named constants:
--
--`CHARACTER_STORAGE_SIZE':
-- Size in bits of the character storage unit.
--
--`ERROR_UNIT':
-- Identifies the preconnected unit used for error reporting.
--
--`FILE_STORAGE_SIZE':
-- Size in bits of the file-storage unit.
--
--`INPUT_UNIT':
-- Identifies the preconnected unit identified by the asterisk (`*')
-- in `READ' statement.
--
--`IOSTAT_END':
-- The value assigned to the variable passed to the IOSTAT= specifier
-- of an input/output statement if an end-of-file condition occurred.
--
--`IOSTAT_EOR':
-- The value assigned to the variable passed to the IOSTAT= specifier
-- of an input/output statement if an end-of-record condition
-- occurred.
--
--`NUMERIC_STORAGE_SIZE':
-- The size in bits of the numeric storage unit.
--
--`OUTPUT_UNIT':
-- Identifies the preconnected unit identified by the asterisk (`*')
-- in `WRITE' statement.
--
--8.2 `ISO_C_BINDING'
--===================
--
--_Standard_:
-- Fortran 2003 and later, GNU extensions
--
-- The following intrinsic procedures are provided by the module; their
--definition can be found in the section Intrinsic Procedures of this
--manual.
--
--`C_ASSOCIATED'
--
--`C_F_POINTER'
--
--`C_F_PROCPOINTER'
--
--`C_FUNLOC'
--
--`C_LOC'
--
-- The `ISO_C_BINDING' module provides the following named constants of
--the type integer, which can be used as KIND type parameter. Note that
--GNU Fortran currently does not support the `C_INT_FAST...' KIND type
--parameters (marked by an asterisk (`*') in the list below). The
--`C_INT_FAST...' parameters have therefore the value -2 and cannot be
--used as KIND type parameter of the `INTEGER' type.
--
-- In addition to the integer named constants required by the Fortran
--2003 standard, GNU Fortran provides as an extension named constants for
--the 128-bit integer types supported by the C compiler: `C_INT128_T,
--C_INT_LEAST128_T, C_INT_FAST128_T'.
--
--Fortran Named constant C type Extension
--Type
--`INTEGER' `C_INT' `int'
--`INTEGER' `C_SHORT' `short int'
--`INTEGER' `C_LONG' `long int'
--`INTEGER' `C_LONG_LONG' `long long int'
--`INTEGER' `C_SIGNED_CHAR' `signed char'/`unsigned
-- char'
--`INTEGER' `C_SIZE_T' `size_t'
--`INTEGER' `C_INT8_T' `int8_t'
--`INTEGER' `C_INT16_T' `int16_t'
--`INTEGER' `C_INT32_T' `int32_t'
--`INTEGER' `C_INT64_T' `int64_t'
--`INTEGER' `C_INT128_T' `int128_t' Ext.
--`INTEGER' `C_INT_LEAST8_T' `int_least8_t'
--`INTEGER' `C_INT_LEAST16_T' `int_least16_t'
--`INTEGER' `C_INT_LEAST32_T' `int_least32_t'
--`INTEGER' `C_INT_LEAST64_T' `int_least64_t'
--`INTEGER' `C_INT_LEAST128_T' `int_least128_t' Ext.
--`INTEGER' `C_INT_FAST8_T'* `int_fast8_t'
--`INTEGER' `C_INT_FAST16_T'* `int_fast16_t'
--`INTEGER' `C_INT_FAST32_T'* `int_fast32_t'
--`INTEGER' `C_INT_FAST64_T'* `int_fast64_t'
--`INTEGER' `C_INT_FAST128_T'* `int_fast128_t' Ext.
--`INTEGER' `C_INTMAX_T' `intmax_t'
--`INTEGER' `C_INTPTR_T' `intptr_t'
--`REAL' `C_FLOAT' `float'
--`REAL' `C_DOUBLE' `double'
--`REAL' `C_LONG_DOUBLE' `long double'
--`COMPLEX' `C_FLOAT_COMPLEX' `float _Complex'
--`COMPLEX' `C_DOUBLE_COMPLEX' `double _Complex'
--`COMPLEX' `C_LONG_DOUBLE_COMPLEX' `long double _Complex'
--`LOGICAL' `C_BOOL' `_Bool'
--`CHARACTER' `C_CHAR' `char'
--
-- Additionally, the following `(CHARACTER(KIND=C_CHAR))' are defined.
--
--Name C definition Value
--`C_NULL_CHAR' null character `'\0''
--`C_ALERT' alert `'\a''
--`C_BACKSPACE' backspace `'\b''
--`C_FORM_FEED' form feed `'\f''
--`C_NEW_LINE' new line `'\n''
--`C_CARRIAGE_RETURN'carriage return `'\r''
--`C_HORIZONTAL_TAB'horizontal tab `'\t''
--`C_VERTICAL_TAB'vertical tab `'\v''
--
--8.3 OpenMP Modules `OMP_LIB' and `OMP_LIB_KINDS'
--================================================
--
--_Standard_:
-- OpenMP Application Program Interface v3.0
--
-- The OpenMP Fortran runtime library routines are provided both in a
--form of two Fortran 90 modules, named `OMP_LIB' and `OMP_LIB_KINDS',
--and in a form of a Fortran `include' file named `omp_lib.h'. The
--procedures provided by `OMP_LIB' can be found in the *note
--Introduction: (libgomp)Top. manual, the named constants defined in the
--`OMP_LIB_KINDS' module are listed below.
--
-- For details refer to the actual OpenMP Application Program Interface
--v3.0 (http://www.openmp.org/mp-documents/spec30.pdf).
--
-- `OMP_LIB_KINDS' provides the following scalar default-integer named
--constants:
--
--`omp_integer_kind'
--
--`omp_logical_kind'
--
--`omp_lock_kind'
--
--`omp_nest_lock_kind'
--
--`omp_sched_kind'
--
--
--File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top
--
--Contributing
--************
--
--Free software is only possible if people contribute to efforts to
--create it. We're always in need of more people helping out with ideas
--and comments, writing documentation and contributing code.
--
-- If you want to contribute to GNU Fortran, have a look at the long
--lists of projects you can take on. Some of these projects are small,
--some of them are large; some are completely orthogonal to the rest of
--what is happening on GNU Fortran, but others are "mainstream" projects
--in need of enthusiastic hackers. All of these projects are important!
--We'll eventually get around to the things here, but they are also
--things doable by someone who is willing and able.
--
--* Menu:
--
--* Contributors::
--* Projects::
--* Proposed Extensions::
--
--
--File: gfortran.info, Node: Contributors, Next: Projects, Up: Contributing
--
--Contributors to GNU Fortran
--===========================
--
--Most of the parser was hand-crafted by _Andy Vaught_, who is also the
--initiator of the whole project. Thanks Andy! Most of the interface
--with GCC was written by _Paul Brook_.
--
-- The following individuals have contributed code and/or ideas and
--significant help to the GNU Fortran project (in alphabetical order):
--
-- - Janne Blomqvist
--
-- - Steven Bosscher
--
-- - Paul Brook
--
-- - Tobias Burnus
--
-- - Franc,ois-Xavier Coudert
--
-- - Bud Davis
--
-- - Jerry DeLisle
--
-- - Erik Edelmann
--
-- - Bernhard Fischer
--
-- - Daniel Franke
--
-- - Richard Guenther
--
-- - Richard Henderson
--
-- - Katherine Holcomb
--
-- - Jakub Jelinek
--
-- - Niels Kristian Bech Jensen
--
-- - Steven Johnson
--
-- - Steven G. Kargl
--
-- - Thomas Koenig
--
-- - Asher Langton
--
-- - H. J. Lu
--
-- - Toon Moene
--
-- - Brooks Moses
--
-- - Andrew Pinski
--
-- - Tim Prince
--
-- - Christopher D. Rickett
--
-- - Richard Sandiford
--
-- - Tobias Schlu"ter
--
-- - Roger Sayle
--
-- - Paul Thomas
--
-- - Andy Vaught
--
-- - Feng Wang
--
-- - Janus Weil
--
-- The following people have contributed bug reports, smaller or larger
--patches, and much needed feedback and encouragement for the GNU Fortran
--project:
--
-- - Bill Clodius
--
-- - Dominique d'Humie`res
--
-- - Kate Hedstrom
--
-- - Erik Schnetter
--
-- Many other individuals have helped debug, test and improve the GNU
--Fortran compiler over the past few years, and we welcome you to do the
--same! If you already have done so, and you would like to see your name
--listed in the list above, please contact us.
--
--
--File: gfortran.info, Node: Projects, Next: Proposed Extensions, Prev: Contributors, Up: Contributing
--
--Projects
--========
--
--_Help build the test suite_
-- Solicit more code for donation to the test suite: the more
-- extensive the testsuite, the smaller the risk of breaking things
-- in the future! We can keep code private on request.
--
--_Bug hunting/squishing_
-- Find bugs and write more test cases! Test cases are especially very
-- welcome, because it allows us to concentrate on fixing bugs
-- instead of isolating them. Going through the bugzilla database at
-- `http://gcc.gnu.org/bugzilla/' to reduce testcases posted there and
-- add more information (for example, for which version does the
-- testcase work, for which versions does it fail?) is also very
-- helpful.
--
--
--
--File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing
--
--Proposed Extensions
--===================
--
--Here's a list of proposed extensions for the GNU Fortran compiler, in
--no particular order. Most of these are necessary to be fully
--compatible with existing Fortran compilers, but they are not part of
--the official J3 Fortran 95 standard.
--
--Compiler extensions:
----------------------
--
-- * User-specified alignment rules for structures.
--
-- * Flag to generate `Makefile' info.
--
-- * Automatically extend single precision constants to double.
--
-- * Compile code that conserves memory by dynamically allocating
-- common and module storage either on stack or heap.
--
-- * Compile flag to generate code for array conformance checking
-- (suggest -CC).
--
-- * User control of symbol names (underscores, etc).
--
-- * Compile setting for maximum size of stack frame size before
-- spilling parts to static or heap.
--
-- * Flag to force local variables into static space.
--
-- * Flag to force local variables onto stack.
--
--Environment Options
---------------------
--
-- * Pluggable library modules for random numbers, linear algebra. LA
-- should use BLAS calling conventions.
--
-- * Environment variables controlling actions on arithmetic exceptions
-- like overflow, underflow, precision loss--Generate NaN, abort,
-- default. action.
--
-- * Set precision for fp units that support it (i387).
--
-- * Variable for setting fp rounding mode.
--
-- * Variable to fill uninitialized variables with a user-defined bit
-- pattern.
--
-- * Environment variable controlling filename that is opened for that
-- unit number.
--
-- * Environment variable to clear/trash memory being freed.
--
-- * Environment variable to control tracing of allocations and frees.
--
-- * Environment variable to display allocated memory at normal program
-- end.
--
-- * Environment variable for filename for * IO-unit.
--
-- * Environment variable for temporary file directory.
--
-- * Environment variable forcing standard output to be line buffered
-- (unix).
--
--
--
--File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top
--
--GNU General Public License
--**************************
--
-- Version 3, 29 June 2007
--
-- Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/'
--
-- Everyone is permitted to copy and distribute verbatim copies of this
-- license document, but changing it is not allowed.
--
--Preamble
--========
--
--The GNU General Public License is a free, copyleft license for software
--and other kinds of works.
--
-- The licenses for most software and other practical works are designed
--to take away your freedom to share and change the works. By contrast,
--the GNU General Public License is intended to guarantee your freedom to
--share and change all versions of a program-to make sure it remains free
--software for all its users. We, the Free Software Foundation, use the
--GNU General Public License for most of our software; it applies also to
--any other work released this way by its authors. You can apply it to
--your programs, too.
--
-- When we speak of free software, we are referring to freedom, not
--price. Our General Public Licenses are designed to make sure that you
--have the freedom to distribute copies of free software (and charge for
--them if you wish), that you receive source code or can get it if you
--want it, that you can change the software or use pieces of it in new
--free programs, and that you know you can do these things.
--
-- To protect your rights, we need to prevent others from denying you
--these rights or asking you to surrender the rights. Therefore, you
--have certain responsibilities if you distribute copies of the software,
--or if you modify it: responsibilities to respect the freedom of others.
--
-- For example, if you distribute copies of such a program, whether
--gratis or for a fee, you must pass on to the recipients the same
--freedoms that you received. You must make sure that they, too, receive
--or can get the source code. And you must show them these terms so they
--know their rights.
--
-- Developers that use the GNU GPL protect your rights with two steps:
--(1) assert copyright on the software, and (2) offer you this License
--giving you legal permission to copy, distribute and/or modify it.
--
-- For the developers' and authors' protection, the GPL clearly explains
--that there is no warranty for this free software. For both users' and
--authors' sake, the GPL requires that modified versions be marked as
--changed, so that their problems will not be attributed erroneously to
--authors of previous versions.
--
-- Some devices are designed to deny users access to install or run
--modified versions of the software inside them, although the
--manufacturer can do so. This is fundamentally incompatible with the
--aim of protecting users' freedom to change the software. The
--systematic pattern of such abuse occurs in the area of products for
--individuals to use, which is precisely where it is most unacceptable.
--Therefore, we have designed this version of the GPL to prohibit the
--practice for those products. If such problems arise substantially in
--other domains, we stand ready to extend this provision to those domains
--in future versions of the GPL, as needed to protect the freedom of
--users.
--
-- Finally, every program is threatened constantly by software patents.
--States should not allow patents to restrict development and use of
--software on general-purpose computers, but in those that do, we wish to
--avoid the special danger that patents applied to a free program could
--make it effectively proprietary. To prevent this, the GPL assures that
--patents cannot be used to render the program non-free.
--
-- The precise terms and conditions for copying, distribution and
--modification follow.
--
--TERMS AND CONDITIONS
--====================
--
-- 0. Definitions.
--
-- "This License" refers to version 3 of the GNU General Public
-- License.
--
-- "Copyright" also means copyright-like laws that apply to other
-- kinds of works, such as semiconductor masks.
--
-- "The Program" refers to any copyrightable work licensed under this
-- License. Each licensee is addressed as "you". "Licensees" and
-- "recipients" may be individuals or organizations.
--
-- To "modify" a work means to copy from or adapt all or part of the
-- work in a fashion requiring copyright permission, other than the
-- making of an exact copy. The resulting work is called a "modified
-- version" of the earlier work or a work "based on" the earlier work.
--
-- A "covered work" means either the unmodified Program or a work
-- based on the Program.
--
-- To "propagate" a work means to do anything with it that, without
-- permission, would make you directly or secondarily liable for
-- infringement under applicable copyright law, except executing it
-- on a computer or modifying a private copy. Propagation includes
-- copying, distribution (with or without modification), making
-- available to the public, and in some countries other activities as
-- well.
--
-- To "convey" a work means any kind of propagation that enables other
-- parties to make or receive copies. Mere interaction with a user
-- through a computer network, with no transfer of a copy, is not
-- conveying.
--
-- An interactive user interface displays "Appropriate Legal Notices"
-- to the extent that it includes a convenient and prominently visible
-- feature that (1) displays an appropriate copyright notice, and (2)
-- tells the user that there is no warranty for the work (except to
-- the extent that warranties are provided), that licensees may
-- convey the work under this License, and how to view a copy of this
-- License. If the interface presents a list of user commands or
-- options, such as a menu, a prominent item in the list meets this
-- criterion.
--
-- 1. Source Code.
--
-- The "source code" for a work means the preferred form of the work
-- for making modifications to it. "Object code" means any
-- non-source form of a work.
--
-- A "Standard Interface" means an interface that either is an
-- official standard defined by a recognized standards body, or, in
-- the case of interfaces specified for a particular programming
-- language, one that is widely used among developers working in that
-- language.
--
-- The "System Libraries" of an executable work include anything,
-- other than the work as a whole, that (a) is included in the normal
-- form of packaging a Major Component, but which is not part of that
-- Major Component, and (b) serves only to enable use of the work
-- with that Major Component, or to implement a Standard Interface
-- for which an implementation is available to the public in source
-- code form. A "Major Component", in this context, means a major
-- essential component (kernel, window system, and so on) of the
-- specific operating system (if any) on which the executable work
-- runs, or a compiler used to produce the work, or an object code
-- interpreter used to run it.
--
-- The "Corresponding Source" for a work in object code form means all
-- the source code needed to generate, install, and (for an executable
-- work) run the object code and to modify the work, including
-- scripts to control those activities. However, it does not include
-- the work's System Libraries, or general-purpose tools or generally
-- available free programs which are used unmodified in performing
-- those activities but which are not part of the work. For example,
-- Corresponding Source includes interface definition files
-- associated with source files for the work, and the source code for
-- shared libraries and dynamically linked subprograms that the work
-- is specifically designed to require, such as by intimate data
-- communication or control flow between those subprograms and other
-- parts of the work.
--
-- The Corresponding Source need not include anything that users can
-- regenerate automatically from other parts of the Corresponding
-- Source.
--
-- The Corresponding Source for a work in source code form is that
-- same work.
--
-- 2. Basic Permissions.
--
-- All rights granted under this License are granted for the term of
-- copyright on the Program, and are irrevocable provided the stated
-- conditions are met. This License explicitly affirms your unlimited
-- permission to run the unmodified Program. The output from running
-- a covered work is covered by this License only if the output,
-- given its content, constitutes a covered work. This License
-- acknowledges your rights of fair use or other equivalent, as
-- provided by copyright law.
--
-- You may make, run and propagate covered works that you do not
-- convey, without conditions so long as your license otherwise
-- remains in force. You may convey covered works to others for the
-- sole purpose of having them make modifications exclusively for
-- you, or provide you with facilities for running those works,
-- provided that you comply with the terms of this License in
-- conveying all material for which you do not control copyright.
-- Those thus making or running the covered works for you must do so
-- exclusively on your behalf, under your direction and control, on
-- terms that prohibit them from making any copies of your
-- copyrighted material outside their relationship with you.
--
-- Conveying under any other circumstances is permitted solely under
-- the conditions stated below. Sublicensing is not allowed; section
-- 10 makes it unnecessary.
--
-- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
--
-- No covered work shall be deemed part of an effective technological
-- measure under any applicable law fulfilling obligations under
-- article 11 of the WIPO copyright treaty adopted on 20 December
-- 1996, or similar laws prohibiting or restricting circumvention of
-- such measures.
--
-- When you convey a covered work, you waive any legal power to forbid
-- circumvention of technological measures to the extent such
-- circumvention is effected by exercising rights under this License
-- with respect to the covered work, and you disclaim any intention
-- to limit operation or modification of the work as a means of
-- enforcing, against the work's users, your or third parties' legal
-- rights to forbid circumvention of technological measures.
--
-- 4. Conveying Verbatim Copies.
--
-- You may convey verbatim copies of the Program's source code as you
-- receive it, in any medium, provided that you conspicuously and
-- appropriately publish on each copy an appropriate copyright notice;
-- keep intact all notices stating that this License and any
-- non-permissive terms added in accord with section 7 apply to the
-- code; keep intact all notices of the absence of any warranty; and
-- give all recipients a copy of this License along with the Program.
--
-- You may charge any price or no price for each copy that you convey,
-- and you may offer support or warranty protection for a fee.
--
-- 5. Conveying Modified Source Versions.
--
-- You may convey a work based on the Program, or the modifications to
-- produce it from the Program, in the form of source code under the
-- terms of section 4, provided that you also meet all of these
-- conditions:
--
-- a. The work must carry prominent notices stating that you
-- modified it, and giving a relevant date.
--
-- b. The work must carry prominent notices stating that it is
-- released under this License and any conditions added under
-- section 7. This requirement modifies the requirement in
-- section 4 to "keep intact all notices".
--
-- c. You must license the entire work, as a whole, under this
-- License to anyone who comes into possession of a copy. This
-- License will therefore apply, along with any applicable
-- section 7 additional terms, to the whole of the work, and all
-- its parts, regardless of how they are packaged. This License
-- gives no permission to license the work in any other way, but
-- it does not invalidate such permission if you have separately
-- received it.
--
-- d. If the work has interactive user interfaces, each must display
-- Appropriate Legal Notices; however, if the Program has
-- interactive interfaces that do not display Appropriate Legal
-- Notices, your work need not make them do so.
--
-- A compilation of a covered work with other separate and independent
-- works, which are not by their nature extensions of the covered
-- work, and which are not combined with it such as to form a larger
-- program, in or on a volume of a storage or distribution medium, is
-- called an "aggregate" if the compilation and its resulting
-- copyright are not used to limit the access or legal rights of the
-- compilation's users beyond what the individual works permit.
-- Inclusion of a covered work in an aggregate does not cause this
-- License to apply to the other parts of the aggregate.
--
-- 6. Conveying Non-Source Forms.
--
-- You may convey a covered work in object code form under the terms
-- of sections 4 and 5, provided that you also convey the
-- machine-readable Corresponding Source under the terms of this
-- License, in one of these ways:
--
-- a. Convey the object code in, or embodied in, a physical product
-- (including a physical distribution medium), accompanied by the
-- Corresponding Source fixed on a durable physical medium
-- customarily used for software interchange.
--
-- b. Convey the object code in, or embodied in, a physical product
-- (including a physical distribution medium), accompanied by a
-- written offer, valid for at least three years and valid for
-- as long as you offer spare parts or customer support for that
-- product model, to give anyone who possesses the object code
-- either (1) a copy of the Corresponding Source for all the
-- software in the product that is covered by this License, on a
-- durable physical medium customarily used for software
-- interchange, for a price no more than your reasonable cost of
-- physically performing this conveying of source, or (2) access
-- to copy the Corresponding Source from a network server at no
-- charge.
--
-- c. Convey individual copies of the object code with a copy of
-- the written offer to provide the Corresponding Source. This
-- alternative is allowed only occasionally and noncommercially,
-- and only if you received the object code with such an offer,
-- in accord with subsection 6b.
--
-- d. Convey the object code by offering access from a designated
-- place (gratis or for a charge), and offer equivalent access
-- to the Corresponding Source in the same way through the same
-- place at no further charge. You need not require recipients
-- to copy the Corresponding Source along with the object code.
-- If the place to copy the object code is a network server, the
-- Corresponding Source may be on a different server (operated
-- by you or a third party) that supports equivalent copying
-- facilities, provided you maintain clear directions next to
-- the object code saying where to find the Corresponding Source.
-- Regardless of what server hosts the Corresponding Source, you
-- remain obligated to ensure that it is available for as long
-- as needed to satisfy these requirements.
--
-- e. Convey the object code using peer-to-peer transmission,
-- provided you inform other peers where the object code and
-- Corresponding Source of the work are being offered to the
-- general public at no charge under subsection 6d.
--
--
-- A separable portion of the object code, whose source code is
-- excluded from the Corresponding Source as a System Library, need
-- not be included in conveying the object code work.
--
-- A "User Product" is either (1) a "consumer product", which means
-- any tangible personal property which is normally used for personal,
-- family, or household purposes, or (2) anything designed or sold for
-- incorporation into a dwelling. In determining whether a product
-- is a consumer product, doubtful cases shall be resolved in favor of
-- coverage. For a particular product received by a particular user,
-- "normally used" refers to a typical or common use of that class of
-- product, regardless of the status of the particular user or of the
-- way in which the particular user actually uses, or expects or is
-- expected to use, the product. A product is a consumer product
-- regardless of whether the product has substantial commercial,
-- industrial or non-consumer uses, unless such uses represent the
-- only significant mode of use of the product.
--
-- "Installation Information" for a User Product means any methods,
-- procedures, authorization keys, or other information required to
-- install and execute modified versions of a covered work in that
-- User Product from a modified version of its Corresponding Source.
-- The information must suffice to ensure that the continued
-- functioning of the modified object code is in no case prevented or
-- interfered with solely because modification has been made.
--
-- If you convey an object code work under this section in, or with,
-- or specifically for use in, a User Product, and the conveying
-- occurs as part of a transaction in which the right of possession
-- and use of the User Product is transferred to the recipient in
-- perpetuity or for a fixed term (regardless of how the transaction
-- is characterized), the Corresponding Source conveyed under this
-- section must be accompanied by the Installation Information. But
-- this requirement does not apply if neither you nor any third party
-- retains the ability to install modified object code on the User
-- Product (for example, the work has been installed in ROM).
--
-- The requirement to provide Installation Information does not
-- include a requirement to continue to provide support service,
-- warranty, or updates for a work that has been modified or
-- installed by the recipient, or for the User Product in which it
-- has been modified or installed. Access to a network may be denied
-- when the modification itself materially and adversely affects the
-- operation of the network or violates the rules and protocols for
-- communication across the network.
--
-- Corresponding Source conveyed, and Installation Information
-- provided, in accord with this section must be in a format that is
-- publicly documented (and with an implementation available to the
-- public in source code form), and must require no special password
-- or key for unpacking, reading or copying.
--
-- 7. Additional Terms.
--
-- "Additional permissions" are terms that supplement the terms of
-- this License by making exceptions from one or more of its
-- conditions. Additional permissions that are applicable to the
-- entire Program shall be treated as though they were included in
-- this License, to the extent that they are valid under applicable
-- law. If additional permissions apply only to part of the Program,
-- that part may be used separately under those permissions, but the
-- entire Program remains governed by this License without regard to
-- the additional permissions.
--
-- When you convey a copy of a covered work, you may at your option
-- remove any additional permissions from that copy, or from any part
-- of it. (Additional permissions may be written to require their own
-- removal in certain cases when you modify the work.) You may place
-- additional permissions on material, added by you to a covered work,
-- for which you have or can give appropriate copyright permission.
--
-- Notwithstanding any other provision of this License, for material
-- you add to a covered work, you may (if authorized by the copyright
-- holders of that material) supplement the terms of this License
-- with terms:
--
-- a. Disclaiming warranty or limiting liability differently from
-- the terms of sections 15 and 16 of this License; or
--
-- b. Requiring preservation of specified reasonable legal notices
-- or author attributions in that material or in the Appropriate
-- Legal Notices displayed by works containing it; or
--
-- c. Prohibiting misrepresentation of the origin of that material,
-- or requiring that modified versions of such material be
-- marked in reasonable ways as different from the original
-- version; or
--
-- d. Limiting the use for publicity purposes of names of licensors
-- or authors of the material; or
--
-- e. Declining to grant rights under trademark law for use of some
-- trade names, trademarks, or service marks; or
--
-- f. Requiring indemnification of licensors and authors of that
-- material by anyone who conveys the material (or modified
-- versions of it) with contractual assumptions of liability to
-- the recipient, for any liability that these contractual
-- assumptions directly impose on those licensors and authors.
--
-- All other non-permissive additional terms are considered "further
-- restrictions" within the meaning of section 10. If the Program as
-- you received it, or any part of it, contains a notice stating that
-- it is governed by this License along with a term that is a further
-- restriction, you may remove that term. If a license document
-- contains a further restriction but permits relicensing or
-- conveying under this License, you may add to a covered work
-- material governed by the terms of that license document, provided
-- that the further restriction does not survive such relicensing or
-- conveying.
--
-- If you add terms to a covered work in accord with this section, you
-- must place, in the relevant source files, a statement of the
-- additional terms that apply to those files, or a notice indicating
-- where to find the applicable terms.
--
-- Additional terms, permissive or non-permissive, may be stated in
-- the form of a separately written license, or stated as exceptions;
-- the above requirements apply either way.
--
-- 8. Termination.
--
-- You may not propagate or modify a covered work except as expressly
-- provided under this License. Any attempt otherwise to propagate or
-- modify it is void, and will automatically terminate your rights
-- under this License (including any patent licenses granted under
-- the third paragraph of section 11).
--
-- However, if you cease all violation of this License, then your
-- license from a particular copyright holder is reinstated (a)
-- provisionally, unless and until the copyright holder explicitly
-- and finally terminates your license, and (b) permanently, if the
-- copyright holder fails to notify you of the violation by some
-- reasonable means prior to 60 days after the cessation.
--
-- Moreover, your license from a particular copyright holder is
-- reinstated permanently if the copyright holder notifies you of the
-- violation by some reasonable means, this is the first time you have
-- received notice of violation of this License (for any work) from
-- that copyright holder, and you cure the violation prior to 30 days
-- after your receipt of the notice.
--
-- Termination of your rights under this section does not terminate
-- the licenses of parties who have received copies or rights from
-- you under this License. If your rights have been terminated and
-- not permanently reinstated, you do not qualify to receive new
-- licenses for the same material under section 10.
--
-- 9. Acceptance Not Required for Having Copies.
--
-- You are not required to accept this License in order to receive or
-- run a copy of the Program. Ancillary propagation of a covered work
-- occurring solely as a consequence of using peer-to-peer
-- transmission to receive a copy likewise does not require
-- acceptance. However, nothing other than this License grants you
-- permission to propagate or modify any covered work. These actions
-- infringe copyright if you do not accept this License. Therefore,
-- by modifying or propagating a covered work, you indicate your
-- acceptance of this License to do so.
--
-- 10. Automatic Licensing of Downstream Recipients.
--
-- Each time you convey a covered work, the recipient automatically
-- receives a license from the original licensors, to run, modify and
-- propagate that work, subject to this License. You are not
-- responsible for enforcing compliance by third parties with this
-- License.
--
-- An "entity transaction" is a transaction transferring control of an
-- organization, or substantially all assets of one, or subdividing an
-- organization, or merging organizations. If propagation of a
-- covered work results from an entity transaction, each party to that
-- transaction who receives a copy of the work also receives whatever
-- licenses to the work the party's predecessor in interest had or
-- could give under the previous paragraph, plus a right to
-- possession of the Corresponding Source of the work from the
-- predecessor in interest, if the predecessor has it or can get it
-- with reasonable efforts.
--
-- You may not impose any further restrictions on the exercise of the
-- rights granted or affirmed under this License. For example, you
-- may not impose a license fee, royalty, or other charge for
-- exercise of rights granted under this License, and you may not
-- initiate litigation (including a cross-claim or counterclaim in a
-- lawsuit) alleging that any patent claim is infringed by making,
-- using, selling, offering for sale, or importing the Program or any
-- portion of it.
--
-- 11. Patents.
--
-- A "contributor" is a copyright holder who authorizes use under this
-- License of the Program or a work on which the Program is based.
-- The work thus licensed is called the contributor's "contributor
-- version".
--
-- A contributor's "essential patent claims" are all patent claims
-- owned or controlled by the contributor, whether already acquired or
-- hereafter acquired, that would be infringed by some manner,
-- permitted by this License, of making, using, or selling its
-- contributor version, but do not include claims that would be
-- infringed only as a consequence of further modification of the
-- contributor version. For purposes of this definition, "control"
-- includes the right to grant patent sublicenses in a manner
-- consistent with the requirements of this License.
--
-- Each contributor grants you a non-exclusive, worldwide,
-- royalty-free patent license under the contributor's essential
-- patent claims, to make, use, sell, offer for sale, import and
-- otherwise run, modify and propagate the contents of its
-- contributor version.
--
-- In the following three paragraphs, a "patent license" is any
-- express agreement or commitment, however denominated, not to
-- enforce a patent (such as an express permission to practice a
-- patent or covenant not to sue for patent infringement). To
-- "grant" such a patent license to a party means to make such an
-- agreement or commitment not to enforce a patent against the party.
--
-- If you convey a covered work, knowingly relying on a patent
-- license, and the Corresponding Source of the work is not available
-- for anyone to copy, free of charge and under the terms of this
-- License, through a publicly available network server or other
-- readily accessible means, then you must either (1) cause the
-- Corresponding Source to be so available, or (2) arrange to deprive
-- yourself of the benefit of the patent license for this particular
-- work, or (3) arrange, in a manner consistent with the requirements
-- of this License, to extend the patent license to downstream
-- recipients. "Knowingly relying" means you have actual knowledge
-- that, but for the patent license, your conveying the covered work
-- in a country, or your recipient's use of the covered work in a
-- country, would infringe one or more identifiable patents in that
-- country that you have reason to believe are valid.
--
-- If, pursuant to or in connection with a single transaction or
-- arrangement, you convey, or propagate by procuring conveyance of, a
-- covered work, and grant a patent license to some of the parties
-- receiving the covered work authorizing them to use, propagate,
-- modify or convey a specific copy of the covered work, then the
-- patent license you grant is automatically extended to all
-- recipients of the covered work and works based on it.
--
-- A patent license is "discriminatory" if it does not include within
-- the scope of its coverage, prohibits the exercise of, or is
-- conditioned on the non-exercise of one or more of the rights that
-- are specifically granted under this License. You may not convey a
-- covered work if you are a party to an arrangement with a third
-- party that is in the business of distributing software, under
-- which you make payment to the third party based on the extent of
-- your activity of conveying the work, and under which the third
-- party grants, to any of the parties who would receive the covered
-- work from you, a discriminatory patent license (a) in connection
-- with copies of the covered work conveyed by you (or copies made
-- from those copies), or (b) primarily for and in connection with
-- specific products or compilations that contain the covered work,
-- unless you entered into that arrangement, or that patent license
-- was granted, prior to 28 March 2007.
--
-- Nothing in this License shall be construed as excluding or limiting
-- any implied license or other defenses to infringement that may
-- otherwise be available to you under applicable patent law.
--
-- 12. No Surrender of Others' Freedom.
--
-- If conditions are imposed on you (whether by court order,
-- agreement or otherwise) that contradict the conditions of this
-- License, they do not excuse you from the conditions of this
-- License. If you cannot convey a covered work so as to satisfy
-- simultaneously your obligations under this License and any other
-- pertinent obligations, then as a consequence you may not convey it
-- at all. For example, if you agree to terms that obligate you to
-- collect a royalty for further conveying from those to whom you
-- convey the Program, the only way you could satisfy both those
-- terms and this License would be to refrain entirely from conveying
-- the Program.
--
-- 13. Use with the GNU Affero General Public License.
--
-- Notwithstanding any other provision of this License, you have
-- permission to link or combine any covered work with a work licensed
-- under version 3 of the GNU Affero General Public License into a
-- single combined work, and to convey the resulting work. The terms
-- of this License will continue to apply to the part which is the
-- covered work, but the special requirements of the GNU Affero
-- General Public License, section 13, concerning interaction through
-- a network will apply to the combination as such.
--
-- 14. Revised Versions of this License.
--
-- The Free Software Foundation may publish revised and/or new
-- versions of the GNU General Public License from time to time.
-- Such new versions will be similar in spirit to the present
-- version, but may differ in detail to address new problems or
-- concerns.
--
-- Each version is given a distinguishing version number. If the
-- Program specifies that a certain numbered version of the GNU
-- General Public License "or any later version" applies to it, you
-- have the option of following the terms and conditions either of
-- that numbered version or of any later version published by the
-- Free Software Foundation. If the Program does not specify a
-- version number of the GNU General Public License, you may choose
-- any version ever published by the Free Software Foundation.
--
-- If the Program specifies that a proxy can decide which future
-- versions of the GNU General Public License can be used, that
-- proxy's public statement of acceptance of a version permanently
-- authorizes you to choose that version for the Program.
--
-- Later license versions may give you additional or different
-- permissions. However, no additional obligations are imposed on any
-- author or copyright holder as a result of your choosing to follow a
-- later version.
--
-- 15. Disclaimer of Warranty.
--
-- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
-- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
-- COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
-- WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
-- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
-- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
-- RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
-- SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
-- NECESSARY SERVICING, REPAIR OR CORRECTION.
--
-- 16. Limitation of Liability.
--
-- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
-- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
-- AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
-- FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
-- CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
-- THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
-- BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
-- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
-- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
-- THE POSSIBILITY OF SUCH DAMAGES.
--
-- 17. Interpretation of Sections 15 and 16.
--
-- If the disclaimer of warranty and limitation of liability provided
-- above cannot be given local legal effect according to their terms,
-- reviewing courts shall apply local law that most closely
-- approximates an absolute waiver of all civil liability in
-- connection with the Program, unless a warranty or assumption of
-- liability accompanies a copy of the Program in return for a fee.
--
--
--END OF TERMS AND CONDITIONS
--===========================
--
--How to Apply These Terms to Your New Programs
--=============================================
--
--If you develop a new program, and you want it to be of the greatest
--possible use to the public, the best way to achieve this is to make it
--free software which everyone can redistribute and change under these
--terms.
--
-- To do so, attach the following notices to the program. It is safest
--to attach them to the start of each source file to most effectively
--state the exclusion of warranty; and each file should have at least the
--"copyright" line and a pointer to where the full notice is found.
--
-- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
-- Copyright (C) YEAR NAME OF AUTHOR
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or (at
-- your option) any later version.
--
-- This program is distributed in the hope that it will be useful, but
-- WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-- General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see `http://www.gnu.org/licenses/'.
--
-- Also add information on how to contact you by electronic and paper
--mail.
--
-- If the program does terminal interaction, make it output a short
--notice like this when it starts in an interactive mode:
--
-- PROGRAM Copyright (C) YEAR NAME OF AUTHOR
-- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
-- This is free software, and you are welcome to redistribute it
-- under certain conditions; type `show c' for details.
--
-- The hypothetical commands `show w' and `show c' should show the
--appropriate parts of the General Public License. Of course, your
--program's commands might be different; for a GUI interface, you would
--use an "about box".
--
-- You should also get your employer (if you work as a programmer) or
--school, if any, to sign a "copyright disclaimer" for the program, if
--necessary. For more information on this, and how to apply and follow
--the GNU GPL, see `http://www.gnu.org/licenses/'.
--
-- The GNU General Public License does not permit incorporating your
--program into proprietary programs. If your program is a subroutine
--library, you may consider it more useful to permit linking proprietary
--applications with the library. If this is what you want to do, use the
--GNU Lesser General Public License instead of this License. But first,
--please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.
--
--
--File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top
--
--GNU Free Documentation License
--******************************
--
-- Version 1.2, November 2002
--
-- Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
-- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
--
-- Everyone is permitted to copy and distribute verbatim copies
-- of this license document, but changing it is not allowed.
--
-- 0. PREAMBLE
--
-- The purpose of this License is to make a manual, textbook, or other
-- functional and useful document "free" in the sense of freedom: to
-- assure everyone the effective freedom to copy and redistribute it,
-- with or without modifying it, either commercially or
-- noncommercially. Secondarily, this License preserves for the
-- author and publisher a way to get credit for their work, while not
-- being considered responsible for modifications made by others.
--
-- This License is a kind of "copyleft", which means that derivative
-- works of the document must themselves be free in the same sense.
-- It complements the GNU General Public License, which is a copyleft
-- license designed for free software.
--
-- We have designed this License in order to use it for manuals for
-- free software, because free software needs free documentation: a
-- free program should come with manuals providing the same freedoms
-- that the software does. But this License is not limited to
-- software manuals; it can be used for any textual work, regardless
-- of subject matter or whether it is published as a printed book.
-- We recommend this License principally for works whose purpose is
-- instruction or reference.
--
-- 1. APPLICABILITY AND DEFINITIONS
--
-- This License applies to any manual or other work, in any medium,
-- that contains a notice placed by the copyright holder saying it
-- can be distributed under the terms of this License. Such a notice
-- grants a world-wide, royalty-free license, unlimited in duration,
-- to use that work under the conditions stated herein. The
-- "Document", below, refers to any such manual or work. Any member
-- of the public is a licensee, and is addressed as "you". You
-- accept the license if you copy, modify or distribute the work in a
-- way requiring permission under copyright law.
--
-- A "Modified Version" of the Document means any work containing the
-- Document or a portion of it, either copied verbatim, or with
-- modifications and/or translated into another language.
--
-- A "Secondary Section" is a named appendix or a front-matter section
-- of the Document that deals exclusively with the relationship of the
-- publishers or authors of the Document to the Document's overall
-- subject (or to related matters) and contains nothing that could
-- fall directly within that overall subject. (Thus, if the Document
-- is in part a textbook of mathematics, a Secondary Section may not
-- explain any mathematics.) The relationship could be a matter of
-- historical connection with the subject or with related matters, or
-- of legal, commercial, philosophical, ethical or political position
-- regarding them.
--
-- The "Invariant Sections" are certain Secondary Sections whose
-- titles are designated, as being those of Invariant Sections, in
-- the notice that says that the Document is released under this
-- License. If a section does not fit the above definition of
-- Secondary then it is not allowed to be designated as Invariant.
-- The Document may contain zero Invariant Sections. If the Document
-- does not identify any Invariant Sections then there are none.
--
-- The "Cover Texts" are certain short passages of text that are
-- listed, as Front-Cover Texts or Back-Cover Texts, in the notice
-- that says that the Document is released under this License. A
-- Front-Cover Text may be at most 5 words, and a Back-Cover Text may
-- be at most 25 words.
--
-- A "Transparent" copy of the Document means a machine-readable copy,
-- represented in a format whose specification is available to the
-- general public, that is suitable for revising the document
-- straightforwardly with generic text editors or (for images
-- composed of pixels) generic paint programs or (for drawings) some
-- widely available drawing editor, and that is suitable for input to
-- text formatters or for automatic translation to a variety of
-- formats suitable for input to text formatters. A copy made in an
-- otherwise Transparent file format whose markup, or absence of
-- markup, has been arranged to thwart or discourage subsequent
-- modification by readers is not Transparent. An image format is
-- not Transparent if used for any substantial amount of text. A
-- copy that is not "Transparent" is called "Opaque".
--
-- Examples of suitable formats for Transparent copies include plain
-- ASCII without markup, Texinfo input format, LaTeX input format,
-- SGML or XML using a publicly available DTD, and
-- standard-conforming simple HTML, PostScript or PDF designed for
-- human modification. Examples of transparent image formats include
-- PNG, XCF and JPG. Opaque formats include proprietary formats that
-- can be read and edited only by proprietary word processors, SGML or
-- XML for which the DTD and/or processing tools are not generally
-- available, and the machine-generated HTML, PostScript or PDF
-- produced by some word processors for output purposes only.
--
-- The "Title Page" means, for a printed book, the title page itself,
-- plus such following pages as are needed to hold, legibly, the
-- material this License requires to appear in the title page. For
-- works in formats which do not have any title page as such, "Title
-- Page" means the text near the most prominent appearance of the
-- work's title, preceding the beginning of the body of the text.
--
-- A section "Entitled XYZ" means a named subunit of the Document
-- whose title either is precisely XYZ or contains XYZ in parentheses
-- following text that translates XYZ in another language. (Here XYZ
-- stands for a specific section name mentioned below, such as
-- "Acknowledgements", "Dedications", "Endorsements", or "History".)
-- To "Preserve the Title" of such a section when you modify the
-- Document means that it remains a section "Entitled XYZ" according
-- to this definition.
--
-- The Document may include Warranty Disclaimers next to the notice
-- which states that this License applies to the Document. These
-- Warranty Disclaimers are considered to be included by reference in
-- this License, but only as regards disclaiming warranties: any other
-- implication that these Warranty Disclaimers may have is void and
-- has no effect on the meaning of this License.
--
-- 2. VERBATIM COPYING
--
-- You may copy and distribute the Document in any medium, either
-- commercially or noncommercially, provided that this License, the
-- copyright notices, and the license notice saying this License
-- applies to the Document are reproduced in all copies, and that you
-- add no other conditions whatsoever to those of this License. You
-- may not use technical measures to obstruct or control the reading
-- or further copying of the copies you make or distribute. However,
-- you may accept compensation in exchange for copies. If you
-- distribute a large enough number of copies you must also follow
-- the conditions in section 3.
--
-- You may also lend copies, under the same conditions stated above,
-- and you may publicly display copies.
--
-- 3. COPYING IN QUANTITY
--
-- If you publish printed copies (or copies in media that commonly
-- have printed covers) of the Document, numbering more than 100, and
-- the Document's license notice requires Cover Texts, you must
-- enclose the copies in covers that carry, clearly and legibly, all
-- these Cover Texts: Front-Cover Texts on the front cover, and
-- Back-Cover Texts on the back cover. Both covers must also clearly
-- and legibly identify you as the publisher of these copies. The
-- front cover must present the full title with all words of the
-- title equally prominent and visible. You may add other material
-- on the covers in addition. Copying with changes limited to the
-- covers, as long as they preserve the title of the Document and
-- satisfy these conditions, can be treated as verbatim copying in
-- other respects.
--
-- If the required texts for either cover are too voluminous to fit
-- legibly, you should put the first ones listed (as many as fit
-- reasonably) on the actual cover, and continue the rest onto
-- adjacent pages.
--
-- If you publish or distribute Opaque copies of the Document
-- numbering more than 100, you must either include a
-- machine-readable Transparent copy along with each Opaque copy, or
-- state in or with each Opaque copy a computer-network location from
-- which the general network-using public has access to download
-- using public-standard network protocols a complete Transparent
-- copy of the Document, free of added material. If you use the
-- latter option, you must take reasonably prudent steps, when you
-- begin distribution of Opaque copies in quantity, to ensure that
-- this Transparent copy will remain thus accessible at the stated
-- location until at least one year after the last time you
-- distribute an Opaque copy (directly or through your agents or
-- retailers) of that edition to the public.
--
-- It is requested, but not required, that you contact the authors of
-- the Document well before redistributing any large number of
-- copies, to give them a chance to provide you with an updated
-- version of the Document.
--
-- 4. MODIFICATIONS
--
-- You may copy and distribute a Modified Version of the Document
-- under the conditions of sections 2 and 3 above, provided that you
-- release the Modified Version under precisely this License, with
-- the Modified Version filling the role of the Document, thus
-- licensing distribution and modification of the Modified Version to
-- whoever possesses a copy of it. In addition, you must do these
-- things in the Modified Version:
--
-- A. Use in the Title Page (and on the covers, if any) a title
-- distinct from that of the Document, and from those of
-- previous versions (which should, if there were any, be listed
-- in the History section of the Document). You may use the
-- same title as a previous version if the original publisher of
-- that version gives permission.
--
-- B. List on the Title Page, as authors, one or more persons or
-- entities responsible for authorship of the modifications in
-- the Modified Version, together with at least five of the
-- principal authors of the Document (all of its principal
-- authors, if it has fewer than five), unless they release you
-- from this requirement.
--
-- C. State on the Title page the name of the publisher of the
-- Modified Version, as the publisher.
--
-- D. Preserve all the copyright notices of the Document.
--
-- E. Add an appropriate copyright notice for your modifications
-- adjacent to the other copyright notices.
--
-- F. Include, immediately after the copyright notices, a license
-- notice giving the public permission to use the Modified
-- Version under the terms of this License, in the form shown in
-- the Addendum below.
--
-- G. Preserve in that license notice the full lists of Invariant
-- Sections and required Cover Texts given in the Document's
-- license notice.
--
-- H. Include an unaltered copy of this License.
--
-- I. Preserve the section Entitled "History", Preserve its Title,
-- and add to it an item stating at least the title, year, new
-- authors, and publisher of the Modified Version as given on
-- the Title Page. If there is no section Entitled "History" in
-- the Document, create one stating the title, year, authors,
-- and publisher of the Document as given on its Title Page,
-- then add an item describing the Modified Version as stated in
-- the previous sentence.
--
-- J. Preserve the network location, if any, given in the Document
-- for public access to a Transparent copy of the Document, and
-- likewise the network locations given in the Document for
-- previous versions it was based on. These may be placed in
-- the "History" section. You may omit a network location for a
-- work that was published at least four years before the
-- Document itself, or if the original publisher of the version
-- it refers to gives permission.
--
-- K. For any section Entitled "Acknowledgements" or "Dedications",
-- Preserve the Title of the section, and preserve in the
-- section all the substance and tone of each of the contributor
-- acknowledgements and/or dedications given therein.
--
-- L. Preserve all the Invariant Sections of the Document,
-- unaltered in their text and in their titles. Section numbers
-- or the equivalent are not considered part of the section
-- titles.
--
-- M. Delete any section Entitled "Endorsements". Such a section
-- may not be included in the Modified Version.
--
-- N. Do not retitle any existing section to be Entitled
-- "Endorsements" or to conflict in title with any Invariant
-- Section.
--
-- O. Preserve any Warranty Disclaimers.
--
-- If the Modified Version includes new front-matter sections or
-- appendices that qualify as Secondary Sections and contain no
-- material copied from the Document, you may at your option
-- designate some or all of these sections as invariant. To do this,
-- add their titles to the list of Invariant Sections in the Modified
-- Version's license notice. These titles must be distinct from any
-- other section titles.
--
-- You may add a section Entitled "Endorsements", provided it contains
-- nothing but endorsements of your Modified Version by various
-- parties--for example, statements of peer review or that the text
-- has been approved by an organization as the authoritative
-- definition of a standard.
--
-- You may add a passage of up to five words as a Front-Cover Text,
-- and a passage of up to 25 words as a Back-Cover Text, to the end
-- of the list of Cover Texts in the Modified Version. Only one
-- passage of Front-Cover Text and one of Back-Cover Text may be
-- added by (or through arrangements made by) any one entity. If the
-- Document already includes a cover text for the same cover,
-- previously added by you or by arrangement made by the same entity
-- you are acting on behalf of, you may not add another; but you may
-- replace the old one, on explicit permission from the previous
-- publisher that added the old one.
--
-- The author(s) and publisher(s) of the Document do not by this
-- License give permission to use their names for publicity for or to
-- assert or imply endorsement of any Modified Version.
--
-- 5. COMBINING DOCUMENTS
--
-- You may combine the Document with other documents released under
-- this License, under the terms defined in section 4 above for
-- modified versions, provided that you include in the combination
-- all of the Invariant Sections of all of the original documents,
-- unmodified, and list them all as Invariant Sections of your
-- combined work in its license notice, and that you preserve all
-- their Warranty Disclaimers.
--
-- The combined work need only contain one copy of this License, and
-- multiple identical Invariant Sections may be replaced with a single
-- copy. If there are multiple Invariant Sections with the same name
-- but different contents, make the title of each such section unique
-- by adding at the end of it, in parentheses, the name of the
-- original author or publisher of that section if known, or else a
-- unique number. Make the same adjustment to the section titles in
-- the list of Invariant Sections in the license notice of the
-- combined work.
--
-- In the combination, you must combine any sections Entitled
-- "History" in the various original documents, forming one section
-- Entitled "History"; likewise combine any sections Entitled
-- "Acknowledgements", and any sections Entitled "Dedications". You
-- must delete all sections Entitled "Endorsements."
--
-- 6. COLLECTIONS OF DOCUMENTS
--
-- You may make a collection consisting of the Document and other
-- documents released under this License, and replace the individual
-- copies of this License in the various documents with a single copy
-- that is included in the collection, provided that you follow the
-- rules of this License for verbatim copying of each of the
-- documents in all other respects.
--
-- You may extract a single document from such a collection, and
-- distribute it individually under this License, provided you insert
-- a copy of this License into the extracted document, and follow
-- this License in all other respects regarding verbatim copying of
-- that document.
--
-- 7. AGGREGATION WITH INDEPENDENT WORKS
--
-- A compilation of the Document or its derivatives with other
-- separate and independent documents or works, in or on a volume of
-- a storage or distribution medium, is called an "aggregate" if the
-- copyright resulting from the compilation is not used to limit the
-- legal rights of the compilation's users beyond what the individual
-- works permit. When the Document is included in an aggregate, this
-- License does not apply to the other works in the aggregate which
-- are not themselves derivative works of the Document.
--
-- If the Cover Text requirement of section 3 is applicable to these
-- copies of the Document, then if the Document is less than one half
-- of the entire aggregate, the Document's Cover Texts may be placed
-- on covers that bracket the Document within the aggregate, or the
-- electronic equivalent of covers if the Document is in electronic
-- form. Otherwise they must appear on printed covers that bracket
-- the whole aggregate.
--
-- 8. TRANSLATION
--
-- Translation is considered a kind of modification, so you may
-- distribute translations of the Document under the terms of section
-- 4. Replacing Invariant Sections with translations requires special
-- permission from their copyright holders, but you may include
-- translations of some or all Invariant Sections in addition to the
-- original versions of these Invariant Sections. You may include a
-- translation of this License, and all the license notices in the
-- Document, and any Warranty Disclaimers, provided that you also
-- include the original English version of this License and the
-- original versions of those notices and disclaimers. In case of a
-- disagreement between the translation and the original version of
-- this License or a notice or disclaimer, the original version will
-- prevail.
--
-- If a section in the Document is Entitled "Acknowledgements",
-- "Dedications", or "History", the requirement (section 4) to
-- Preserve its Title (section 1) will typically require changing the
-- actual title.
--
-- 9. TERMINATION
--
-- You may not copy, modify, sublicense, or distribute the Document
-- except as expressly provided for under this License. Any other
-- attempt to copy, modify, sublicense or distribute the Document is
-- void, and will automatically terminate your rights under this
-- License. However, parties who have received copies, or rights,
-- from you under this License will not have their licenses
-- terminated so long as such parties remain in full compliance.
--
-- 10. FUTURE REVISIONS OF THIS LICENSE
--
-- The Free Software Foundation may publish new, revised versions of
-- the GNU Free Documentation License from time to time. Such new
-- versions will be similar in spirit to the present version, but may
-- differ in detail to address new problems or concerns. See
-- `http://www.gnu.org/copyleft/'.
--
-- Each version of the License is given a distinguishing version
-- number. If the Document specifies that a particular numbered
-- version of this License "or any later version" applies to it, you
-- have the option of following the terms and conditions either of
-- that specified version or of any later version that has been
-- published (not as a draft) by the Free Software Foundation. If
-- the Document does not specify a version number of this License,
-- you may choose any version ever published (not as a draft) by the
-- Free Software Foundation.
--
--ADDENDUM: How to use this License for your documents
--====================================================
--
--To use this License in a document you have written, include a copy of
--the License in the document and put the following copyright and license
--notices just after the title page:
--
-- Copyright (C) YEAR YOUR NAME.
-- Permission is granted to copy, distribute and/or modify this document
-- under the terms of the GNU Free Documentation License, Version 1.2
-- or any later version published by the Free Software Foundation;
-- with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
-- Texts. A copy of the license is included in the section entitled ``GNU
-- Free Documentation License''.
--
-- If you have Invariant Sections, Front-Cover Texts and Back-Cover
--Texts, replace the "with...Texts." line with this:
--
-- with the Invariant Sections being LIST THEIR TITLES, with
-- the Front-Cover Texts being LIST, and with the Back-Cover Texts
-- being LIST.
--
-- If you have Invariant Sections without Cover Texts, or some other
--combination of the three, merge those two alternatives to suit the
--situation.
--
-- If your document contains nontrivial examples of program code, we
--recommend releasing these examples in parallel under your choice of
--free software license, such as the GNU General Public License, to
--permit their use in free software.
--
--
--File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
--
--Funding Free Software
--*********************
--
--If you want to have more free software a few years from now, it makes
--sense for you to help encourage people to contribute funds for its
--development. The most effective approach known is to encourage
--commercial redistributors to donate.
--
-- Users of free software systems can boost the pace of development by
--encouraging for-a-fee distributors to donate part of their selling price
--to free software developers--the Free Software Foundation, and others.
--
-- The way to convince distributors to do this is to demand it and
--expect it from them. So when you compare distributors, judge them
--partly by how much they give to free software development. Show
--distributors they must compete to be the one who gives the most.
--
-- To make this approach work, you must insist on numbers that you can
--compare, such as, "We will donate ten dollars to the Frobnitz project
--for each disk sold." Don't be satisfied with a vague promise, such as
--"A portion of the profits are donated," since it doesn't give a basis
--for comparison.
--
-- Even a precise fraction "of the profits from this disk" is not very
--meaningful, since creative accounting and unrelated business decisions
--can greatly alter what fraction of the sales price counts as profit.
--If the price you pay is $50, ten percent of the profit is probably less
--than a dollar; it might be a few cents, or nothing at all.
--
-- Some redistributors do development work themselves. This is useful
--too; but to keep everyone honest, you need to inquire how much they do,
--and what kind. Some kinds of development make much more long-term
--difference than others. For example, maintaining a separate version of
--a program contributes very little; maintaining the standard version of a
--program for the whole community contributes much. Easy new ports
--contribute little, since someone else would surely do them; difficult
--ports such as adding a new CPU to the GNU Compiler Collection
--contribute more; major new features or packages contribute the most.
--
-- By establishing the idea that supporting further development is "the
--proper thing to do" when distributing free software for a fee, we can
--assure a steady flow of resources into making more free software.
--
-- Copyright (C) 1994 Free Software Foundation, Inc.
-- Verbatim copying and redistribution of this section is permitted
-- without royalty; alteration is not permitted.
--
--
--File: gfortran.info, Node: Option Index, Next: Keyword Index, Prev: Funding, Up: Top
--
--Option Index
--************
--
--`gfortran''s command line options are indexed here without any initial
--`-' or `--'. Where an option has both positive and negative forms (such
--as -foption and -fno-option), relevant entries in the manual are
--indexed under the most appropriate form; it may sometimes be useful to
--look up both forms.
--
--
--* Menu:
--
--* A-PREDICATE=ANSWER: Preprocessing Options.
-- (line 120)
--* APREDICATE=ANSWER: Preprocessing Options.
-- (line 114)
--* backslash: Fortran Dialect Options.
-- (line 59)
--* C: Preprocessing Options.
-- (line 123)
--* CC: Preprocessing Options.
-- (line 138)
--* cpp: Preprocessing Options.
-- (line 13)
--* dD: Preprocessing Options.
-- (line 35)
--* dI: Preprocessing Options.
-- (line 51)
--* dM: Preprocessing Options.
-- (line 26)
--* dN: Preprocessing Options.
-- (line 41)
--* DNAME: Preprocessing Options.
-- (line 153)
--* DNAME=DEFINITION: Preprocessing Options.
-- (line 156)
--* dU: Preprocessing Options.
-- (line 44)
--* falign-commons: Code Gen Options. (line 255)
--* fall-intrinsics: Fortran Dialect Options.
-- (line 18)
--* fbacktrace: Debugging Options. (line 31)
--* fblas-matmul-limit: Code Gen Options. (line 214)
--* fbounds-check: Code Gen Options. (line 130)
--* fcheck-array-temporaries: Code Gen Options. (line 144)
--* fconvert=CONVERSION: Runtime Options. (line 9)
--* fcray-pointer: Fortran Dialect Options.
-- (line 105)
--* fd-lines-as-code: Fortran Dialect Options.
-- (line 29)
--* fd-lines-as-comments: Fortran Dialect Options.
-- (line 29)
--* fdefault-double-8: Fortran Dialect Options.
-- (line 36)
--* fdefault-integer-8: Fortran Dialect Options.
-- (line 44)
--* fdefault-real-8: Fortran Dialect Options.
-- (line 49)
--* fdollar-ok: Fortran Dialect Options.
-- (line 56)
--* fdump-core: Debugging Options. (line 38)
--* fdump-parse-tree: Debugging Options. (line 10)
--* fexternal-blas: Code Gen Options. (line 206)
--* ff2c: Code Gen Options. (line 25)
--* ffixed-line-length-N: Fortran Dialect Options.
-- (line 76)
--* ffpe-trap=LIST: Debugging Options. (line 14)
--* ffree-form: Fortran Dialect Options.
-- (line 12)
--* ffree-line-length-N: Fortran Dialect Options.
-- (line 89)
--* fimplicit-none: Fortran Dialect Options.
-- (line 100)
--* finit-character: Code Gen Options. (line 238)
--* finit-integer: Code Gen Options. (line 238)
--* finit-local-zero: Code Gen Options. (line 238)
--* finit-logical: Code Gen Options. (line 238)
--* finit-real: Code Gen Options. (line 238)
--* fintrinsic-modules-path DIR: Directory Options. (line 40)
--* fmax-array-constructor: Code Gen Options. (line 152)
--* fmax-errors=N: Error and Warning Options.
-- (line 27)
--* fmax-identifier-length=N: Fortran Dialect Options.
-- (line 96)
--* fmax-stack-var-size: Code Gen Options. (line 170)
--* fmax-subrecord-length=LENGTH: Runtime Options. (line 36)
--* fmodule-private: Fortran Dialect Options.
-- (line 71)
--* fno-automatic: Code Gen Options. (line 15)
--* fno-fixed-form: Fortran Dialect Options.
-- (line 12)
--* fno-range-check: Runtime Options. (line 20)
--* fno-underscoring: Code Gen Options. (line 54)
--* fopenmp: Fortran Dialect Options.
-- (line 109)
--* fpack-derived: Code Gen Options. (line 184)
--* fpp: Preprocessing Options.
-- (line 13)
--* frange-check: Fortran Dialect Options.
-- (line 117)
--* frecord-marker=LENGTH: Runtime Options. (line 28)
--* frecursive: Code Gen Options. (line 225)
--* frepack-arrays: Code Gen Options. (line 190)
--* fsecond-underscore: Code Gen Options. (line 113)
--* fshort-enums <1>: Fortran 2003 status. (line 20)
--* fshort-enums: Code Gen Options. (line 200)
--* fsign-zero: Runtime Options. (line 41)
--* fsyntax-only: Error and Warning Options.
-- (line 33)
--* fworking-directory: Preprocessing Options.
-- (line 55)
--* H: Preprocessing Options.
-- (line 176)
--* IDIR: Directory Options. (line 14)
--* idirafter DIR: Preprocessing Options.
-- (line 70)
--* imultilib DIR: Preprocessing Options.
-- (line 77)
--* iprefix PREFIX: Preprocessing Options.
-- (line 81)
--* iquote DIR: Preprocessing Options.
-- (line 90)
--* isysroot DIR: Preprocessing Options.
-- (line 86)
--* isystem DIR: Preprocessing Options.
-- (line 97)
--* JDIR: Directory Options. (line 31)
--* MDIR: Directory Options. (line 31)
--* nostdinc: Preprocessing Options.
-- (line 105)
--* P: Preprocessing Options.
-- (line 181)
--* pedantic: Error and Warning Options.
-- (line 38)
--* pedantic-errors: Error and Warning Options.
-- (line 57)
--* static-libgfortran: Link Options. (line 11)
--* std=STD option: Fortran Dialect Options.
-- (line 129)
--* UNAME: Preprocessing Options.
-- (line 187)
--* undef: Preprocessing Options.
-- (line 110)
--* Waliasing: Error and Warning Options.
-- (line 68)
--* Walign-commons: Error and Warning Options.
-- (line 165)
--* Wall: Error and Warning Options.
-- (line 61)
--* Wampersand: Error and Warning Options.
-- (line 85)
--* Warray-temporaries: Error and Warning Options.
-- (line 93)
--* Wcharacter-truncation: Error and Warning Options.
-- (line 98)
--* Wconversion: Error and Warning Options.
-- (line 104)
--* Werror: Error and Warning Options.
-- (line 171)
--* Wimplicit-interface: Error and Warning Options.
-- (line 107)
--* Wintrinsic-shadow: Error and Warning Options.
-- (line 152)
--* Wintrinsics-std: Error and Warning Options.
-- (line 113)
--* Wline-truncation: Error and Warning Options.
-- (line 101)
--* Wsurprising: Error and Warning Options.
-- (line 120)
--* Wtabs: Error and Warning Options.
-- (line 140)
--* Wunderflow: Error and Warning Options.
-- (line 148)
--* Wunused-parameter: Error and Warning Options.
-- (line 158)
--
--
--File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top
--
--Keyword Index
--*************
--
--
--* Menu:
--
--* $: Fortran Dialect Options.
-- (line 56)
--* %LOC: Argument list functions.
-- (line 6)
--* %REF: Argument list functions.
-- (line 6)
--* %VAL: Argument list functions.
-- (line 6)
--* &: Error and Warning Options.
-- (line 85)
--* [...]: Fortran 2003 status. (line 13)
--* ABORT: ABORT. (line 6)
--* ABS: ABS. (line 6)
--* absolute value: ABS. (line 6)
--* ACCESS: ACCESS. (line 6)
--* ACCESS='STREAM' I/O: Fortran 2003 status. (line 32)
--* ACHAR: ACHAR. (line 6)
--* ACOS: ACOS. (line 6)
--* ACOSH: ACOSH. (line 6)
--* adjust string <1>: ADJUSTR. (line 6)
--* adjust string: ADJUSTL. (line 6)
--* ADJUSTL: ADJUSTL. (line 6)
--* ADJUSTR: ADJUSTR. (line 6)
--* AIMAG: AIMAG. (line 6)
--* AINT: AINT. (line 6)
--* ALARM: ALARM. (line 6)
--* ALGAMA: LOG_GAMMA. (line 6)
--* aliasing: Error and Warning Options.
-- (line 68)
--* alignment of COMMON blocks <1>: Code Gen Options. (line 255)
--* alignment of COMMON blocks: Error and Warning Options.
-- (line 165)
--* ALL: ALL. (line 6)
--* all warnings: Error and Warning Options.
-- (line 61)
--* ALLOCATABLE components of derived types: Fortran 2003 status.
-- (line 30)
--* ALLOCATABLE dummy arguments: Fortran 2003 status. (line 26)
--* ALLOCATABLE function results: Fortran 2003 status. (line 28)
--* ALLOCATED: ALLOCATED. (line 6)
--* allocation, moving: MOVE_ALLOC. (line 6)
--* allocation, status: ALLOCATED. (line 6)
--* ALOG: LOG. (line 6)
--* ALOG10: LOG10. (line 6)
--* AMAX0: MAX. (line 6)
--* AMAX1: MAX. (line 6)
--* AMIN0: MIN. (line 6)
--* AMIN1: MIN. (line 6)
--* AMOD: MOD. (line 6)
--* AND: AND. (line 6)
--* ANINT: ANINT. (line 6)
--* ANY: ANY. (line 6)
--* area hyperbolic cosine: ACOSH. (line 6)
--* area hyperbolic sine: ASINH. (line 6)
--* area hyperbolic tangent: ATANH. (line 6)
--* argument list functions: Argument list functions.
-- (line 6)
--* arguments, to program <1>: IARGC. (line 6)
--* arguments, to program <2>: GET_COMMAND_ARGUMENT.
-- (line 6)
--* arguments, to program <3>: GET_COMMAND. (line 6)
--* arguments, to program <4>: GETARG. (line 6)
--* arguments, to program: COMMAND_ARGUMENT_COUNT.
-- (line 6)
--* array, add elements: SUM. (line 6)
--* array, apply condition <1>: ANY. (line 6)
--* array, apply condition: ALL. (line 6)
--* array, bounds checking: Code Gen Options. (line 130)
--* array, change dimensions: RESHAPE. (line 6)
--* array, combine arrays: MERGE. (line 6)
--* array, condition testing <1>: ANY. (line 6)
--* array, condition testing: ALL. (line 6)
--* array, conditionally add elements: SUM. (line 6)
--* array, conditionally count elements: COUNT. (line 6)
--* array, conditionally multiply elements: PRODUCT. (line 6)
--* array, constructors: Fortran 2003 status. (line 13)
--* array, count elements: SIZE. (line 6)
--* array, duplicate dimensions: SPREAD. (line 6)
--* array, duplicate elements: SPREAD. (line 6)
--* array, element counting: COUNT. (line 6)
--* array, gather elements: PACK. (line 6)
--* array, increase dimension <1>: UNPACK. (line 6)
--* array, increase dimension: SPREAD. (line 6)
--* array, indices of type real: Real array indices. (line 6)
--* array, location of maximum element: MAXLOC. (line 6)
--* array, location of minimum element: MINLOC. (line 6)
--* array, lower bound: LBOUND. (line 6)
--* array, maximum value: MAXVAL. (line 6)
--* array, merge arrays: MERGE. (line 6)
--* array, minimum value: MINVAL. (line 6)
--* array, multiply elements: PRODUCT. (line 6)
--* array, number of elements <1>: SIZE. (line 6)
--* array, number of elements: COUNT. (line 6)
--* array, packing: PACK. (line 6)
--* array, permutation: CSHIFT. (line 6)
--* array, product: PRODUCT. (line 6)
--* array, reduce dimension: PACK. (line 6)
--* array, rotate: CSHIFT. (line 6)
--* array, scatter elements: UNPACK. (line 6)
--* array, shape: SHAPE. (line 6)
--* array, shift: EOSHIFT. (line 6)
--* array, shift circularly: CSHIFT. (line 6)
--* array, size: SIZE. (line 6)
--* array, sum: SUM. (line 6)
--* array, transmogrify: RESHAPE. (line 6)
--* array, transpose: TRANSPOSE. (line 6)
--* array, unpacking: UNPACK. (line 6)
--* array, upper bound: UBOUND. (line 6)
--* ASCII collating sequence <1>: IACHAR. (line 6)
--* ASCII collating sequence: ACHAR. (line 6)
--* ASIN: ASIN. (line 6)
--* ASINH <1>: ATANH. (line 6)
--* ASINH: ASINH. (line 6)
--* ASSOCIATED: ASSOCIATED. (line 6)
--* association status: ASSOCIATED. (line 6)
--* association status, C pointer: C_ASSOCIATED. (line 6)
--* ATAN: ATAN. (line 6)
--* ATAN2: ATAN2. (line 6)
--* Authors: Contributors. (line 6)
--* backslash: Fortran Dialect Options.
-- (line 59)
--* backtrace: Debugging Options. (line 31)
--* BESJ0: BESSEL_J0. (line 6)
--* BESJ1: BESSEL_J1. (line 6)
--* BESJN: BESSEL_JN. (line 6)
--* Bessel function, first kind <1>: BESSEL_JN. (line 6)
--* Bessel function, first kind <2>: BESSEL_J1. (line 6)
--* Bessel function, first kind: BESSEL_J0. (line 6)
--* Bessel function, second kind <1>: BESSEL_YN. (line 6)
--* Bessel function, second kind <2>: BESSEL_Y1. (line 6)
--* Bessel function, second kind: BESSEL_Y0. (line 6)
--* BESSEL_J0: BESSEL_J0. (line 6)
--* BESSEL_J1: BESSEL_J1. (line 6)
--* BESSEL_JN: BESSEL_JN. (line 6)
--* BESSEL_Y0: BESSEL_Y0. (line 6)
--* BESSEL_Y1: BESSEL_Y1. (line 6)
--* BESSEL_YN: BESSEL_YN. (line 6)
--* BESY0: BESSEL_Y0. (line 6)
--* BESY1: BESSEL_Y1. (line 6)
--* BESYN: BESSEL_YN. (line 6)
--* BIT_SIZE: BIT_SIZE. (line 6)
--* bits, clear: IBCLR. (line 6)
--* bits, extract: IBITS. (line 6)
--* bits, get: IBITS. (line 6)
--* bits, move <1>: TRANSFER. (line 6)
--* bits, move: MVBITS. (line 6)
--* bits, negate: NOT. (line 6)
--* bits, number of: BIT_SIZE. (line 6)
--* bits, set: IBSET. (line 6)
--* bits, shift: ISHFT. (line 6)
--* bits, shift circular: ISHFTC. (line 6)
--* bits, shift left: LSHIFT. (line 6)
--* bits, shift right: RSHIFT. (line 6)
--* bits, testing: BTEST. (line 6)
--* bits, unset: IBCLR. (line 6)
--* bitwise logical and <1>: IAND. (line 6)
--* bitwise logical and: AND. (line 6)
--* bitwise logical exclusive or <1>: XOR. (line 6)
--* bitwise logical exclusive or: IEOR. (line 6)
--* bitwise logical not: NOT. (line 6)
--* bitwise logical or <1>: OR. (line 6)
--* bitwise logical or: IOR. (line 6)
--* bounds checking: Code Gen Options. (line 130)
--* BOZ literal constants: BOZ literal constants.
-- (line 6)
--* BTEST: BTEST. (line 6)
--* C_ASSOCIATED: C_ASSOCIATED. (line 6)
--* C_F_POINTER: C_F_POINTER. (line 6)
--* C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6)
--* C_FUNLOC: C_FUNLOC. (line 6)
--* C_LOC: C_LOC. (line 6)
--* C_SIZEOF: C_SIZEOF. (line 6)
--* CABS: ABS. (line 6)
--* calling convention: Code Gen Options. (line 25)
--* CCOS: COS. (line 6)
--* CDABS: ABS. (line 6)
--* CDCOS: COS. (line 6)
--* CDEXP: EXP. (line 6)
--* CDLOG: LOG. (line 6)
--* CDSIN: SIN. (line 6)
--* CDSQRT: SQRT. (line 6)
--* ceiling: CEILING. (line 6)
--* CEILING: CEILING. (line 6)
--* ceiling: ANINT. (line 6)
--* CEXP: EXP. (line 6)
--* CHAR: CHAR. (line 6)
--* character kind: SELECTED_CHAR_KIND. (line 6)
--* character set: Fortran Dialect Options.
-- (line 56)
--* CHDIR: CHDIR. (line 6)
--* checking array temporaries: Code Gen Options. (line 144)
--* checking subscripts: Code Gen Options. (line 130)
--* CHMOD: CHMOD. (line 6)
--* clock ticks <1>: SYSTEM_CLOCK. (line 6)
--* clock ticks <2>: MCLOCK8. (line 6)
--* clock ticks: MCLOCK. (line 6)
--* CLOG: LOG. (line 6)
--* CMPLX: CMPLX. (line 6)
--* code generation, conventions: Code Gen Options. (line 6)
--* collating sequence, ASCII <1>: IACHAR. (line 6)
--* collating sequence, ASCII: ACHAR. (line 6)
--* command options: Invoking GNU Fortran.
-- (line 6)
--* command-line arguments <1>: IARGC. (line 6)
--* command-line arguments <2>: GET_COMMAND_ARGUMENT.
-- (line 6)
--* command-line arguments <3>: GET_COMMAND. (line 6)
--* command-line arguments <4>: GETARG. (line 6)
--* command-line arguments: COMMAND_ARGUMENT_COUNT.
-- (line 6)
--* command-line arguments, number of <1>: IARGC. (line 6)
--* command-line arguments, number of: COMMAND_ARGUMENT_COUNT.
-- (line 6)
--* COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT.
-- (line 6)
--* COMPLEX: COMPLEX. (line 6)
--* complex conjugate: CONJG. (line 6)
--* complex numbers, conversion to <1>: DCMPLX. (line 6)
--* complex numbers, conversion to <2>: COMPLEX. (line 6)
--* complex numbers, conversion to: CMPLX. (line 6)
--* complex numbers, imaginary part: AIMAG. (line 6)
--* complex numbers, real part <1>: REAL. (line 6)
--* complex numbers, real part: DREAL. (line 6)
--* Conditional compilation: Preprocessing and conditional compilation.
-- (line 6)
--* CONJG: CONJG. (line 6)
--* Contributing: Contributing. (line 6)
--* Contributors: Contributors. (line 6)
--* conversion: Error and Warning Options.
-- (line 104)
--* conversion, to character: CHAR. (line 6)
--* conversion, to complex <1>: DCMPLX. (line 6)
--* conversion, to complex <2>: COMPLEX. (line 6)
--* conversion, to complex: CMPLX. (line 6)
--* conversion, to integer <1>: LONG. (line 6)
--* conversion, to integer <2>: INT8. (line 6)
--* conversion, to integer <3>: INT2. (line 6)
--* conversion, to integer <4>: INT. (line 6)
--* conversion, to integer <5>: ICHAR. (line 6)
--* conversion, to integer <6>: IACHAR. (line 6)
--* conversion, to integer: Implicitly convert LOGICAL and INTEGER values.
-- (line 6)
--* conversion, to logical <1>: LOGICAL. (line 6)
--* conversion, to logical: Implicitly convert LOGICAL and INTEGER values.
-- (line 6)
--* conversion, to real <1>: SNGL. (line 6)
--* conversion, to real <2>: REAL. (line 6)
--* conversion, to real <3>: FLOAT. (line 6)
--* conversion, to real <4>: DFLOAT. (line 6)
--* conversion, to real: DBLE. (line 6)
--* conversion, to string: CTIME. (line 6)
--* CONVERT specifier: CONVERT specifier. (line 6)
--* core, dump <1>: ABORT. (line 6)
--* core, dump: Debugging Options. (line 38)
--* COS: COS. (line 6)
--* COSH: COSH. (line 6)
--* cosine: COS. (line 6)
--* cosine, hyperbolic: COSH. (line 6)
--* cosine, hyperbolic, inverse: ACOSH. (line 6)
--* cosine, inverse: ACOS. (line 6)
--* COUNT: COUNT. (line 6)
--* CPP <1>: Preprocessing Options.
-- (line 6)
--* CPP: Preprocessing and conditional compilation.
-- (line 6)
--* CPU_TIME: CPU_TIME. (line 6)
--* Credits: Contributors. (line 6)
--* CSHIFT: CSHIFT. (line 6)
--* CSIN: SIN. (line 6)
--* CSQRT: SQRT. (line 6)
--* CTIME: CTIME. (line 6)
--* current date <1>: IDATE. (line 6)
--* current date <2>: FDATE. (line 6)
--* current date: DATE_AND_TIME. (line 6)
--* current time <1>: TIME8. (line 6)
--* current time <2>: TIME. (line 6)
--* current time <3>: ITIME. (line 6)
--* current time <4>: FDATE. (line 6)
--* current time: DATE_AND_TIME. (line 6)
--* DABS: ABS. (line 6)
--* DACOS: ACOS. (line 6)
--* DACOSH: ACOSH. (line 6)
--* DASIN: ASIN. (line 6)
--* DASINH <1>: ATANH. (line 6)
--* DASINH: ASINH. (line 6)
--* DATAN: ATAN. (line 6)
--* DATAN2: ATAN2. (line 6)
--* date, current <1>: IDATE. (line 6)
--* date, current <2>: FDATE. (line 6)
--* date, current: DATE_AND_TIME. (line 6)
--* DATE_AND_TIME: DATE_AND_TIME. (line 6)
--* DBESJ0: BESSEL_J0. (line 6)
--* DBESJ1: BESSEL_J1. (line 6)
--* DBESJN: BESSEL_JN. (line 6)
--* DBESY0: BESSEL_Y0. (line 6)
--* DBESY1: BESSEL_Y1. (line 6)
--* DBESYN: BESSEL_YN. (line 6)
--* DBLE: DBLE. (line 6)
--* DCMPLX: DCMPLX. (line 6)
--* DCONJG: CONJG. (line 6)
--* DCOS: COS. (line 6)
--* DCOSH: COSH. (line 6)
--* DDIM: DIM. (line 6)
--* debugging information options: Debugging Options. (line 6)
--* debugging, preprocessor: Preprocessing Options.
-- (line 26)
--* DECODE: ENCODE and DECODE statements.
-- (line 6)
--* delayed execution <1>: SLEEP. (line 6)
--* delayed execution: ALARM. (line 6)
--* DEXP: EXP. (line 6)
--* DFLOAT: DFLOAT. (line 6)
--* DGAMMA: GAMMA. (line 6)
--* dialect options: Fortran Dialect Options.
-- (line 6)
--* DIGITS: DIGITS. (line 6)
--* DIM: DIM. (line 6)
--* DIMAG: AIMAG. (line 6)
--* DINT: AINT. (line 6)
--* directive, INCLUDE: Directory Options. (line 6)
--* directory, options: Directory Options. (line 6)
--* directory, search paths for inclusion: Directory Options. (line 14)
--* division, modulo: MODULO. (line 6)
--* division, remainder: MOD. (line 6)
--* DLGAMA: LOG_GAMMA. (line 6)
--* DLOG: LOG. (line 6)
--* DLOG10: LOG10. (line 6)
--* DMAX1: MAX. (line 6)
--* DMIN1: MIN. (line 6)
--* DMOD: MOD. (line 6)
--* DNINT: ANINT. (line 6)
--* dot product: DOT_PRODUCT. (line 6)
--* DOT_PRODUCT: DOT_PRODUCT. (line 6)
--* DPROD: DPROD. (line 6)
--* DREAL: DREAL. (line 6)
--* DSIGN: SIGN. (line 6)
--* DSIN: SIN. (line 6)
--* DSINH: SINH. (line 6)
--* DSQRT: SQRT. (line 6)
--* DTAN: TAN. (line 6)
--* DTANH: TANH. (line 6)
--* DTIME: DTIME. (line 6)
--* elapsed time <1>: SECOND. (line 6)
--* elapsed time <2>: SECNDS. (line 6)
--* elapsed time: DTIME. (line 6)
--* ENCODE: ENCODE and DECODE statements.
-- (line 6)
--* ENUM statement: Fortran 2003 status. (line 20)
--* ENUMERATOR statement: Fortran 2003 status. (line 20)
--* environment variable <1>: GET_ENVIRONMENT_VARIABLE.
-- (line 6)
--* environment variable <2>: GETENV. (line 6)
--* environment variable <3>: Runtime. (line 6)
--* environment variable: Environment Variables.
-- (line 6)
--* EOSHIFT: EOSHIFT. (line 6)
--* EPSILON: EPSILON. (line 6)
--* ERF: ERF. (line 6)
--* ERFC: ERFC. (line 6)
--* ERFC_SCALED: ERFC_SCALED. (line 6)
--* error function: ERF. (line 6)
--* error function, complementary: ERFC. (line 6)
--* error function, complementary, exponentially-scaled: ERFC_SCALED.
-- (line 6)
--* errors, limiting: Error and Warning Options.
-- (line 27)
--* escape characters: Fortran Dialect Options.
-- (line 59)
--* ETIME: ETIME. (line 6)
--* Euclidean distance: HYPOT. (line 6)
--* EXIT: EXIT. (line 6)
--* EXP: EXP. (line 6)
--* EXPONENT: EXPONENT. (line 6)
--* exponential function: EXP. (line 6)
--* exponential function, inverse <1>: LOG10. (line 6)
--* exponential function, inverse: LOG. (line 6)
--* expression size <1>: SIZEOF. (line 6)
--* expression size: C_SIZEOF. (line 6)
--* extensions: Extensions. (line 6)
--* extensions, implemented: Extensions implemented in GNU Fortran.
-- (line 6)
--* extensions, not implemented: Extensions not implemented in GNU Fortran.
-- (line 6)
--* f2c calling convention: Code Gen Options. (line 25)
--* Factorial function: GAMMA. (line 6)
--* FDATE: FDATE. (line 6)
--* FDL, GNU Free Documentation License: GNU Free Documentation License.
-- (line 6)
--* FGET: FGET. (line 6)
--* FGETC: FGETC. (line 6)
--* file format, fixed: Fortran Dialect Options.
-- (line 12)
--* file format, free: Fortran Dialect Options.
-- (line 12)
--* file operation, file number: FNUM. (line 6)
--* file operation, flush: FLUSH. (line 6)
--* file operation, position <1>: FTELL. (line 6)
--* file operation, position: FSEEK. (line 6)
--* file operation, read character <1>: FGETC. (line 6)
--* file operation, read character: FGET. (line 6)
--* file operation, seek: FSEEK. (line 6)
--* file operation, write character <1>: FPUTC. (line 6)
--* file operation, write character: FPUT. (line 6)
--* file system, access mode: ACCESS. (line 6)
--* file system, change access mode: CHMOD. (line 6)
--* file system, create link <1>: SYMLNK. (line 6)
--* file system, create link: LINK. (line 6)
--* file system, file creation mask: UMASK. (line 6)
--* file system, file status <1>: STAT. (line 6)
--* file system, file status <2>: LSTAT. (line 6)
--* file system, file status: FSTAT. (line 6)
--* file system, hard link: LINK. (line 6)
--* file system, remove file: UNLINK. (line 6)
--* file system, rename file: RENAME. (line 6)
--* file system, soft link: SYMLNK. (line 6)
--* FLOAT: FLOAT. (line 6)
--* floating point, exponent: EXPONENT. (line 6)
--* floating point, fraction: FRACTION. (line 6)
--* floating point, nearest different: NEAREST. (line 6)
--* floating point, relative spacing <1>: SPACING. (line 6)
--* floating point, relative spacing: RRSPACING. (line 6)
--* floating point, scale: SCALE. (line 6)
--* floating point, set exponent: SET_EXPONENT. (line 6)
--* floor: FLOOR. (line 6)
--* FLOOR: FLOOR. (line 6)
--* floor: AINT. (line 6)
--* FLUSH: FLUSH. (line 6)
--* FLUSH statement: Fortran 2003 status. (line 16)
--* FNUM: FNUM. (line 6)
--* Fortran 77: GNU Fortran and G77. (line 6)
--* FPP: Preprocessing and conditional compilation.
-- (line 6)
--* FPUT: FPUT. (line 6)
--* FPUTC: FPUTC. (line 6)
--* FRACTION: FRACTION. (line 6)
--* FREE: FREE. (line 6)
--* FSEEK: FSEEK. (line 6)
--* FSTAT: FSTAT. (line 6)
--* FTELL: FTELL. (line 6)
--* g77: GNU Fortran and G77. (line 6)
--* g77 calling convention: Code Gen Options. (line 25)
--* GAMMA: GAMMA. (line 6)
--* Gamma function: GAMMA. (line 6)
--* Gamma function, logarithm of: LOG_GAMMA. (line 6)
--* GCC: GNU Fortran and GCC. (line 6)
--* GERROR: GERROR. (line 6)
--* GET_COMMAND: GET_COMMAND. (line 6)
--* GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT.
-- (line 6)
--* GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE.
-- (line 6)
--* GETARG: GETARG. (line 6)
--* GETCWD: GETCWD. (line 6)
--* GETENV: GETENV. (line 6)
--* GETGID: GETGID. (line 6)
--* GETLOG: GETLOG. (line 6)
--* GETPID: GETPID. (line 6)
--* GETUID: GETUID. (line 6)
--* GMTIME: GMTIME. (line 6)
--* GNU Compiler Collection: GNU Fortran and GCC. (line 6)
--* GNU Fortran command options: Invoking GNU Fortran.
-- (line 6)
--* Hollerith constants: Hollerith constants support.
-- (line 6)
--* HOSTNM: HOSTNM. (line 6)
--* HUGE: HUGE. (line 6)
--* hyperbolic arccosine: ACOSH. (line 6)
--* hyperbolic arcsine: ASINH. (line 6)
--* hyperbolic arctangent: ATANH. (line 6)
--* hyperbolic cosine: COSH. (line 6)
--* hyperbolic function, cosine: COSH. (line 6)
--* hyperbolic function, cosine, inverse: ACOSH. (line 6)
--* hyperbolic function, sine: SINH. (line 6)
--* hyperbolic function, sine, inverse: ASINH. (line 6)
--* hyperbolic function, tangent: TANH. (line 6)
--* hyperbolic function, tangent, inverse: ATANH. (line 6)
--* hyperbolic sine: SINH. (line 6)
--* hyperbolic tangent: TANH. (line 6)
--* HYPOT: HYPOT. (line 6)
--* I/O item lists: I/O item lists. (line 6)
--* IABS: ABS. (line 6)
--* IACHAR: IACHAR. (line 6)
--* IAND: IAND. (line 6)
--* IARGC: IARGC. (line 6)
--* IBCLR: IBCLR. (line 6)
--* IBITS: IBITS. (line 6)
--* IBSET: IBSET. (line 6)
--* ICHAR: ICHAR. (line 6)
--* IDATE: IDATE. (line 6)
--* IDIM: DIM. (line 6)
--* IDINT: INT. (line 6)
--* IDNINT: NINT. (line 6)
--* IEEE, ISNAN: ISNAN. (line 6)
--* IEOR: IEOR. (line 6)
--* IERRNO: IERRNO. (line 6)
--* IFIX: INT. (line 6)
--* IMAG: AIMAG. (line 6)
--* IMAGPART: AIMAG. (line 6)
--* IMPORT statement: Fortran 2003 status. (line 43)
--* INCLUDE directive: Directory Options. (line 6)
--* inclusion, directory search paths for: Directory Options. (line 14)
--* INDEX: INDEX intrinsic. (line 6)
--* INT: INT. (line 6)
--* INT2: INT2. (line 6)
--* INT8: INT8. (line 6)
--* integer kind: SELECTED_INT_KIND. (line 6)
--* intrinsic: Error and Warning Options.
-- (line 152)
--* intrinsic Modules: Intrinsic Modules. (line 6)
--* intrinsic procedures: Intrinsic Procedures.
-- (line 6)
--* Introduction: Top. (line 6)
--* IOMSG= specifier: Fortran 2003 status. (line 18)
--* IOR: IOR. (line 6)
--* IOSTAT, end of file: IS_IOSTAT_END. (line 6)
--* IOSTAT, end of record: IS_IOSTAT_EOR. (line 6)
--* IRAND: IRAND. (line 6)
--* IS_IOSTAT_END: IS_IOSTAT_END. (line 6)
--* IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6)
--* ISATTY: ISATTY. (line 6)
--* ISHFT: ISHFT. (line 6)
--* ISHFTC: ISHFTC. (line 6)
--* ISIGN: SIGN. (line 6)
--* ISNAN: ISNAN. (line 6)
--* ISO C Bindings: Fortran 2003 status. (line 52)
--* ISO_FORTRAN_ENV statement: Fortran 2003 status. (line 46)
--* ITIME: ITIME. (line 6)
--* KILL: KILL. (line 6)
--* kind: KIND. (line 6)
--* KIND: KIND. (line 6)
--* kind: KIND Type Parameters.
-- (line 6)
--* kind, character: SELECTED_CHAR_KIND. (line 6)
--* kind, integer: SELECTED_INT_KIND. (line 6)
--* kind, old-style: Old-style kind specifications.
-- (line 6)
--* kind, real: SELECTED_REAL_KIND. (line 6)
--* language, dialect options: Fortran Dialect Options.
-- (line 6)
--* LBOUND: LBOUND. (line 6)
--* LEADZ: LEADZ. (line 6)
--* LEN: LEN. (line 6)
--* LEN_TRIM: LEN_TRIM. (line 6)
--* lexical comparison of strings <1>: LLT. (line 6)
--* lexical comparison of strings <2>: LLE. (line 6)
--* lexical comparison of strings <3>: LGT. (line 6)
--* lexical comparison of strings: LGE. (line 6)
--* LGAMMA: LOG_GAMMA. (line 6)
--* LGE: LGE. (line 6)
--* LGT: LGT. (line 6)
--* libf2c calling convention: Code Gen Options. (line 25)
--* limits, largest number: HUGE. (line 6)
--* limits, smallest number: TINY. (line 6)
--* LINK: LINK. (line 6)
--* linking, static: Link Options. (line 6)
--* LLE: LLE. (line 6)
--* LLT: LLT. (line 6)
--* LNBLNK: LNBLNK. (line 6)
--* LOC: LOC. (line 6)
--* location of a variable in memory: LOC. (line 6)
--* LOG: LOG. (line 6)
--* LOG10: LOG10. (line 6)
--* LOG_GAMMA: LOG_GAMMA. (line 6)
--* logarithmic function <1>: LOG10. (line 6)
--* logarithmic function: LOG. (line 6)
--* logarithmic function, inverse: EXP. (line 6)
--* LOGICAL: LOGICAL. (line 6)
--* logical and, bitwise <1>: IAND. (line 6)
--* logical and, bitwise: AND. (line 6)
--* logical exclusive or, bitwise <1>: XOR. (line 6)
--* logical exclusive or, bitwise: IEOR. (line 6)
--* logical not, bitwise: NOT. (line 6)
--* logical or, bitwise <1>: OR. (line 6)
--* logical or, bitwise: IOR. (line 6)
--* login name: GETLOG. (line 6)
--* LONG: LONG. (line 6)
--* LSHIFT: LSHIFT. (line 6)
--* LSTAT: LSTAT. (line 6)
--* LTIME: LTIME. (line 6)
--* MALLOC: MALLOC. (line 6)
--* MATMUL: MATMUL. (line 6)
--* matrix multiplication: MATMUL. (line 6)
--* matrix, transpose: TRANSPOSE. (line 6)
--* MAX: MAX. (line 6)
--* MAX0: MAX. (line 6)
--* MAX1: MAX. (line 6)
--* MAXEXPONENT: MAXEXPONENT. (line 6)
--* maximum value <1>: MAXVAL. (line 6)
--* maximum value: MAX. (line 6)
--* MAXLOC: MAXLOC. (line 6)
--* MAXVAL: MAXVAL. (line 6)
--* MCLOCK: MCLOCK. (line 6)
--* MCLOCK8: MCLOCK8. (line 6)
--* MERGE: MERGE. (line 6)
--* messages, error: Error and Warning Options.
-- (line 6)
--* messages, warning: Error and Warning Options.
-- (line 6)
--* MIN: MIN. (line 6)
--* MIN0: MIN. (line 6)
--* MIN1: MIN. (line 6)
--* MINEXPONENT: MINEXPONENT. (line 6)
--* minimum value <1>: MINVAL. (line 6)
--* minimum value: MIN. (line 6)
--* MINLOC: MINLOC. (line 6)
--* MINVAL: MINVAL. (line 6)
--* MOD: MOD. (line 6)
--* model representation, base: RADIX. (line 6)
--* model representation, epsilon: EPSILON. (line 6)
--* model representation, largest number: HUGE. (line 6)
--* model representation, maximum exponent: MAXEXPONENT. (line 6)
--* model representation, minimum exponent: MINEXPONENT. (line 6)
--* model representation, precision: PRECISION. (line 6)
--* model representation, radix: RADIX. (line 6)
--* model representation, range: RANGE. (line 6)
--* model representation, significant digits: DIGITS. (line 6)
--* model representation, smallest number: TINY. (line 6)
--* module entities: Fortran Dialect Options.
-- (line 71)
--* module search path: Directory Options. (line 14)
--* modulo: MODULO. (line 6)
--* MODULO: MODULO. (line 6)
--* MOVE_ALLOC: MOVE_ALLOC. (line 6)
--* moving allocation: MOVE_ALLOC. (line 6)
--* multiply array elements: PRODUCT. (line 6)
--* MVBITS: MVBITS. (line 6)
--* Namelist: Extensions to namelist.
-- (line 6)
--* NEAREST: NEAREST. (line 6)
--* NEW_LINE: NEW_LINE. (line 6)
--* newline: NEW_LINE. (line 6)
--* NINT: NINT. (line 6)
--* NOT: NOT. (line 6)
--* NULL: NULL. (line 6)
--* OpenMP <1>: OpenMP. (line 6)
--* OpenMP: Fortran Dialect Options.
-- (line 109)
--* operators, unary: Unary operators. (line 6)
--* options, code generation: Code Gen Options. (line 6)
--* options, debugging: Debugging Options. (line 6)
--* options, dialect: Fortran Dialect Options.
-- (line 6)
--* options, directory search: Directory Options. (line 6)
--* options, errors: Error and Warning Options.
-- (line 6)
--* options, fortran dialect: Fortran Dialect Options.
-- (line 12)
--* options, gfortran command: Invoking GNU Fortran.
-- (line 6)
--* options, linking: Link Options. (line 6)
--* options, negative forms: Invoking GNU Fortran.
-- (line 13)
--* options, preprocessor: Preprocessing Options.
-- (line 6)
--* options, run-time: Code Gen Options. (line 6)
--* options, runtime: Runtime Options. (line 6)
--* options, warnings: Error and Warning Options.
-- (line 6)
--* OR: OR. (line 6)
--* output, newline: NEW_LINE. (line 6)
--* PACK: PACK. (line 6)
--* paths, search: Directory Options. (line 14)
--* PERROR: PERROR. (line 6)
--* pointer, C address of pointers: C_F_PROCPOINTER. (line 6)
--* pointer, C address of procedures: C_FUNLOC. (line 6)
--* pointer, C association status: C_ASSOCIATED. (line 6)
--* pointer, convert C to Fortran: C_F_POINTER. (line 6)
--* pointer, cray <1>: MALLOC. (line 6)
--* pointer, cray: FREE. (line 6)
--* pointer, Cray: Cray pointers. (line 6)
--* pointer, disassociated: NULL. (line 6)
--* pointer, status <1>: NULL. (line 6)
--* pointer, status: ASSOCIATED. (line 6)
--* positive difference: DIM. (line 6)
--* PRECISION: PRECISION. (line 6)
--* Preprocessing: Preprocessing and conditional compilation.
-- (line 6)
--* preprocessing, assertation: Preprocessing Options.
-- (line 114)
--* preprocessing, define macros: Preprocessing Options.
-- (line 153)
--* preprocessing, include path: Preprocessing Options.
-- (line 70)
--* preprocessing, keep comments: Preprocessing Options.
-- (line 123)
--* preprocessing, no linemarkers: Preprocessing Options.
-- (line 181)
--* preprocessing, undefine macros: Preprocessing Options.
-- (line 187)
--* preprocessor: Preprocessing Options.
-- (line 6)
--* preprocessor, debugging: Preprocessing Options.
-- (line 26)
--* preprocessor, disable: Preprocessing Options.
-- (line 13)
--* preprocessor, enable: Preprocessing Options.
-- (line 13)
--* preprocessor, include file handling: Preprocessing and conditional compilation.
-- (line 6)
--* preprocessor, working directory: Preprocessing Options.
-- (line 55)
--* PRESENT: PRESENT. (line 6)
--* private: Fortran Dialect Options.
-- (line 71)
--* procedure pointer, convert C to Fortran: C_LOC. (line 6)
--* process id: GETPID. (line 6)
--* PRODUCT: PRODUCT. (line 6)
--* product, double-precision: DPROD. (line 6)
--* product, matrix: MATMUL. (line 6)
--* product, vector: DOT_PRODUCT. (line 6)
--* program termination: EXIT. (line 6)
--* program termination, with core dump: ABORT. (line 6)
--* PROTECTED statement: Fortran 2003 status. (line 37)
--* RADIX: RADIX. (line 6)
--* RAN: RAN. (line 6)
--* RAND: RAND. (line 6)
--* random number generation <1>: RANDOM_NUMBER. (line 6)
--* random number generation <2>: RAND. (line 6)
--* random number generation <3>: RAN. (line 6)
--* random number generation: IRAND. (line 6)
--* random number generation, seeding <1>: SRAND. (line 6)
--* random number generation, seeding: RANDOM_SEED. (line 6)
--* RANDOM_NUMBER: RANDOM_NUMBER. (line 6)
--* RANDOM_SEED: RANDOM_SEED. (line 6)
--* RANGE: RANGE. (line 6)
--* range checking: Code Gen Options. (line 130)
--* read character, stream mode <1>: FGETC. (line 6)
--* read character, stream mode: FGET. (line 6)
--* REAL: REAL. (line 6)
--* real kind: SELECTED_REAL_KIND. (line 6)
--* real number, exponent: EXPONENT. (line 6)
--* real number, fraction: FRACTION. (line 6)
--* real number, nearest different: NEAREST. (line 6)
--* real number, relative spacing <1>: SPACING. (line 6)
--* real number, relative spacing: RRSPACING. (line 6)
--* real number, scale: SCALE. (line 6)
--* real number, set exponent: SET_EXPONENT. (line 6)
--* REALPART: REAL. (line 6)
--* RECORD: STRUCTURE and RECORD.
-- (line 6)
--* remainder: MOD. (line 6)
--* RENAME: RENAME. (line 6)
--* repacking arrays: Code Gen Options. (line 190)
--* REPEAT: REPEAT. (line 6)
--* RESHAPE: RESHAPE. (line 6)
--* root: SQRT. (line 6)
--* rounding, ceiling <1>: CEILING. (line 6)
--* rounding, ceiling: ANINT. (line 6)
--* rounding, floor <1>: FLOOR. (line 6)
--* rounding, floor: AINT. (line 6)
--* rounding, nearest whole number: NINT. (line 6)
--* RRSPACING: RRSPACING. (line 6)
--* RSHIFT: RSHIFT. (line 6)
--* SAVE statement: Code Gen Options. (line 15)
--* SCALE: SCALE. (line 6)
--* SCAN: SCAN. (line 6)
--* search path: Directory Options. (line 6)
--* search paths, for included files: Directory Options. (line 14)
--* SECNDS: SECNDS. (line 6)
--* SECOND: SECOND. (line 6)
--* seeding a random number generator <1>: SRAND. (line 6)
--* seeding a random number generator: RANDOM_SEED. (line 6)
--* SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6)
--* SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6)
--* SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6)
--* SET_EXPONENT: SET_EXPONENT. (line 6)
--* SHAPE: SHAPE. (line 6)
--* SHORT: INT2. (line 6)
--* SIGN: SIGN. (line 6)
--* sign copying: SIGN. (line 6)
--* SIGNAL: SIGNAL. (line 6)
--* SIN: SIN. (line 6)
--* sine: SIN. (line 6)
--* sine, hyperbolic: SINH. (line 6)
--* sine, hyperbolic, inverse: ASINH. (line 6)
--* sine, inverse: ASIN. (line 6)
--* SINH: SINH. (line 6)
--* SIZE: SIZE. (line 6)
--* size of a variable, in bits: BIT_SIZE. (line 6)
--* size of an expression <1>: SIZEOF. (line 6)
--* size of an expression: C_SIZEOF. (line 6)
--* SIZEOF: SIZEOF. (line 6)
--* SLEEP: SLEEP. (line 6)
--* SNGL: SNGL. (line 6)
--* SPACING: SPACING. (line 6)
--* SPREAD: SPREAD. (line 6)
--* SQRT: SQRT. (line 6)
--* square-root: SQRT. (line 6)
--* SRAND: SRAND. (line 6)
--* Standards: Standards. (line 6)
--* STAT: STAT. (line 6)
--* statement, ENUM: Fortran 2003 status. (line 20)
--* statement, ENUMERATOR: Fortran 2003 status. (line 20)
--* statement, FLUSH: Fortran 2003 status. (line 16)
--* statement, IMPORT: Fortran 2003 status. (line 43)
--* statement, ISO_FORTRAN_ENV: Fortran 2003 status. (line 46)
--* statement, PROTECTED: Fortran 2003 status. (line 37)
--* statement, SAVE: Code Gen Options. (line 15)
--* statement, USE, INTRINSIC: Fortran 2003 status. (line 46)
--* statement, VALUE: Fortran 2003 status. (line 39)
--* statement, VOLATILE: Fortran 2003 status. (line 41)
--* STREAM I/O: Fortran 2003 status. (line 32)
--* stream mode, read character <1>: FGETC. (line 6)
--* stream mode, read character: FGET. (line 6)
--* stream mode, write character <1>: FPUTC. (line 6)
--* stream mode, write character: FPUT. (line 6)
--* string, adjust left: ADJUSTL. (line 6)
--* string, adjust right: ADJUSTR. (line 6)
--* string, comparison <1>: LLT. (line 6)
--* string, comparison <2>: LLE. (line 6)
--* string, comparison <3>: LGT. (line 6)
--* string, comparison: LGE. (line 6)
--* string, concatenate: REPEAT. (line 6)
--* string, find missing set: VERIFY. (line 6)
--* string, find non-blank character: LNBLNK. (line 6)
--* string, find subset: SCAN. (line 6)
--* string, find substring: INDEX intrinsic. (line 6)
--* string, length: LEN. (line 6)
--* string, length, without trailing whitespace: LEN_TRIM. (line 6)
--* string, remove trailing whitespace: TRIM. (line 6)
--* string, repeat: REPEAT. (line 6)
--* STRUCTURE: STRUCTURE and RECORD.
-- (line 6)
--* structure packing: Code Gen Options. (line 184)
--* subscript checking: Code Gen Options. (line 130)
--* substring position: INDEX intrinsic. (line 6)
--* SUM: SUM. (line 6)
--* sum array elements: SUM. (line 6)
--* suppressing warnings: Error and Warning Options.
-- (line 6)
--* symbol names: Fortran Dialect Options.
-- (line 56)
--* symbol names, transforming: Code Gen Options. (line 54)
--* symbol names, underscores: Code Gen Options. (line 54)
--* SYMLNK: SYMLNK. (line 6)
--* syntax checking: Error and Warning Options.
-- (line 33)
--* SYSTEM: SYSTEM. (line 6)
--* system, error handling <1>: PERROR. (line 6)
--* system, error handling <2>: IERRNO. (line 6)
--* system, error handling: GERROR. (line 6)
--* system, group id: GETGID. (line 6)
--* system, host name: HOSTNM. (line 6)
--* system, login name: GETLOG. (line 6)
--* system, process id: GETPID. (line 6)
--* system, signal handling: SIGNAL. (line 6)
--* system, system call: SYSTEM. (line 6)
--* system, terminal <1>: TTYNAM. (line 6)
--* system, terminal: ISATTY. (line 6)
--* system, user id: GETUID. (line 6)
--* system, working directory <1>: GETCWD. (line 6)
--* system, working directory: CHDIR. (line 6)
--* SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6)
--* tabulators: Error and Warning Options.
-- (line 140)
--* TAN: TAN. (line 6)
--* tangent: TAN. (line 6)
--* tangent, hyperbolic: TANH. (line 6)
--* tangent, hyperbolic, inverse: ATANH. (line 6)
--* tangent, inverse <1>: ATAN2. (line 6)
--* tangent, inverse: ATAN. (line 6)
--* TANH: TANH. (line 6)
--* terminate program: EXIT. (line 6)
--* terminate program, with core dump: ABORT. (line 6)
--* TIME: TIME. (line 6)
--* time, clock ticks <1>: SYSTEM_CLOCK. (line 6)
--* time, clock ticks <2>: MCLOCK8. (line 6)
--* time, clock ticks: MCLOCK. (line 6)
--* time, conversion to GMT info: GMTIME. (line 6)
--* time, conversion to local time info: LTIME. (line 6)
--* time, conversion to string: CTIME. (line 6)
--* time, current <1>: TIME8. (line 6)
--* time, current <2>: TIME. (line 6)
--* time, current <3>: ITIME. (line 6)
--* time, current <4>: FDATE. (line 6)
--* time, current: DATE_AND_TIME. (line 6)
--* time, elapsed <1>: SECOND. (line 6)
--* time, elapsed <2>: SECNDS. (line 6)
--* time, elapsed <3>: ETIME. (line 6)
--* time, elapsed <4>: DTIME. (line 6)
--* time, elapsed: CPU_TIME. (line 6)
--* TIME8: TIME8. (line 6)
--* TINY: TINY. (line 6)
--* TR 15581: Fortran 2003 status. (line 25)
--* trace: Debugging Options. (line 31)
--* TRAILZ: TRAILZ. (line 6)
--* TRANSFER: TRANSFER. (line 6)
--* transforming symbol names: Code Gen Options. (line 54)
--* transpose: TRANSPOSE. (line 6)
--* TRANSPOSE: TRANSPOSE. (line 6)
--* trigonometric function, cosine: COS. (line 6)
--* trigonometric function, cosine, inverse: ACOS. (line 6)
--* trigonometric function, sine: SIN. (line 6)
--* trigonometric function, sine, inverse: ASIN. (line 6)
--* trigonometric function, tangent: TAN. (line 6)
--* trigonometric function, tangent, inverse <1>: ATAN2. (line 6)
--* trigonometric function, tangent, inverse: ATAN. (line 6)
--* TRIM: TRIM. (line 6)
--* TTYNAM: TTYNAM. (line 6)
--* type cast: TRANSFER. (line 6)
--* UBOUND: UBOUND. (line 6)
--* UMASK: UMASK. (line 6)
--* underflow: Error and Warning Options.
-- (line 148)
--* underscore: Code Gen Options. (line 54)
--* UNLINK: UNLINK. (line 6)
--* UNPACK: UNPACK. (line 6)
--* unused parameter: Error and Warning Options.
-- (line 158)
--* USE, INTRINSIC statement: Fortran 2003 status. (line 46)
--* user id: GETUID. (line 6)
--* VALUE statement: Fortran 2003 status. (line 39)
--* vector product: DOT_PRODUCT. (line 6)
--* VERIFY: VERIFY. (line 6)
--* VOLATILE statement: Fortran 2003 status. (line 41)
--* warnings, aliasing: Error and Warning Options.
-- (line 68)
--* warnings, alignment of COMMON blocks: Error and Warning Options.
-- (line 165)
--* warnings, all: Error and Warning Options.
-- (line 61)
--* warnings, ampersand: Error and Warning Options.
-- (line 85)
--* warnings, array temporaries: Error and Warning Options.
-- (line 93)
--* warnings, character truncation: Error and Warning Options.
-- (line 98)
--* warnings, conversion: Error and Warning Options.
-- (line 104)
--* warnings, implicit interface: Error and Warning Options.
-- (line 107)
--* warnings, intrinsic: Error and Warning Options.
-- (line 152)
--* warnings, intrinsics of other standards: Error and Warning Options.
-- (line 113)
--* warnings, line truncation: Error and Warning Options.
-- (line 101)
--* warnings, non-standard intrinsics: Error and Warning Options.
-- (line 113)
--* warnings, suppressing: Error and Warning Options.
-- (line 6)
--* warnings, suspicious code: Error and Warning Options.
-- (line 120)
--* warnings, tabs: Error and Warning Options.
-- (line 140)
--* warnings, to errors: Error and Warning Options.
-- (line 171)
--* warnings, underflow: Error and Warning Options.
-- (line 148)
--* warnings, unused parameter: Error and Warning Options.
-- (line 158)
--* write character, stream mode <1>: FPUTC. (line 6)
--* write character, stream mode: FPUT. (line 6)
--* XOR: XOR. (line 6)
--* ZABS: ABS. (line 6)
--* ZCOS: COS. (line 6)
--* zero bits <1>: TRAILZ. (line 6)
--* zero bits: LEADZ. (line 6)
--* ZEXP: EXP. (line 6)
--* ZLOG: LOG. (line 6)
--* ZSIN: SIN. (line 6)
--* ZSQRT: SQRT. (line 6)
--
--
--
--Tag Table:
--Node: Top1990
--Node: Introduction3305
--Node: About GNU Fortran4052
--Node: GNU Fortran and GCC8080
--Node: Preprocessing and conditional compilation10192
--Node: GNU Fortran and G7711833
--Node: Project Status12406
--Node: Standards14921
--Node: Invoking GNU Fortran16132
--Node: Option Summary17855
--Node: Fortran Dialect Options21343
--Node: Preprocessing Options28153
--Node: Error and Warning Options36279
--Node: Debugging Options43706
--Node: Directory Options45869
--Node: Link Options47384
--Node: Runtime Options48008
--Node: Code Gen Options50088
--Node: Environment Variables62313
--Node: Runtime62918
--Node: GFORTRAN_STDIN_UNIT64146
--Node: GFORTRAN_STDOUT_UNIT64513
--Node: GFORTRAN_STDERR_UNIT64914
--Node: GFORTRAN_USE_STDERR65312
--Node: GFORTRAN_TMPDIR65757
--Node: GFORTRAN_UNBUFFERED_ALL66198
--Node: GFORTRAN_UNBUFFERED_PRECONNECTED66721
--Node: GFORTRAN_SHOW_LOCUS67363
--Node: GFORTRAN_OPTIONAL_PLUS67857
--Node: GFORTRAN_DEFAULT_RECL68332
--Node: GFORTRAN_LIST_SEPARATOR68823
--Node: GFORTRAN_CONVERT_UNIT69432
--Node: GFORTRAN_ERROR_DUMPCORE72294
--Node: GFORTRAN_ERROR_BACKTRACE72841
--Node: Fortran 2003 and 2008 status73392
--Node: Fortran 2003 status73632
--Node: Fortran 2008 status75323
--Node: Compiler Characteristics76292
--Node: KIND Type Parameters76630
--Node: Extensions77557
--Node: Extensions implemented in GNU Fortran78156
--Node: Old-style kind specifications79490
--Node: Old-style variable initialization80596
--Node: Extensions to namelist81908
--Node: X format descriptor without count field83904
--Node: Commas in FORMAT specifications84431
--Node: Missing period in FORMAT specifications84948
--Node: I/O item lists85510
--Node: BOZ literal constants85899
--Node: Real array indices88468
--Node: Unary operators88765
--Node: Implicitly convert LOGICAL and INTEGER values89179
--Node: Hollerith constants support90139
--Node: Cray pointers91911
--Node: CONVERT specifier97321
--Node: OpenMP99319
--Node: Argument list functions101574
--Node: Extensions not implemented in GNU Fortran103168
--Node: STRUCTURE and RECORD104020
--Node: ENCODE and DECODE statements106076
--Node: Intrinsic Procedures107394
--Node: Introduction to Intrinsics121084
--Node: ABORT123436
--Node: ABS124193
--Node: ACCESS125695
--Node: ACHAR127616
--Node: ACOS128817
--Node: ACOSH129815
--Node: ADJUSTL130692
--Node: ADJUSTR131633
--Node: AIMAG132580
--Node: AINT133900
--Node: ALARM135372
--Node: ALL137006
--Node: ALLOCATED138924
--Node: AND139805
--Node: ANINT141102
--Node: ANY142465
--Node: ASIN144395
--Node: ASINH145407
--Node: ASSOCIATED146289
--Node: ATAN149294
--Node: ATAN2150183
--Node: ATANH151527
--Node: BESSEL_J0152407
--Node: BESSEL_J1153451
--Node: BESSEL_JN154503
--Node: BESSEL_Y0155670
--Node: BESSEL_Y1156670
--Node: BESSEL_YN157670
--Node: BIT_SIZE158887
--Node: BTEST159716
--Node: C_ASSOCIATED160604
--Node: C_FUNLOC161813
--Node: C_F_PROCPOINTER163182
--Node: C_F_POINTER164811
--Node: C_LOC166229
--Node: C_SIZEOF167346
--Node: CEILING168699
--Node: CHAR169704
--Node: CHDIR170768
--Node: CHMOD171936
--Node: CMPLX173731
--Node: COMMAND_ARGUMENT_COUNT175195
--Node: COMPLEX176102
--Node: CONJG177245
--Node: COS178255
--Node: COSH179526
--Node: COUNT180495
--Node: CPU_TIME182351
--Node: CSHIFT183705
--Node: CTIME185361
--Node: DATE_AND_TIME186620
--Node: DBLE189081
--Node: DCMPLX189905
--Node: DFLOAT191099
--Node: DIGITS191793
--Node: DIM192759
--Node: DOT_PRODUCT193902
--Node: DPROD195558
--Node: DREAL196284
--Node: DTIME196948
--Node: EOSHIFT199754
--Node: EPSILON201827
--Node: ERF202553
--Node: ERFC203327
--Node: ERFC_SCALED204131
--Node: ETIME204823
--Node: EXIT207054
--Node: EXP207913
--Node: EXPONENT209071
--Node: FDATE209821
--Node: FLOAT211096
--Node: FGET211810
--Node: FGETC213604
--Node: FLOOR215372
--Node: FLUSH216356
--Node: FNUM216994
--Node: FPUT217716
--Node: FPUTC219317
--Node: FRACTION221057
--Node: FREE221958
--Node: FSEEK222795
--Node: FSTAT225089
--Node: FTELL226129
--Node: GAMMA227107
--Node: GERROR228148
--Node: GETARG228867
--Node: GET_COMMAND230631
--Node: GET_COMMAND_ARGUMENT231577
--Node: GETCWD233545
--Node: GETENV234491
--Node: GET_ENVIRONMENT_VARIABLE235713
--Node: GETGID237413
--Node: GETLOG237948
--Node: GETPID238806
--Node: GETUID239534
--Node: GMTIME240048
--Node: HOSTNM241537
--Node: HUGE242453
--Node: HYPOT243172
--Node: IACHAR243992
--Node: IAND245172
--Node: IARGC246159
--Node: IBCLR247182
--Node: IBITS247843
--Node: IBSET248758
--Node: ICHAR249414
--Node: IDATE251395
--Node: IEOR252422
--Node: IERRNO253298
--Node: INDEX intrinsic253853
--Node: INT255199
--Node: INT2256786
--Node: INT8257551
--Node: IOR258263
--Node: IRAND259113
--Node: IS_IOSTAT_END260465
--Node: IS_IOSTAT_EOR261560
--Node: ISATTY262685
--Node: ISHFT263468
--Node: ISHFTC264448
--Node: ISNAN265664
--Node: ITIME266412
--Node: KILL267437
--Node: KIND268310
--Node: LBOUND269155
--Node: LEADZ270467
--Node: LEN271271
--Node: LEN_TRIM272362
--Node: LGE273350
--Node: LGT274663
--Node: LINK275940
--Node: LLE276975
--Node: LLT278279
--Node: LNBLNK279549
--Node: LOC280325
--Node: LOG281056
--Node: LOG10282347
--Node: LOG_GAMMA283319
--Node: LOGICAL284407
--Node: LONG285211
--Node: LSHIFT285967
--Node: LSTAT286921
--Node: LTIME288075
--Node: MALLOC289490
--Node: MATMUL290950
--Node: MAX292040
--Node: MAXEXPONENT293539
--Node: MAXLOC294355
--Node: MAXVAL296404
--Node: MCLOCK298067
--Node: MCLOCK8299070
--Node: MERGE300284
--Node: MIN301026
--Node: MINEXPONENT302522
--Node: MINLOC303152
--Node: MINVAL305201
--Node: MOD306883
--Node: MODULO308375
--Node: MOVE_ALLOC309589
--Node: MVBITS310613
--Node: NEAREST311672
--Node: NEW_LINE312795
--Node: NINT313566
--Node: NOT314834
--Node: NULL315417
--Node: OR316315
--Node: PACK317593
--Node: PERROR319585
--Node: PRECISION320207
--Node: PRESENT321033
--Node: PRODUCT322139
--Node: RADIX323664
--Node: RAN324441
--Node: RAND324897
--Node: RANDOM_NUMBER326232
--Node: RANDOM_SEED327950
--Node: RANGE329833
--Node: REAL330457
--Node: RENAME331899
--Node: REPEAT332918
--Node: RESHAPE333644
--Node: RRSPACING335113
--Node: RSHIFT335806
--Node: SCALE336768
--Node: SCAN337542
--Node: SECNDS339092
--Node: SECOND340180
--Node: SELECTED_CHAR_KIND341056
--Node: SELECTED_INT_KIND342053
--Node: SELECTED_REAL_KIND343228
--Node: SET_EXPONENT345167
--Node: SHAPE346163
--Node: SIGN347276
--Node: SIGNAL348359
--Node: SIN349856
--Node: SINH350898
--Node: SIZE351710
--Node: SIZEOF353018
--Node: SLEEP354312
--Node: SNGL354869
--Node: SPACING355540
--Node: SPREAD356552
--Node: SQRT357697
--Node: SRAND358936
--Node: STAT360104
--Node: SUM363216
--Node: SYMLNK364685
--Node: SYSTEM365817
--Node: SYSTEM_CLOCK366765
--Node: TAN368109
--Node: TANH368945
--Node: TIME369812
--Node: TIME8370916
--Node: TINY372053
--Node: TRAILZ372653
--Node: TRANSFER373438
--Node: TRANSPOSE375472
--Node: TRIM376159
--Node: TTYNAM377016
--Node: UBOUND377931
--Node: UMASK379300
--Node: UNLINK379855
--Node: UNPACK380832
--Node: VERIFY382120
--Node: XOR383836
--Node: Intrinsic Modules385144
--Node: Contributing390935
--Node: Contributors391787
--Node: Projects393410
--Node: Proposed Extensions394213
--Node: Copying396264
--Node: GNU Free Documentation License433828
--Node: Funding456240
--Node: Option Index458765
--Node: Keyword Index470647
--
--End Tag Table
diff -Nur a/gcc/function.c b/gcc/function.c
--- a/gcc/function.c 2009-07-11 21:06:26.000000000 +0200
+++ b/gcc/function.c 2010-01-25 09:50:29.135686643 +0100