more report stuff
[bitonic-mengthesis.git] / thesis.lagda
index b1539c6f107c03bbdcb39ec7f2ef5631be6a8363..eb7dc9e0fd65f9c111fecdeb22ffc65127d33727 100644 (file)
@@ -18,6 +18,9 @@
 %% Proof trees
 \usepackage{bussproofs}
 
+%% Diagrams
+\usepackage[all]{xy}
+
 %% -----------------------------------------------------------------------------
 %% Commands for Agda
 \usepackage[english]{babel}
 \renewcommand{\AgdaKeywordFontStyle}[1]{\ensuremath{\mathrm{\underline{#1}}}}
 \renewcommand{\AgdaFunction}[1]{\textbf{\textcolor{AgdaFunction}{#1}}}
 \renewcommand{\AgdaField}{\AgdaFunction}
-\definecolor{AgdaBound} {HTML}{000000}
+% \definecolor{AgdaBound} {HTML}{000000}
+\definecolor{AgdaHole} {HTML} {FFFF33}
 
 \DeclareUnicodeCharacter{9665}{\ensuremath{\lhd}}
+\DeclareUnicodeCharacter{964}{\ensuremath{\tau}}
+\DeclareUnicodeCharacter{963}{\ensuremath{\sigma}}
+\DeclareUnicodeCharacter{915}{\ensuremath{\Gamma}}
+\DeclareUnicodeCharacter{8799}{\ensuremath{\stackrel{?}{=}}}
+\DeclareUnicodeCharacter{9655}{\ensuremath{\rhd}}
+
 
 %% -----------------------------------------------------------------------------
 %% Commands
 \newcommand{\mydc}{\AgdaInductiveConstructor}
 \newcommand{\myfld}{\AgdaField}
 \newcommand{\myfun}{\AgdaFunction}
-% TODO make this use AgdaBount
-\newcommand{\myb}[1]{\ensuremath{#1}}
+% TODO make this use AgdaBound
+\newcommand{\myb}[1]{\AgdaBound{#1}}
 \newcommand{\myfield}{\AgdaField}
 \newcommand{\myind}{\AgdaIndent}
 \newcommand{\mykant}{\textsc{Kant}}
-\newcommand{\mysynel}[1]{\langle #1 \rangle}
+\newcommand{\mysynel}[1]{#1}
+\newcommand{\myse}{\mysynel}
 \newcommand{\mytmsyn}{\mysynel{term}}
 \newcommand{\mysp}{\ }
-\newcommand{\myabs}[2]{\lambda #1 \mapsto #2}
+% TODO \mathbin or \mathre here?
+\newcommand{\myabs}[2]{\mydc{$\lambda$} #1 \mathrel{\mydc{$\mapsto$}} #2}
 \newcommand{\myappsp}{\hspace{0.07cm}}
 \newcommand{\myapp}[2]{#1 \myappsp #2}
 \newcommand{\mysynsep}{\ \ |\ \ }
 
-\FrameSep0.3cm
+\FrameSep0.2cm
 \newcommand{\mydesc}[3]{
+  {\small
+    \vspace{0.3cm}
   \hfill \textbf{#1} $#2$
-  \vspace{-0.2cm}
+  \vspace{-0.3cm}
   \begin{framed}
     #3
   \end{framed}
 }
+}
 
 % TODO is \mathbin the correct thing for arrow and times?
 
-\newcommand{\mytmt}{\myb{T}}
-\newcommand{\mytmm}{\myb{M}}
-\newcommand{\mytmn}{\myb{N}}
+\newcommand{\mytmt}{\mysynel{t}}
+\newcommand{\mytmm}{\mysynel{m}}
+\newcommand{\mytmn}{\mysynel{n}}
 \newcommand{\myred}{\leadsto}
-\newcommand{\mysub}[3]{#1[#2 \mapsto #3]}
+\newcommand{\mysub}[3]{#1[#2 / #3]}
 \newcommand{\mytysyn}{\mysynel{type}}
 \newcommand{\mybasetys}{K}
 % TODO change this name
 \newcommand{\mybasety}[1]{B_{#1}}
-\newcommand{\mytya}{\myb{A}}
-\newcommand{\mytyb}{\myb{B}}
-\newcommand{\myarr}{\mathbin{\textcolor{AgdaDatatype}{\to}}}
-\newcommand{\myprod}{\mathbin{\textcolor{AgdaDatatype}{\times}}}
+\newcommand{\mytya}{\myse{A}}
+\newcommand{\mytyb}{\myse{B}}
+\newcommand{\mytycc}{\myse{C}}
+\newcommand{\myarr}{\mathrel{\textcolor{AgdaDatatype}{\to}}}
+\newcommand{\myprod}{\mathrel{\textcolor{AgdaDatatype}{\times}}}
 \newcommand{\myctx}{\Gamma}
 \newcommand{\myvalid}[1]{#1 \vdash \underline{\mathrm{valid}}}
 \newcommand{\myjudd}[3]{#1 \vdash #2 : #3}
 \newcommand{\myjud}[2]{\myjudd{\myctx}{#1}{#2}}
-\newcommand{\myabss}[3]{\lambda #1 {:} #2 \mapsto #3}
-\newcommand{\mytt}{\mydc{tt}}
+% TODO \mathbin or \mathrel here?
+\newcommand{\myabss}[3]{\mydc{$\lambda$} #1 {:} #2 \mathrel{\mydc{$\mapsto$}} #3}
+\newcommand{\mytt}{\mydc{$\langle\rangle$}}
 \newcommand{\myunit}{\mytyc{$\top$}}
-\newcommand{\mypair}[2]{(#1\mathpunct{\textcolor{AgdaInductiveConstructor}{,}} #2)}
-\newcommand{\myfst}[1]{\myapp{\myfld{fst}}{#1}}
-\newcommand{\mysnd}[1]{\myapp{\myfld{snd}}{#1}}
-\newcommand{\myconst}{\myb{c}}
+\newcommand{\mypair}[2]{\mathopen{\mydc{$\langle$}}#1\mathpunct{\mydc{,}} #2\mathclose{\mydc{$\rangle$}}}
+\newcommand{\myfst}{\myfld{fst}}
+\newcommand{\mysnd}{\myfld{snd}}
+\newcommand{\myconst}{\myse{c}}
 \newcommand{\myemptyctx}{\cdot}
-\newcommand{\myhole}{\AgdaUnsolvedMeta}
+\newcommand{\myhole}{\AgdaHole}
 \newcommand{\myfix}[3]{\mysyn{fix} \myappsp #1 {:} #2 \mapsto #3}
+\newcommand{\mysum}{\mathbin{\textcolor{AgdaDatatype}{+}}}
+\newcommand{\myleft}[1]{\mydc{left}_{#1}}
+\newcommand{\myright}[1]{\mydc{right}_{#1}}
+\newcommand{\myempty}{\mytyc{$\bot$}}
+\newcommand{\mycase}[2]{\mathopen{\myfun{[}}#1\mathpunct{\myfun{,}} #2 \mathclose{\myfun{]}}}
+\newcommand{\myabsurd}[1]{\myfun{absurd}_{#1}}
+\newcommand{\myarg}{\_}
+\newcommand{\myderivsp}{\vspace{0.3cm}}
+\newcommand{\mytyp}{\mytyc{Type}}
+\newcommand{\myneg}{\myfun{$\neg$}}
+\newcommand{\myar}{\,}
+\newcommand{\mybool}{\mytyc{Bool}}
+\newcommand{\mytrue}{\mydc{true}}
+\newcommand{\myfalse}{\mydc{false}}
+\newcommand{\myitee}[5]{\myfun{if}\,#1 / {#2.#3}\,\myfun{then}\,#4\,\myfun{else}\,#5}
+\newcommand{\mynat}{\mytyc{$\mathbb{N}$}}
+\newcommand{\myrat}{\mytyc{$\mathbb{R}$}}
+\newcommand{\myite}[3]{\myfun{if}\,#1\,\myfun{then}\,#2\,\myfun{else}\,#3}
+\newcommand{\myfora}[3]{(#1 {:} #2) \myarr #3}
+\newcommand{\myexi}[3]{(#1 {:} #2) \myprod #3}
+\newcommand{\mypairr}[4]{\mathopen{\mydc{$\langle$}}#1\mathpunct{\mydc{,}} #4\mathclose{\mydc{$\rangle$}}_{#2{.}#3}}
+\newcommand{\mylist}{\mytyc{List}}
+\newcommand{\mynil}[1]{\mydc{[]}_{#1}}
+\newcommand{\mycons}{\mathbin{\mydc{∷}}}
+\newcommand{\myfoldr}{\myfun{foldr}}
+\newcommand{\myw}[3]{\myapp{\myapp{\mytyc{W}}{(#1 {:} #2)}}{#3}}
+\newcommand{\mynode}[2]{\mathbin{\mydc{$\lhd$}_{#1.#2}}}
+\newcommand{\myrec}[4]{\myfun{rec}\,#1 / {#2.#3}\,\myfun{with}\,#4}
+\newcommand{\mylub}{\sqcup}
+\newcommand{\mydefeq}{\cong}
 
 %% -----------------------------------------------------------------------------
 
 \iffalse
 \begin{code}
 module thesis where
-open import Level
 \end{code}
 \fi
 
@@ -128,8 +174,12 @@ open import Level
   principles described.
 \end{abstract}
 
+\clearpage
+
 \tableofcontents
 
+\clearpage
+
 \section{Simple and not-so-simple types}
 \label{sec:types}
 
@@ -155,9 +205,8 @@ and applications:
   $
 }
 
-Through this text, I will use $\mytmt$, $\mytmm$, $\mytmn$ to indicate a generic
-term, and $x$, $y$ to refer to variables.  Parenthesis will be omitted in the
-usual way: $\myapp{\myapp{\mytmt}{\mytmm}}{\mytmn} =
+Parenthesis will be omitted in the usual way:
+$\myapp{\myapp{\mytmt}{\mytmm}}{\mytmn} =
 \myapp{(\myapp{\mytmt}{\mytmm})}{\mytmn}$.
 
 Abstractions roughly corresponds to functions, and their semantics is more
@@ -166,22 +215,23 @@ formally explained by the $\beta$-reduction rule:
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
   $
   \begin{array}{l}
-    \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{x}{\mytmn}\text{, where} \\
+    \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}\text{, where} \\
     \myind{1}
     \begin{array}{l@{\ }c@{\ }l}
-      \mysub{x}{x}{\mytmn} & = & \mytmn \\
-      \mysub{y}{x}{\mytmn} & = & y\text{, with } x \neq y \\
-      \mysub{\myapp{\mytmt}{\mytmm}}{x}{\mytmn} & = & (\myapp{\mysub{\mytmt}{x}{\mytmn}}{\mysub{\mytmm}{x}{\mytmn}}) \\
-      \mysub{(\myabs{x}{\mytmm})}{x}{\mytmn} & = & \myabs{x}{\mytmm} \\
-      \mysub{(\myabs{y}{\mytmm})}{x}{\mytmn} & = & \myabs{z}{\mysub{\mysub{\mytmm}{y}{z}}{x}{\mytmn}}, \\
-      \multicolumn{3}{l}{\myind{1} \text{with $x \neq y$ and $z$ not free in $\myapp{\mytmm}{\mytmn}$}}
+      \mysub{\myb{x}}{\myb{x}}{\mytmn} & = & \mytmn \\
+      \mysub{\myb{y}}{\myb{x}}{\mytmn} & = & y\text{, with } \myb{x} \neq y \\
+      \mysub{(\myapp{\mytmt}{\mytmm})}{\myb{x}}{\mytmn} & = & (\myapp{\mysub{\mytmt}{\myb{x}}{\mytmn}}{\mysub{\mytmm}{\myb{x}}{\mytmn}}) \\
+      \mysub{(\myabs{\myb{x}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{x}}{\mytmm} \\
+      \mysub{(\myabs{\myb{y}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{z}}{\mysub{\mysub{\mytmm}{\myb{y}}{\myb{z}}}{\myb{x}}{\mytmn}}, \\
+      \multicolumn{3}{l}{\myind{1} \text{with $\myb{x} \neq \myb{y}$ and $\myb{z}$ not free in $\myapp{\mytmm}{\mytmn}$}}
     \end{array}
   \end{array}
   $
 }
 
 The care required during substituting variables for terms is required to avoid
-name capturing.
+name capturing.  We will use substitution in the future for other name-binding
+constructs assuming similar precautions.
 
 These few elements are of remarkable expressiveness, and in fact Turing
 complete.  As a corollary, we must be able to devise a term that reduces forever
@@ -192,11 +242,11 @@ complete.  As a corollary, we must be able to devise a term that reduces forever
 
 A \emph{redex} is a term that can be reduced.  In the untyped $\lambda$-calculus
 this will be the case for an application in which the first term is an
-abstraction, but in general a term is reducible if it appears to the left of a
-reduction rule.  When a term contains no redex it's said to be in \emph{normal
-  form}.  Given the observation above, not all terms reduce to a normal forms:
-we call the ones that do \emph{normalising}, and the ones that don't
-\emph{non-normalising}.
+abstraction, but in general we call aterm reducible if it appears to the left of
+a reduction rule.  When a term contains no redexes it's said to be in
+\emph{normal form}.  Given the observation above, not all terms reduce to a
+normal forms: we call the ones that do \emph{normalising}, and the ones that
+don't \emph{non-normalising}.
 
 The reduction rule presented is not syntax directed, but \emph{evaluation
   strategies} can be employed to reduce term systematically. Common evaluation
@@ -211,48 +261,54 @@ both abstractions and normal forms are said to be in \emph{weak head normal
 
 \subsection{The simply typed $\lambda$-calculus}
 
-A convenient way to `discipline' $\lambda$-terms is to assign \emph{types} to
-them, and then check that the terms that we are forming make sense given our
-typing rules \citep{Curry1934}.  The first most basic instance of this idea
-takes the name of \emph{simply typed $\lambda$ calculus}.
+A convenient way to `discipline' and reason about $\lambda$-terms is to assign
+\emph{types} to them, and then check that the terms that we are forming make
+sense given our typing rules \citep{Curry1934}.  The first most basic instance
+of this idea takes the name of \emph{simply typed $\lambda$ calculus}, whose
+rules are shown in figure \ref{fig:stlc}.
 
 Our types contain a set of \emph{type variables} $\Phi$, which might correspond
 to some `primitive' types; and $\myarr$, the type former for `arrow' types, the
 types of functions.  The language is explicitly typed: when we bring a variable
 into scope with an abstraction, we explicitly declare its type. $\mytya$,
-$\mytyb$ will be used to refer to a generic type.  Reduction is unchanged from
-the untyped $\lambda$-calculus.
-
-\mydesc{syntax}{ }{
-  $
-  \begin{array}{r@{\ }c@{\ }l}
-    \mytmsyn   & ::= & \myb{x} \mysynsep \myabss{\myb{x}}{\mytysyn}{\mytmsyn} \mysynsep
-                       (\myapp{\mytmsyn}{\mytmsyn}) \\
-    \mytysyn   & ::= & \myb{\phi} \mysynsep \mytysyn \myarr \mytysyn  \mysynsep \\
-    \myb{x}    & \in & \text{Some enumerable set of symbols} \\
-    \myb{\phi} & \in & \Phi
-  \end{array}
-  $
-}
-
-\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
-  \centering{
-    \begin{tabular}{ccc}
-      \AxiomC{$\myctx(x) = A$}
-      \UnaryInfC{$\myjud{\myb{x}}{A}$}
-      \DisplayProof
-      &
-      \AxiomC{$\myjudd{\myctx;\myb{x} : A}{\mytmt}{\mytyb}$}
-      \UnaryInfC{$\myjud{\myabss{x}{A}{\mytmt}}{\mytyb}$}
-      \DisplayProof
-      &
-      \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
-      \AxiomC{$\myjud{\mytmn}{\mytya}$}
-      \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mytyb}$}
-      \DisplayProof
-    \end{tabular}
+$\mytyb$, $\mytycc$, will be used to refer to a generic type.  Reduction is
+unchanged from the untyped $\lambda$-calculus.
+
+\begin{figure}[t]
+  \mydesc{syntax}{ }{
+    $
+    \begin{array}{r@{\ }c@{\ }l}
+      \mytmsyn   & ::= & \myb{x} \mysynsep \myabss{\myb{x}}{\mytysyn}{\mytmsyn} \mysynsep
+      (\myapp{\mytmsyn}{\mytmsyn}) \\
+      \mytysyn   & ::= & \myse{\phi} \mysynsep \mytysyn \myarr \mytysyn  \mysynsep \\
+      \myb{x}    & \in & \text{Some enumerable set of symbols} \\
+      \myse{\phi} & \in & \Phi
+    \end{array}
+    $
   }
+  
+  \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
+    \centering{
+      \begin{tabular}{ccc}
+        \AxiomC{$\myctx(x) = A$}
+        \UnaryInfC{$\myjud{\myb{x}}{A}$}
+        \DisplayProof
+        &
+        \AxiomC{$\myjudd{\myctx;\myb{x} : A}{\mytmt}{\mytyb}$}
+        \UnaryInfC{$\myjud{\myabss{x}{A}{\mytmt}}{\mytyb}$}
+        \DisplayProof
+        &
+        \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
+        \AxiomC{$\myjud{\mytmn}{\mytya}$}
+        \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mytyb}$}
+        \DisplayProof
+      \end{tabular}
+    }
 }
+  \caption{Syntax and typing rules for the STLC.  Reduction is unchanged from
+    the untyped $\lambda$-calculus.}
+  \label{fig:stlc}
+\end{figure}
 
 In the typing rules, a context $\myctx$ is used to store the types of bound
 variables: $\myctx; \myb{x} : \mytya$ adds a variable to the context and
@@ -266,33 +322,41 @@ enjoys a number of properties.  Two of them are expected in most type systems
   constructor does not appear on the left of the $\myred$ relation (currently
   only $\lambda$), or it can take a step according to the evaluation rules.
 \item[Preservation] If a well-typed term takes a step of evaluation, then the
-  resulting term is also well-typed, and preserves the previous type.
+  resulting term is also well-typed, and preserves the previous type.  Also
+  known as \emph{subject reduction}.
 \end{description}
 
-However, STLC buys us much more: every well-typed term is normalising.  It is
-easy to see that we can't fill the blanks if we want to give types to the
-non-normalising term shown before:
+However, STLC buys us much more: every well-typed term is normalising
+\citep{Tait1967}.  It is easy to see that we can't fill the blanks if we want to
+give types to the non-normalising term shown before:
 \begin{equation*}
-  \myapp{(\myabss{x}{\myhole{?}}{\myapp{x}{x}})}{(\myabss{x}{\myhole{?}}{\myapp{x}{x}})}
+  \myapp{(\myabss{\myb{x}}{\myhole{?}}{\myapp{\myb{x}}{\myb{x}}})}{(\myabss{\myb{x}}{\myhole{?}}{\myapp{\myb{x}}{\myb{x}}})}
 \end{equation*}
 
 This makes the STLC Turing incomplete.  We can recover the ability to loop by
 adding a combinator that recurses:
 
-% TODO make this more compact
-
+\noindent
+\begin{minipage}{0.5\textwidth}
 \mydesc{syntax}{ } {
-  $ \mytmsyn ::= \dotsb \mysynsep \myfix{x}{\mytysyn}{\mytmsyn} $
+  $ \mytmsyn ::= \dotsb \mysynsep \myfix{\myb{x}}{\mytysyn}{\mytmsyn} $
+  \vspace{0.4cm}
 }
-
-\mydesc{typing:}{ } {
-  \AxiomC{$\myjudd{\myctx; x : \mytya}{\mytmt}{\mytya}$}
-  \UnaryInfC{$\myjud{\myfix{x}{\mytya}{\mytmt}}{\mytya}$}
-  \DisplayProof
+\end{minipage} 
+\begin{minipage}{0.5\textwidth}
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}} {
+  \centering{
+    \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytya}$}
+    \UnaryInfC{$\myjud{\myfix{\myb{x}}{\mytya}{\mytmt}}{\mytya}$}
+    \DisplayProof
+  }
 }
+\end{minipage} 
 
-\mydesc{reduction:}{ }{
-  $ \myfix{x}{\mytya}{\mytmt} \myred \mysub{\mytmt}{x}{(\myfix{x}{\mytya}{\mytmt})}$
+\mydesc{reduction:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \centering{
+    $ \myfix{\myb{x}}{\mytya}{\mytmt} \myred \mysub{\mytmt}{\myb{x}}{(\myfix{\myb{x}}{\mytya}{\mytmt})}$
+  }
 }
 
 This will deprive us of normalisation, which is a particularly bad thing if we
@@ -300,27 +364,34 @@ want to use the STLC as described in the next section.
 
 \subsection{The Curry-Howard correspondence}
 
-Moreover,
-we have a product (or pair, or tuple) type $\mytya \myprod \mytyb$ for each pair
-of types $\mytya$ and $\mytyb$, and a function (or arrow) type $\mytya \myarr
-\mytyb$ for each pair of types $\mytya$ and $\mytyb$.  $\beta$-reduction is
-unchanged, but we have added reduction rules for products.  Products are not
-essential, but they serve as a good example of a type former apart from the
-arrow type.
+It turns out that the STLC can be seen a natural deduction system for
+intuitionistic propositional logic.  Terms are proofs, and their types are the
+propositions they prove.  This remarkable fact is known as the Curry-Howard
+correspondence, or isomorphism.
 
+The arrow ($\myarr$) type corresponds to implication.  If we wish to prove that
+that $(\mytya \myarr \mytyb) \myarr (\mytyb \myarr \mytycc) \myarr (\mytya
+\myarr \mytycc)$, all we need to do is to devise a $\lambda$-term that has the
+correct type:
+\[
+  \myabss{\myb{f}}{(\mytya \myarr \mytyb)}{\myabss{\myb{g}}{(\mytyb \myarr \mytycc)}{\myabss{\myb{x}}{\mytya}{\myapp{\myb{g}}{(\myapp{\myb{f}}{\myb{x}})}}}}
+\]
+That is, function composition.  Going beyond arrow types, we can extend our bare
+lambda calculus with useful types to represent other logical constructs, as
+shown in figure \ref{fig:natded}.
+
+\begin{figure}[t]
 \mydesc{syntax}{ }{
   $
   \begin{array}{r@{\ }c@{\ }l}
-    \mytmsyn & ::= & \myb{x} \mysynsep \myconst \mysynsep
-                     \myabss{\myb{x}}{\mytysyn}{\mytmsyn} \mysynsep
-                     (\myapp{\mytmsyn}{\mytmsyn}) \\
-             & |   & \mytt \mysynsep \mypair{\mytmsyn}{\mytmsyn} \mysynsep
-                     \myfst{\mytmsyn} \mysynsep \mysnd{\mytmsyn} \\
-    \mytysyn & ::= & \mytysyn \myprod \mytysyn \mysynsep
-                     \mytysyn \myarr \mytysyn  \mysynsep
-                     \mybasety{\myconst} \\
-    \myb{x}  & \in & \text{Some enumerable set of symbols} \\
-    \myconst & \in & \text{Some set $C$ of constants} \\
+    \mytmsyn & ::= & \dots \\
+             &  |  & \mytt \mysynsep \myapp{\myabsurd{\mytysyn}}{\mytmsyn} \\
+             &  |  & \myapp{\myleft{\mytysyn}}{\mytmsyn} \mysynsep
+                     \myapp{\myright{\mytysyn}}{\mytmsyn} \mysynsep
+                     \myapp{\mycase{\mytmsyn}{\mytmsyn}}{\mytmsyn} \\
+             &  |  & \mypair{\mytmsyn}{\mytmsyn} \mysynsep
+                     \myapp{\myfst}{\mytmsyn} \mysynsep \myapp{\mysnd}{\mytmsyn} \\
+    \mytysyn & ::= & \dots \mysynsep \myunit \mysynsep \myempty \mysynsep \mytmsyn \mysum \mytmsyn \mysynsep \mytysyn \myprod \mytysyn
   \end{array}
   $
 }
@@ -328,57 +399,633 @@ arrow type.
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
   \centering{
     \begin{tabular}{cc}
-      $\myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{x}{\mytmn}$ &
       $
-      \begin{array}{r@{\ }c@{\ }l}
-        \myapp{\myfst}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
-        \myapp{\mysnd}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
+      \begin{array}{l@{ }l@{\ }c@{\ }l}
+        \myapp{\mycase{\mytmm}{\mytmn}}{(\myapp{\myleft{\mytya} &}{\mytmt})} & \myred &
+          \myapp{\mytmm}{\mytmt} \\
+        \myapp{\mycase{\mytmm}{\mytmn}}{(\myapp{\myright{\mytya} &}{\mytmt})} & \myred &
+          \myapp{\mytmn}{\mytmt}
+      \end{array}
+      $
+      &
+      $
+      \begin{array}{l@{ }l@{\ }c@{\ }l}
+        \myapp{\myfst &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
+        \myapp{\mysnd &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
       \end{array}
       $
     \end{tabular}
   }
 }
 
-% TODO write context rules
-% \mydesc{validity:}{\myvalid{\myctx}}{
-%   \centering{
-%     \begin{tabular}{ccc}
-%       \AxiomC{}
-%       \UnaryInfC{$\myvalid{\myemptyctx}$}
-%       \DisplayProof
-%       &
-%       \AxiomC{$\mytmt : \mytya$}
-%       \UnaryInfC{$\myvalid{\myctx; x : \mytya
-%       bar &
-%       baz
-%     \end{tabular}
-%   }
-% }
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
+  \centering{
+    \begin{tabular}{cc}
+      \AxiomC{\phantom{$\myjud{\mytmt}{\myempty}$}}
+      \UnaryInfC{$\myjud{\mytt}{\myunit}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\myempty}$}
+      \UnaryInfC{$\myjud{\myapp{\myabsurd{\mytya}}{\mytmt}}{\mytya}$}
+      \DisplayProof
+    \end{tabular}
+  }
+  \myderivsp
+  \centering{
+    \begin{tabular}{cc}
+      \AxiomC{$\myjud{\mytmt}{\mytya}$}
+      \UnaryInfC{$\myjud{\myapp{\myleft{\mytyb}}{\mytmt}}{\mytya \mysum \mytyb}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\mytyb}$}
+      \UnaryInfC{$\myjud{\myapp{\myright{\mytya}}{\mytmt}}{\mytya \mysum \mytyb}$}
+      \DisplayProof
 
+    \end{tabular}
+  }
+  \myderivsp
+  \centering{
+    \begin{tabular}{cc}
+      \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
+      \AxiomC{$\myjud{\mytmn}{\mytya \myarr \mytycc}$}
+      \AxiomC{$\myjud{\mytmt}{\mytya \mysum \mytyb}$}
+      \TrinaryInfC{$\myjud{\myapp{\mycase{\mytmm}{\mytmn}}{\mytmt}}{\mytycc}$}
+      \DisplayProof
+    \end{tabular}
+  }
+  \myderivsp
+  \centering{
+    \begin{tabular}{ccc}
+      \AxiomC{$\myjud{\mytmm}{\mytya}$}
+      \AxiomC{$\myjud{\mytmn}{\mytyb}$}
+      \BinaryInfC{$\myjud{\mypair{\mytmm}{\mytmn}}{\mytya \myprod \mytyb}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
+      \UnaryInfC{$\myjud{\myapp{\myfst}{\mytmt}}{\mytya}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
+      \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
+      \DisplayProof
+    \end{tabular}
+  }
+}
+\caption{Rules for the extendend STLC.  Only the new features are shown, all the
+  rules and syntax for the STLC apply here too.}
+  \label{fig:natded}
+\end{figure}
+
+Tagged unions (or sums, or coproducts---$\mysum$ here, \texttt{Either} in
+Haskell) correspond to disjunctions, and dually tuples (or pairs, or
+products---$\myprod$ here, tuples in Haskell) correspond to conjunctions.  This
+is apparent looking at the ways to construct and destruct the values inhabiting
+those types: for $\mysum$ $\myleft{ }$ and $\myright{ }$ correspond to $\vee$
+introduction, and $\mycase{\_}{\_}$ to $\vee$ elimination; for $\myprod$
+$\mypair{\_}{\_}$ corresponds to $\wedge$ introduction, $\myfst$ and $\mysnd$ to
+$\wedge$ elimination.
+
+The trivial type $\myunit$ corresponds to the logical $\top$, and dually
+$\myempty$ corresponds to the logical $\bot$.  $\myunit$ has one introduction
+rule ($\mytt$), and thus one inhabitant; and no eliminators.  $\myempty$ has no
+introduction rules, and thus no inhabitants; and one eliminator ($\myabsurd{
+}$), corresponding to the logical \emph{ex falso quodlibet}.  Note that in the
+constructors for the sums and the destructor for $\myempty$ we need to include
+some type information to keep type checking decidable.
+
+With these rules, our STLC now looks remarkably similar in power and use to the
+natural deduction we already know.  $\myneg \mytya$ can be expressed as $\mytya
+\myarr \myempty$.  However, there is an important omission: there is no term of
+the type $\mytya \mysum \myneg \mytya$ (excluded middle), or equivalently
+$\myneg \myneg \mytya \myarr \mytya$ (double negation), or indeed any term with
+a type equivalent to those.
+
+This has a considerable effect on our logic and it's no coincidence, since there
+is no obvious computational behaviour for laws like the excluded middle.
+Theories of this kind are called \emph{intuitionistic}, or \emph{constructive},
+and all the systems analysed will have this characteristic since they build on
+the foundation of the STLC\footnote{There is research to give computational
+  behaviour to classical logic, but I will not touch those subjects.}.
+
+As in logic, if we want to keep our system consistent, we must make sure that no
+closed terms (in other words terms not under a $\lambda$) inhabit $\myempty$.
+The variant of STLC presented here is indeed
+consistent, a result that follows from the fact that it is
+normalising. % TODO explain
+Going back to our $\mysyn{fix}$ combinator, it is easy to see how it ruins our
+desire for consistency.  The following term works for every type $\mytya$,
+including bottom:
+\[
+(\myfix{\myb{x}}{\mytya}{\myb{x}}) : \mytya
+\]
+
+\subsection{Inductive data}
+
+To make the STLC more useful as a programming language or reasoning tool it is
+common to include (or let the user define) inductive data types.  These comprise
+of a type former, various constructors, and an eliminator (or destructor) that
+serves as primitive recursor.
+
+For example, we might add a $\mylist$ type constructor, along with an `empty
+list' ($\mynil{ }$) and `cons cell' ($\mycons$) constructor.  The eliminator for
+lists will be the usual folding operation ($\myfoldr$).  See figure
+\ref{fig:list}.
+
+\begin{figure}[h]
+\mydesc{syntax}{ }{
+  $
+  \begin{array}{r@{\ }c@{\ }l}
+    \mytmsyn & ::= & \dots \mysynsep \mynil{\mytysyn} \mysynsep \mytmsyn \mycons \mytmsyn
+                     \mysynsep
+                     \myapp{\myapp{\myapp{\myfoldr}{\mytmsyn}}{\mytmsyn}}{\mytmsyn} \\
+    \mytysyn & ::= & \dots \mysynsep \myapp{\mylist}{\mytysyn}
+  \end{array}
+  $
+}
+\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
+  \centering{
+  $
+  \begin{array}{l@{\ }c@{\ }l}
+    \myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{\mynil{\mytya}} & \myred & \mytmt \\
+
+    \myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{(\mytmm \mycons \mytmn)} & \myred &
+    \myapp{\myapp{\myse{f}}{\mytmm}}{(\myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{\mytmn})}
+  \end{array}
+  $
+}
+}
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
   \centering{
     \begin{tabular}{cc}
-      \AxiomC{$x : A \in \myctx$}
-      \UnaryInfC{$\myjud{x}{A}$}
+      \AxiomC{\phantom{$\myjud{\mytmm}{\mytya}$}}
+      \UnaryInfC{$\myjud{\mynil{\mytya}}{\myapp{\mylist}{\mytya}}$}
       \DisplayProof
       &
-      foo
+      \AxiomC{$\myjud{\mytmm}{\mytya}$}
+      \AxiomC{$\myjud{\mytmn}{\myapp{\mylist}{\mytya}}$}
+      \BinaryInfC{$\myjud{\mytmm \mycons \mytmn}{\myapp{\mylist}{\mytya}}$}
+      \DisplayProof
     \end{tabular}
   }
+  \myderivsp
+  \centering{
+    \AxiomC{$\myjud{\mysynel{f}}{\mytya \myarr \mytyb \myarr \mytyb}$}
+    \AxiomC{$\myjud{\mytmm}{\mytyb}$}
+    \AxiomC{$\myjud{\mytmn}{\myapp{\mylist}{\mytya}}$}
+    \TrinaryInfC{$\myjud{\myapp{\myapp{\myapp{\myfoldr}{\mysynel{f}}}{\mytmm}}{\mytmn}}{\mytyb}$}
+    \DisplayProof
+  }
 }
+\caption{Rules for lists in the STLC.}
+\label{fig:list}
+\end{figure}
+
+In section \ref{sec:well-order} we will see how to give a general account of
+inductive data.  %TODO does this make sense to have here?
 
 \section{Intuitionistic Type Theory}
 \label{sec:itt}
 
+\subsection{Extending the STLC}
+
+The STLC can be made more expressive in various ways.  \cite{Barendregt1991}
+succinctly expressed geometrically how we can add expressivity:
+
+$$
+\xymatrix@!0@=1.5cm{
+  & \lambda\omega \ar@{-}[rr]\ar@{-}'[d][dd]
+  & & \lambda C \ar@{-}[dd]
+  \\
+  \lambda2 \ar@{-}[ur]\ar@{-}[rr]\ar@{-}[dd]
+  & & \lambda P2 \ar@{-}[ur]\ar@{-}[dd]
+  \\
+  & \lambda\underline\omega \ar@{-}'[r][rr]
+  & & \lambda P\underline\omega
+  \\
+  \lambda{\to} \ar@{-}[rr]\ar@{-}[ur]
+  & & \lambda P \ar@{-}[ur]
+}
+$$
+Here $\lambda{\to}$, in the bottom left, is the STLC.  From there can move along
+3 dimensions:
+\begin{description}
+\item[Terms depending on types (towards $\lambda{2}$)] We can quantify over
+  types in our type signatures.  For example, we can define a polymorphic
+  identity function:
+  \[\displaystyle
+  (\myabss{\myb{A}}{\mytyp}{\myabss{\myb{x}}{\myb{A}}{\myb{x}}}) : (\myb{A} : \mytyp) \myarr \myb{A} \myarr \myb{A}
+  \]
+  The first and most famous instance of this idea has been System F.  This form
+  of polymorphism and has been wildly successful, also thanks to a well known
+  inference algorithm for a restricted version of System F known as
+  Hindley-Milner.  Languages like Haskell and SML are based on this discipline.
+\item[Types depending on types (towards $\lambda{\underline{\omega}}$)] We have
+  type operators.  For example we could define a function that given types $R$
+  and $\mytya$ forms the type that represents a value of type $\mytya$ in
+  continuation passing style: \[\displaystyle(\myabss{\myb{A} \myar \myb{R}}{\mytyp}{(\myb{A}
+    \myarr \myb{R}) \myarr \myb{R}}) : \mytyp \myarr \mytyp \myarr \mytyp\]
+\item[Types depending on terms (towards $\lambda{P}$)] Also known as `dependent
+  types', give great expressive power.  For example, we can have values of whose
+  type depend on a boolean:
+  \[\displaystyle(\myabss{\myb{x}}{\mybool}{\myite{\myb{x}}{\mynat}{\myrat}}) : \mybool
+  \myarr \mytyp\]
+\end{description}
+
+All the systems preserve the properties that make the STLC well behaved.  The
+system we are going to focus on, Intuitionistic Type Theory, has all of the
+above additions, and thus would sit where $\lambda{C}$ sits in the
+`$\lambda$-cube'.  It will serve as the logical `core' of all the other
+extensions that we will present and ultimately our implementation of a similar
+logic.
+
+\subsection{A Bit of History}
+
+Logic frameworks and programming languages based on type theory have a long
+history.  Per Martin-L\"{o}f described the first version of his theory in 1971,
+but then revised it since the original version was inconsistent due to its
+impredicativity\footnote{In the early version there was only one universe
+  $\mytyp$ and $\mytyp : \mytyp$, see section \ref{sec:term-types} for an
+  explanation on why this causes problems.}.  For this reason he gave a revised
+and consistent definition later \citep{Martin-Lof1984}.
+
+A related development is the polymorphic $\lambda$-calculus, and specifically
+the previously mentioned System F, which was developed independently by Girard
+and Reynolds.  An overview can be found in \citep{Reynolds1994}.  The surprising
+fact is that while System F is impredicative it is still consistent and strongly
+normalising.  \cite{Coquand1986} further extended this line of work with the
+Calculus of Constructions (CoC).
+
+\subsection{A simple type theory}
+\label{sec:core-tt}
+
+The calculus I present follows the exposition in \citep{Thompson1991}, and is
+quite close to the original formulation of predicative ITT as found in
+\citep{Martin-Lof1984}.  The system's syntax and reduction rules are presented
+in their entirety in figure \ref{fig:core-tt-syn}.  The typing rules are
+presented piece by piece.  An Agda rendition of the presented theory is
+reproduced in appendix \ref{app:agda-code}.
+
+\begin{figure}[t]
+\mydesc{syntax}{ }{
+  $
+  \begin{array}{r@{\ }c@{\ }l}
+    \mytmsyn & ::= & \myb{x} \mysynsep
+                     \mytyp_{l} \mysynsep
+                     \myunit \mysynsep \mytt \mysynsep
+                     \myempty \mysynsep \myapp{\myabsurd{\mytmsyn}}{\mytmsyn} \\
+             &  |  & \mybool \mysynsep \mytrue \mysynsep \myfalse \mysynsep
+                     \myitee{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+             &  |  & \myfora{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
+                     \myabss{\myb{x}}{\mytmsyn}{\mytmsyn} \\
+             &  |  & \myexi{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
+                     \mypairr{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn} \\
+             &  |  & \myapp{\myfst}{\mytmsyn} \mysynsep \myapp{\mysnd}{\mytmsyn} \\
+             &  |  & \myw{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
+                     \mytmsyn \mynode{\myb{x}}{\mytmsyn} \mytmsyn \\
+             &  |  & \myrec{\mytmsyn}{\myb{x}}{\mytmsyn}{\mytmsyn} \\
+    l        & \in & \mathbb{N}
+  \end{array}
+  $
+}
+
+\mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
+  \centering{
+    \begin{tabular}{cc}
+      $
+      \begin{array}{l@{ }l@{\ }c@{\ }l}
+        \myitee{\mytrue &}{\myb{x}}{\myse{P}}{\mytmm}{\mytmn} & \myred & \mytmm \\
+        \myitee{\myfalse &}{\myb{x}}{\myse{P}}{\mytmm}{\mytmn} & \myred & \mytmn \\
+      \end{array}
+      $
+      &
+      $
+      \myapp{(\myabss{\myb{x}}{\mytya}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}
+      $
+      \myderivsp
+    \end{tabular}
+    $
+    \begin{array}{l@{ }l@{\ }c@{\ }l}
+      \myapp{\myfst &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
+      \myapp{\mysnd &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
+    \end{array}
+    $
+    \myderivsp
+
+    $
+    \myrec{(\myse{s} \mynode{\myb{x}}{\myse{T}} \myse{f})}{\myb{y}}{\myse{P}}{\myse{p}} \myred
+    \myapp{\myapp{\myapp{\myse{p}}{\myse{s}}}{\myse{f}}}{(\myabss{\myb{t}}{\mysub{\myse{T}}{\myb{x}}{\myse{s}}}{
+      \myrec{\myapp{\myse{f}}{\myb{t}}}{\myb{y}}{\myse{P}}{\mytmt}
+    })}
+    $
+  }
+}
+\caption{Syntax and reduction rules for our type theory.}
+\label{fig:core-tt-syn}
+\end{figure}
+
+\subsubsection{Types are terms, some terms are types}
+\label{sec:term-types}
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \centering{
+    \begin{tabular}{cc}
+      \AxiomC{$\myjud{\mytmt}{\mytya}$}
+      \AxiomC{$\mytya \mydefeq \mytyb$}
+      \BinaryInfC{$\myjud{\mytmt}{\mytyb}$}
+      \DisplayProof
+      &
+      \AxiomC{\phantom{$\myjud{\mytmt}{\mytya}$}}
+      \UnaryInfC{$\myjud{\mytyp_l}{\mytyp_{l + 1}}$}
+      \DisplayProof
+    \end{tabular}
+  }
+}
+
+The first thing to notice is that a barrier between values and types that we had
+in the STLC is gone: values can appear in types, and the two are treated
+uniformly in the syntax.
+
+While the usefulness of doing this will become clear soon, a consequence is that
+since types can be the result of computation, deciding type equality is not
+immediate as in the STLC.  For this reason we define \emph{definitional
+  equality}, $\mydefeq$, as the congruence relation extending $\myred$.  Types
+that are definitionally equal can be used interchangeably.  Here the
+`conversion' rule is not syntax directed, however we will see how it is possible
+to employ $\myred$ to decide term equality in a systematic way.  % TODO add section
+Another thing to notice is that considering the need to reduce terms to decide
+equality, it is essential for a dependently type system to be terminating and
+confluent for type checking to be decidable.
+
+Moreover, we specify a \emph{type hierarchy} to talk about `large' types:
+$\mytyp_0$ will be the type of types inhabited by data: $\mybool$, $\mynat$,
+$\mylist$, etc.  $\mytyp_1$ will be the type of $\mytyp_0$, and so on---for
+example we have $\mytrue : \mybool : \mytyp_0 : \mytyp_1 : \dots$.  Each type
+`level' is often called a universe in the literature.  While it is possible, to
+simplify things by having only one universe $\mytyp$ with $\mytyp : \mytyp$,
+this plan is inconsistent for much the same reason that impredicative na\"{\i}ve
+set theory is \citep{Hurkens1995}.  Moreover, various techniques can be employed
+to lift the burden of explicitly handling universes.
+% TODO add sectioon about universes
+
+\subsubsection{Contexts}
+
+\begin{minipage}{0.5\textwidth}
+  \mydesc{context validity:}{\myvalid{\myctx}}{
+    \centering{
+      \begin{tabular}{cc}
+        \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
+        \UnaryInfC{$\myvalid{\myemptyctx}$}
+        \DisplayProof
+        &
+        \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+        \UnaryInfC{$\myvalid{\myctx ; \myb{x} : \mytya}$}
+        \DisplayProof
+      \end{tabular}
+    }
+  }
+\end{minipage} 
+\begin{minipage}{0.5\textwidth}
+  \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+    \centering{
+      \AxiomC{$\myctx(x) = \mytya$}
+      \UnaryInfC{$\myjud{\myb{x}}{\mytya}$}
+      \DisplayProof
+    }
+  }
+\end{minipage}
+\vspace{0.1cm}
+
+We need to refine the notion context to make sure that every variable appearing
+is typed correctly, or that in other words each type appearing in the context is
+indeed a type and not a value.  In every other rule, if no premises are present,
+we assume the context in the conclusion to be valid.
+
+Then we can re-introduce the old rule to get the type of a variable for a
+context.
+
+\subsubsection{$\myunit$, $\myempty$}
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \centering{
+    \begin{tabular}{ccc}
+      \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
+      \UnaryInfC{$\myjud{\myunit}{\mytyp_0}$}
+      \noLine
+      \UnaryInfC{$\myjud{\myempty}{\mytyp_0}$}
+      \DisplayProof
+      &
+      \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
+      \UnaryInfC{$\myjud{\mytt}{\myunit}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myjud{\myempty}{\mytyp_0}$}}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\myempty}$}
+      \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+      \BinaryInfC{$\myjud{\myapp{\myabsurd{\mytya}}{\mytmt}}{\mytya}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myjud{\myempty}{\mytyp_0}$}}
+      \DisplayProof
+    \end{tabular}
+  }
+}
+
+Nothing surprising here: $\myunit$ and $\myempty$ are unchanged from the STLC,
+with the added rules to type $\myunit$ and $\myempty$ themselves, and to make
+sure that we are invoking $\myabsurd{}$ over a type.
+
+\subsubsection{$\mybool$, and dependent $\myfun{if}$}
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+ \centering{
+   \begin{tabular}{ccc}
+     \AxiomC{}
+     \UnaryInfC{$\myjud{\mybool}{\mytyp_0}$}
+     \DisplayProof
+     &
+     \AxiomC{}
+     \UnaryInfC{$\myjud{\mytrue}{\mybool}$}
+     \DisplayProof
+     &
+     \AxiomC{}
+      \UnaryInfC{$\myjud{\myfalse}{\mybool}$}
+      \DisplayProof
+    \end{tabular}
+    \myderivsp
+
+    \AxiomC{$\myjud{\mytmt}{\mybool}$}
+    \AxiomC{$\myjudd{\myctx : \mybool}{\mytya}{\mytyp_l}$}
+    \noLine
+    \BinaryInfC{$\myjud{\mytmm}{\mysub{\mytya}{x}{\mytrue}}$ \hspace{0.7cm} $\myjud{\mytmn}{\mysub{\mytya}{x}{\myfalse}}$}
+    \UnaryInfC{$\myjud{\myitee{\mytmt}{\myb{x}}{\mytya}{\mytmm}{\mytmn}}{\mysub{\mytya}{\myb{x}}{\mytmt}}$}
+    \DisplayProof
+
+  }
+}
+
+With booleans we get the first taste of `dependent' in `dependent types'.  While
+the two introduction rules ($\mytrue$ and $\myfalse$) are not surprising, the
+typing rules for $\myfun{if}$ are.  In most strongly typed languages we expect
+the branches of an $\myfun{if}$ statements to be of the same type, to preserve
+subject reduction, since execution could take both paths.  This is a pity, since
+the type system does not reflect the fact that in each branch we gain knowledge
+on the term we are branching on.  Which means that programs along the lines of
+\begin{verbatim}
+if null xs then head xs else 0
+\end{verbatim}
+are a necessary, well typed, danger.
+
+However, in a more expressive system, we can do better: the branches' type can
+depend on the value of the scrutinised boolean.  This is what the typing rule
+expresses: the user provides a type $\mytya$ ranging over an $\myb{x}$
+representing the scrutinised boolean type, and the branches are typechecked with
+the updated knowledge on the value of $\myb{x}$.
+
+\subsubsection{$\myarr$, or dependent function}
+
+ \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+   \centering{
+     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
+     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
+     \BinaryInfC{$\myjud{\myfora{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
+     \DisplayProof
+
+     \myderivsp
+
+    \begin{tabular}{cc}
+      \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytyb}$}
+      \UnaryInfC{$\myjud{\myabss{\myb{x}}{\mytya}{\mytmt}}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmm}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
+      \AxiomC{$\myjud{\mytmn}{\mytya}$}
+      \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mysub{\mytyb}{\myb{x}}{\mytmn}}$}
+      \DisplayProof
+    \end{tabular}
+  }
+}
+
+Dependent functions are one of the two key features that perhaps most
+characterise dependent types---the other being dependent products.  With
+dependent functions, the result type can depend on the value of the argument.
+This feature, together with the fact that the result type might be a type
+itself, brings a lot of interesting possibilities.  Keeping the correspondence
+with logic alive, dependent functions are much like universal quantifiers
+($\forall$) in logic.
+
+Again, we need to make sure that the type hierarchy is respected, which is the
+reason why a type formed by $\myarr$ will live in the least upper bound of the
+levels of argument and return type.  This trend will continue with the other
+type-level binders, $\myprod$ and $\mytyc{W}$.
+
+% TODO maybe examples?
+
+\subsubsection{$\myprod$, or dependent product}
+
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \centering{
+     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
+     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
+     \BinaryInfC{$\myjud{\myexi{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
+     \DisplayProof
+
+     \myderivsp
+
+    \begin{tabular}{cc}
+      \AxiomC{$\myjud{\mytmm}{\mytya}$}
+      \AxiomC{$\myjud{\mytmn}{\mysub{\mytyb}{\myb{x}}{\mytmm}}$}
+      \BinaryInfC{$\myjud{\mypairr{\mytmm}{\myb{x}}{\mytyb}{\mytmn}}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
+      \noLine
+      \UnaryInfC{\phantom{$--$}}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\mytmt}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
+      \UnaryInfC{$\hspace{0.7cm}\myjud{\myapp{\myfst}{\mytmt}}{\mytya}\hspace{0.7cm}$}
+      \noLine
+      \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mysub{\mytyb}{\myb{x}}{\myapp{\myfst}{\mytmt}}}$}
+      \DisplayProof
+    \end{tabular}
+
+  }
+}
+
+
+\subsubsection{$\mytyc{W}$, or well-order}
+\label{sec:well-order}
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \centering{
+     \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
+     \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
+     \BinaryInfC{$\myjud{\myw{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
+     \DisplayProof
+
+     \myderivsp
+
+     \AxiomC{$\myjud{\mytmt}{\mytya}$}
+     \AxiomC{$\myjud{\mysynel{f}}{\mysub{\mytyb}{\myb{x}}{\mytmt} \myarr \myw{\myb{x}}{\mytya}{\mytyb}}$}
+     \BinaryInfC{$\myjud{\mytmt \mynode{\myb{x}}{\mytyb} \myse{f}}{\myw{\myb{x}}{\mytya}{\mytyb}}$}
+     \DisplayProof
+
+     \myderivsp
+
+     \AxiomC{$\myjud{\myse{u}}{\myw{\myb{x}}{\myse{S}}{\myse{T}}}$}
+     \AxiomC{$\myjudd{\myctx; \myb{w} : \myw{\myb{x}}{\myse{S}}{\myse{T}}}{\myse{P}}{\mytyp_l}$}
+     \noLine
+     \BinaryInfC{$\myjud{\myse{p}}{
+       \myfora{\myb{s}}{\myse{S}}{\myfora{\myb{f}}{\mysub{\myse{T}}{\myb{x}}{\myse{s}} \myarr \myw{\myb{x}}{\myse{S}}{\myse{T}}}{(\myfora{\myb{t}}{\mysub{\myse{T}}{\myb{x}}{\myb{s}}}{\mysub{\myse{P}}{\myb{w}}{\myapp{\myb{f}}{\myb{t}}}}) \myarr \mysub{\myse{P}}{\myb{w}}{\myb{f}}}}
+     }$}
+     \UnaryInfC{$\myjud{\myrec{\myse{u}}{\myb{w}}{\myse{P}}{\myse{p}}}{\mysub{\myse{P}}{\myb{w}}{\myse{u}}}$}
+     \DisplayProof
+   }
+}
+
+
 \section{The struggle for equality}
 \label{sec:equality}
 
-\section{Extending ITT}
+\subsection{Propositional equality...}
+
+\subsection{...and its limitations}
+
+eta law
+
+congruence
+
+UIP
+
+\subsection{Equality reflection}
+
+\subsection{Observational equality}
+
+\subsection{Univalence foundations}
+
+\section{Augmenting ITT}
 \label{sec:practical}
 
+\subsection{A more liberal hierarchy}
+
+\subsection{Type inference}
+
+\subsubsection{Bidirectional type checking}
+
+\subsubsection{Pattern unification}
+
+\subsection{Pattern matching and explicit fixpoints}
+
+\subsection{Induction-recursion}
+
+\subsection{Coinduction}
+
+\subsection{Dealing with partiality}
+
+\subsection{Type holes}
+
 \section{\mykant}
 \label{sec:kant}
 
+
 \appendix
 
 \section{Notation and syntax}
@@ -391,58 +1038,81 @@ for example
   Typing derivations here.
 }
 
-In the languages presented I will also use different fonts and colors for
-different things:
+In the languages presented and Agda code samples I also highlight the syntax,
+following a uniform color and font convention:
 
 \begin{center}
   \begin{tabular}{c | l}
-    $\mytyc{Sans}$  & Type constructors. \\
-    $\mydc{sans}$  & Data constructors. \\
+    $\mytyc{Sans}$   & Type constructors. \\
+    $\mydc{sans}$    & Data constructors. \\
     % $\myfld{sans}$  & Field accessors (e.g. \myfld{fst} and \myfld{snd} for products). \\
-    $\mysyn{roman}$ & Syntax of the language. \\
-    $\myfun{roman}$ & Defined values. \\
-    $\myb{math}$    & Bound variables.
+    $\mysyn{roman}$  & Keywords of the language. \\
+    $\myfun{roman}$  & Defined values and destructors. \\
+    $\myb{math}$     & Bound variables.
   \end{tabular}
 \end{center}
 
-\section{Agda rendition of a core ITT}
+Moreover, I will from time to time give examples in the Haskell programming
+language as defined in \citep{Haskell2010}, which I will typeset in
+\texttt{teletype} font.  I assume that the reader is already familiar with
+Haskell, plenty of good introductions are available \citep{LYAH,ProgInHask}.
+
+When presenting grammars, I will use a word in $\mysynel{math}$ font
+(e.g. $\mytmsyn$ or $\mytysyn$) to indicate indicate nonterminals. Additionally,
+I will use quite flexibly a $\mysynel{math}$ font to indicate a syntactic
+element.  More specifically, terms are usually indicated by lowercase letters
+(often $\mytmt$, $\mytmm$, or $\mytmn$); and types by an uppercase letter (often
+$\mytya$, $\mytyb$, or $\mytycc$).
+
+When presenting type derivations, I will often abbreviate and present multiple
+conclusions, each on a separate line:
+
+\begin{prooftree}
+  \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
+  \UnaryInfC{$\myjud{\myapp{\myfst}{\mytmt}}{\mytya}$}
+  \noLine
+  \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
+\end{prooftree}
+
+\section{Agda rendition of core ITT}
 \label{app:agda-code}
 
 \begin{code}
 module ITT where
-  data Empty : Set where
+  open import Level
+
+  data ⊥ : Set where
 
-  absurd : ∀ {a} {A : Set a} → Empty → A
+  absurd : ∀ {a} {A : Set a} →  → A
   absurd ()
 
-  record Unit : Set where
+  record  : Set where
     constructor tt
 
   record _×_ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
     constructor _,_
     field
-      fst : A
-      snd : B fst
+      fst  : A
+      snd  : B fst
 
   data Bool : Set where
     true false : Bool
 
-  if_/_then_else_ : ∀ {a}
-    (x : Bool) → (P : Bool → Set a) → P true → P false → P x
-  if true / _ then x else _ = x
-  if false / _ then _ else x = x
+  if_then_else_ : ∀ {a} {P : Bool → Set a} (x : Bool) → P true → P false → P x
+  if true then x else _ = x
+  if false then _ else x = x
 
   data W {s p} (S : Set s) (P : S → Set p) : Set (s ⊔ p) where
     _◁_ : (s : S) → (P s → W S P) → W S P
 
   rec : ∀ {a b} {S : Set a} {P : S → Set b}
-    (C : W S P → Set) →      -- some conclusion we hope holds
-    ((s : S) →               -- given a shape...
-     (f : P s → W S P) →     -- ...and a bunch of kids...
-     ((p : P s) → C (f p)) → -- ...and C for each kid in the bunch...
-     C (s ◁ f)) →            -- ...does C hold for the node?
-    (x : W S P) →            -- If so, ...
-    C x                      -- ...C always holds.
+    (C : W S P → Set) →       -- some conclusion we hope holds
+    ((s : S) →                -- given a shape...
+     (f : P s → W S P) →      -- ...and a bunch of kids...
+     ((p : P s) → C (f p)) →  -- ...and C for each kid in the bunch...
+     C (s ◁ f)) →             -- ...does C hold for the node?
+    (x : W S P) →             -- If so, ...
+    C x                       -- ...C always holds.
   rec C c (s ◁ f) = c s f (λ p → rec C c (f p))
 \end{code}