...
[bitonic-mengthesis.git] / thesis.lagda
index 794b10de86e55ab1dd8bab6672f9dad51497847c..31f37fe91b840d5a24c5c647cd1bb967959b5f21 100644 (file)
@@ -1,6 +1,18 @@
-\documentclass[report]{article}
+\documentclass[report, 11pt]{article}
 \usepackage{etex}
 
+\usepackage[sc,slantedGreek]{mathpazo}
+\linespread{1.05}
+% \usepackage{times}
+
+\oddsidemargin 0in
+\evensidemargin 0in
+\textheight 9.5in 
+\textwidth     6.2in
+\topmargin     -7mm  
+\parindent     10pt
+
+
 %% Narrow margins
 % \usepackage{fullpage}
 
@@ -32,6 +44,8 @@
 %% Subfigure
 \usepackage{subcaption}
 
+\usepackage{verbatim}
+
 %% diagrams
 \usepackage{tikz}
 \usetikzlibrary{shapes,arrows,positioning}
 \DeclareUnicodeCharacter{8799}{\ensuremath{\stackrel{?}{=}}}
 \DeclareUnicodeCharacter{9655}{\ensuremath{\rhd}}
 
+\renewenvironment{code}%
+{\noindent\ignorespaces\advance\leftskip\mathindent\AgdaCodeStyle\pboxed\small}%
+{\endpboxed\par\noindent%
+\ignorespacesafterend\small}
+
 
 %% -----------------------------------------------------------------------------
 %% Commands
 
+\newcommand{\mysmall}{}
 \newcommand{\mysyn}{\AgdaKeyword}
 \newcommand{\mytyc}{\AgdaDatatype}
 \newcommand{\mydc}{\AgdaInductiveConstructor}
 \newcommand{\myfld}{\AgdaField}
 \newcommand{\myfun}{\AgdaFunction}
-% TODO make this use AgdaBound
-\newcommand{\myb}[1]{\AgdaBound{#1}}
+\newcommand{\myb}[1]{\AgdaBound{$#1$}}
 \newcommand{\myfield}{\AgdaField}
 \newcommand{\myind}{\AgdaIndent}
 \newcommand{\mykant}{\textsc{Kant}}
 \newcommand{\myse}{\mysynel}
 \newcommand{\mytmsyn}{\mysynel{term}}
 \newcommand{\mysp}{\ }
-% TODO \mathbin or \mathre here?
 \newcommand{\myabs}[2]{\mydc{$\lambda$} #1 \mathrel{\mydc{$\mapsto$}} #2}
 \newcommand{\myappsp}{\hspace{0.07cm}}
 \newcommand{\myapp}[2]{#1 \myappsp #2}
 \newcommand{\mysynsep}{\ \ |\ \ }
+\newcommand{\myITE}[3]{\myfun{If}\, #1\, \myfun{Then}\, #2\, \myfun{Else}\, #3}
+\newcommand{\mycumul}{\preceq}
 
 \FrameSep0.2cm
 \newcommand{\mydesc}[3]{
   \noindent
   \mbox{
     \parbox{\textwidth}{
-      {\small
-        \vspace{0.3cm}
+      {\mysmall
+        \vspace{0.2cm}
         \hfill \textbf{#1} $#2$
-
         \framebox[\textwidth]{
           \parbox{\textwidth}{
             \vspace{0.1cm}
-            #3
-            \vspace{0.1cm}
+            \centering{
+              #3
+            }
+            \vspace{0.2cm}
           }
         }
+        \vspace{0.2cm}
       }
     }
   }
 }
 
-% TODO is \mathbin the correct thing for arrow and times?
-
 \newcommand{\mytmt}{\mysynel{t}}
 \newcommand{\mytmm}{\mysynel{m}}
 \newcommand{\mytmn}{\mysynel{n}}
 \newcommand{\mysub}[3]{#1[#2 / #3]}
 \newcommand{\mytysyn}{\mysynel{type}}
 \newcommand{\mybasetys}{K}
-% TODO change this name
 \newcommand{\mybasety}[1]{B_{#1}}
 \newcommand{\mytya}{\myse{A}}
 \newcommand{\mytyb}{\myse{B}}
 \newcommand{\myvalid}[1]{#1 \vdash \underline{\mathrm{valid}}}
 \newcommand{\myjudd}[3]{#1 \vdash #2 : #3}
 \newcommand{\myjud}[2]{\myjudd{\myctx}{#1}{#2}}
-% TODO \mathbin or \mathrel here?
 \newcommand{\myabss}[3]{\mydc{$\lambda$} #1 {:} #2 \mathrel{\mydc{$\mapsto$}} #3}
 \newcommand{\mytt}{\mydc{$\langle\rangle$}}
 \newcommand{\myunit}{\mytyc{Unit}}
 \newcommand{\mycase}[2]{\mathopen{\myfun{[}}#1\mathpunct{\myfun{,}} #2 \mathclose{\myfun{]}}}
 \newcommand{\myabsurd}[1]{\myfun{absurd}_{#1}}
 \newcommand{\myarg}{\_}
-\newcommand{\myderivsp}{\vspace{0.3cm}}
+\newcommand{\myderivsp}{}
+\newcommand{\myderivspp}{\vspace{0.3cm}}
 \newcommand{\mytyp}{\mytyc{Type}}
 \newcommand{\myneg}{\myfun{$\neg$}}
 \newcommand{\myar}{\,}
 \newcommand{\mycons}{\mathbin{\mydc{∷}}}
 \newcommand{\myfoldr}{\myfun{foldr}}
 \newcommand{\myw}[3]{\myapp{\myapp{\mytyc{W}}{(#1 {:} #2)}}{#3}}
-\newcommand{\mynode}[2]{\mathbin{\mydc{$\lhd$}_{#1.#2}}}
+\newcommand{\mynodee}{\mathbin{\mydc{$\lhd$}}}
+\newcommand{\mynode}[2]{\mynodee_{#1.#2}}
 \newcommand{\myrec}[4]{\myfun{rec}\,#1 / {#2.#3}\,\myfun{with}\,#4}
 \newcommand{\mylub}{\sqcup}
 \newcommand{\mydefeq}{\cong}
 \newcommand{\myrefl}{\mydc{refl}}
 \newcommand{\mypeq}[1]{\mathrel{\mytyc{=}_{#1}}}
-\newcommand{\myjeqq}{\myfun{=-elim}}
+\newcommand{\myjeqq}{\myfun{$=$-elim}}
 \newcommand{\myjeq}[3]{\myapp{\myapp{\myapp{\myjeqq}{#1}}{#2}}{#3}}
 \newcommand{\mysubst}{\myfun{subst}}
 \newcommand{\myprsyn}{\myse{prop}}
-\newcommand{\myprdec}[1]{\llbracket #1 \rrbracket}
-\newcommand{\myand}{\wedge}
+\newcommand{\myprdec}[1]{\mathopen{\mytyc{$\llbracket$}} #1 \mathclose{\mytyc{$\rrbracket$}}}
+\newcommand{\myand}{\mathrel{\mytyc{$\wedge$}}}
+\newcommand{\mybigand}{\mathrel{\mytyc{$\bigwedge$}}}
 \newcommand{\myprfora}[3]{\forall #1 {:} #2. #3}
-\newcommand{\mybot}{\bot}
-\newcommand{\mytop}{\top}
+\newcommand{\myimpl}{\mathrel{\mytyc{$\Rightarrow$}}}
+\newcommand{\mybot}{\mytyc{$\bot$}}
+\newcommand{\mytop}{\mytyc{$\top$}}
 \newcommand{\mycoe}{\myfun{coe}}
 \newcommand{\mycoee}[4]{\myapp{\myapp{\myapp{\myapp{\mycoe}{#1}}{#2}}{#3}}{#4}}
 \newcommand{\mycoh}{\myfun{coh}}
 \newcommand{\mycohh}[4]{\myapp{\myapp{\myapp{\myapp{\mycoh}{#1}}{#2}}{#3}}{#4}}
-\newcommand{\myjm}[4]{(#1 {:} #2) = (#3 {:} #4)}
+\newcommand{\myjm}[4]{(#1 {:} #2) \mathrel{\mytyc{=}} (#3 {:} #4)}
+\newcommand{\myeq}{\mathrel{\mytyc{=}}}
 \newcommand{\myprop}{\mytyc{Prop}}
 \newcommand{\mytmup}{\mytmsyn\uparrow}
 \newcommand{\mydefs}{\Delta}
 \newcommand{\myann}[2]{#1 : #2}
 \newcommand{\mydeclsyn}{\myse{decl}}
 \newcommand{\myval}[3]{#1 : #2 \mapsto #3}
-\newcommand{\mypost}[2]{\mysyn{postulate}\ #1 : #2}
-\newcommand{\myadt}[4]{\mysyn{data}\ #1 : #2 \myarr \mytyp\ \mysyn{where}\ #3\{ #4 \}}
-\newcommand{\myreco}[4]{\mysyn{record}\ #1 : #2 \myarr \mytyp\ \mysyn{where}\ #3\ \{ #4 \}}
-% TODO change vdash
+\newcommand{\mypost}[2]{\mysyn{abstract}\ #1 : #2}
+\newcommand{\myadt}[4]{\mysyn{data}\ #1 #2\ \mysyn{where}\ #3\{ #4 \}}
+\newcommand{\myreco}[4]{\mysyn{record}\ #1 #2\ \mysyn{where}\ \{ #4 \}}
 \newcommand{\myelabt}{\vdash}
 \newcommand{\myelabf}{\rhd}
 \newcommand{\myelab}[2]{\myctx \myelabt #1 \myelabf #2}
 % \newcommand{\mytesctx}{\
 \newcommand{\mytelesyn}{\myse{telescope}}
 \newcommand{\myrecs}{\mymeta{recs}}
+\newcommand{\myle}{\mathrel{\lcfun{$\le$}}}
+\newcommand{\mylet}{\mysyn{let}}
+\newcommand{\myhead}{\mymeta{head}}
+\newcommand{\mytake}{\mymeta{take}}
+\newcommand{\myix}{\mymeta{ix}}
+\newcommand{\myapply}{\mymeta{apply}}
+\newcommand{\mydataty}{\mymeta{datatype}}
+\newcommand{\myisreco}{\mymeta{record}}
+\newcommand{\mydcsep}{\ |\ }
+\newcommand{\mytree}{\mytyc{Tree}}
+\newcommand{\myproj}[1]{\myfun{$\pi_{#1}$}}
+\newcommand{\mysigma}{\mytyc{$\Sigma$}}
+\newcommand{\mynegder}{\vspace{-0.3cm}}
+\newcommand{\myquot}{\Downarrow}
+
 
 %% -----------------------------------------------------------------------------
 
 \author{Francesco Mazzoli \href{mailto:fm2209@ic.ac.uk}{\nolinkurl{<fm2209@ic.ac.uk>}}}
 \date{June 2013}
 
+  \iffalse
+  \begin{code}
+    module thesis where
+  \end{code}
+  \fi
+
 \begin{document}
 
-\iffalse
-\begin{code}
-module thesis where
-\end{code}
-\fi
+\begin{titlepage}  
+  \centering
+
+  \maketitle
+  \thispagestyle{empty}
+
+  \begin{minipage}{0.4\textwidth}
+  \begin{flushleft} \large
+    \emph{Supervisor:}\\
+    Dr. Steffen \textsc{van Backel}
+  \end{flushleft}
+\end{minipage}
+\begin{minipage}{0.4\textwidth}
+  \begin{flushright} \large
+    \emph{Co-marker:} \\
+    Dr. Philippa \textsc{Gardner}
+  \end{flushright}
+\end{minipage}
 
-\maketitle
+\end{titlepage}
 
 \begin{abstract}
   The marriage between programming and logic has been a very fertile one.  In
   particular, since the simply typed lambda calculus (STLC), a number of type
   systems have been devised with increasing expressive power.
 
-  Section \ref{sec:types} will give a very brief overview of STLC, and then
-  illustrate how it can be interpreted as a natural deduction system.  Section
-  \ref{sec:itt} will introduce Inutitionistic Type Theory (ITT), which expands
-  on this concept, employing a more expressive logic.  The exposition is quite
-  dense since there is a lot of material to cover; for a more complete treatment
-  of the material the reader can refer to \citep{Thompson1991, Pierce2002}.
-  Section \ref{sec:equality} will explain why equality has always been a tricky
-  business in these theories, and talk about the various attempts that have been
-  made to make the situation better.  One interesting development has recently
-  emerged: Observational Type theory.
-
-  Section \ref{sec:practical} will describe common extensions found in the
-  systems currently in use.  Finally, section \ref{sec:kant} will describe a
-  system developed by the author that implements a core calculus based on the
-  principles described.
+  Among this systems, Inutitionistic Type Theory (ITT) has been a very
+  popular framework for theorem provers and programming languages.
+  However, equality has always been a tricky business in ITT and related
+  theories.
+
+  In these thesis we will explain why this is the case, and present
+  Observational Type Theory (OTT), a solution to some of the problems
+  with equality.  We then describe $\mykant$, a theorem prover featuring
+  OTT in a setting more close to the one found in current systems.
+  Having implemented part of $\mykant$ as a Haskell program, we describe
+  some of the implementation issues faced.
+\end{abstract}
+
+\clearpage
+
+\renewcommand{\abstractname}{Acknowledgements}
+\begin{abstract}
+  I would like to thank Steffen van Backel, my supervisor, who was brave
+  enough to believe in my project and who provided much advice and
+  support.
+
+  I would also like to thank the Haskell and Agda community on
+  \texttt{IRC}, which guided me through the strange world of types; and
+  in particular Andrea Vezzosi and James Deikun, with whom I entertained
+  countless insightful discussions in the past year.  Andrea suggested
+  Observational Type Theory as a topic of study: this thesis would not
+  exist without him.  Before them, Tony Fields introduced me to Haskell,
+  unknowingly filling most of my free time from that time on.
+
+  Finally, much of the work stems from the research of Conor McBride,
+  who answered many of my doubts through these months.  I also owe him
+  the colours.
 \end{abstract}
 
 \clearpage
@@ -290,14 +363,14 @@ formally explained by the $\beta$-reduction rule:
   $
   \begin{array}{l}
     \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}\text{, where} \\
-    \myind{1}
+    \myind{2}
     \begin{array}{l@{\ }c@{\ }l}
       \mysub{\myb{x}}{\myb{x}}{\mytmn} & = & \mytmn \\
       \mysub{\myb{y}}{\myb{x}}{\mytmn} & = & y\text{, with } \myb{x} \neq y \\
       \mysub{(\myapp{\mytmt}{\mytmm})}{\myb{x}}{\mytmn} & = & (\myapp{\mysub{\mytmt}{\myb{x}}{\mytmn}}{\mysub{\mytmm}{\myb{x}}{\mytmn}}) \\
       \mysub{(\myabs{\myb{x}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{x}}{\mytmm} \\
       \mysub{(\myabs{\myb{y}}{\mytmm})}{\myb{x}}{\mytmn} & = & \myabs{\myb{z}}{\mysub{\mysub{\mytmm}{\myb{y}}{\myb{z}}}{\myb{x}}{\mytmn}}, \\
-      \multicolumn{3}{l}{\myind{1} \text{with $\myb{x} \neq \myb{y}$ and $\myb{z}$ not free in $\myapp{\mytmm}{\mytmn}$}}
+      \multicolumn{3}{l}{\myind{2} \text{with $\myb{x} \neq \myb{y}$ and $\myb{z}$ not free in $\myapp{\mytmm}{\mytmn}$}}
     \end{array}
   \end{array}
   $
@@ -310,10 +383,11 @@ constructs assuming similar precautions.
 These few elements are of remarkable expressiveness, and in fact Turing
 complete.  As a corollary, we must be able to devise a term that reduces forever
 (`loops' in imperative terms):
+{\mysmall
 \[
   (\myapp{\omega}{\omega}) \myred (\myapp{\omega}{\omega}) \myred \cdots \text{, with $\omega = \myabs{x}{\myapp{x}{x}}$}
 \]
-
+}
 A \emph{redex} is a term that can be reduced.  In the untyped $\lambda$-calculus
 this will be the case for an application in which the first term is an
 abstraction, but in general we call aterm reducible if it appears to the left of
@@ -341,12 +415,12 @@ sense given our typing rules \citep{Curry1934}.  The first most basic instance
 of this idea takes the name of \emph{simply typed $\lambda$ calculus}, whose
 rules are shown in figure \ref{fig:stlc}.
 
-Our types contain a set of \emph{type variables} $\Phi$, which might correspond
-to some `primitive' types; and $\myarr$, the type former for `arrow' types, the
-types of functions.  The language is explicitly typed: when we bring a variable
-into scope with an abstraction, we explicitly declare its type. $\mytya$,
-$\mytyb$, $\mytycc$, will be used to refer to a generic type.  Reduction is
-unchanged from the untyped $\lambda$-calculus.
+Our types contain a set of \emph{type variables} $\Phi$, which might
+correspond to some `primitive' types; and $\myarr$, the type former for
+`arrow' types, the types of functions.  The language is explicitly
+typed: when we bring a variable into scope with an abstraction, we
+declare its type.  Reduction is unchanged from the untyped
+$\lambda$-calculus.
 
 \begin{figure}[t]
   \mydesc{syntax}{ }{
@@ -362,7 +436,6 @@ unchanged from the untyped $\lambda$-calculus.
   }
   
   \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
-    \centering{
       \begin{tabular}{ccc}
         \AxiomC{$\myctx(x) = A$}
         \UnaryInfC{$\myjud{\myb{x}}{A}$}
@@ -377,7 +450,6 @@ unchanged from the untyped $\lambda$-calculus.
         \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mytyb}$}
         \DisplayProof
       \end{tabular}
-    }
 }
   \caption{Syntax and typing rules for the STLC.  Reduction is unchanged from
     the untyped $\lambda$-calculus.}
@@ -419,18 +491,14 @@ adding a combinator that recurses:
 \end{minipage} 
 \begin{minipage}{0.5\textwidth}
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}} {
-  \centering{
     \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytya}$}
     \UnaryInfC{$\myjud{\myfix{\myb{x}}{\mytya}{\mytmt}}{\mytya}$}
     \DisplayProof
-  }
 }
 \end{minipage} 
 
 \mydesc{reduction:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
     $ \myfix{\myb{x}}{\mytya}{\mytmt} \myred \mysub{\mytmt}{\myb{x}}{(\myfix{\myb{x}}{\mytya}{\mytmt})}$
-  }
 }
 
 This will deprive us of normalisation, which is a particularly bad thing if we
@@ -447,9 +515,9 @@ The arrow ($\myarr$) type corresponds to implication.  If we wish to prove that
 that $(\mytya \myarr \mytyb) \myarr (\mytyb \myarr \mytycc) \myarr (\mytya
 \myarr \mytycc)$, all we need to do is to devise a $\lambda$-term that has the
 correct type:
-\[
+{\mysmall\[
   \myabss{\myb{f}}{(\mytya \myarr \mytyb)}{\myabss{\myb{g}}{(\mytyb \myarr \mytycc)}{\myabss{\myb{x}}{\mytya}{\myapp{\myb{g}}{(\myapp{\myb{f}}{\myb{x}})}}}}
-\]
+\]}
 That is, function composition.  Going beyond arrow types, we can extend our bare
 lambda calculus with useful types to represent other logical constructs, as
 shown in figure \ref{fig:natded}.
@@ -471,7 +539,6 @@ shown in figure \ref{fig:natded}.
 }
 
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
-  \centering{
     \begin{tabular}{cc}
       $
       \begin{array}{l@{ }l@{\ }c@{\ }l}
@@ -489,11 +556,9 @@ shown in figure \ref{fig:natded}.
       \end{array}
       $
     \end{tabular}
-  }
 }
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
-  \centering{
     \begin{tabular}{cc}
       \AxiomC{\phantom{$\myjud{\mytmt}{\myempty}$}}
       \UnaryInfC{$\myjud{\mytt}{\myunit}$}
@@ -503,9 +568,9 @@ shown in figure \ref{fig:natded}.
       \UnaryInfC{$\myjud{\myapp{\myabsurd{\mytya}}{\mytmt}}{\mytya}$}
       \DisplayProof
     \end{tabular}
-  }
-  \myderivsp
-  \centering{
+
+  \myderivspp
+
     \begin{tabular}{cc}
       \AxiomC{$\myjud{\mytmt}{\mytya}$}
       \UnaryInfC{$\myjud{\myapp{\myleft{\mytyb}}{\mytmt}}{\mytya \mysum \mytyb}$}
@@ -516,9 +581,9 @@ shown in figure \ref{fig:natded}.
       \DisplayProof
 
     \end{tabular}
-  }
-  \myderivsp
-  \centering{
+
+  \myderivspp
+
     \begin{tabular}{cc}
       \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
       \AxiomC{$\myjud{\mytmn}{\mytya \myarr \mytycc}$}
@@ -526,9 +591,9 @@ shown in figure \ref{fig:natded}.
       \TrinaryInfC{$\myjud{\myapp{\mycase{\mytmm}{\mytmn}}{\mytmt}}{\mytycc}$}
       \DisplayProof
     \end{tabular}
-  }
-  \myderivsp
-  \centering{
+
+  \myderivspp
+
     \begin{tabular}{ccc}
       \AxiomC{$\myjud{\mytmm}{\mytya}$}
       \AxiomC{$\myjud{\mytmn}{\mytyb}$}
@@ -543,29 +608,27 @@ shown in figure \ref{fig:natded}.
       \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
       \DisplayProof
     \end{tabular}
-  }
 }
 \caption{Rules for the extendend STLC.  Only the new features are shown, all the
   rules and syntax for the STLC apply here too.}
   \label{fig:natded}
 \end{figure}
 
-Tagged unions (or sums, or coproducts---$\mysum$ here, \texttt{Either} in
-Haskell) correspond to disjunctions, and dually tuples (or pairs, or
-products---$\myprod$ here, tuples in Haskell) correspond to conjunctions.  This
-is apparent looking at the ways to construct and destruct the values inhabiting
-those types: for $\mysum$ $\myleft{ }$ and $\myright{ }$ correspond to $\vee$
-introduction, and $\mycase{\_}{\_}$ to $\vee$ elimination; for $\myprod$
-$\mypair{\_}{\_}$ corresponds to $\wedge$ introduction, $\myfst$ and $\mysnd$ to
-$\wedge$ elimination.
+Tagged unions (or sums, or coproducts---$\mysum$ here, \texttt{Either}
+in Haskell) correspond to disjunctions, and dually tuples (or pairs, or
+products---$\myprod$ here, tuples in Haskell) correspond to
+conjunctions.  This is apparent looking at the ways to construct and
+destruct the values inhabiting those types: for $\mysum$ $\myleft{ }$
+and $\myright{ }$ correspond to $\vee$ introduction, and
+$\mycase{\myarg}{\myarg}$ to $\vee$ elimination; for $\myprod$
+$\mypair{\myarg}{\myarg}$ corresponds to $\wedge$ introduction, $\myfst$
+and $\mysnd$ to $\wedge$ elimination.
 
 The trivial type $\myunit$ corresponds to the logical $\top$, and dually
 $\myempty$ corresponds to the logical $\bot$.  $\myunit$ has one introduction
 rule ($\mytt$), and thus one inhabitant; and no eliminators.  $\myempty$ has no
 introduction rules, and thus no inhabitants; and one eliminator ($\myabsurd{
-}$), corresponding to the logical \emph{ex falso quodlibet}.  Note that in the
-constructors for the sums and the destructor for $\myempty$ we need to include
-some type information to keep type checking decidable.
+}$), corresponding to the logical \emph{ex falso quodlibet}.
 
 With these rules, our STLC now looks remarkably similar in power and use to the
 natural deduction we already know.  $\myneg \mytya$ can be expressed as $\mytya
@@ -585,15 +648,16 @@ As in logic, if we want to keep our system consistent, we must make sure that no
 closed terms (in other words terms not under a $\lambda$) inhabit $\myempty$.
 The variant of STLC presented here is indeed
 consistent, a result that follows from the fact that it is
-normalising. % TODO explain
+normalising.
 Going back to our $\mysyn{fix}$ combinator, it is easy to see how it ruins our
 desire for consistency.  The following term works for every type $\mytya$,
 including bottom:
-\[
+{\mysmall\[
 (\myfix{\myb{x}}{\mytya}{\myb{x}}) : \mytya
-\]
+\]}
 
 \subsection{Inductive data}
+\label{sec:ind-data}
 
 To make the STLC more useful as a programming language or reasoning tool it is
 common to include (or let the user define) inductive data types.  These comprise
@@ -617,7 +681,6 @@ lists will be the usual folding operation ($\myfoldr$).  See figure
   $
 }
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
-  \centering{
   $
   \begin{array}{l@{\ }c@{\ }l}
     \myapp{\myapp{\myapp{\myfoldr}{\myse{f}}}{\mytmt}}{\mynil{\mytya}} & \myred & \mytmt \\
@@ -627,9 +690,7 @@ lists will be the usual folding operation ($\myfoldr$).  See figure
   \end{array}
   $
 }
-}
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
-  \centering{
     \begin{tabular}{cc}
       \AxiomC{\phantom{$\myjud{\mytmm}{\mytya}$}}
       \UnaryInfC{$\myjud{\mynil{\mytya}}{\myapp{\mylist}{\mytya}}$}
@@ -640,22 +701,20 @@ lists will be the usual folding operation ($\myfoldr$).  See figure
       \BinaryInfC{$\myjud{\mytmm \mycons \mytmn}{\myapp{\mylist}{\mytya}}$}
       \DisplayProof
     \end{tabular}
-  }
-  \myderivsp
-  \centering{
+  \myderivspp
+
     \AxiomC{$\myjud{\mysynel{f}}{\mytya \myarr \mytyb \myarr \mytyb}$}
     \AxiomC{$\myjud{\mytmm}{\mytyb}$}
     \AxiomC{$\myjud{\mytmn}{\myapp{\mylist}{\mytya}}$}
     \TrinaryInfC{$\myjud{\myapp{\myapp{\myapp{\myfoldr}{\mysynel{f}}}{\mytmm}}{\mytmn}}{\mytyb}$}
     \DisplayProof
-  }
 }
 \caption{Rules for lists in the STLC.}
 \label{fig:list}
 \end{figure}
 
 In section \ref{sec:well-order} we will see how to give a general account of
-inductive data.  %TODO does this make sense to have here?
+inductive data.
 
 \section{Intuitionistic Type Theory}
 \label{sec:itt}
@@ -686,9 +745,9 @@ Here $\lambda{\to}$, in the bottom left, is the STLC.  From there can move along
 \item[Terms depending on types (towards $\lambda{2}$)] We can quantify over
   types in our type signatures.  For example, we can define a polymorphic
   identity function:
-  \[\displaystyle
+  {\mysmall\[\displaystyle
   (\myabss{\myb{A}}{\mytyp}{\myabss{\myb{x}}{\myb{A}}{\myb{x}}}) : (\myb{A} : \mytyp) \myarr \myb{A} \myarr \myb{A}
-  \]
+  \]}
   The first and most famous instance of this idea has been System F.  This form
   of polymorphism and has been wildly successful, also thanks to a well known
   inference algorithm for a restricted version of System F known as
@@ -696,13 +755,13 @@ Here $\lambda{\to}$, in the bottom left, is the STLC.  From there can move along
 \item[Types depending on types (towards $\lambda{\underline{\omega}}$)] We have
   type operators.  For example we could define a function that given types $R$
   and $\mytya$ forms the type that represents a value of type $\mytya$ in
-  continuation passing style: \[\displaystyle(\myabss{\myb{A} \myar \myb{R}}{\mytyp}{(\myb{A}
-    \myarr \myb{R}) \myarr \myb{R}}) : \mytyp \myarr \mytyp \myarr \mytyp\]
+  continuation passing style: {\mysmall\[\displaystyle(\myabss{\myb{A} \myar \myb{R}}{\mytyp}{(\myb{A}
+    \myarr \myb{R}) \myarr \myb{R}}) : \mytyp \myarr \mytyp \myarr \mytyp\]}
 \item[Types depending on terms (towards $\lambda{P}$)] Also known as `dependent
   types', give great expressive power.  For example, we can have values of whose
   type depend on a boolean:
-  \[\displaystyle(\myabss{\myb{x}}{\mybool}{\myite{\myb{x}}{\mynat}{\myrat}}) : \mybool
-  \myarr \mytyp\]
+  {\mysmall\[\displaystyle(\myabss{\myb{x}}{\mybool}{\myite{\myb{x}}{\mynat}{\myrat}}) : \mybool
+  \myarr \mytyp\]}
 \end{description}
 
 All the systems preserve the properties that make the STLC well behaved.  The
@@ -733,25 +792,16 @@ Most widely used interactive theorem provers are based on ITT.  Popular ones
 include Agda \citep{Norell2007, Bove2009}, Coq \citep{Coq}, and Epigram
 \citep{McBride2004, EpigramTut}.
 
-\subsection{A note on inference}
-
-% TODO do this, adding links to the sections about bidi type checking and
-% implicit universes.
-In the following text I will often omit explicit typing for abstractions or
-
-Moreover, I will use $\mytyp$ without bothering to specify a
-universe, with the silent assumption that the definition is consistent
-regarding to the hierarchy.
-
 \subsection{A simple type theory}
 \label{sec:core-tt}
 
-The calculus I present follows the exposition in \citep{Thompson1991}, and is
-quite close to the original formulation of predicative ITT as found in
-\citep{Martin-Lof1984}.  The system's syntax and reduction rules are presented
-in their entirety in figure \ref{fig:core-tt-syn}.  The typing rules are
-presented piece by piece.  An Agda rendition of the presented theory is
-reproduced in appendix \ref{app:agda-code}.
+The calculus I present follows the exposition in \citep{Thompson1991},
+and is quite close to the original formulation of predicative ITT as
+found in \citep{Martin-Lof1984}.  The system's syntax and reduction
+rules are presented in their entirety in figure \ref{fig:core-tt-syn}.
+The typing rules are presented piece by piece.  Agda and \mykant\
+renditions of the presented theory and all the examples is reproduced in
+appendix \ref{app:itt-code}.
 
 \begin{figure}[t]
 \mydesc{syntax}{ }{
@@ -778,8 +828,7 @@ reproduced in appendix \ref{app:agda-code}.
 }
 
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
-  \centering{
-    \begin{tabular}{cc}
+    \begin{tabular}{ccc}
       $
       \begin{array}{l@{ }l@{\ }c@{\ }l}
         \myitee{\mytrue &}{\myb{x}}{\myse{P}}{\mytmm}{\mytmn} & \myred & \mytmm \\
@@ -790,15 +839,16 @@ reproduced in appendix \ref{app:agda-code}.
       $
       \myapp{(\myabss{\myb{x}}{\mytya}{\mytmm})}{\mytmn} \myred \mysub{\mytmm}{\myb{x}}{\mytmn}
       $
-      \myderivsp
-    \end{tabular}
+      &
     $
     \begin{array}{l@{ }l@{\ }c@{\ }l}
       \myapp{\myfst &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmm \\
       \myapp{\mysnd &}{\mypair{\mytmm}{\mytmn}} & \myred & \mytmn
     \end{array}
     $
-    \myderivsp
+    \end{tabular}
+
+    \myderivspp
 
     $
     \myrec{(\myse{s} \mynode{\myb{x}}{\myse{T}} \myse{f})}{\myb{y}}{\myse{P}}{\myse{p}} \myred
@@ -806,7 +856,6 @@ reproduced in appendix \ref{app:agda-code}.
       \myrec{\myapp{\myse{f}}{\myb{t}}}{\myb{y}}{\myse{P}}{\mytmt}
     })}
     $
-  }
 }
 \caption{Syntax and reduction rules for our type theory.}
 \label{fig:core-tt-syn}
@@ -816,7 +865,6 @@ reproduced in appendix \ref{app:agda-code}.
 \label{sec:term-types}
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
     \begin{tabular}{cc}
       \AxiomC{$\myjud{\mytmt}{\mytya}$}
       \AxiomC{$\mytya \mydefeq \mytyb$}
@@ -827,7 +875,6 @@ reproduced in appendix \ref{app:agda-code}.
       \UnaryInfC{$\myjud{\mytyp_l}{\mytyp_{l + 1}}$}
       \DisplayProof
     \end{tabular}
-  }
 }
 
 The first thing to notice is that a barrier between values and types that we had
@@ -841,33 +888,34 @@ not immediate as in the STLC.  For this reason we define \emph{definitional
 $\myred$---moreover, when comparing types syntactically we do it up to
 renaming of bound names ($\alpha$-renaming).  For example under this
 discipline we will find that
-\[
+{\mysmall\[
 \myabss{\myb{x}}{\mytya}{\myb{x}} \mydefeq \myabss{\myb{y}}{\mytya}{\myb{y}}
-\]
-Types that are definitionally equal can be used interchangeably.  Here the
-`conversion' rule is not syntax directed, however we will see how it is
-possible to employ $\myred$ to decide term equality in a systematic
-way.  % TODO add section
-Another thing to notice is that considering the need to reduce terms to decide
-equality, it is essential for a dependently type system to be terminating and
-confluent for type checking to be decidable.
-
-Moreover, we specify a \emph{type hierarchy} to talk about `large' types:
-$\mytyp_0$ will be the type of types inhabited by data: $\mybool$, $\mynat$,
-$\mylist$, etc.  $\mytyp_1$ will be the type of $\mytyp_0$, and so on---for
-example we have $\mytrue : \mybool : \mytyp_0 : \mytyp_1 : \cdots$.  Each type
-`level' is often called a universe in the literature.  While it is possible,
-to simplify things by having only one universe $\mytyp$ with $\mytyp :
-\mytyp$, this plan is inconsistent for much the same reason that impredicative
-na\"{\i}ve set theory is \citep{Hurkens1995}.  Moreover, various techniques
-can be employed to lift the burden of explicitly handling universes.
-% TODO add sectioon about universes
+\]}
+Types that are definitionally equal can be used interchangeably.  Here
+the `conversion' rule is not syntax directed, but it is possible to
+employ $\myred$ to decide term equality in a systematic way, by always
+reducing terms to their normal forms before comparing them, so that a
+separate conversion rule is not needed.
+Another thing to notice is that considering the need to reduce terms to
+decide equality, it is essential for a dependently type system to be
+terminating and confluent for type checking to be decidable.
+
+Moreover, we specify a \emph{type hierarchy} to talk about `large'
+types: $\mytyp_0$ will be the type of types inhabited by data:
+$\mybool$, $\mynat$, $\mylist$, etc.  $\mytyp_1$ will be the type of
+$\mytyp_0$, and so on---for example we have $\mytrue : \mybool :
+\mytyp_0 : \mytyp_1 : \cdots$.  Each type `level' is often called a
+universe in the literature.  While it is possible to simplify things by
+having only one universe $\mytyp$ with $\mytyp : \mytyp$, this plan is
+inconsistent for much the same reason that impredicative na\"{\i}ve set
+theory is \citep{Hurkens1995}.  However various techniques can be
+employed to lift the burden of explicitly handling universes, as we will
+see in section \ref{sec:term-hierarchy}.
 
 \subsubsection{Contexts}
 
 \begin{minipage}{0.5\textwidth}
   \mydesc{context validity:}{\myvalid{\myctx}}{
-    \centering{
       \begin{tabular}{cc}
         \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
         \UnaryInfC{$\myvalid{\myemptyctx}$}
@@ -877,16 +925,13 @@ can be employed to lift the burden of explicitly handling universes.
         \UnaryInfC{$\myvalid{\myctx ; \myb{x} : \mytya}$}
         \DisplayProof
       \end{tabular}
-    }
   }
 \end{minipage} 
 \begin{minipage}{0.5\textwidth}
   \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-    \centering{
       \AxiomC{$\myctx(x) = \mytya$}
       \UnaryInfC{$\myjud{\myb{x}}{\mytya}$}
       \DisplayProof
-    }
   }
 \end{minipage}
 \vspace{0.1cm}
@@ -902,7 +947,6 @@ context.
 \subsubsection{$\myunit$, $\myempty$}
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
     \begin{tabular}{ccc}
       \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
       \UnaryInfC{$\myjud{\myunit}{\mytyp_0}$}
@@ -923,7 +967,6 @@ context.
       \UnaryInfC{\phantom{$\myjud{\myempty}{\mytyp_0}$}}
       \DisplayProof
     \end{tabular}
-  }
 }
 
 Nothing surprising here: $\myunit$ and $\myempty$ are unchanged from the STLC,
@@ -933,7 +976,6 @@ sure that we are invoking $\myabsurd{}$ over a type.
 \subsubsection{$\mybool$, and dependent $\myfun{if}$}
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
- \centering{
    \begin{tabular}{ccc}
      \AxiomC{}
      \UnaryInfC{$\myjud{\mybool}{\mytyp_0}$}
@@ -947,7 +989,7 @@ sure that we are invoking $\myabsurd{}$ over a type.
       \UnaryInfC{$\myjud{\myfalse}{\mybool}$}
       \DisplayProof
     \end{tabular}
-    \myderivsp
+    \myderivspp
 
     \AxiomC{$\myjud{\mytmt}{\mybool}$}
     \AxiomC{$\myjudd{\myctx : \mybool}{\mytya}{\mytyp_l}$}
@@ -955,20 +997,17 @@ sure that we are invoking $\myabsurd{}$ over a type.
     \BinaryInfC{$\myjud{\mytmm}{\mysub{\mytya}{x}{\mytrue}}$ \hspace{0.7cm} $\myjud{\mytmn}{\mysub{\mytya}{x}{\myfalse}}$}
     \UnaryInfC{$\myjud{\myitee{\mytmt}{\myb{x}}{\mytya}{\mytmm}{\mytmn}}{\mysub{\mytya}{\myb{x}}{\mytmt}}$}
     \DisplayProof
-
-  }
 }
 
-With booleans we get the first taste of `dependent' in `dependent types'.  While
-the two introduction rules ($\mytrue$ and $\myfalse$) are not surprising, the
-typing rules for $\myfun{if}$ are.  In most strongly typed languages we expect
-the branches of an $\myfun{if}$ statements to be of the same type, to preserve
-subject reduction, since execution could take both paths.  This is a pity, since
-the type system does not reflect the fact that in each branch we gain knowledge
-on the term we are branching on.  Which means that programs along the lines of
-\begin{verbatim}
-if null xs then head xs else 0
-\end{verbatim}
+With booleans we get the first taste of the `dependent' in `dependent
+types'.  While the two introduction rules ($\mytrue$ and $\myfalse$) are
+not surprising, the typing rules for $\myfun{if}$ are.  In most strongly
+typed languages we expect the branches of an $\myfun{if}$ statements to
+be of the same type, to preserve subject reduction, since execution
+could take both paths.  This is a pity, since the type system does not
+reflect the fact that in each branch we gain knowledge on the term we
+are branching on.  Which means that programs along the lines of
+{\mysmall\[\text{\texttt{if null xs then head xs else 0}}\]}
 are a necessary, well typed, danger.
 
 However, in a more expressive system, we can do better: the branches' type can
@@ -980,13 +1019,12 @@ the updated knowledge on the value of $\myb{x}$.
 \subsubsection{$\myarr$, or dependent function}
 
  \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-   \centering{
      \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
      \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
      \BinaryInfC{$\myjud{\myfora{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
      \DisplayProof
 
-     \myderivsp
+     \myderivspp
 
     \begin{tabular}{cc}
       \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytmt}{\mytyb}$}
@@ -998,35 +1036,55 @@ the updated knowledge on the value of $\myb{x}$.
       \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mysub{\mytyb}{\myb{x}}{\mytmn}}$}
       \DisplayProof
     \end{tabular}
-  }
 }
 
 Dependent functions are one of the two key features that perhaps most
 characterise dependent types---the other being dependent products.  With
-dependent functions, the result type can depend on the value of the argument.
-This feature, together with the fact that the result type might be a type
-itself, brings a lot of interesting possibilities.  Keeping the correspondence
-with logic alive, dependent functions are much like universal quantifiers
-($\forall$) in logic.
+dependent functions, the result type can depend on the value of the
+argument.  This feature, together with the fact that the result type
+might be a type itself, brings a lot of interesting possibilities.
+Following this intuition, in the introduction rule, the return type is
+typechecked in a context with an abstracted variable of lhs' type, and
+in the elimination rule the actual argument is substituted in the return
+type.  Keeping the correspondence with logic alive, dependent functions
+are much like universal quantifiers ($\forall$) in logic.
+
+For example, assuming that we have lists and natural numbers in our
+language, using dependent functions we would be able to
+write:
+{\mysmall\[
+\begin{array}{l}
+\myfun{length} : (\myb{A} {:} \mytyp_0) \myarr \myapp{\mylist}{\myb{A}} \myarr \mynat \\
+\myarg \myfun{$>$} \myarg : \mynat \myarr \mynat \myarr \mytyp_0 \\
+\myfun{head} : (\myb{A} {:} \mytyp_0) \myarr (\myb{l} {:} \myapp{\mylist}{\myb{A}})
+               \myarr \myapp{\myapp{\myfun{length}}{\myb{A}}}{\myb{l}} \mathrel{\myfun{$>$}} 0 \myarr
+               \myb{A}
+\end{array}
+\]}
+
+\myfun{length} is the usual polymorphic length
+function. $\myarg\myfun{$>$}\myarg$ is a function that takes two naturals
+and returns a type: if the lhs is greater then the rhs, $\myunit$ is
+returned, $\myempty$ otherwise.  This way, we can express a
+`non-emptyness' condition in $\myfun{head}$, by including a proof that
+the length of the list argument is non-zero.  This allows us to rule out
+the `empty list' case, so that we can safely return the first element.
 
 Again, we need to make sure that the type hierarchy is respected, which is the
 reason why a type formed by $\myarr$ will live in the least upper bound of the
 levels of argument and return type.  This trend will continue with the other
 type-level binders, $\myprod$ and $\mytyc{W}$.
 
-% TODO maybe examples?
-
 \subsubsection{$\myprod$, or dependent product}
-
+\label{sec:disju}
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
      \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
      \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
      \BinaryInfC{$\myjud{\myexi{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
      \DisplayProof
 
-     \myderivsp
+     \myderivspp
 
     \begin{tabular}{cc}
       \AxiomC{$\myjud{\mytmm}{\mytya}$}
@@ -1042,29 +1100,52 @@ type-level binders, $\myprod$ and $\mytyc{W}$.
       \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mysub{\mytyb}{\myb{x}}{\myapp{\myfst}{\mytmt}}}$}
       \DisplayProof
     \end{tabular}
-
-  }
 }
 
+If dependent functions are a generalisation of $\myarr$ in the STLC,
+dependent products are a generalisation of $\myprod$ in the STLC.  The
+improvement is that the second element's type can depend on the value of
+the first element.  The corrispondence with logic is through the
+existential quantifier: $\exists x \in \mathbb{N}. even(x)$ can be
+expressed as $\myexi{\myb{x}}{\mynat}{\myapp{\myfun{even}}{\myb{x}}}$.
+The first element will be a number, and the second evidence that the
+number is even.  This highlights the fact that we are working in a
+constructive logic: if we have an existence proof, we can always ask for
+a witness.  This means, for instance, that $\neg \forall \neg$ is not
+equivalent to $\exists$.
+
+Another perhaps more `dependent' application of products, paired with
+$\mybool$, is to offer choice between different types.  For example we
+can easily recover disjunctions:
+{\mysmall\[
+\begin{array}{l}
+  \myarg\myfun{$\vee$}\myarg : \mytyp_0 \myarr \mytyp_0 \myarr \mytyp_0 \\
+  \myb{A} \mathrel{\myfun{$\vee$}} \myb{B} \mapsto \myexi{\myb{x}}{\mybool}{\myite{\myb{x}}{\myb{A}}{\myb{B}}} \\ \ \\
+  \myfun{case} : (\myb{A}\ \myb{B}\ \myb{C} {:} \mytyp_0) \myarr (\myb{A} \myarr \myb{C}) \myarr (\myb{B} \myarr \myb{C}) \myarr \myb{A} \mathrel{\myfun{$\vee$}} \myb{B} \myarr \myb{C} \\
+  \myfun{case} \myappsp \myb{A} \myappsp \myb{B} \myappsp \myb{C} \myappsp \myb{f} \myappsp \myb{g} \myappsp \myb{x} \mapsto \\
+  \myind{2} \myapp{(\myitee{\myapp{\myfst}{\myb{b}}}{\myb{x}}{(\myite{\myb{b}}{\myb{A}}{\myb{B}})}{\myb{f}}{\myb{g}})}{(\myapp{\mysnd}{\myb{x}})}
+\end{array}
+\]}
 
 \subsubsection{$\mytyc{W}$, or well-order}
 \label{sec:well-order}
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
+  \begin{tabular}{cc}
      \AxiomC{$\myjud{\mytya}{\mytyp_{l_1}}$}
      \AxiomC{$\myjudd{\myctx;\myb{x} : \mytya}{\mytyb}{\mytyp_{l_2}}$}
      \BinaryInfC{$\myjud{\myw{\myb{x}}{\mytya}{\mytyb}}{\mytyp_{l_1 \mylub l_2}}$}
      \DisplayProof
 
-     \myderivsp
+     &
 
      \AxiomC{$\myjud{\mytmt}{\mytya}$}
      \AxiomC{$\myjud{\mysynel{f}}{\mysub{\mytyb}{\myb{x}}{\mytmt} \myarr \myw{\myb{x}}{\mytya}{\mytyb}}$}
      \BinaryInfC{$\myjud{\mytmt \mynode{\myb{x}}{\mytyb} \myse{f}}{\myw{\myb{x}}{\mytya}{\mytyb}}$}
      \DisplayProof
+   \end{tabular}
 
-     \myderivsp
+     \myderivspp
 
      \AxiomC{$\myjud{\myse{u}}{\myw{\myb{x}}{\myse{S}}{\myse{T}}}$}
      \AxiomC{$\myjudd{\myctx; \myb{w} : \myw{\myb{x}}{\myse{S}}{\myse{T}}}{\myse{P}}{\mytyp_l}$}
@@ -1074,18 +1155,66 @@ type-level binders, $\myprod$ and $\mytyc{W}$.
      }$}
      \UnaryInfC{$\myjud{\myrec{\myse{u}}{\myb{w}}{\myse{P}}{\myse{p}}}{\mysub{\myse{P}}{\myb{w}}{\myse{u}}}$}
      \DisplayProof
-   }
 }
 
+Finally, the well-order type, or in short $\mytyc{W}$-type, which will
+let us represent inductive data in a general (but clumsy) way.  We can
+form `nodes' of the shape $\mytmt \mynode{\myb{x}}{\mytyb} \myse{f} :
+\myw{\myb{x}}{\mytya}{\mytyb}$ that contain data ($\mytmt$) of type and
+one `child' for each member of $\mysub{\mytyb}{\myb{x}}{\mytmt}$.  The
+$\myfun{rec}\ \myfun{with}$ acts as an induction principle on
+$\mytyc{W}$, given a predicate an a function dealing with the inductive
+case---we will gain more intuition about inductive data in ITT in
+section \ref{sec:user-type}.
+
+For example, if we want to form natural numbers, we can take
+{\mysmall\[
+  \begin{array}{@{}l}
+    \mytyc{Tr} : \mybool \myarr \mytyp_0 \\
+    \mytyc{Tr} \myappsp \myb{b} \mapsto \myfun{if}\, \myb{b}\, \myunit\, \myfun{else}\, \myempty \\
+    \ \\
+    \mynat : \mytyp_0 \\
+    \mynat \mapsto \myw{\myb{b}}{\mybool}{(\mytyc{Tr}\myappsp\myb{b})}
+  \end{array}
+  \]} Each node will contain a boolean.  If $\mytrue$, the number is
+non-zero, and we will have one child representing its predecessor, given
+that $\mytyc{Tr}$ will return $\myunit$.  If $\myfalse$, the number is
+zero, and we will have no predecessors (children), given the $\myempty$:
+{\mysmall\[
+  \begin{array}{@{}l}
+    \mydc{zero} : \mynat \\
+    \mydc{zero} \mapsto \myfalse \mynodee (\myabs{\myb{z}}{\myabsurd{\mynat} \myappsp \myb{x}}) \\
+    \ \\
+    \mydc{suc} : \mynat \myarr \mynat \\
+    \mydc{suc}\myappsp \myb{x} \mapsto \mytrue \mynodee (\myabs{\myarg}{\myb{x}})
+  \end{array}
+\]}
+And with a bit of effort, we can recover addition:
+{\mysmall\[
+  \begin{array}{@{}l}
+    \myfun{plus} : \mynat \myarr \mynat \myarr \mynat \\
+    \myfun{plus} \myappsp \myb{x} \myappsp \myb{y} \mapsto \\
+    \myind{2} \myfun{rec}\, \myb{x} / \myb{b}.\mynat \, \\
+    \myind{2} \myfun{with}\, \myabs{\myb{b}}{\\
+      \myind{2}\myind{2}\myfun{if}\, \myb{b} / \myb{b'}.((\mytyc{Tr} \myappsp \myb{b'} \myarr \mynat) \myarr (\mytyc{Tr} \myappsp \myb{b'} \myarr \mynat) \myarr \mynat) \\
+      \myind{2}\myind{2}\myfun{then}\,(\myabs{\myarg\, \myb{f}}{\mydc{suc}\myappsp (\myapp{\myb{f}}{\mytt})})\, \myfun{else}\, (\myabs{\myarg\, \myarg}{\myb{y}})}
+  \end{array}
+  \]} Note how we explicitly have to type the branches to make them
+match with the definition of $\mynat$---which gives a taste of the
+`clumsiness' of $\mytyc{W}$-types, which while useful as a reasoning
+tool are useless to the user modelling data types.
+
 \section{The struggle for equality}
 \label{sec:equality}
 
-In the previous section we saw how a type checker (or a human) needs a notion of
-\emph{definitional equality}.  Beyond this meta-theoretic notion, in this
-section we will explore the ways of expressing equality \emph{inside} the
-theory, as a reasoning tool available to the user.  This area is the main
-concern of this thesis, and in general a very active research topic, since we do
-not have a fully satisfactory solution, yet.
+In the previous section we saw how a type checker (or a human) needs a
+notion of \emph{definitional equality}.  Beyond this meta-theoretic
+notion, in this section we will explore the ways of expressing equality
+\emph{inside} the theory, as a reasoning tool available to the user.
+This area is the main concern of this thesis, and in general a very
+active research topic, since we do not have a fully satisfactory
+solution, yet.  As in the previous section, everything presented is
+formalised in Agda in appendix \ref{app:agda-itt}.
 
 \subsection{Propositional equality}
 
@@ -1104,39 +1233,36 @@ not have a fully satisfactory solution, yet.
 \end{minipage} 
 \begin{minipage}{0.5\textwidth}
 \mydesc{reduction:}{\mytmsyn \myred \mytmsyn}{
-  \centering{
     $
     \myjeq{\myse{P}}{(\myapp{\myrefl}{\mytmm})}{\mytmn} \myred \mytmn
     $
-  }
-  \vspace{0.9cm}
+  \vspace{1.1cm}
 }
 \end{minipage}
-
+\mynegder
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
     \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
     \AxiomC{$\myjud{\mytmm}{\mytya}$}
     \AxiomC{$\myjud{\mytmn}{\mytya}$}
     \TrinaryInfC{$\myjud{\mytmm \mypeq{\mytya} \mytmn}{\mytyp_l}$}
     \DisplayProof
 
-    \myderivsp
+    \myderivspp
 
     \begin{tabular}{cc}
-      \AxiomC{\phantom{$\myctx P \mytyp_l$}}
-      \noLine
-      \UnaryInfC{$\myjud{\mytmt}{\mytya}$}
-      \UnaryInfC{$\myjud{\myapp{\myrefl}{\mytmt}}{\mytmt \mypeq{\mytya} \mytmt}$}
+      \AxiomC{$\begin{array}{c}\ \\\myjud{\mytmm}{\mytya}\hspace{1.1cm}\mytmm \mydefeq \mytmn\end{array}$}
+      \UnaryInfC{$\myjud{\myapp{\myrefl}{\mytmm}}{\mytmm \mypeq{\mytya} \mytmn}$}
       \DisplayProof
       &
-      \AxiomC{$\myjud{\myse{P}}{\myfora{\myb{x}\ \myb{y}}{\mytya}{\myfora{q}{\myb{x} \mypeq{\mytya} \myb{y}}{\mytyp_l}}}$}
-      \noLine
-      \UnaryInfC{$\myjud{\myse{q}}{\mytmm \mypeq{\mytya} \mytmn}\hspace{1.2cm}\myjud{\myse{p}}{\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmm}}{(\myapp{\myrefl}{\mytmm})}}$}
+      \AxiomC{$
+        \begin{array}{c}
+          \myjud{\myse{P}}{\myfora{\myb{x}\ \myb{y}}{\mytya}{\myfora{q}{\myb{x} \mypeq{\mytya} \myb{y}}{\mytyp_l}}} \\
+          \myjud{\myse{q}}{\mytmm \mypeq{\mytya} \mytmn}\hspace{1.1cm}\myjud{\myse{p}}{\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmm}}{(\myapp{\myrefl}{\mytmm})}}
+        \end{array}
+        $}
       \UnaryInfC{$\myjud{\myjeq{\myse{P}}{\myse{q}}{\myse{p}}}{\myapp{\myapp{\myapp{\myse{P}}{\mytmm}}{\mytmn}}{q}}$}
       \DisplayProof
     \end{tabular}
-  }
 }
 
 To express equality between two terms inside ITT, the obvious way to do so is
@@ -1147,8 +1273,7 @@ the present day.
 Our type former is $\mypeq{\mytya}$, which given a type (in this case
 $\mytya$) relates equal terms of that type.  $\mypeq{}$ has one introduction
 rule, $\myrefl$, which introduces an equality relation between definitionally
-equal terms---in the typing rule we display the term as `the same', meaning
-`the same up to $\mydefeq$'. % TODO maybe mention this earlier
+equal terms.
 
 Finally, we have one eliminator for $\mypeq{}$, $\myjeqq$.  $\myjeq{\myse{P}}{\myse{q}}{\myse{p}}$ takes
 \begin{itemize}
@@ -1156,8 +1281,9 @@ Finally, we have one eliminator for $\mypeq{}$, $\myjeqq$.  $\myjeq{\myse{P}}{\m
   $\mytya$) and a proof of their equality
 \item $\myse{q}$, a proof that two terms in $\mytya$ (say $\myse{m}$ and
   $\myse{n}$) are equal
-\item and $\myse{p}$, an inhabitant of $\myse{P}$ applied to $\myse{m}$, plus
-  the trivial proof by reflexivity showing that $\myse{m}$ is equal to itself
+\item and $\myse{p}$, an inhabitant of $\myse{P}$ applied to $\myse{m}$
+  twice, plus the trivial proof by reflexivity showing that $\myse{m}$
+  is equal to itself
 \end{itemize}
 Given these ingredients, $\myjeqq$ retuns a member of $\myse{P}$ applied to
 $\mytmm$, $\mytmn$, and $\myse{q}$.  In other words $\myjeqq$ takes a
@@ -1172,29 +1298,110 @@ can be returned.
 While the $\myjeqq$ rule is slightly convoluted, ve can derive many more
 `friendly' rules from it, for example a more obvious `substitution' rule, that
 replaces equal for equal in predicates:
-\[
+{\mysmall\[
 \begin{array}{l}
-(\myabs{\myb{A}\ \myb{P}\ \myb{x}\ \myb{y}\ \myb{q}\ \myb{p}}{
-  \myjeq{(\myabs{\myb{x}\ \myb{y}\ \myb{q}}{\myapp{\myb{P}}{\myb{y}}})}{\myb{q}}{\myb{p}}}) : \\
-\myind{1} \myfora{\myb{A}}{\mytyp}{\myfora{\myb{P}}{\myb{A} \myarr \mytyp}{\myfora{\myb{x}\ \myb{y}}{\myb{A}}{\myb{x} \mypeq{\myb{A}} \myb{y} \myarr \myapp{\myb{P}}{\myb{x}} \myarr \myapp{\myb{P}}{\myb{y}}}}}
+\myfun{subst} : \myfora{\myb{A}}{\mytyp}{\myfora{\myb{P}}{\myb{A} \myarr \mytyp}{\myfora{\myb{x}\ \myb{y}}{\myb{A}}{\myb{x} \mypeq{\myb{A}} \myb{y} \myarr \myapp{\myb{P}}{\myb{x}} \myarr \myapp{\myb{P}}{\myb{y}}}}} \\
+\myfun{subst}\myappsp \myb{A}\myappsp\myb{P}\myappsp\myb{x}\myappsp\myb{y}\myappsp\myb{q}\myappsp\myb{p} \mapsto
+  \myjeq{(\myabs{\myb{x}\ \myb{y}\ \myb{q}}{\myapp{\myb{P}}{\myb{y}}})}{\myb{p}}{\myb{q}}
 \end{array}
-\]
-This rule is often called $\myfun{subst}$---here we will invoke it without
-specifying the type ($\myb{A}$) and the sides of the equality
-($\myb{x},\myb{y}$).
-
+\]}
 Once we have $\myfun{subst}$, we can easily prove more familiar laws regarding
-equality, such as symmetry, transitivity, and a congruence law:
-
-% TODO finish this
+equality, such as symmetry, transitivity, congruence laws, etc.
 
 \subsection{Common extensions}
 
-eta law
+Our definitional and propositional equalities can be enhanced in various
+ways.  Obviously if we extend the definitional equality we are also
+automatically extend propositional equality, given how $\myrefl$ works.
+
+\subsubsection{$\eta$-expansion}
+\label{sec:eta-expand}
+
+A simple extension to our definitional equality is $\eta$-expansion.
+Given an abstract variable $\myb{f} : \mytya \myarr \mytyb$ the aim is
+to have that $\myb{f} \mydefeq
+\myabss{\myb{x}}{\mytya}{\myapp{\myb{f}}{\myb{x}}}$.  We can achieve
+this by `expanding' terms based on their types, a process also known as
+\emph{quotation}---a term borrowed from the practice of
+\emph{normalisation by evaluation}, where we embed terms in some host
+language with an existing notion of computation, and then reify them
+back into terms, which will `smooth out' differences like the one above
+\citep{Abel2007}.
+
+The same concept applies to $\myprod$, where we expand each inhabitant
+by reconstructing it by getting its projections, so that $\myb{x}
+\mydefeq \mypair{\myfst \myappsp \myb{x}}{\mysnd \myappsp \myb{x}}$.
+Similarly, all one inhabitants of $\myunit$ and all zero inhabitants of
+$\myempty$ can be considered equal. Quotation can be performed in a
+type-directed way, as we will witness in section \ref{sec:kant-irr}.
+
+To justify this process in our type system we will add a congruence law
+for abstractions and a similar law for products, plus the fact that all
+elements of $\myunit$ or $\myempty$ are equal.
+
+\mydesc{definitional equality:}{\myjud{\mytmm \mydefeq \mytmn}{\mytmsyn}}{
+  \begin{tabular}{cc}
+    \AxiomC{$\myjudd{\myctx; \myb{y} : \mytya}{\myapp{\myse{f}}{\myb{x}} \mydefeq \myapp{\myse{g}}{\myb{x}}}{\mysub{\mytyb}{\myb{x}}{\myb{y}}}$}
+    \UnaryInfC{$\myjud{\myse{f} \mydefeq \myse{g}}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myjud{\mypair{\myapp{\myfst}{\mytmm}}{\myapp{\mysnd}{\mytmm}} \mydefeq \mypair{\myapp{\myfst}{\mytmn}}{\myapp{\mysnd}{\mytmn}}}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
+    \UnaryInfC{$\myjud{\mytmm \mydefeq \mytmn}{\myexi{\myb{x}}{\mytya}{\mytyb}}$}
+    \DisplayProof
+  \end{tabular}
+
+  \myderivspp
+
+  \begin{tabular}{cc}
+  \AxiomC{$\myjud{\mytmm}{\myunit}$}
+  \AxiomC{$\myjud{\mytmn}{\myunit}$}
+  \BinaryInfC{$\myjud{\mytmm \mydefeq \mytmn}{\myunit}$}
+  \DisplayProof
+  &
+  \AxiomC{$\myjud{\mytmm}{\myempty}$}
+  \AxiomC{$\myjud{\mytmn}{\myempty}$}
+  \BinaryInfC{$\myjud{\mytmm \mydefeq \mytmn}{\myempty}$}
+  \DisplayProof
+  \end{tabular}
+}
+
+\subsubsection{Uniqueness of identity proofs}
 
-congruence
+Another common but controversial addition to propositional equality is
+the $\myfun{K}$ axiom, which essentially states that all equality proofs
+are by reflexivity.
+
+\mydesc{typing:}{\myjud{\mytmm \mydefeq \mytmn}{\mytmsyn}}{
+  \AxiomC{$
+    \begin{array}{@{}c}
+      \myjud{\myse{P}}{\myfora{\myb{x}}{\mytya}{\myb{x} \mypeq{\mytya} \myb{x} \myarr \mytyp}} \\\
+      \myjud{\mytmt}{\mytya} \hspace{1cm}
+      \myjud{\myse{p}}{\myse{P} \myappsp \mytmt \myappsp (\myrefl \myappsp \mytmt)} \hspace{1cm}
+      \myjud{\myse{q}}{\mytmt \mypeq{\mytya} \mytmt}
+    \end{array}
+    $}
+  \UnaryInfC{$\myjud{\myfun{K} \myappsp \myse{P} \myappsp \myse{t} \myappsp \myse{p} \myappsp \myse{q}}{\myse{P} \myappsp \mytmt \myappsp \myse{q}}$}
+  \DisplayProof
+}
 
-UIP
+\cite{Hofmann1994} showed that $\myfun{K}$ is not derivable from the
+$\myjeqq$ axiom that we presented, and \cite{McBride2004} showed that it is
+needed to implement `dependent pattern matching', as first proposed by
+\cite{Coquand1992}.  Thus, $\myfun{K}$ is derivable in the systems that
+implement dependent pattern matching, such as Epigram and Agda; but for
+example not in Coq.
+
+$\myfun{K}$ is controversial mainly because it is at odds with
+equalities that include computational behaviour, most notably
+Voevodsky's `Univalent Foundations', which includes a \emph{univalence}
+axiom that identifies isomorphisms between types with propositional
+equality.  For example we would have two isomorphisms, and thus two
+equalities, between $\mybool$ and $\mybool$, corresponding to the two
+permutations---one is the identity, and one swaps the elements.  Given
+this, $\myfun{K}$ and univalence are inconsistent, and thus a form of
+dependent pattern matching that does not imply $\myfun{K}$ is subject of
+research\footnote{More information about univalence can be found at
+  \url{http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations.html}.}.
 
 \subsection{Limitations}
 
@@ -1214,30 +1421,31 @@ replaceable with one another.
 
 However this is not the case, or in other words with the tools we have we have
 no term of type
-\[
+{\mysmall\[
 \myfun{ext} : \myfora{\myb{A}\ \myb{B}}{\mytyp}{\myfora{\myb{f}\ \myb{g}}{
     \myb{A} \myarr \myb{B}}{
         (\myfora{\myb{x}}{\myb{A}}{\myapp{\myb{f}}{\myb{x}} \mypeq{\myb{B}} \myapp{\myb{g}}{\myb{x}}}) \myarr
         \myb{f} \mypeq{\myb{A} \myarr \myb{B}} \myb{g}
     }
 }
-\]
+\]}
 To see why this is the case, consider the functions
-\[\myabs{\myb{x}}{0 \mathrel{\myfun{+}} \myb{x}}$ and $\myabs{\myb{x}}{\myb{x} \mathrel{\myfun{+}} 0}\]
-where $\myfun{+}$ is defined by recursion on the first argument, gradually
-destructing it to build up successors of the second argument.  The two
-functions are clearly denotationally the same, and we can in fact prove that
-\[
-\myfora{\myb{x}}{\mynat}{(0 \mathrel{\myfun{+}} \myb{x}) \mypeq{\mynat} (\myb{x} \mathrel{\myfun{+}} 0)}
-\]
+{\mysmall\[\myabs{\myb{x}}{0 \mathrel{\myfun{$+$}} \myb{x}}$ and $\myabs{\myb{x}}{\myb{x} \mathrel{\myfun{$+$}} 0}\]}
+where $\myfun{$+$}$ is defined by recursion on the first argument,
+gradually destructing it to build up successors of the second argument.
+The two functions are clearly extensionally equal, and we can in fact
+prove that
+{\mysmall\[
+\myfora{\myb{x}}{\mynat}{(0 \mathrel{\myfun{$+$}} \myb{x}) \mypeq{\mynat} (\myb{x} \mathrel{\myfun{$+$}} 0)}
+\]}
 By analysis on the $\myb{x}$.  However, the two functions are not
 definitionally equal, and thus we won't be able to get rid of the
 quantification.
 
-For the reasons above, theories that offer a propositional equality similar to
-what we presented are called \emph{intensional}, as opposed to
-\emph{extensional}.  Most systems in wide use today (such as Agda, Coq and
-Epigram) are of this kind.
+For the reasons above, theories that offer a propositional equality
+similar to what we presented are called \emph{intensional}, as opposed
+to \emph{extensional}.  Most systems in wide use today (such as Agda,
+Coq, and Epigram) are of this kind.
 
 This is quite an annoyance that often makes reasoning awkward to execute.  It
 also extends to other fields, for example proving bisimulation between
@@ -1250,11 +1458,9 @@ One way to `solve' this problem is by identifying propositional equality with
 definitional equality:
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
-  \centering{
     \AxiomC{$\myjud{\myse{q}}{\mytmm \mypeq{\mytya} \mytmn}$}
     \UnaryInfC{$\myjud{\mytmm \mydefeq \mytmn}{\mytya}$}
     \DisplayProof
-  }
 }
 
 This rule takes the name of \emph{equality reflection}, and is a very
@@ -1266,31 +1472,28 @@ that this causes:
 \item The rule is syntax directed, and the type checker is presumably expected
   to come up with equality proofs when needed.
 \item More worryingly, type checking becomes undecidable also because
-  computing under false assumptions becomes unsafe.
-  Consider for example
-  \[
-  \myabss{\myb{q}}{\mytya \mypeq{\mytyp} (\mytya \myarr \mytya)}{\myhole{?}}
-  \]
-  Using the assumed proof in tandem with equality reflection we could easily
-  write a classic Y combinator, sending the compiler into a loop.
+  computing under false assumptions becomes unsafe, since we derive any
+  equality proof and then use equality reflection and the conversion
+  rule to have terms of any type.
 \end{itemize}
 
 Given these facts theories employing equality reflection, like NuPRL
 \citep{NuPRL}, carry the derivations that gave rise to each typing judgement
-to keep the systems manageable.  % TODO more info, problems with that.
+to keep the systems manageable.
 
 For all its faults, equality reflection does allow us to prove extensionality,
 using the extensions we gave above.  Assuming that $\myctx$ contains
-\[\myb{A}, \myb{B} : \mytyp; \myb{f}, \myb{g} : \myb{A} \myarr \myb{B}; \myb{q} : \myfora{\myb{x}}{\myb{A}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}\]
+{\mysmall\[\myb{A}, \myb{B} : \mytyp; \myb{f}, \myb{g} : \myb{A} \myarr \myb{B}; \myb{q} : \myfora{\myb{x}}{\myb{A}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}\]}
 We can then derive
 \begin{prooftree}
-  \AxiomC{$\myjudd{\myctx; \myb{x} : \myb{A}}{\myapp{\myb{q}}{\myb{x}}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}$}
+  \mysmall
+  \AxiomC{$\hspace{1.1cm}\myjudd{\myctx; \myb{x} : \myb{A}}{\myapp{\myb{q}}{\myb{x}}}{\myapp{\myb{f}}{\myb{x}} \mypeq{} \myapp{\myb{g}}{\myb{x}}}\hspace{1.1cm}$}
   \RightLabel{equality reflection}
   \UnaryInfC{$\myjudd{\myctx; \myb{x} : \myb{A}}{\myapp{\myb{f}}{\myb{x}} \mydefeq \myapp{\myb{g}}{\myb{x}}}{\myb{B}}$}
   \RightLabel{congruence for $\lambda$s}
   \UnaryInfC{$\myjud{(\myabs{\myb{x}}{\myapp{\myb{f}}{\myb{x}}}) \mydefeq (\myabs{\myb{x}}{\myapp{\myb{g}}{\myb{x}}})}{\myb{A} \myarr \myb{B}}$}
   \RightLabel{$\eta$-law for $\lambda$}
-  \UnaryInfC{$\myjud{\myb{f} \mydefeq \myb{g}}{\myb{A} \myarr \myb{B}}$}
+  \UnaryInfC{$\hspace{1.45cm}\myjud{\myb{f} \mydefeq \myb{g}}{\myb{A} \myarr \myb{B}}\hspace{1.45cm}$}
   \RightLabel{$\myrefl$}
   \UnaryInfC{$\myjud{\myapp{\myrefl}{\myb{f}}}{\myb{f} \mypeq{} \myb{g}}$}
 \end{prooftree}
@@ -1298,77 +1501,425 @@ We can then derive
 Now, the question is: do we need to give up well-behavedness of our theory to
 gain extensionality?
 
-\subsection{Observational equality}
+\subsection{Some alternatives}
+
+% TODO finish
+% TODO add `extentional axioms' (Hoffman), setoid models (Thorsten)
+
+\section{Observational equality}
 \label{sec:ott}
 
-% TODO should we explain this in detail?
 A recent development by \citet{Altenkirch2007}, \emph{Observational Type
-  Theory} (OTT), promises to keep the well behavedness of ITT while being able
-to gain many useful equality proofs\footnote{It is suspected that OTT gains
-  \emph{all} the equality proofs of ETT, but no proof exists yet.}, including
-function extensionality.  The main idea is to give the user the possibility to
-\emph{coerce} (or transport) values from a type $\mytya$ to a type $\mytyb$,
-if the type checker can prove structurally that $\mytya$ and $\mytya$ are
-equal; and providing a value-level equality based on similar principles.  A
-brief overview is given below,
+  Theory} (OTT), promises to keep the well behavedness of ITT while
+being able to gain many useful equality proofs\footnote{It is suspected
+  that OTT gains \emph{all} the equality proofs of ETT, but no proof
+  exists yet.}, including function extensionality.  The main idea is to
+give the user the possibility to \emph{coerce} (or transport) values
+from a type $\mytya$ to a type $\mytyb$, if the type checker can prove
+structurally that $\mytya$ and $\mytya$ are equal; and providing a
+value-level equality based on similar principles.  Here we give an
+exposition which follows closely the original paper.
+
+\subsection{A simpler theory, a propositional fragment}
 
 \mydesc{syntax}{ }{
-  $
-  \begin{array}{r@{\ }c@{\ }l}
-    \mytmsyn & ::= & \cdots \\
-             &  |  & \myprdec{\myprsyn} \mysynsep
-                     \mycoee{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \mysynsep
-                     \mycohh{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
-    \myprsyn & ::= & \mybot \mysynsep \mytop \mysynsep \myprsyn \myand \myprsyn
-                     \mysynsep \myprfora{\myb{x}}{\mytmsyn}{\myprsyn} \\\
-             &  |  & \mytmsyn = \mytmsyn \mysynsep
-                     \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn}
-  \end{array}
-  $
+    $\mytyp_l$ is replaced by $\mytyp$. \\\ \\
+    $
+    \begin{array}{r@{\ }c@{\ }l}
+      \mytmsyn & ::= & \cdots \mysynsep \myprdec{\myprsyn} \mysynsep
+                       \myITE{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+      \myprsyn & ::= & \mybot \mysynsep \mytop \mysynsep \myprsyn \myand \myprsyn
+      \mysynsep \myprfora{\myb{x}}{\mytmsyn}{\myprsyn}
+    \end{array}
+    $
+}
+
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \begin{tabular}{cc}
+    \AxiomC{$\myjud{\myse{P}}{\myprop}$}
+    \UnaryInfC{$\myjud{\myprdec{\myse{P}}}{\mytyp}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myjud{\mytmt}{\mybool}$}
+    \AxiomC{$\myjud{\mytya}{\mytyp}$}
+    \AxiomC{$\myjud{\mytyb}{\mytyp}$}
+    \TrinaryInfC{$\myjud{\myITE{\mytmt}{\mytya}{\mytyb}}{\mytyp}$}
+    \DisplayProof
+  \end{tabular}
 }
+
 \mydesc{propositions:}{\myjud{\myprsyn}{\myprop}}{
-  \centering{
-  }
+    \begin{tabular}{ccc}
+      \AxiomC{\phantom{$\myjud{\myse{P}}{\myprop}$}}
+      \UnaryInfC{$\myjud{\mytop}{\myprop}$}
+      \noLine
+      \UnaryInfC{$\myjud{\mybot}{\myprop}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\myse{P}}{\myprop}$}
+      \AxiomC{$\myjud{\myse{Q}}{\myprop}$}
+      \BinaryInfC{$\myjud{\myse{P} \myand \myse{Q}}{\myprop}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myjud{\mybot}{\myprop}$}}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\myse{A}}{\mytyp}$}
+      \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\myse{P}}{\myprop}$}
+      \BinaryInfC{$\myjud{\myprfora{\myb{x}}{\mytya}{\myse{P}}}{\myprop}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myjud{\mybot}{\myprop}$}}
+      \DisplayProof
+    \end{tabular}
 }
 
-The original presentation of OTT employs the theory presented above.  It is
-close to the one presented in section \ref{sec:itt}, with the additions
-presented above, and the change that only one the `first' universe, the type
-of small types ($\mytyp_0$), is present.
+Our foundation will be a type theory like the one of section
+\ref{sec:itt}, with only one level: $\mytyp_0$.  In this context we will
+drop the $0$ and call $\mytyp_0$ $\mytyp$.  Moreover, since the old
+$\myfun{if}\myarg\myfun{then}\myarg\myfun{else}$ was able to return
+types thanks to the hierarchy (which is gone), we need to reintroduce an
+ad-hoc conditional for types, where the reduction rule is the obvious
+one.
+
+However, we have an addition: a universe of \emph{propositions},
+$\myprop$.  $\myprop$ isolates a fragment of types at large, and
+indeed we can `inject' any $\myprop$ back in $\mytyp$ with $\myprdec{\myarg}$: \\
+\mydesc{proposition decoding:}{\myprdec{\mytmsyn} \myred \mytmsyn}{
+    \begin{tabular}{cc}
+    $
+    \begin{array}{l@{\ }c@{\ }l}
+      \myprdec{\mybot} & \myred & \myempty \\
+      \myprdec{\mytop} & \myred & \myunit
+    \end{array}
+    $
+    &
+    $
+    \begin{array}{r@{ }c@{ }l@{\ }c@{\ }l}
+      \myprdec{&\myse{P} \myand \myse{Q} &} & \myred & \myprdec{\myse{P}} \myprod \myprdec{\myse{Q}} \\
+      \myprdec{&\myprfora{\myb{x}}{\mytya}{\myse{P}} &} & \myred &
+             \myfora{\myb{x}}{\mytya}{\myprdec{\myse{P}}}
+    \end{array}
+    $
+    \end{tabular}
+  } \\
+  Propositions are what we call the types of \emph{proofs}, or types
+  whose inhabitants contain no `data', much like $\myunit$.  The goal of
+  doing this is twofold: erasing all top-level propositions when
+  compiling; and to identify all equivalent propositions as the same, as
+  we will see later.
+
+  Why did we choose what we have in $\myprop$?  Given the above
+  criteria, $\mytop$ obviously fits the bill.  A pair of propositions
+  $\myse{P} \myand \myse{Q}$ still won't get us data. Finally, if
+  $\myse{P}$ is a proposition and we have
+  $\myprfora{\myb{x}}{\mytya}{\myse{P}}$ , the decoding will be a
+  function which returns propositional content.  The only threat is
+  $\mybot$, by which we can fabricate anything we want: however if we
+  are consistent there will be nothing of type $\mybot$ at the top
+  level, which is what we care about regarding proof erasure.
+
+\subsection{Equality proofs}
+
+\mydesc{syntax}{ }{
+    $
+    \begin{array}{r@{\ }c@{\ }l}
+      \mytmsyn & ::= & \cdots \mysynsep
+      \mycoee{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \mysynsep
+      \mycohh{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+      \myprsyn & ::= & \cdots \mysynsep \mytmsyn \myeq \mytmsyn \mysynsep
+      \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn}
+    \end{array}
+    $
+}
 
-The propositional universe is meant to be where equality proofs live in.  The
-equality proofs are respectively between types ($\mytya = \mytyb$), and
-between values 
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \begin{tabular}{cc}
+    \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
+    \AxiomC{$\myjud{\mytmt}{\mytya}$}
+    \BinaryInfC{$\myjud{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}$}
+    \DisplayProof
+    &
+  \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
+  \AxiomC{$\myjud{\mytmt}{\mytya}$}
+  \BinaryInfC{$\myjud{\mycohh{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\myprdec{\myjm{\mytmt}{\mytya}{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}}}$}
+  \DisplayProof
 
+  \end{tabular}
+}
 
+\mydesc{propositions:}{\myjud{\myprsyn}{\myprop}}{
+    \begin{tabular}{cc}
+      \AxiomC{$
+        \begin{array}{l}
+          \ \\
+          \myjud{\myse{A}}{\mytyp} \hspace{1cm} \myjud{\myse{B}}{\mytyp}
+        \end{array}
+        $}
+      \UnaryInfC{$\myjud{\mytya \myeq \mytyb}{\myprop}$}
+      \DisplayProof
+      &
+      \AxiomC{$
+        \begin{array}{c}
+          \myjud{\myse{A}}{\mytyp} \hspace{1cm} \myjud{\mytmm}{\myse{A}} \\
+          \myjud{\myse{B}}{\mytyp} \hspace{1cm} \myjud{\mytmn}{\myse{B}}
+        \end{array}
+        $}
+    \UnaryInfC{$\myjud{\myjm{\mytmm}{\myse{A}}{\mytmn}{\myse{B}}}{\myprop}$}
+    \DisplayProof
 
-However, only one universe is present ($\mytyp_0$), and a \emph{propositional}
-universe is isolated, intended to be the universe where equality proofs live
-in.  Propositions (as long as our system is consistent) are inhabited only by
-one element, and thus can all be treated as definitionally equal.
+    \end{tabular}
+}
 
 
+While isolating a propositional universe as presented can be a useful
+exercises on its own, what we are really after is a useful notion of
+equality.  In OTT we want to maintain the notion that things judged to
+be equal are still always repleaceable for one another with no
+additional changes.  Note that this is not the same as saying that they
+are definitionally equal, since as we saw extensionally equal functions,
+while satisfying the above requirement, are not definitionally equal.
+
+Towards this goal we introduce two equality constructs in
+$\myprop$---the fact that they are in $\myprop$ indicates that they
+indeed have no computational content.  The first construct, $\myarg
+\myeq \myarg$, relates types, the second,
+$\myjm{\myarg}{\myarg}{\myarg}{\myarg}$, relates values.  The
+value-level equality is different from our old propositional equality:
+instead of ranging over only one type, we might form equalities between
+values of different types---the usefulness of this construct will be
+clear soon.  In the literature this equality is known as `heterogeneous'
+or `John Major', since
+
+\begin{quote}
+  John Major's `classless society' widened people's aspirations to
+  equality, but also the gap between rich and poor. After all, aspiring
+  to be equal to others than oneself is the politics of envy. In much
+  the same way, forms equations between members of any type, but they
+  cannot be treated as equals (ie substituted) unless they are of the
+  same type. Just as before, each thing is only equal to
+  itself. \citep{McBride1999}.
+\end{quote}
+
+Correspondingly, at the term level, $\myfun{coe}$ (`coerce') lets us
+transport values between equal types; and $\myfun{coh}$ (`coherence')
+guarantees that $\myfun{coe}$ respects the value-level equality, or in
+other words that it really has no computational component: if we
+transport $\mytmm : \mytya$ to $\mytmn : \mytyb$, $\mytmm$ and $\mytmn$
+will still be the same.
+
+Before introducing the core ideas that make OTT work, let us distinguish
+between \emph{canonical} and \emph{neutral} types.  Canonical types are
+those arising from the ground types ($\myempty$, $\myunit$, $\mybool$)
+and the three type formers ($\myarr$, $\myprod$, $\mytyc{W}$).  Neutral
+types are those formed by
+$\myfun{If}\myarg\myfun{Then}\myarg\myfun{Else}\myarg$.
+Correspondingly, canonical terms are those inhabiting canonical types
+($\mytt$, $\mytrue$, $\myfalse$, $\myabss{\myb{x}}{\mytya}{\mytmt}$,
+...), and neutral terms those formed by eliminators\footnote{Using the
+  terminology from section \ref{sec:types}, we'd say that canonical
+  terms are in \emph{weak head normal form}.}.  In the current system
+(and hopefully in well-behaved systems), all closed terms reduce to a
+canonical term, and all canonical types are inhabited by canonical
+terms.
+
+\subsubsection{Type equality, and coercions}
+
+The plan is to decompose type-level equalities between canonical types
+into decodable propositions containing equalities regarding the
+subterms, and to use coerce recursively on the subterms using the
+generated equalities.  This interplay between type equalities and
+\myfun{coe} ensures that invocations of $\myfun{coe}$ will vanish when
+we have evidence of the structural equality of the types we are
+transporting terms across.  If the type is neutral, the equality won't
+reduce and thus $\myfun{coe}$ won't reduce either.  If we come an
+equality between different canonical types, then we reduce the equality
+to bottom, making sure that no such proof can exist, and providing an
+`escape hatch' in $\myfun{coe}$.
 
-% \section{Augmenting ITT}
-% \label{sec:practical}
+\begin{figure}[t]
 
-% \subsection{A more liberal hierarchy}
+\mydesc{equality reduction:}{\myprsyn \myred \myprsyn}{
+    $
+      \begin{array}{c@{\ }c@{\ }c@{\ }l}
+        \myempty & \myeq & \myempty & \myred \mytop \\
+        \myunit  & \myeq &  \myunit & \myred  \mytop \\
+        \mybool  & \myeq &  \mybool &   \myred  \mytop \\
+        \myexi{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myexi{\myb{x_2}}{\mytya_2}{\mytya_2} & \myred \\
+        \multicolumn{4}{l}{
+          \myind{2} \mytya_1 \myeq \mytyb_1 \myand 
+                  \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{\myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2}} \myimpl \mytyb_1[\myb{x_1}] \myeq \mytyb_2[\myb{x_2}]}
+                  } \\
+      \myfora{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myfora{\myb{x_2}}{\mytya_2}{\mytyb_2} & \myred \cdots \\
+      \myw{\myb{x_1}}{\mytya_1}{\mytyb_1} & \myeq & \myw{\myb{x_2}}{\mytya_2}{\mytyb_2} & \myred \cdots \\
+      \mytya & \myeq & \mytyb & \myred \mybot\ \text{if $\mytya$ and $\mytyb$ are canonical.}
+      \end{array}
+    $
+}
+\myderivsp
+\mydesc{reduction}{\mytmsyn \myred \mytmsyn}{
+  $
+  \begin{array}[t]{@{}l@{\ }l@{\ }l@{\ }l@{\ }l@{\ }c@{\ }l@{\ }}
+    \mycoe & \myempty & \myempty & \myse{Q} & \myse{t} & \myred & \myse{t} \\
+    \mycoe & \myunit  & \myunit  & \myse{Q} & \myse{t} & \myred & \mytt \\
+    \mycoe & \mybool  & \mybool  & \myse{Q} & \mytrue & \myred & \mytrue \\
+    \mycoe & \mybool  & \mybool  & \myse{Q} & \myfalse & \myred & \myfalse \\
+    \mycoe & (\myexi{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
+             (\myexi{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
+             \mytmt_1 & \myred & \\
+             \multicolumn{7}{l}{
+             \myind{2}\begin{array}[t]{l@{\ }l@{\ }c@{\ }l}
+               \mysyn{let} & \myb{\mytmm_1} & \mapsto & \myapp{\myfst}{\mytmt_1} : \mytya_1 \\
+                           & \myb{\mytmn_1} & \mapsto & \myapp{\mysnd}{\mytmt_1} : \mysub{\mytyb_1}{\myb{x_1}}{\myb{\mytmm_1}} \\
+                           & \myb{Q_A}      & \mapsto & \myapp{\myfst}{\myse{Q}} : \mytya_1 \myeq \mytya_2 \\
+                           & \myb{\mytmm_2} & \mapsto & \mycoee{\mytya_1}{\mytya_2}{\myb{Q_A}}{\myb{\mytmm_1}} : \mytya_2 \\
+                           & \myb{Q_B}      & \mapsto & (\myapp{\mysnd}{\myse{Q}}) \myappsp \myb{\mytmm_1} \myappsp \myb{\mytmm_2} \myappsp (\mycohh{\mytya_1}{\mytya_2}{\myb{Q_A}}{\myb{\mytmm_1}}) : \myprdec{\mysub{\mytyb_1}{\myb{x_1}}{\myb{\mytmm_1}} \myeq \mysub{\mytyb_2}{\myb{x_2}}{\myb{\mytmm_2}}} \\
+                           & \myb{\mytmn_2} & \mapsto & \mycoee{\mysub{\mytyb_1}{\myb{x_1}}{\myb{\mytmm_1}}}{\mysub{\mytyb_2}{\myb{x_2}}{\myb{\mytmm_2}}}{\myb{Q_B}}{\myb{\mytmn_1}} : \mysub{\mytyb_2}{\myb{x_2}}{\myb{\mytmm_2}} \\
+               \mysyn{in}  & \multicolumn{3}{@{}l}{\mypair{\myb{\mytmm_2}}{\myb{\mytmn_2}}}
+              \end{array}} \\
+
+    \mycoe & (\myfora{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
+             (\myfora{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
+             \mytmt & \myred &
+           \cdots \\
+
+    \mycoe & (\myw{\myb{x_1}}{\mytya_1}{\mytyb_1}) &
+             (\myw{\myb{x_2}}{\mytya_2}{\mytyb_2}) & \myse{Q} &
+             \mytmt & \myred &
+           \cdots \\
+
+    \mycoe & \mytya & \mytyb & \myse{Q} & \mytmt & \myred & \myapp{\myabsurd{\mytyb}}{\myse{Q}}\ \text{if $\mytya$ and $\mytyb$ are canonical.}
+  \end{array}
+  $
+}
+\caption{Reducing type equalities, and using them when
+  $\myfun{coe}$rcing.}
+\label{fig:eqred}
+\end{figure}
 
-% \subsection{Type inference}
+Figure \ref{fig:eqred} illustrates this idea in practice.  For ground
+types, the proof is the trivial element, and \myfun{coe} is the
+identity.  For $\myunit$, we can do better: we return its only member
+without matching on the term.  For the three type binders, things are
+similar but subtly different---the choices we make in the type equality
+are dictated by the desire of writing the $\myfun{coe}$ in a natural
+way.
+
+$\myprod$ is the easiest case: we decompose the proof into proofs that
+the first element's types are equal ($\mytya_1 \myeq \mytya_2$), and a
+proof that given equal values in the first element, the types of the
+second elements are equal too
+($\myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{\myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2}}
+  \myimpl \mytyb_1 \myeq \mytyb_2}$)\footnote{We are using $\myimpl$ to
+  indicate a $\forall$ where we discard the first value.  We write
+  $\mytyb_1[\myb{x_1}]$ to indicate that the $\myb{x_1}$ in $\mytyb_1$
+  is re-bound to the $\myb{x_1}$ quantified by the $\forall$, and
+  similarly for $\myb{x_2}$ and $\mytyb_2$.}.  This also explains the
+need for heterogeneous equality, since in the second proof it would be
+awkward to express the fact that $\myb{A_1}$ is the same as $\myb{A_2}$.
+In the respective $\myfun{coe}$ case, since the types are canonical, we
+know at this point that the proof of equality is a pair of the shape
+described above.  Thus, we can immediately coerce the first element of
+the pair using the first element of the proof, and then instantiate the
+second element with the two first elements and a proof by coherence of
+their equality, since we know that the types are equal.
+
+The cases for the other binders are omitted for brevity, but they follow
+the same principle with some twists to make $\myfun{coe}$ work with the
+generated proofs; the reader can refer to the paper for details.
+
+\subsubsection{$\myfun{coe}$, laziness, and $\myfun{coh}$erence}
+
+It is important to notice that in the reduction rules for $\myfun{coe}$
+are never obstructed by the proofs: with the exception of comparisons
+between different canonical types we never `pattern match' on the proof
+pairs, but always look at the projections.  This means that, as long as
+we are consistent, and thus as long as we don't have $\mybot$-inducing
+proofs, we can add propositional axioms for equality and $\myfun{coe}$
+will still compute.  Thus, we can take $\myfun{coh}$ as axiomatic, and
+we can add back familiar useful equality rules:
 
-% \subsubsection{Bidirectional type checking}
+\mydesc{typing:}{\myjud{\mytmsyn}{\mytmsyn}}{
+  \AxiomC{$\myjud{\mytmt}{\mytya}$}
+  \UnaryInfC{$\myjud{\myapp{\myrefl}{\mytmt}}{\myprdec{\myjm{\mytmt}{\mytya}{\mytmt}{\mytya}}}$}
+  \DisplayProof
 
-% \subsubsection{Pattern unification}
+  \myderivspp
 
-% \subsection{Pattern matching and explicit fixpoints}
+  \AxiomC{$\myjud{\mytya}{\mytyp}$}
+  \AxiomC{$\myjudd{\myctx; \myb{x} : \mytya}{\mytyb}{\mytyp}$}
+  \BinaryInfC{$\myjud{\mytyc{R} \myappsp (\myb{x} {:} \mytya) \myappsp \mytyb}{\myfora{\myb{y}\, \myb{z}}{\mytya}{\myprdec{\myjm{\myb{y}}{\mytya}{\myb{z}}{\mytya} \myimpl \mysub{\mytyb}{\myb{x}}{\myb{y}} \myeq \mysub{\mytyb}{\myb{x}}{\myb{z}}}}}$}
+  \DisplayProof
+}
 
-% \subsection{Induction-recursion}
+$\myrefl$ is the equivalent of the reflexivity rule in propositional
+equality, and $\mytyc{R}$ asserts that if we have a we have a $\mytyp$
+abstracting over a value we can substitute equal for equal---this lets
+us recover $\myfun{subst}$.  Note that while we need to provide ad-hoc
+rules in the restricted, non-hierarchical theory that we have, if our
+theory supports abstraction over $\mytyp$s we can easily add these
+axioms as abstracted variables.
 
-% \subsection{Coinduction}
+\subsubsection{Value-level equality}
 
-% \subsection{Dealing with partiality}
+\mydesc{equality reduction:}{\myprsyn \myred \myprsyn}{
+  $
+  \begin{array}{r@{ }c@{\ }c@{\ }c@{}l@{\ }c@{\ }r@{}c@{\ }c@{\ }c@{}l@{\ }l}
+    (&\mytmt_1 & : & \myempty&) & \myeq & (&\mytmt_2 & : & \myempty &) & \myred \mytop \\
+    (&\mytmt_1 & : & \myunit&) & \myeq & (&\mytmt_2 & : & \myunit&) & \myred \mytop \\
+    (&\mytrue & : & \mybool&) & \myeq & (&\mytrue & : & \mybool&) & \myred \mytop \\
+    (&\myfalse & : & \mybool&) & \myeq & (&\myfalse & : & \mybool&) & \myred \mytop \\
+    (&\mytrue & : & \mybool&) & \myeq & (&\myfalse & : & \mybool&) & \myred \mybot \\
+    (&\myfalse & : & \mybool&) & \myeq & (&\mytrue & : & \mybool&) & \myred \mybot \\
+    (&\mytmt_1 & : & \myexi{\mytya_1}{\myb{x_1}}{\mytyb_1}&) & \myeq & (&\mytmt_2 & : & \myexi{\mytya_2}{\myb{x_2}}{\mytyb_2}&) & \myred \\
+     & \multicolumn{11}{@{}l}{
+      \myind{2} \myjm{\myapp{\myfst}{\mytmt_1}}{\mytya_1}{\myapp{\myfst}{\mytmt_2}}{\mytya_2} \myand
+      \myjm{\myapp{\mysnd}{\mytmt_1}}{\mysub{\mytyb_1}{\myb{x_1}}{\myapp{\myfst}{\mytmt_1}}}{\myapp{\mysnd}{\mytmt_2}}{\mysub{\mytyb_2}{\myb{x_2}}{\myapp{\myfst}{\mytmt_2}}}
+    } \\
+   (&\myse{f}_1 & : & \myfora{\mytya_1}{\myb{x_1}}{\mytyb_1}&) & \myeq & (&\myse{f}_2 & : & \myfora{\mytya_2}{\myb{x_2}}{\mytyb_2}&) & \myred \\
+     & \multicolumn{11}{@{}l}{
+       \myind{2} \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{
+           \myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2} \myimpl
+           \myjm{\myapp{\myse{f}_1}{\myb{x_1}}}{\mytyb_1[\myb{x_1}]}{\myapp{\myse{f}_2}{\myb{x_2}}}{\mytyb_2[\myb{x_2}]}
+         }}
+    } \\
+   (&\mytmt_1 \mynodee \myse{f}_1 & : & \myw{\mytya_1}{\myb{x_1}}{\mytyb_1}&) & \myeq & (&\mytmt_1 \mynodee \myse{f}_1 & : & \myw{\mytya_2}{\myb{x_2}}{\mytyb_2}&) & \myred \cdots \\
+    (&\mytmt_1 & : & \mytya_1&) & \myeq & (&\mytmt_2 & : & \mytya_2 &) & \myred \mybot\ \text{if $\mytya_1$ and $\mytya_2$ are canonical.}
+  \end{array}
+  $
+}
 
-% \subsection{Type holes}
+As with type-level equality, we want value-level equality to reduce
+based on the structure of the compared terms.  When matching
+propositional data, such as $\myempty$ and $\myunit$, we automatically
+return the trivial type, since if a type has zero one members, all
+members will be equal.  When matching on data-bearing types, such as
+$\mybool$, we check that such data matches, and return bottom otherwise.
+
+\subsection{Proof irrelevance and stuck coercions}
+
+The last effort is required to make sure that proofs (members of
+$\myprop$) are \emph{irrelevant}.  Since they are devoid of
+computational content, we would like to identify all equivalent
+propositions as the same, in a similar way as we identified all
+$\myempty$ and all $\myunit$ as the same in section
+\ref{sec:eta-expand}.
+
+Thus we will have a quotation that will not only perform
+$\eta$-expansion, but will also identify and mark proofs that could not
+be decoded (that is, equalities on neutral types).  Then, when
+comparing terms, marked proofs will be considered equal without
+analysing their contents, thus gaining irrelevance.
+
+Moreover we can safely advance `stuck' $\myfun{coe}$rcions between
+non-canonical but definitionally equal types.  Consider for example
+{\mysmall\[
+  \mycoee{(\myITE{\myb{b}}{\mynat}{\mybool})}{(\myITE{\myb{b}}{\mynat}{\mybool})}{\myb{x}}
+  \]} Where $\myb{b}$ and $\myb{x}$ are abstracted variables.  This
+$\myfun{coe}$ will not advance, since the types are not canonical.
+However they are definitionally equal, and thus we can safely remove the
+coerce and return $\myb{x}$ as it is.
+
+This process of identifying every proof as equivalent and removing
+$\myfun{coe}$rcions is known as \emph{quotation}.
 
 \section{\mykant : the theory}
 \label{sec:kant-theory}
@@ -1378,12 +1929,10 @@ The plan is to present a core language which would be capable of serving as
 the basis for a more featureful system, while still presenting interesting
 features and more importantly observational equality.
 
-The author learnt the hard way the implementations challenges for such a
-project, and while there is a solid and working base to work on, observational
-equality is not currently implemented.  However, a detailed plan on how to add
-it this functionality is provided, and should not prove to be too much work.
+We will first present the features of the system, and then describe the
+implementation we have developed in section \ref{sec:kant-practice}.
 
-The features currently implemented in \mykant\ are:
+The defining features of \mykant\ are:
 
 \begin{description}
 \item[Full dependent types] As we would expect, we have dependent a system
@@ -1398,96 +1947,119 @@ The features currently implemented in \mykant\ are:
   with associated primitive recursion operators; or records, with associated
   projections for each field.
 
-\item[Bidirectional type checking] While no `fancy' inference via unification
-  is present, we take advantage of an type synthesis system in the style of
-  \cite{Pierce2000}, extending the concept for user defined data types.
+\item[Bidirectional type checking] While no `fancy' inference via
+  unification is present, we take advantage of a type synthesis system
+  in the style of \cite{Pierce2000}, extending the concept for user
+  defined data types.
 
 \item[Type holes] When building up programs interactively, it is useful to
   leave parts unfinished while exploring the current context.  This is what
   type holes are for.
-\end{description}
 
-The planned features are:
-
-\begin{description}
 \item[Observational equality] As described in section \ref{sec:ott} but
   extended to work with the type hierarchy and to admit equality between
   arbitrary data types.
-
-\item[Coinductive data] ...
 \end{description}
 
-We will analyse the features one by one, along with motivations and tradeoffs
-for the design decisions made.
+We will analyse the features one by one, along with motivations and
+tradeoffs for the design decisions made.
 
 \subsection{Bidirectional type checking}
 
-We start by describing bidirectional type checking since it calls for fairly
-different typing rules that what we have seen up to now.  The idea is to have
-two kind of terms: terms for which a type can always be inferred, and terms
-that need to be checked against a type.  A nice observation is that this
-duality runs through the semantics of the terms: data destructors (function
-application, record projections, primitive re cursors) \emph{infer} types,
-while data constructors (abstractions, record/data types data constructors)
-need to be checked.  In the literature these terms are respectively known as
+We start by describing bidirectional type checking since it calls for
+fairly different typing rules that what we have seen up to now.  The
+idea is to have two kinds of terms: terms for which a type can always be
+inferred, and terms that need to be checked against a type.  A nice
+observation is that this duality runs through the semantics of the
+terms: neutral terms (abstracted or defined variables, function
+application, record projections, primitive recursors, etc.) \emph{infer}
+types, canonical terms (abstractions, record/data types data
+constructors, etc.) need to be \emph{checked}.
 
 To introduce the concept and notation, we will revisit the STLC in a
-bidirectional style.  The presentation follows \cite{Loh2010}.
-
-% TODO do this --- is it even necessary
+bidirectional style.  The presentation follows \cite{Loh2010}.  The
+syntax for our bidirectional STLC is the same as the untyped
+$\lambda$-calculus, but with an extra construct to annotate terms
+explicitly---this will be necessary when having top-level canonical
+terms.  The types are the same as those found in the normal STLC.
 
-% \subsubsection{Declarations and contexts}
-
-% A \mykant declaration can be one of 4 kinds:
+\mydesc{syntax}{ }{
+  $
+  \begin{array}{r@{\ }c@{\ }l}
+    \mytmsyn & ::= & \myb{x} \mysynsep \myabs{\myb{x}}{\mytmsyn} \mysynsep (\myapp{\mytmsyn}{\mytmsyn}) \mysynsep (\mytmsyn : \mytysyn)
+  \end{array}
+  $ } We will have two kinds of typing judgements: \emph{inference} and
+\emph{checking}.  $\myinf{\mytmt}{\mytya}$ indicates that $\mytmt$
+infers the type $\mytya$, while $\mychk{\mytmt}{\mytya}$ can be checked
+against type $\mytya$.  The type of variables in context is inferred,
+and so are annotate terms.  The type of applications is inferred too,
+propagating types down the applied term.  Abstractions are checked.
+Finally, we have a rule to check the type of an inferrable term.
+
+\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{
+  \begin{tabular}{ccc}
+    \AxiomC{$\myctx(x) = A$}
+    \UnaryInfC{$\myinf{\myb{x}}{A}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myjudd{\myctx;\myb{x} : A}{\mytmt}{\mytyb}$}
+    \UnaryInfC{$\mychk{\myabs{x}{\mytmt}}{\mytyb}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myjud{\mytmm}{\mytya \myarr \mytyb}$}
+    \AxiomC{$\myjud{\mytmn}{\mytya}$}
+    \BinaryInfC{$\myjud{\myapp{\mytmm}{\mytmn}}{\mytyb}$}
+    \DisplayProof
+  \end{tabular}
 
-% \begin{description}
-% \item[Value] A declared variable, together with a type and a body.
-% \item[Postulate] An abstract variable, with a type but no body.
-% \item[Inductive data] A datatype, with a type constructor and various data
-%   constructors---somewhat similar to what we find in Haskell.  A primitive
-%   recursor (or `destructor') will be generated automatically.
-% \item[Record] A record, which consists of one data constructor and various
-%   fields, with no recursive occurrences.  We will explain the need for records
-%   later.
-% \end{description}
+  \myderivspp
 
-% The syntax of 
+  \begin{tabular}{cc}
+    \AxiomC{$\mychk{\mytmt}{\mytya}$}
+    \UnaryInfC{$\myinf{\myann{\mytmt}{\mytya}}{\mytya}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myinf{\mytmt}{\mytya}$}
+    \UnaryInfC{$\mychk{\mytmt}{\mytya}$}
+    \DisplayProof
+  \end{tabular}
+}
 
 \subsection{Base terms and types}
 
-Let us begin by describing the primitives available without the user defining
-any data types, and without equality.  The syntax given here is the one of the
-core (`desugared') terms, and the way we handle variables and substitution is
-left unspecified, and explained in section \ref{sec:term-repr}, along with
-other implementation issues.  We are also going to give an account of the
-implicit type hierarchy separately in section \ref{sec:term-hierarchy}, so as
-not to clutter derivation rules too much, and just treat types as
-impredicative for the time being.
+Let us begin by describing the primitives available without the user
+defining any data types, and without equality.  The way we handle
+variables and substitution is left unspecified, and explained in section
+\ref{sec:term-repr}, along with other implementation issues.  We are
+also going to give an account of the implicit type hierarchy separately
+in section \ref{sec:term-hierarchy}, so as not to clutter derivation
+rules too much, and just treat types as impredicative for the time
+being.
 
 \mydesc{syntax}{ }{
   $
   \begin{array}{r@{\ }c@{\ }l}
     \mytmsyn & ::= & \mynamesyn \mysynsep \mytyp \\
-             &  |  & \myfora{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
-                     \myabss{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
-                     (\myapp{\mytmsyn}{\mytmsyn}) \mysynsep
-                     (\myann{\mytmsyn}{\mytmsyn}) \\
+    &  |  & \myfora{\myb{x}}{\mytmsyn}{\mytmsyn} \mysynsep
+    \myabs{\myb{x}}{\mytmsyn} \mysynsep
+    (\myapp{\mytmsyn}{\mytmsyn}) \mysynsep
+    (\myann{\mytmsyn}{\mytmsyn}) \\
     \mynamesyn & ::= & \myb{x} \mysynsep \myfun{f}
   \end{array}
   $
 }
 
-The syntax for our calculus includes just two basic constructs: abstractions
-and $\mytyp$s.  Everything else will be provided by user-definable constructs.
-Since we let the user define values, we will need a context capable of
-carrying the body of variables along with their type.  We also want to make
-sure not to have duplicate top names, so we enforce that.
+The syntax for our calculus includes just two basic constructs:
+abstractions and $\mytyp$s.  Everything else will be provided by
+user-definable constructs.  Since we let the user define values, we will
+need a context capable of carrying the body of variables along with
+their type.
 
-% \mytyc{D} \mysynsep \mytyc{D}.\mydc{c}
-%                        \mysynsep \mytyc{D}.\myfun{f} \mysynsep 
+Bound names and defined names are treated separately in the syntax, and
+while both can be associated to a type in the context, only defined
+names can be associated with a body:
 
 \mydesc{context validity:}{\myvalid{\myctx}}{
-  \centering{
     \begin{tabular}{ccc}
       \AxiomC{\phantom{$\myjud{\mytya}{\mytyp_l}$}}
       \UnaryInfC{$\myvalid{\myemptyctx}$}
@@ -1503,17 +2075,15 @@ sure not to have duplicate top names, so we enforce that.
       \BinaryInfC{$\myvalid{\myctx ; \myfun{f} \mapsto \mytmt : \mytya}$}
       \DisplayProof
     \end{tabular}
-  }
 }
 
-Now we can present the reduction rules, which are unsurprising.  We have the
-usual functional application ($\beta$-reduction), but also a rule to replace
-names with their bodies, if in the context ($\delta$-reduction), and one to
-discard type annotations.  For this reason the new reduction rules are
-dependent on the context:
+Now we can present the reduction rules, which are unsurprising.  We have
+the usual function application ($\beta$-reduction), but also a rule to
+replace names with their bodies ($\delta$-reduction), and one to discard
+type annotations.  For this reason reduction is done in-context, as
+opposed to what we have seen in the past:
 
 \mydesc{reduction:}{\myctx \vdash \mytmsyn \myred \mytmsyn}{
-  \centering{
     \begin{tabular}{ccc}
       \AxiomC{\phantom{$\myb{x} \mapsto \mytmt : \mytya \in \myctx$}}
       \UnaryInfC{$\myctx \vdash \myapp{(\myabs{\myb{x}}{\mytmm})}{\mytmn}
@@ -1528,66 +2098,141 @@ dependent on the context:
       \UnaryInfC{$\myctx \vdash \myann{\mytmm}{\mytya} \myred \mytmm$}
       \DisplayProof
     \end{tabular}
-  }
 }
 
-We want to define a \emph{weak head normal form} (WHNF) for our terms, to give
-a syntax directed presentation of type rules with no `conversion' rule.  We
-will consider all \emph{canonical} forms (abstractions and data constructors)
-to be in weak head normal form...  % TODO finish
+We can now give types to our terms.  We defer the question of term
+equality (which is needed for type checking) to section
+\ref{sec:kant-irr}.
 
-We can now give types to our terms.  Using our definition of WHNF, I will use
-$\mytmm \mynf \mytmn$ to indicate that $\mytmm$'s normal form is $\mytmn$.
-This way, we can avoid the non syntax-directed conversion rule, giving a more
-algorithmic presentation of type checking.
-
-\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytysyn}{   
-  \centering{
-    \begin{tabular}{ccc}
-      \AxiomC{$\myb{x} : A \in \myctx$ or $\myb{x} \mapsto \mytmt : A \in \myctx$}
-      \UnaryInfC{$\myinf{\myb{x}}{A}$}
+\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{   
+    \begin{tabular}{cccc}
+      \AxiomC{$\myse{name} : A \in \myctx$}
+      \UnaryInfC{$\myinf{\myse{name}}{A}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myfun{f} \mapsto \mytmt : A \in \myctx$}
+      \UnaryInfC{$\myinf{\myfun{f}}{A}$}
       \DisplayProof
       &
       \AxiomC{$\mychk{\mytmt}{\mytya}$}
       \UnaryInfC{$\myinf{\myann{\mytmt}{\mytya}}{\mytya}$}
       \DisplayProof
+      &
+      \AxiomC{$\myinf{\mytmt}{\mytya}$}
+      \UnaryInfC{$\mychk{\mytmt}{\mytya}$}
+      \DisplayProof
     \end{tabular}
-    \myderivsp
+    \myderivspp
 
-    \AxiomC{$\myinf{\mytmm}{\mytya}$}
-    \AxiomC{$\myctx \vdash \mytya \mynf \myfora{\myb{x}}{\mytyb}{\myse{C}}$}
-    \AxiomC{$\mychk{\mytmn}{\mytyb}$}
-    \TrinaryInfC{$\myinf{\myapp{\mytmm}{\mytmn}}{\mysub{\myse{C}}{\myb{x}}{\mytmn}}$}
-    \DisplayProof
+    \begin{tabular}{ccc}
+      \AxiomC{$\myinf{\mytmm}{\myfora{\myb{x}}{\mytya}{\mytyb}}$}
+      \AxiomC{$\mychk{\mytmn}{\mytya}$}
+      \BinaryInfC{$\myinf{\myapp{\mytmm}{\mytmn}}{\mysub{\mytyb}{\myb{x}}{\mytmn}}$}
+      \DisplayProof
 
-    \myderivsp
+      &
 
-    \AxiomC{$\myctx \vdash \mytya \mynf \myfora{\myb{x}}{\mytyb}{\myse{C}}$}
-    \AxiomC{$\mychkk{\myctx; \myb{x}: \mytyb}{\mytmt}{\myse{C}}$}
-    \BinaryInfC{$\mychk{\myabs{\myb{x}}{\mytmt}}{\mytya}$}
-    \DisplayProof
-  }
+      \AxiomC{$\mychkk{\myctx; \myb{x}: \mytya}{\mytmt}{\mytyb}$}
+      \UnaryInfC{$\mychk{\myabs{\myb{x}}{\mytmt}}{\myfora{\myb{x}}{\mytyb}{\mytyb}}$}
+      \DisplayProof
+    \end{tabular}
 }
 
 \subsection{Elaboration}
 
+As we mentioned, $\mykant$\ allows the user to define not only values
+but also custom data types and records.  \emph{Elaboration} consists of
+turning these declarations into workable syntax, types, and reduction
+rules.  The treatment of custom types in $\mykant$\ is heavily inspired
+by McBride and McKinna early work on Epigram \citep{McBride2004},
+although with some differences.
+
+\subsubsection{Term vectors, telescopes, and assorted notation}
+
+We use a vector notation to refer to a series of term applied to
+another, for example $\mytyc{D} \myappsp \vec{A}$ is a shorthand for
+$\mytyc{D} \myappsp \mytya_1 \cdots \mytya_n$, for some $n$.  $n$ is
+consistently used to refer to the length of such vectors, and $i$ to
+refer to an index in such vectors.  We also often need to `build up'
+terms vectors, in which case we use $\myemptyctx$ for an empty vector
+and add elements to an existing vector with $\myarg ; \myarg$, similarly
+to what we do for context.
+
+To present the elaboration and operations on user defined data types, we
+frequently make use what de Bruijn called \emph{telescopes}
+\citep{Bruijn91}, a construct that will prove useful when dealing with
+the types of type and data constructors.  A telescope is a series of
+nested typed bindings, such as $(\myb{x} {:} \mynat); (\myb{p} {:}
+\myapp{\myfun{even}}{\myb{x}})$.  Consistently with the notation for
+contexts and term vectors, we use $\myemptyctx$ to denote an empty
+telescope and $\myarg ; \myarg$ to add a new binding to an existing
+telescope.
+
+We refer to telescopes with $\mytele$, $\mytele'$, $\mytele_i$, etc.  If
+$\mytele$ refers to a telescope, $\mytelee$ refers to the term vector
+made up of all the variables bound by $\mytele$.  $\mytele \myarr
+\mytya$ refers to the type made by turning the telescope into a series
+of $\myarr$.  Returning to the examples above, we have that
+{\mysmall\[
+   (\myb{x} {:} \mynat); (\myb{p} : \myapp{\myfun{even}}{\myb{x}}) \myarr \mynat =
+   (\myb{x} {:} \mynat) \myarr (\myb{p} : \myapp{\myfun{even}}{\myb{x}}) \myarr \mynat
+\]}
+
+We make use of various operations to manipulate telescopes:
+\begin{itemize}
+\item $\myhead(\mytele)$ refers to the first type appearing in
+  $\mytele$: $\myhead((\myb{x} {:} \mynat); (\myb{p} :
+  \myapp{\myfun{even}}{\myb{x}})) = \mynat$.  Similarly,
+  $\myix_i(\mytele)$ refers to the $i^{th}$ type in a telescope
+  (1-indexed).
+\item $\mytake_i(\mytele)$ refers to the telescope created by taking the
+  first $i$ elements of $\mytele$:  $\mytake_1((\myb{x} {:} \mynat); (\myb{p} :
+  \myapp{\myfun{even}}{\myb{x}})) = (\myb{x} {:} \mynat)$
+\item $\mytele \vec{A}$ refers to the telescope made by `applying' the
+  terms in $\vec{A}$ on $\mytele$: $((\myb{x} {:} \mynat); (\myb{p} :
+  \myapp{\myfun{even}}{\myb{x}}))42 = (\myb{p} :
+  \myapp{\myfun{even}}{42})$.
+\end{itemize}
+
+Additionally, when presenting syntax elaboration, I'll use $\mytmsyn^n$
+to indicate a term vector composed of $n$ elements, or
+$\mytmsyn^{\mytele}$ for one composed by as many elements as the
+telescope.
+
+\subsubsection{Declarations syntax}
+
 \mydesc{syntax}{ }{
   $
   \begin{array}{r@{\ }c@{\ }l}
       \mydeclsyn & ::= & \myval{\myb{x}}{\mytmsyn}{\mytmsyn} \\
                  &  |  & \mypost{\myb{x}}{\mytmsyn} \\
-                 &  |  & \myadt{\mytyc{D}}{\mytelesyn}{}{\mydc{c} : \mytelesyn\ |\ \cdots } \\
-                 &  |  & \myreco{\mytyc{D}}{\mytelesyn}{}{\myfun{f} : \mytmsyn,\ \cdots } \\
+                 &  |  & \myadt{\mytyc{D}}{\myappsp \mytelesyn}{}{\mydc{c} : \mytelesyn\ |\ \cdots } \\
+                 &  |  & \myreco{\mytyc{D}}{\myappsp \mytelesyn}{}{\myfun{f} : \mytmsyn,\ \cdots } \\
 
-      \mytelesyn & ::= & \myemptytele \mysynsep \mytelesyn \mycc (\myb{x} {:} \mytmsyn)
+      \mytelesyn & ::= & \myemptytele \mysynsep \mytelesyn \mycc (\myb{x} {:} \mytmsyn) \\
+      \mynamesyn & ::= & \cdots \mysynsep \mytyc{D} \mysynsep \mytyc{D}.\mydc{c} \mysynsep \mytyc{D}.\myfun{f}
   \end{array}
   $
 }
 
-\subsubsection{Values and postulated variables}
+In \mykant\ we have four kind of declarations:
+
+\begin{description}
+\item[Defined value] A variable, together with a type and a body.
+\item[Abstract variable] An abstract variable, with a type but no body.
+\item[Inductive data] A datatype, with a type constructor and various data
+  constructors---somewhat similar to what we find in Haskell.  A primitive
+  recursor (or `destructor') will be generated automatically.
+\item[Record] A record, which consists of one data constructor and various
+  fields, with no recursive occurrences.
+\end{description}
+
+Elaborating defined variables consists of type checking body against the
+given type, and updating the context to contain the new binding.
+Elaborating abstract variables and abstract variables consists of type
+checking the type, and updating the context with a new typed variable:
 
 \mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
-  \centering{
     \begin{tabular}{cc}
       \AxiomC{$\myjud{\mytmt}{\mytya}$}
       \AxiomC{$\myfun{f} \not\in \myctx$}
@@ -1607,177 +2252,1139 @@ algorithmic presentation of type checking.
       \DisplayProof
     \end{tabular}
 }
-}
 
 \subsubsection{User defined types}
+\label{sec:user-type}
 
-\mydesc{syntax}{ }{
-  $
-  \begin{array}{l}
-    \mynamesyn ::= \cdots \mysynsep \mytyc{D} \mysynsep \mytyc{D}.\mydc{c} \mysynsep \mytyc{D}.\myfun{f}
+Elaborating user defined types is the real effort.  First, let's explain
+what we can defined, with some examples.
+
+\begin{description}
+\item[Natural numbers] To define natural numbers, we create a data type
+  with two constructors: one with zero arguments ($\mydc{zero}$) and one
+  with one recursive argument ($\mydc{suc}$):
+  {\mysmall\[
+  \begin{array}{@{}l}
+    \myadt{\mynat}{ }{ }{
+      \mydc{zero} \mydcsep \mydc{suc} \myappsp \mynat
+    }
   \end{array}
-  $
-}
+  \]}
+  This is very similar to what we would write in Haskell:
+  {\mysmall\[\text{\texttt{data Nat = Zero | Suc Nat}}\]}
+  Once the data type is defined, $\mykant$\ will generate syntactic
+  constructs for the type and data constructors, so that we will have
+  \begin{center}
+    \mysmall
+    \begin{tabular}{ccc}
+      \AxiomC{\phantom{$\mychk{\mytmt}{\mynat}$}}
+      \UnaryInfC{$\myinf{\mynat}{\mytyp}$}
+      \DisplayProof
+    &
+      \AxiomC{\phantom{$\mychk{\mytmt}{\mynat}$}}
+      \UnaryInfC{$\myinf{\mytyc{\mynat}.\mydc{zero}}{\mynat}$}
+      \DisplayProof
+    &
+      \AxiomC{$\mychk{\mytmt}{\mynat}$}
+      \UnaryInfC{$\myinf{\mytyc{\mynat}.\mydc{suc} \myappsp \mytmt}{\mynat}$}
+      \DisplayProof
+    \end{tabular}
+  \end{center}
+  While in Haskell (or indeed in Agda or Coq) data constructors are
+  treated the same way as functions, in $\mykant$\ they are syntax, so
+  for example using $\mytyc{\mynat}.\mydc{suc}$ on its own will be a
+  syntax error.  This is necessary so that we can easily infer the type
+  of polymorphic data constructors, as we will see later.
+
+  Moreover, each data constructor is prefixed by the type constructor
+  name, since we need to retrieve the type constructor of a data
+  constructor when type checking.  This measure aids in the presentation
+  of various features but it is not needed in the implementation, where
+  we can have a dictionary to lookup the type constructor corresponding
+  to each data constructor.  When using data constructors in examples I
+  will omit the type constructor prefix for brevity.
+
+  Along with user defined constructors, $\mykant$\ automatically
+  generates an \emph{eliminator}, or \emph{destructor}, to compute with
+  natural numbers: If we have $\mytmt : \mynat$, we can destruct
+  $\mytmt$ using the generated eliminator `$\mynat.\myfun{elim}$':
+  \begin{prooftree}
+    \mysmall
+    \AxiomC{$\mychk{\mytmt}{\mynat}$}
+    \UnaryInfC{$
+      \myinf{\mytyc{\mynat}.\myfun{elim} \myappsp \mytmt}{
+        \begin{array}{@{}l}
+          \myfora{\myb{P}}{\mynat \myarr \mytyp}{ \\ \myapp{\myb{P}}{\mydc{zero}} \myarr (\myfora{\myb{x}}{\mynat}{\myapp{\myb{P}}{\myb{x}} \myarr \myapp{\myb{P}}{(\myapp{\mydc{suc}}{\myb{x}})}}) \myarr \\ \myapp{\myb{P}}{\mytmt}}
+          \end{array}
+        }$}
+  \end{prooftree}
+  $\mynat.\myfun{elim}$ corresponds to the induction principle for
+  natural numbers: if we have a predicate on numbers ($\myb{P}$), and we
+  know that predicate holds for the base case
+  ($\myapp{\myb{P}}{\mydc{zero}}$) and for each inductive step
+  ($\myfora{\myb{x}}{\mynat}{\myapp{\myb{P}}{\myb{x}} \myarr
+    \myapp{\myb{P}}{(\myapp{\mydc{suc}}{\myb{x}})}}$), then $\myb{P}$
+  holds for any number.  As with the data constructors, we require the
+  eliminator to be applied to the `destructed' element.
+
+  While the induction principle is usually seen as a mean to prove
+  properties about numbers, in the intuitionistic setting it is also a
+  mean to compute.  In this specific case we will $\mynat.\myfun{elim}$
+  will return the base case if the provided number is $\mydc{zero}$, and
+  recursively apply the inductive step if the number is a
+  $\mydc{suc}$cessor:
+  {\mysmall\[
+  \begin{array}{@{}l@{}l}
+    \mytyc{\mynat}.\myfun{elim} \myappsp \mydc{zero} & \myappsp \myse{P} \myappsp \myse{pz} \myappsp \myse{ps} \myred \myse{pz} \\
+    \mytyc{\mynat}.\myfun{elim} \myappsp (\mydc{suc} \myappsp \mytmt) & \myappsp \myse{P} \myappsp \myse{pz} \myappsp \myse{ps} \myred \myse{ps} \myappsp \mytmt \myappsp (\mynat.\myfun{elim} \myappsp \mytmt \myappsp \myse{P} \myappsp \myse{pz} \myappsp \myse{ps})
+  \end{array}
+  \]}
+  The Haskell equivalent would be
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \text{\texttt{elim :: Nat -> a -> (Nat -> a -> a) -> a}}\\
+      \text{\texttt{elim Zero    pz ps = pz}}\\
+      \text{\texttt{elim (Suc n) pz ps = ps n (elim n pz ps)}}
+    \end{array}
+    \]}
+  Which buys us the computational behaviour, but not the reasoning power.
+
+\item[Binary trees] Now for a polymorphic data type: binary trees, since
+  lists are too similar to natural numbers to be interesting.
+  {\mysmall\[
+  \begin{array}{@{}l}
+    \myadt{\mytree}{\myappsp (\myb{A} {:} \mytyp)}{ }{
+      \mydc{leaf} \mydcsep \mydc{node} \myappsp (\myapp{\mytree}{\myb{A}}) \myappsp \myb{A} \myappsp (\myapp{\mytree}{\myb{A}})
+    }
+  \end{array}
+  \]}
+  Now the purpose of constructors as syntax can be explained: what would
+  the type of $\mydc{leaf}$ be?  If we were to treat it as a `normal'
+  term, we would have to specify the type parameter of the tree each
+  time the constructor is applied:
+  {\mysmall\[
+  \begin{array}{@{}l@{\ }l}
+    \mydc{leaf} & : \myfora{\myb{A}}{\mytyp}{\myapp{\mytree}{\myb{A}}} \\
+    \mydc{node} & : \myfora{\myb{A}}{\mytyp}{\myapp{\mytree}{\myb{A}} \myarr \myb{A} \myarr \myapp{\mytree}{\myb{A}} \myarr \myapp{\mytree}{\myb{A}}}
+  \end{array}
+  \]}
+  The problem with this approach is that creating terms is incredibly
+  verbose and dull, since we would need to specify the type parameters
+  each time.  For example if we wished to create a $\mytree \myappsp
+  \mynat$ with two nodes and three leaves, we would have to write
+  {\mysmall\[
+  \mydc{node} \myappsp \mynat \myappsp (\mydc{node} \myappsp \mynat \myappsp (\mydc{leaf} \myappsp \mynat) \myappsp (\myapp{\mydc{suc}}{\mydc{zero}}) \myappsp (\mydc{leaf} \myappsp \mynat)) \myappsp \mydc{zero} \myappsp (\mydc{leaf} \myappsp \mynat)
+  \]}
+  The redundancy of $\mynat$s is quite irritating.  Instead, if we treat
+  constructors as syntactic elements, we can `extract' the type of the
+  parameter from the type that the term gets checked against, much like
+  we get the type of abstraction arguments:
+  \begin{center}
+    \mysmall
+    \begin{tabular}{cc}
+      \AxiomC{$\mychk{\mytya}{\mytyp}$}
+      \UnaryInfC{$\mychk{\mydc{leaf}}{\myapp{\mytree}{\mytya}}$}
+      \DisplayProof
+      &
+      \AxiomC{$\mychk{\mytmm}{\mytree \myappsp \mytya}$}
+      \AxiomC{$\mychk{\mytmt}{\mytya}$}
+      \AxiomC{$\mychk{\mytmm}{\mytree \myappsp \mytya}$}
+      \TrinaryInfC{$\mychk{\mydc{node} \myappsp \mytmm \myappsp \mytmt \myappsp \mytmn}{\mytree \myappsp \mytya}$}
+      \DisplayProof
+    \end{tabular}
+  \end{center}
+  Which enables us to write, much more concisely
+  {\mysmall\[
+  \mydc{node} \myappsp (\mydc{node} \myappsp \mydc{leaf} \myappsp (\myapp{\mydc{suc}}{\mydc{zero}}) \myappsp \mydc{leaf}) \myappsp \mydc{zero} \myappsp \mydc{leaf} : \myapp{\mytree}{\mynat}
+  \]}
+  We gain an annotation, but we lose the myriad of types applied to the
+  constructors.  Conversely, with the eliminator for $\mytree$, we can
+  infer the type of the arguments given the type of the destructed:
+  \begin{prooftree}
+    \small
+    \AxiomC{$\myinf{\mytmt}{\myapp{\mytree}{\mytya}}$}
+    \UnaryInfC{$
+      \myinf{\mytree.\myfun{elim} \myappsp \mytmt}{
+        \begin{array}{@{}l}
+          (\myb{P} {:} \myapp{\mytree}{\mytya} \myarr \mytyp) \myarr \\
+          \myapp{\myb{P}}{\mydc{leaf}} \myarr \\
+          ((\myb{l} {:} \myapp{\mytree}{\mytya}) (\myb{x} {:} \mytya) (\myb{r} {:} \myapp{\mytree}{\mytya}) \myarr \myapp{\myb{P}}{\myb{l}} \myarr
+          \myapp{\myb{P}}{\myb{r}} \myarr \myb{P} \myappsp (\mydc{node} \myappsp \myb{l} \myappsp \myb{x} \myappsp \myb{r})) \myarr \\
+          \myapp{\myb{P}}{\mytmt}
+        \end{array}
+      }
+      $}
+  \end{prooftree}
+  As expected, the eliminator embodies structural induction on trees.
+
+\item[Empty type] We have presented types that have at least one
+  constructors, but nothing prevents us from defining types with
+  \emph{no} constructors:
+  {\mysmall\[
+  \myadt{\mytyc{Empty}}{ }{ }{ }
+  \]}
+  What shall the `induction principle' on $\mytyc{Empty}$ be?  Does it
+  even make sense to talk about induction on $\mytyc{Empty}$?
+  $\mykant$\ does not care, and generates an eliminator with no `cases',
+  and thus corresponding to the $\myfun{absurd}$ that we know and love:
+  \begin{prooftree}
+    \mysmall
+    \AxiomC{$\myinf{\mytmt}{\mytyc{Empty}}$}
+    \UnaryInfC{$\myinf{\myempty.\myfun{elim} \myappsp \mytmt}{(\myb{P} {:} \mytmt \myarr \mytyp) \myarr \myapp{\myb{P}}{\mytmt}}$}
+  \end{prooftree}
+
+\item[Ordered lists] Up to this point, the examples shown are nothing
+  new to the \{Haskell, SML, OCaml, functional\} programmer.  However
+  dependent types let us express much more than that.  A useful example
+  is the type of ordered lists. There are many ways to define such a
+  thing, we will define our type to store the bounds of the list, making
+  sure that $\mydc{cons}$ing respects that.
+
+  First, using $\myunit$ and $\myempty$, we define a type expressing the
+  ordering on natural numbers, $\myfun{le}$---`less or equal'.
+  $\myfun{le}\myappsp \mytmm \myappsp \mytmn$ will be inhabited only if
+  $\mytmm \le \mytmn$:
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \myfun{le} : \mynat \myarr \mynat \myarr \mytyp \\
+      \myfun{le} \myappsp \myb{n} \mapsto \\
+          \myind{2} \mynat.\myfun{elim} \\
+            \myind{2}\myind{2} \myb{n} \\
+            \myind{2}\myind{2} (\myabs{\myarg}{\mynat \myarr \mytyp}) \\
+            \myind{2}\myind{2} (\myabs{\myarg}{\myunit}) \\
+            \myind{2}\myind{2} (\myabs{\myb{n}\, \myb{f}\, \myb{m}}{
+              \mynat.\myfun{elim} \myappsp \myb{m} \myappsp (\myabs{\myarg}{\mytyp}) \myappsp \myempty \myappsp (\myabs{\myb{m'}\, \myarg}{\myapp{\myb{f}}{\myb{m'}}})
+                              })
+    \end{array}
+    \]} We return $\myunit$ if the scrutinised is $\mydc{zero}$ (every
+  number in less or equal than zero), $\myempty$ if the first number is
+  a $\mydc{suc}$cessor and the second a $\mydc{zero}$, and we recurse if
+  they are both successors.  Since we want the list to have possibly
+  `open' bounds, for example for empty lists, we create a type for
+  `lifted' naturals with a bottom (less than everything) and top
+  (greater than everything) elements, along with an associated comparison
+  function:
+  {\mysmall\[
+    \begin{array}{@{}l}
+    \myadt{\mytyc{Lift}}{ }{ }{\mydc{bot} \mydcsep \mydc{lift} \myappsp \mynat \mydcsep \mydc{top}}\\
+    \myfun{le'} : \mytyc{Lift} \myarr \mytyc{Lift} \myarr \mytyp\\
+    \myfun{le'} \myappsp \myb{l_1} \mapsto \\
+          \myind{2} \mytyc{Lift}.\myfun{elim} \\
+            \myind{2}\myind{2} \myb{l_1} \\
+            \myind{2}\myind{2} (\myabs{\myarg}{\mytyc{Lift} \myarr \mytyp}) \\
+            \myind{2}\myind{2} (\myabs{\myarg}{\myunit}) \\
+            \myind{2}\myind{2} (\myabs{\myb{n_1}\, \myb{n_2}}{
+              \mytyc{Lift}.\myfun{elim} \myappsp \myb{l_2} \myappsp (\myabs{\myarg}{\mytyp}) \myappsp \myempty \myappsp (\myabs{\myb{n_2}}{\myfun{le} \myappsp \myb{n_1} \myappsp \myb{n_2}}) \myappsp \myunit
+            }) \\
+            \myind{2}\myind{2} (\myabs{\myb{n_1}\, \myb{n_2}}{
+              \mytyc{Lift}.\myfun{elim} \myappsp \myb{l_2} \myappsp (\myabs{\myarg}{\mytyp}) \myappsp \myempty \myappsp (\myabs{\myarg}{\myempty}) \myappsp \myunit
+            })
+    \end{array}
+    \]} Finally, we can defined a type of ordered lists.  The type is
+  parametrised over two values representing the lower and upper bounds
+  of the elements, as opposed to the type parameters that we are used
+  to.  Then, an empty list will have to have evidence that the bounds
+  are ordered, and each time we add an element we require the list to
+  have a matching lower bound:
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \myadt{\mytyc{OList}}{\myappsp (\myb{low}\ \myb{upp} {:} \mytyc{Lift})}{\\ \myind{2}}{
+          \mydc{nil} \myappsp (\myfun{le'} \myappsp \myb{low} \myappsp \myb{upp}) \mydcsep \mydc{cons} \myappsp (\myb{n} {:} \mynat) \myappsp (\mytyc{OList} \myappsp (\myfun{lift} \myappsp \myb{n}) \myappsp \myb{upp}) \myappsp (\myfun{le'} \myappsp \myb{low} \myappsp (\myfun{lift} \myappsp \myb{n})
+        }
+    \end{array}
+    \]} If we want we can then employ this structure to write and prove
+  correct various sorting algorithms\footnote{See this presentation by
+    Conor McBride:
+    \url{https://personal.cis.strath.ac.uk/conor.mcbride/Pivotal.pdf},
+    and this blog post by the author:
+    \url{http://mazzo.li/posts/AgdaSort.html}.}.
+
+\item[Dependent products] Apart from $\mysyn{data}$, $\mykant$\ offers
+  us another way to define types: $\mysyn{record}$.  A record is a
+  datatype with one constructor and `projections' to extract specific
+  fields of the said constructor.
+
+  For example, we can recover dependent products:
+  {\mysmall\[
+  \begin{array}{@{}l}
+    \myreco{\mytyc{Prod}}{\myappsp (\myb{A} {:} \mytyp) \myappsp (\myb{B} {:} \myb{A} \myarr \mytyp)}{\\ \myind{2}}{\myfst : \myb{A}, \mysnd : \myapp{\myb{B}}{\myb{fst}}}
+  \end{array}
+  \]}
+  Here $\myfst$ and $\mysnd$ are the projections, with their respective
+  types.  Note that each field can refer to the preceding fields.  A
+  constructor will be automatically generated, under the name of
+  $\mytyc{Prod}.\mydc{constr}$.  Dually to data types, we will omit the
+  type constructor prefix for record projections.
+
+  Following the bidirectionality of the system, we have that projections
+  (the destructors of the record) infer the type, while the constructor
+  gets checked:
+  \begin{center}
+    \mysmall
+    \begin{tabular}{cc}
+      \AxiomC{$\mychk{\mytmm}{\mytya}$}
+      \AxiomC{$\mychk{\mytmn}{\myapp{\mytyb}{\mytmm}}$}
+      \BinaryInfC{$\mychk{\mytyc{Prod}.\mydc{constr} \myappsp \mytmm \myappsp \mytmn}{\mytyc{Prod} \myappsp \mytya \myappsp \mytyb}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myinf{\myfun{snd} \myappsp \mytmt}{\mytyb \myappsp (\myfst \myappsp \mytmt)}$}}
+      \DisplayProof
+      &
+      \AxiomC{$\myinf{\mytmt}{\mytyc{Prod} \myappsp \mytya \myappsp \mytyb}$}
+      \UnaryInfC{$\myinf{\myfun{fst} \myappsp \mytmt}{\mytya}$}
+      \noLine
+      \UnaryInfC{$\myinf{\myfun{snd} \myappsp \mytmt}{\mytyb \myappsp (\myfst \myappsp \mytmt)}$}
+      \DisplayProof
+    \end{tabular}
+  \end{center}
+  What we have is equivalent to ITT's dependent products.
+\end{description}
 
-\subsubsection{Data types}
+\begin{figure}[p]
+    \mydesc{syntax}{ }{
+      \footnotesize
+      $
+      \begin{array}{l}
+        \mynamesyn ::= \cdots \mysynsep \mytyc{D} \mysynsep \mytyc{D}.\mydc{c} \mysynsep \mytyc{D}.\myfun{f}
+      \end{array}
+      $
+    }
 
-\begin{figure}[t]
-  \mydesc{syntax elaboration:}{\myelab{\mydeclsyn}{\mytmsyn ::= \cdots}}{
-    \centering{
+    \mynegder
+
+  \mydesc{syntax elaboration:}{\mydeclsyn \myelabf \mytmsyn ::= \cdots}{
+    \footnotesize
       $
-      \begin{array}{r@{\ }c@{\ }l}
-        \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{\cdots\ |\ \mydc{c}_n : \myvec{(\myb{x} {:} \mytya)} \ |\ \cdots } \\
-        \myelabf &
+      \begin{array}{r@{\ }l}
+         & \myadt{\mytyc{D}}{\mytele}{}{\cdots\ |\ \mydc{c}_n : \mytele_n } \\
+        \myelabf &
         
         \begin{array}{r@{\ }c@{\ }l}
-          \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\myvec{\mytmsyn}} \mysynsep
-          \mytyc{D}.\mydc{c}_n \myappsp \myvec{\mytmsyn} \mysynsep  \cdots \mysynsep \mytyc{D}.\myfun{elim} \myappsp \mytmsyn \\
+          \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\mytmsyn^{\mytele}} \mysynsep \cdots \mysynsep
+          \mytyc{D}.\mydc{c}_n \myappsp \mytmsyn^{\mytele_n} \mysynsep \mytyc{D}.\myfun{elim} \myappsp \mytmsyn \\
         \end{array}
       \end{array}
       $
-    }
   }
 
+    \mynegder
+
   \mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
-    \centering{
-      \AxiomC{$\myinf{\mytele \myarr \mytyp}{\mytyp}$}
-      \AxiomC{$\mytyc{D} \not\in \myctx$}
-      \noLine
-      \BinaryInfC{$\myinff{\myctx;\ \mytyc{D} : \mytele \myarr \mytyp}{\mytele \mycc \mytele_i \myarr \myapp{\mytyc{D}}{\mytelee}}{\mytyp}\ \ \ (1 \leq i \leq n)$}
-      \noLine
-      \UnaryInfC{For each $(\myb{x} {:} \mytya)$ in each $\mytele_i$, if $\mytyc{D} \in \mytya$, then $\mytya = \myapp{\mytyc{D}}{\vec{\mytmt}}$.}
+        \footnotesize
+
+      \AxiomC{$
+        \begin{array}{c}
+          \myinf{\mytele \myarr \mytyp}{\mytyp}\hspace{0.8cm}
+          \mytyc{D} \not\in \myctx \\
+          \myinff{\myctx;\ \mytyc{D} : \mytele \myarr \mytyp}{\mytele \mycc \mytele_i \myarr \myapp{\mytyc{D}}{\mytelee}}{\mytyp}\ \ \ (1 \leq i \leq n) \\
+          \text{For each $(\myb{x} {:} \mytya)$ in each $\mytele_i$, if $\mytyc{D} \in \mytya$, then $\mytya = \myapp{\mytyc{D}}{\vec{\mytmt}}$.}
+        \end{array}
+          $}
       \UnaryInfC{$
         \begin{array}{r@{\ }c@{\ }l}
-          \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{ \mydc{c} : \mytele_1 \ |\ \cdots \ |\ \mydc{c}_n : \mytele_n } \\
+          \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{ \cdots \ |\ \mydc{c}_n : \mytele_n } \\
           & & \vspace{-0.2cm} \\
-          & \myelabf & \myctx;\ \mytyc{D} : \mytele \mycc \mytyp;\ \mytyc{D}.\mydc{c}_1 : \mytele \mycc \mytele_1 \myarr \myapp{\mytyc{D}}{\mytelee};\ \cdots;\ \mytyc{D}.\mydc{c}_n : \mytele \mycc \mytele_n \myarr \myapp{\mytyc{D}}{\mytelee}; \\
+          & \myelabf & \myctx;\ \mytyc{D} : \mytele \myarr \mytyp;\ \cdots;\ \mytyc{D}.\mydc{c}_n : \mytele \mycc \mytele_n \myarr \myapp{\mytyc{D}}{\mytelee}; \\
           &          &
           \begin{array}{@{}r@{\ }l l}
             \mytyc{D}.\myfun{elim} : & \mytele \myarr (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr & \textbf{target} \\
             & (\myb{P} {:} \myapp{\mytyc{D}}{\mytelee} \myarr \mytyp) \myarr & \textbf{motive} \\
             & \left.
               \begin{array}{@{}l}
-                (\mytele_1 \mycc \myhyps(\myb{P}, \mytele_1) \myarr \myapp{\myb{P}}{(\myapp{\mytyc{D}.\mydc{c}_1}{\mytelee_1})}) \myarr \\
                 \myind{3} \vdots \\
                 (\mytele_n \mycc \myhyps(\myb{P}, \mytele_n) \myarr \myapp{\myb{P}}{(\myapp{\mytyc{D}.\mydc{c}_n}{\mytelee_n})}) \myarr
               \end{array} \right \}
             & \textbf{methods}  \\
             & \myapp{\myb{P}}{\myb{x}} &
-          \end{array} \\
-          \\
-          \multicolumn{3}{l}{
+          \end{array}
+        \end{array}
+        $}
+      \DisplayProof \\ \vspace{0.2cm}\ \\
+      $
         \begin{array}{@{}l l@{\ } l@{} r c l}
           \textbf{where} & \myhyps(\myb{P}, & \myemptytele &) & \mymetagoes & \myemptytele \\
           & \myhyps(\myb{P}, & (\myb{r} {:} \myapp{\mytyc{D}}{\vec{\mytmt}}) \mycc \mytele &) & \mymetagoes & (\myb{r'} {:} \myapp{\myb{P}}{\myb{r}}) \mycc \myhyps(\myb{P}, \mytele) \\
           & \myhyps(\myb{P}, & (\myb{x} {:} \mytya) \mycc \mytele & ) & \mymetagoes & \myhyps(\myb{P}, \mytele)
         \end{array}
-        }
-        \end{array}
-        $}
-      \DisplayProof
-    }
+        $
+
   }
 
-  \mydesc{reduction elaboration:}{\myctx \vdash \mytmsyn \myred \mytmsyn}{  
-    \centering{
+    \mynegder
+
+  \mydesc{reduction elaboration:}{\mydeclsyn \myelabf \myctx \vdash \mytmsyn \myred \mytmsyn}{  
+        \footnotesize
+        $\myadt{\mytyc{D}}{\mytele}{}{ \cdots \ |\ \mydc{c}_n : \mytele_n } \ \ \myelabf$
       \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
       \AxiomC{$\mytyc{D}.\mydc{c}_i : \mytele;\mytele_i \myarr \myapp{\mytyc{D}}{\mytelee} \in \myctx$}
       \BinaryInfC{$
-        \begin{array}{c}
-          \myctx \vdash \myapp{\myapp{\myapp{\mytyc{D}.\myfun{elim}}{(\myapp{\mytyc{D}.\mydc{c}_i}{\vec{\myse{t}}})}}{\myse{P}}}{\vec{\myse{m}}} \myred \myapp{\myapp{\myse{m}_i}{\vec{\mytmt}}}{\myrecs(\myse{P}, \vec{m}, \mytele_i)} \\ \\
+          \myctx \vdash \myapp{\myapp{\myapp{\mytyc{D}.\myfun{elim}}{(\myapp{\mytyc{D}.\mydc{c}_i}{\vec{\myse{t}}})}}{\myse{P}}}{\vec{\myse{m}}} \myred \myapp{\myapp{\myse{m}_i}{\vec{\mytmt}}}{\myrecs(\myse{P}, \vec{m}, \mytele_i)}
+        $}
+      \DisplayProof \\ \vspace{0.2cm}\ \\
+      $
         \begin{array}{@{}l l@{\ } l@{} r c l}
           \textbf{where} & \myrecs(\myse{P}, \vec{m}, & \myemptytele &) & \mymetagoes & \myemptytele \\
-                         & \myrecs(\myse{P}, \vec{m}, & (\myb{r} {:} \myapp{\mytyc{D}}{\vec{t}}); \mytele & ) & \mymetagoes &  (\mytyc{D}.\myfun{elim} \myappsp \myb{r} \myappsp \myse{P} \myappsp \vec{m}); \myrecs(\myse{P}, \vec{m}, \mytele) \\
+                         & \myrecs(\myse{P}, \vec{m}, & (\myb{r} {:} \myapp{\mytyc{D}}{\vec{A}}); \mytele & ) & \mymetagoes &  (\mytyc{D}.\myfun{elim} \myappsp \myb{r} \myappsp \myse{P} \myappsp \vec{m}); \myrecs(\myse{P}, \vec{m}, \mytele) \\
                          & \myrecs(\myse{P}, \vec{m}, & (\myb{x} {:} \mytya); \mytele &) & \mymetagoes & \myrecs(\myse{P}, \vec{m}, \mytele)
-          \end{array}
         \end{array}
-        $}
-      \DisplayProof
-    }
+        $
   }
 
-  \caption{Elaborations for data types.}
-  \label{fig:elab-adt}
-\end{figure}
-
-
-\subsubsection{Records}
+    \mynegder
 
-\begin{figure}[t]
-\mydesc{syntax elaboration:}{\myelab{\mydeclsyn}{\mytmsyn ::= \cdots}}{
-  \centering{
+    \mydesc{syntax elaboration:}{\myelab{\mydeclsyn}{\mytmsyn ::= \cdots}}{
+          \footnotesize
     $
     \begin{array}{r@{\ }c@{\ }l}
-      \myctx & \myelabt & \myadt{\mytyc{D}}{\mytele}{}{\cdots\ |\ \mydc{c}_n : \myvec{(\myb{x} {:} \mytya)} \ |\ \cdots } \\
+      \myctx & \myelabt & \myreco{\mytyc{D}}{\mytele}{}{ \cdots, \myfun{f}_n : \myse{F}_n } \\
              & \myelabf &
 
              \begin{array}{r@{\ }c@{\ }l}
-               \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\myvec{\mytmsyn}} \mysynsep
-                                \mytyc{D}.\mydc{c}_n \myappsp \myvec{\mytmsyn} \mysynsep  \cdots \mysynsep \mytyc{D}.\myfun{elim} \myappsp \mytmsyn \\
+               \mytmsyn & ::= & \cdots \mysynsep \myapp{\mytyc{D}}{\mytmsyn^{\mytele}} \mysynsep \mytyc{D}.\mydc{constr} \myappsp \mytmsyn^{n} \mysynsep \cdots  \mysynsep \mytyc{D}.\myfun{f}_n \myappsp \mytmsyn \\
              \end{array}
     \end{array}
     $
-  }
 }
 
+    \mynegder
 
 \mydesc{context elaboration:}{\myelab{\mydeclsyn}{\myctx}}{
-  \centering{
-    \AxiomC{$\myinf{\mytele \myarr \mytyp}{\mytyp}$}
-    \AxiomC{$\mytyc{D} \not\in \myctx$}
-    \noLine
-    \BinaryInfC{$\myinff{\myctx; \mytele; (\myb{f}_j : \myse{F}_j)_{j=1}^{i - 1}}{F_i}{\mytyp} \myind{3} (1 \le i \le n)$}
+      \footnotesize
+    \AxiomC{$
+      \begin{array}{c}
+        \myinf{\mytele \myarr \mytyp}{\mytyp}\hspace{0.8cm}
+        \mytyc{D} \not\in \myctx \\
+        \myinff{\myctx; \mytele; (\myb{f}_j : \myse{F}_j)_{j=1}^{i - 1}}{F_i}{\mytyp} \myind{3} (1 \le i \le n)
+      \end{array}
+        $}
     \UnaryInfC{$
       \begin{array}{r@{\ }c@{\ }l}
-        \myctx & \myelabt & \myreco{\mytyc{D}}{\mytele}{}{ \myfun{f}_1 : \myse{F}_1, \cdots, \myfun{f}_n : \myse{F}_n } \\
+        \myctx & \myelabt & \myreco{\mytyc{D}}{\mytele}{}{ \cdots, \myfun{f}_n : \myse{F}_n } \\
         & & \vspace{-0.2cm} \\
-        & \myelabf & \myctx;\ \mytyc{D} : \mytele \myarr \mytyp;\\
-        & & \mytyc{D}.\myfun{f}_1 : \mytele \myarr \myapp{\mytyc{D}}{\mytelee} \myarr \myse{F}_1;\ \cdots;\ \mytyc{D}.\myfun{f}_n : \mytele \myarr (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \mysub{\myse{F}_n}{\myb{f}_i}{\myapp{\myfun{f}_i}{\myb{x}}}_{i = 1}^{n-1}; \\
+        & \myelabf & \myctx;\ \mytyc{D} : \mytele \myarr \mytyp;\ \cdots;\ \mytyc{D}.\myfun{f}_n : \mytele \myarr (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \mysub{\myse{F}_n}{\myb{f}_i}{\myapp{\myfun{f}_i}{\myb{x}}}_{i = 1}^{n-1}; \\
         & & \mytyc{D}.\mydc{constr} : \mytele \myarr \myse{F}_1 \myarr \cdots \myarr \myse{F}_n \myarr \myapp{\mytyc{D}}{\mytelee};
       \end{array}
       $}
     \DisplayProof
-  }
 }
 
-  \mydesc{reduction elaboration:}{\myctx \vdash \mytmsyn \myred \mytmsyn}{
-    \centering{
-      \AxiomC{$\mytyc{D} \in \myctx$}
-      \UnaryInfC{$\myctx \vdash \myapp{\mytyc{D}.\myfun{f}_i}{(\mytyc{D}.\mydc{constr} \myappsp \vec{t})} \myred t_i$}
-      \DisplayProof
-    }
+    \mynegder
+
+  \mydesc{reduction elaboration:}{\mydeclsyn \myelabf \myctx \vdash \mytmsyn \myred \mytmsyn}{
+        \footnotesize
+          $\myreco{\mytyc{D}}{\mytele}{}{ \cdots, \myfun{f}_n : \myse{F}_n } \ \ \myelabf$
+          \AxiomC{$\mytyc{D} \in \myctx$}
+          \UnaryInfC{$\myctx \vdash \myapp{\mytyc{D}.\myfun{f}_i}{(\mytyc{D}.\mydc{constr} \myappsp \vec{t})} \myred t_i$}
+          \DisplayProof
   }
 
-  \caption{Elaborations for records.}
-  \label{fig:elab-adt}
+  \caption{Elaboration for data types and records.}
+  \label{fig:elab}
 \end{figure}
 
+Following the intuition given by the examples, the mechanised
+elaboration is presented in figure \ref{fig:elab}, which is essentially
+a modification of figure 9 of \citep{McBride2004}\footnote{However, our
+  datatypes do not have indices, we do bidirectional typechecking by
+  treating constructors/destructors as syntactic constructs, and we have
+  records.}.
+
+In data types declarations we allow recursive occurrences as long as
+they are \emph{strictly positive}, employing a syntactic check to make
+sure that this is the case.  See \cite{Dybjer1991} for a more formal
+treatment of inductive definitions in ITT.
+
+For what concerns records, recursive occurrences are disallowed.  The
+reason for this choice is answered by the reason for the choice of
+having records at all: we need records to give the user types with
+$\eta$-laws for equality, as we saw in section \ref{sec:eta-expand}
+and in the treatment of OTT in section \ref{sec:ott}.  If we tried to
+$\eta$-expand recursive data types, we would expand forever.
+
+To implement bidirectional type checking for constructors and
+destructors, we store their types in full in the context, and then
+instantiate when due:
+
+\mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{
+    \AxiomC{$
+      \begin{array}{c}
+        \mytyc{D} : \mytele \myarr \mytyp \in \myctx \hspace{1cm}
+        \mytyc{D}.\mydc{c} : \mytele \mycc \mytele' \myarr
+        \myapp{\mytyc{D}}{\mytelee} \in \myctx \\
+        \mytele'' = (\mytele;\mytele')\vec{A} \hspace{1cm}
+        \mychkk{\myctx; \mytake_{i-1}(\mytele'')}{t_i}{\myix_i( \mytele'')}\ \ 
+          (1 \le i \le \mytele'')
+      \end{array}
+      $}
+    \UnaryInfC{$\mychk{\myapp{\mytyc{D}.\mydc{c}}{\vec{t}}}{\myapp{\mytyc{D}}{\vec{A}}}$}
+    \DisplayProof
+
+    \myderivspp
 
-\subsection{Type hierarchy}
+    \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
+    \AxiomC{$\mytyc{D}.\myfun{f} : \mytele \mycc (\myb{x} {:}
+      \myapp{\mytyc{D}}{\mytelee}) \myarr \myse{F}$}
+    \AxiomC{$\myjud{\mytmt}{\myapp{\mytyc{D}}{\vec{A}}}$}
+    \TrinaryInfC{$\myinf{\myapp{\mytyc{D}.\myfun{f}}{\mytmt}}{(\mytele
+        \mycc (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr
+        \myse{F})(\vec{A};\mytmt)}$}
+    \DisplayProof
+  }
+
+\subsubsection{Why user defined types?  Why eliminators?}
+
+% TODO reference levitated theories, indexed containers
+
+foobar
+
+\subsection{Cumulative hierarchy and typical ambiguity}
 \label{sec:term-hierarchy}
 
-\subsection{Defined and postulated variables}
+A type hierarchy as presented in section \label{sec:itt} is a
+considerable burden on the user, on various levels.  Consider for
+example how we recovered disjunctions in section \ref{sec:disju}: we
+have a function that takes two $\mytyp_0$ and forms a new $\mytyp_0$.
+What if we wanted to form a disjunction containing something a
+$\mytyp_1$, or $\mytyp_{42}$?  Our definition would fail us, since
+$\mytyp_1 : \mytyp_2$.
+
+\begin{figure}[b!]
+
+  % TODO finish
+\mydesc{cumulativity:}{\myctx \vdash \mytmsyn \mycumul \mytmsyn}{
+  \begin{tabular}{ccc}
+    \AxiomC{\phantom{$\myctx \vdash \mytya \mycumul \mytyb$}}
+    \UnaryInfC{$\myctx \vdash \mytya \mycumul \mytya$}
+    \DisplayProof
+    &
+    \AxiomC{\phantom{$\myctx \vdash \mytya \mydefeq \mytyb$}}
+    \UnaryInfC{$\myctx \vdash \mytyp_l \mycumul \mytyp_{l+1}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myctx \vdash \mytya \mycumul \mytyb$}
+    \AxiomC{$\myctx \vdash \mytyb \mycumul \myse{C}$}
+    \BinaryInfC{$\myctx \vdash \mytya \mycumul \myse{C}$}
+    \DisplayProof
+  \end{tabular}
+
+  \myderivspp
+
+  \begin{tabular}{ccc}
+    \AxiomC{$\myctx \vdash \mytya_1 \ \mytyb$}
+    \UnaryInfC{$\myctx \vdash \mytya \mycumul \mytyb$}
+    \DisplayProof
+    &
+    \AxiomC{\phantom{$\myctx \vdash \mytya \mydefeq \mytyb$}}
+    \UnaryInfC{$\myctx \vdash \mytyp_l \mycumul \mytyp_{l+1}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myctx \vdash \mytya \mycumul \mytyb$}
+    \AxiomC{$\myctx \vdash \mytyb \mycumul \myse{C}$}
+    \BinaryInfC{$\myctx \vdash \mytya \mycumul \myse{C}$}
+    \DisplayProof
+  \end{tabular}
+}
+\caption{Cumulativity rules for \mykant, plus a `conversion' rule for
+  cumulative types.}
+  \label{fig:cumulativity}
+\end{figure}
+
+One way to solve this issue is a \emph{cumulative} hierarchy, where
+$\mytyp_{l_1} : \mytyp_{l_2}$ iff $l_1 < l_2$.  This way we retain
+consistency, while allowing for `large' definitions that work on small
+types too.  Figure \ref{fig:cumulativity} gives a formal definition of
+cumulativity for types, abstractions, and data constructors.
+
+For example we might define our disjunction to be
+{\mysmall\[
+  \myarg\myfun{$\vee$}\myarg : \mytyp_{100} \myarr \mytyp_{100} \myarr \mytyp_{100}
+\]}
+And hope that $\mytyp_{100}$ will be large enough to fit all the types
+that we want to use with our disjunction.  However, there are two
+problems with this.  First, there is the obvious clumsyness of having to
+manually specify the size of types.  More importantly, if we want to use
+$\myfun{$\vee$}$ itself as an argument to other type-formers, we need to
+make sure that those allow for types at least as large as
+$\mytyp_{100}$.
+
+A better option is to employ a mechanised version of what Russell called
+\emph{typical ambiguity}: we let the user live under the illusion that
+$\mytyp : \mytyp$, but check that the statements about types are
+consistent behind the hood.  $\mykant$\ implements this following the
+lines of \cite{Huet1988}.  See also \citep{Harper1991} for a published
+reference, although describing a more complex system allowing for both
+explicit and explicit hierarchy at the same time.
+
+We define a partial ordering on the levels, with both weak ($\le$) and
+strong ($<$) constraints---the laws governing them being the same as the
+ones governing $<$ and $\le$ for the natural numbers.  Each occurrence
+of $\mytyp$ is decorated with a unique reference, and we keep a set of
+constraints and add new constraints as we type check, generating new
+references when needed.
+
+For example, when type checking the type $\mytyp\, r_1$, where $r_1$
+denotes the unique reference assigned to that term, we will generate a
+new fresh reference $\mytyp\, r_2$, and add the constraint $r_1 < r_2$
+to the set.  When type checking $\myctx \vdash
+\myfora{\myb{x}}{\mytya}{\mytyb}$, if $\myctx \vdash \mytya : \mytyp\,
+r_1$ and $\myctx; \myb{x} : \mytyb \vdash \mytyb : \mytyp\,r_2$; we will
+generate new reference $r$ and add $r_1 \le r$ and $r_2 \le r$ to the
+set.
+
+If at any point the constraint set becomes inconsistent, type checking
+fails.  Moreover, when comparing two $\mytyp$ terms we equate their
+respective references with two $\le$ constraints---the details are
+explained in section \ref{sec:hier-impl}.
+
+Another more flexible but also more verbose alternative is the one
+chosen by Agda, where levels can be quantified so that the relationship
+between arguments and result in type formers can be explicitly
+expressed:
+{\mysmall\[
+\myarg\myfun{$\vee$}\myarg : (l_1\, l_2 : \mytyc{Level}) \myarr \mytyp_{l_1} \myarr \mytyp_{l_2} \myarr \mytyp_{l_1 \mylub l_2}
+\]}
+Inference algorithms to automatically derive this kind of relationship
+are currently subject of research.  We chose less flexible but more
+concise way, since it is easier to implement and better understood.
+
+% \begin{figure}[t]
+%   % TODO do this
+%   \caption{Constraints generated by the typical ambiguity engine.  We
+%     assume some global set of constraints with the ability of generating
+%     fresh references.}
+%   \label{fig:hierarchy}
+% \end{figure}
+
+\subsection{Observational equality, \mykant\ style}
+
+There are two correlated differences between $\mykant$\ and the theory
+used to present OTT.  The first is that in $\mykant$ we have a type
+hierarchy, which lets us, for example, abstract over types.  The second
+is that we let the user define inductive types.
+
+Reconciling propositions for OTT and a hierarchy had already been
+investigated by Conor McBride\footnote{See
+  \url{http://www.e-pig.org/epilogue/index.html?p=1098.html}.}, and we
+follow his broad design plan, although with some modifications.  Most of
+the work, as an extension of elaboration, is to handle reduction rules
+and coercions for data types---both type constructors and data
+constructors.
+
+\subsubsection{The \mykant\ prelude, and $\myprop$ositions}
+
+Before defining $\myprop$, we define some basic types inside $\mykant$,
+as the target for the $\myprop$ decoder:
+{\mysmall\[
+\begin{array}{l}
+  \myadt{\mytyc{Empty}}{}{ }{ } \\
+  \myfun{absurd} : (\myb{A} {:} \mytyp) \myarr \mytyc{Empty} \myarr \myb{A} \mapsto \\
+  \myind{2} \myabs{\myb{A\ \myb{bot}}}{\mytyc{Empty}.\myfun{elim} \myappsp \myb{bot} \myappsp (\myabs{\_}{\myb{A}})} \\
+  \ \\
+
+  \myreco{\mytyc{Unit}}{}{}{ } \\ \ \\
+
+  \myreco{\mytyc{Prod}}{\myappsp (\myb{A}\ \myb{B} {:} \mytyp)}{ }{\myfun{fst} : \myb{A}, \myfun{snd} : \myb{B} }
+\end{array}
+\]}
+When using $\mytyc{Prod}$, we shall use $\myprod$ to define `nested'
+products, and $\myproj{n}$ to project elements from them, so that
+{\mysmall
+\[
+\begin{array}{@{}l}
+\mytya \myprod \mytyb = \mytyc{Prod} \myappsp \mytya \myappsp (\mytyc{Prod} \myappsp \mytyb \myappsp \myunit) \\
+\mytya \myprod \mytyb \myprod \myse{C} = \mytyc{Prod} \myappsp \mytya \myappsp (\mytyc{Prod} \myappsp \mytyb \myappsp (\mytyc{Prod} \myappsp \mytyc \myappsp \myunit)) \\
+\myind{2} \vdots \\
+\myproj{1} : \mytyc{Prod} \myappsp \mytya \myappsp \mytyb \myarr \mytya \\
+\myproj{2} : \mytyc{Prod} \myappsp \mytya \myappsp (\mytyc{Prod} \myappsp \mytyb \myappsp \myse{C}) \myarr \mytyb \\
+\myind{2} \vdots
+\end{array}
+\]
+}
+And so on, so that $\myproj{n}$ will work with all products with at
+least than $n$ elements.  Then we can define propositions, and decoding:
+
+\mydesc{syntax}{ }{
+  $
+  \begin{array}{r@{\ }c@{\ }l}
+    \mytmsyn & ::= & \cdots \mysynsep \myprdec{\myprsyn} \\
+    \myprsyn & ::= & \mybot \mysynsep \mytop \mysynsep \myprsyn \myand \myprsyn \mysynsep \myprfora{\myb{x}}{\mytmsyn}{\myprsyn}
+  \end{array}
+  $
+}
+
+\mydesc{proposition decoding:}{\myprdec{\mytmsyn} \myred \mytmsyn}{
+  \begin{tabular}{cc}
+    $
+    \begin{array}{l@{\ }c@{\ }l}
+      \myprdec{\mybot} & \myred & \myempty \\
+      \myprdec{\mytop} & \myred & \myunit
+    \end{array}
+    $
+    &
+    $
+    \begin{array}{r@{ }c@{ }l@{\ }c@{\ }l}
+      \myprdec{&\myse{P} \myand \myse{Q} &} & \myred & \myprdec{\myse{P}} \myprod \myprdec{\myse{Q}} \\
+      \myprdec{&\myprfora{\myb{x}}{\mytya}{\myse{P}} &} & \myred &
+      \myfora{\myb{x}}{\mytya}{\myprdec{\myse{P}}}
+    \end{array}
+    $
+  \end{tabular}
+}
+
+Adopting the same convention as with $\mytyp$-level products, we will
+nest $\myand$ in the same way.
 
-As mentioned, in \mykant\ we can defined top level variables, with or without
-a body.  We call the variables
+\subsubsection{Some OTT examples}
 
-\subsection{Observational equality}
+Before presenting the direction that $\mykant$\ takes, let's consider
+some examples of use-defined data types, and the result we would expect,
+given what we already know about OTT, assuming the same propositional
+equalities.
+
+\begin{description}
+
+\item[Product types] Let's consider first the already mentioned
+  dependent product, using the alternate name $\mysigma$\footnote{For
+    extra confusion, `dependent products' are often called `dependent
+    sums' in the literature, referring to the interpretation that
+    identifies the first element as a `tag' deciding the type of the
+    second element, which lets us recover sum types (disjuctions), as we
+    saw in section \ref{sec:user-type}.  Thus, $\mysigma$.} to
+  avoid confusion with the $\mytyc{Prod}$ in the prelude: {\mysmall\[
+  \begin{array}{@{}l}
+    \myreco{\mysigma}{\myappsp (\myb{A} {:} \mytyp) \myappsp (\myb{B} {:} \myb{A} \myarr \mytyp)}{\\ \myind{2}}{\myfst : \myb{A}, \mysnd : \myapp{\myb{B}}{\myb{fst}}}
+  \end{array}
+  \]} Let's start with type-level equality.  The result we want is
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \mysigma \myappsp \mytya_1 \myappsp \mytyb_1 \myeq \mysigma \myappsp \mytya_2 \myappsp \mytyb_2 \myred \\
+      \myind{2} \mytya_1 \myeq \mytya_2 \myand \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{\myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2}} \myimpl \myapp{\mytyb_1}{\myb{x_1}} \myeq \myapp{\mytyb_2}{\myb{x_2}}}
+    \end{array}
+    \]} The difference here is that in the original presentation of OTT
+  the type binders are explicit, while here $\mytyb_1$ and $\mytyb_2$
+  functions returning types.  We can do this thanks to the type
+  hierarchy, and this hints at the fact that heterogeneous equality will
+  have to allow $\mytyp$ `to the right of the colon', and in fact this
+  provides the solution to simplify the equality above.
+
+  If we take, just like we saw previously in OTT
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \myjm{\myse{f}_1}{\myfora{\mytya_1}{\myb{x_1}}{\mytyb_1}}{\myse{f}_2}{\myfora{\mytya_2}{\myb{x_2}}{\mytyb_2}} \myred \\
+      \myind{2} \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{
+           \myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2} \myimpl
+           \myjm{\myapp{\myse{f}_1}{\myb{x_1}}}{\mytyb_1[\myb{x_1}]}{\myapp{\myse{f}_2}{\myb{x_2}}}{\mytyb_2[\myb{x_2}]}
+         }}
+    \end{array}
+    \]} Then we can simply take
+  {\mysmall\[
+    \begin{array}{@{}l}
+      \mysigma \myappsp \mytya_1 \myappsp \mytyb_1 \myeq \mysigma \myappsp \mytya_2 \myappsp \mytyb_2 \myred \\ \myind{2} \mytya_1 \myeq \mytya_2 \myand \myjm{\mytyb_1}{\mytya_1 \myarr \mytyp}{\mytyb_2}{\mytya_2 \myarr \mytyp}
+    \end{array}
+    \]} Which will reduce to precisely what we desire.  For what
+  concerns coercions and quotation, things stay the same (apart from the
+  fact that we apply to the second argument instead of substituting).
+  We can recognise records such as $\mysigma$ as such and employ
+  projections in value equality, coercions, and quotation; as to not
+  impede progress if not necessary.
+
+\item[Lists] Now for finite lists, which will give us a taste for data
+  constructors:
+  {\mysmall\[
+  \begin{array}{@{}l}
+    \myadt{\mylist}{\myappsp (\myb{A} {:} \mytyp)}{ }{\mydc{nil} \mydcsep \mydc{cons} \myappsp \myb{A} \myappsp (\myapp{\mylist}{\myb{A}})}
+  \end{array}
+  \]}
+  Type equality is simple---we only need to compare the parameter:
+  {\mysmall\[
+    \mylist \myappsp \mytya_1 \myeq \mylist \myappsp \mytya_2 \myred \mytya_1 \myeq \mytya_2
+    \]} For coercions, we transport based on the constructor, recycling
+  the proof for the inductive occurrence: {\mysmall\[
+    \begin{array}{@{}l@{\ }c@{\ }l}
+      \mycoe \myappsp (\mylist \myappsp \mytya_1) \myappsp (\mylist \myappsp \mytya_2) \myappsp \myse{Q} \myappsp \mydc{nil} & \myred & \mydc{nil} \\
+      \mycoe \myappsp (\mylist \myappsp \mytya_1) \myappsp (\mylist \myappsp \mytya_2) \myappsp \myse{Q} \myappsp (\mydc{cons} \myappsp \mytmm \myappsp \mytmn) & \myred & \\
+      \multicolumn{3}{l}{\myind{2} \mydc{cons} \myappsp (\mycoe \myappsp \mytya_1 \myappsp \mytya_2 \myappsp \myse{Q} \myappsp \mytmm) \myappsp (\mycoe \myappsp (\mylist \myappsp \mytya_1) \myappsp (\mylist \myappsp \mytya_2) \myappsp \myse{Q} \myappsp \mytmn)}
+    \end{array}
+    \]} Value equality is unsurprising---we match the constructors, and
+  return bottom for mismatches.  However, we also need to equate the
+  parameter in $\mydc{nil}$: {\mysmall\[
+    \begin{array}{r@{ }c@{\ }c@{\ }c@{}l@{\ }c@{\ }r@{}c@{\ }c@{\ }c@{}l@{\ }l}
+      (& \mydc{nil} & : & \myapp{\mylist}{\mytya_1} &) & \myeq & (& \mydc{nil} & : & \myapp{\mylist}{\mytya_2} &) \myred \mytya_1 \myeq \mytya_2 \\
+      (& \mydc{cons} \myappsp \mytmm_1 \myappsp \mytmn_1 & : & \myapp{\mylist}{\mytya_1} &) & \myeq & (& \mydc{cons} \myappsp \mytmm_2 \myappsp \mytmn_2 & : & \myapp{\mylist}{\mytya_2} &) \myred \\
+      & \multicolumn{11}{@{}l}{ \myind{2}
+        \myjm{\mytmm_1}{\mytya_1}{\mytmm_2}{\mytya_2} \myand \myjm{\mytmn_1}{\myapp{\mylist}{\mytya_1}}{\mytmn_2}{\myapp{\mylist}{\mytya_2}}
+        } \\
+      (& \mydc{nil} & : & \myapp{\mylist}{\mytya_1} &) & \myeq & (& \mydc{cons} \myappsp \mytmm_2 \myappsp \mytmn_2 & : & \myapp{\mylist}{\mytya_2} &) \myred \mybot \\
+      (& \mydc{cons} \myappsp \mytmm_1 \myappsp \mytmn_1 & : & \myapp{\mylist}{\mytya_1} &) & \myeq & (& \mydc{nil} & : & \myapp{\mylist}{\mytya_2} &) \myred \mybot
+    \end{array}
+    \]}
+  Finally, quotation
+  % TODO quotation
+
+\item[Evil type]
+  Now for something useless but complicated.
+
+\end{description}
+
+\subsubsection{Only one equality}
+
+Given the examples above, a more `flexible' heterogeneous emerged, since
+of the fact that in $\mykant$ we re-gain the possibility of abstracting
+and in general handling sets in a way that was not possible in the
+original OTT presentation.  Moreover, we found that the rules for value
+equality work very well if used with user defined type
+abstractions---for example in the case of dependent products we recover
+the original definition with explicit binders, in a very simple manner.
+
+In fact, we can drop a separate notion of type-equality, which will
+simply be served by $\myjm{\mytya}{\mytyp}{\mytyb}{\mytyp}$, from now on
+abbreviated as $\mytya \myeq \mytyb$.  We shall still distinguish
+equalities relating types for hierarchical purposes.  The full rules for
+equality reductions, along with the syntax for propositions, are given
+in figure \ref{fig:kant-eq-red}.  We exploit record to perform
+$\eta$-expansion.  Moreover, given the nested $\myand$s, values of data
+types with zero constructors (such as $\myempty$) and records with zero
+destructors (such as $\myunit$) will be automatically always identified
+as equal.
+
+\begin{figure}[p]
+\mydesc{syntax}{ }{
+  \small
+  $
+  \begin{array}{r@{\ }c@{\ }l}
+    \myprsyn & ::= & \cdots \mysynsep \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+  \end{array}
+  $
+}
+
+    % \mytmsyn & ::= & \cdots \mysynsep \mycoee{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \mysynsep
+    %                  \mycohh{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+    % \myprsyn & ::= & \cdots \mysynsep \myjm{\mytmsyn}{\mytmsyn}{\mytmsyn}{\mytmsyn} \\
+
+% \mynegder
+
+% \mydesc{typing:}{\myctx \vdash \mytmsyn \Leftrightarrow \mytmsyn}{
+%   \small
+%   \begin{tabular}{cc}
+%     \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
+%     \AxiomC{$\myjud{\mytmt}{\mytya}$}
+%     \BinaryInfC{$\myinf{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}$}
+%     \DisplayProof
+%     &
+%     \AxiomC{$\myjud{\myse{P}}{\myprdec{\mytya \myeq \mytyb}}$}
+%     \AxiomC{$\myjud{\mytmt}{\mytya}$}
+%     \BinaryInfC{$\myinf{\mycohh{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\myprdec{\myjm{\mytmt}{\mytya}{\mycoee{\mytya}{\mytyb}{\myse{P}}{\mytmt}}{\mytyb}}}$}
+%     \DisplayProof
+%   \end{tabular}
+% }
+
+\mynegder
+
+\mydesc{propositions:}{\myjud{\myprsyn}{\myprop}}{
+  \small
+    \begin{tabular}{cc}
+      \AxiomC{\phantom{$\myjud{\myse{P}}{\myprop}$}}
+      \UnaryInfC{$\myjud{\mytop}{\myprop}$}
+      \noLine
+      \UnaryInfC{$\myjud{\mybot}{\myprop}$}
+      \DisplayProof
+      &
+      \AxiomC{$\myjud{\myse{P}}{\myprop}$}
+      \AxiomC{$\myjud{\myse{Q}}{\myprop}$}
+      \BinaryInfC{$\myjud{\myse{P} \myand \myse{Q}}{\myprop}$}
+      \noLine
+      \UnaryInfC{\phantom{$\myjud{\mybot}{\myprop}$}}
+      \DisplayProof
+    \end{tabular}
+
+    \myderivspp
+
+    \begin{tabular}{cc}
+      \AxiomC{$
+        \begin{array}{@{}c}
+          \phantom{\myjud{\myse{A}}{\mytyp} \hspace{0.8cm} \myjud{\mytmm}{\myse{A}}} \\
+          \myjud{\myse{A}}{\mytyp}\hspace{0.8cm}
+          \myjudd{\myctx; \myb{x} : \mytya}{\myse{P}}{\myprop}
+        \end{array}
+        $}
+      \UnaryInfC{$\myjud{\myprfora{\myb{x}}{\mytya}{\myse{P}}}{\myprop}$}
+      \DisplayProof
+      &
+      \AxiomC{$
+        \begin{array}{c}
+          \myjud{\myse{A}}{\mytyp} \hspace{0.8cm} \myjud{\mytmm}{\myse{A}} \\
+          \myjud{\myse{B}}{\mytyp} \hspace{0.8cm} \myjud{\mytmn}{\myse{B}}
+        \end{array}
+        $}
+      \UnaryInfC{$\myjud{\myjm{\mytmm}{\myse{A}}{\mytmn}{\myse{B}}}{\myprop}$}
+      \DisplayProof
+    \end{tabular}
+}
+
+\mynegder
+  % TODO equality for decodings
+\mydesc{equality reduction:}{\myctx \vdash \myprsyn \myred \myprsyn}{
+  \small
+    \begin{tabular}{cc}
+    \AxiomC{}
+    \UnaryInfC{$\myctx \vdash \myjm{\mytyp}{\mytyp}{\mytyp}{\mytyp} \myred \mytop$}
+    \DisplayProof
+    &
+    \AxiomC{}
+    \UnaryInfC{$\myctx \vdash \myjm{\myprdec{\myse{P}}}{\mytyp}{\myprdec{\myse{Q}}}{\mytyp} \myred \mytop$}
+    \DisplayProof
+    \end{tabular}
+
+  \myderivspp
+
+  \AxiomC{}
+  \UnaryInfC{$
+    \begin{array}{@{}r@{\ }l}
+    \myctx \vdash &
+    \myjm{\myfora{\myb{x_1}}{\mytya_1}{\mytyb_1}}{\mytyp}{\myfora{\myb{x_2}}{\mytya_2}{\mytyb_2}}{\mytyp}  \myred \\
+    & \myind{2} \mytya_2 \myeq \mytya_1 \myand \myprfora{\myb{x_2}}{\mytya_2}{\myprfora{\myb{x_1}}{\mytya_1}{
+        \myjm{\myb{x_2}}{\mytya_2}{\myb{x_1}}{\mytya_1} \myimpl \mytyb_1[\myb{x_1}] \myeq \mytyb_2[\myb{x_2}]
+      }}
+    \end{array}
+    $}
+  \DisplayProof
+
+  \myderivspp
+
+  \AxiomC{}
+  \UnaryInfC{$
+    \begin{array}{@{}r@{\ }l}
+      \myctx \vdash &
+      \myjm{\myse{f}_1}{\myfora{\myb{x_1}}{\mytya_1}{\mytyb_1}}{\myse{f}_2}{\myfora{\myb{x_2}}{\mytya_2}{\mytyb_2}}  \myred \\
+      & \myind{2} \myprfora{\myb{x_1}}{\mytya_1}{\myprfora{\myb{x_2}}{\mytya_2}{
+          \myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2} \myimpl
+          \myjm{\myapp{\myse{f}_1}{\myb{x_1}}}{\mytyb_1[\myb{x_1}]}{\myapp{\myse{f}_2}{\myb{x_2}}}{\mytyb_2[\myb{x_2}]}
+        }}
+    \end{array}
+    $}
+  \DisplayProof
+  
+
+  \myderivspp
+
+  \AxiomC{$\mytyc{D} : \mytele \myarr \mytyp \in \myctx$}
+  \UnaryInfC{$
+    \begin{array}{r@{\ }l}
+      \myctx \vdash &
+      \myjm{\mytyc{D} \myappsp \vec{A}}{\mytyp}{\mytyc{D} \myappsp \vec{B}}{\mytyp}  \myred \\
+      & \myind{2} \mybigand_{i = 1}^n (\myjm{\mytya_n}{\myhead(\mytele(A_1 \cdots A_{i-1}))}{\mytyb_i}{\myhead(\mytele(B_1 \cdots B_{i-1}))})
+    \end{array}
+    $}
+  \DisplayProof
+
+  \myderivspp
+
+  \AxiomC{$
+    \begin{array}{@{}c}
+      \mydataty(\mytyc{D}, \myctx)\hspace{0.8cm}
+      \mytyc{D}.\mydc{c} : \mytele;\mytele' \myarr \mytyc{D} \myappsp \mytelee \in \myctx \hspace{0.8cm}
+      \mytele_A = (\mytele;\mytele')\vec{A}\hspace{0.8cm}
+      \mytele_B = (\mytele;\mytele')\vec{B}
+    \end{array}
+    $}
+  \UnaryInfC{$
+    \begin{array}{@{}l@{\ }l}
+      \myctx \vdash & \myjm{\mytyc{D}.\mydc{c} \myappsp \vec{\myse{l}}}{\mytyc{D} \myappsp \vec{A}}{\mytyc{D}.\mydc{c} \myappsp \vec{\myse{r}}}{\mytyc{D} \myappsp \vec{B}} \myred \\
+      & \myind{2} \mybigand_{i=1}^n(\myjm{\mytmm_i}{\myhead(\mytele_A (\mytya_i \cdots \mytya_{i-1}))}{\mytmn_i}{\myhead(\mytele_B (\mytyb_i \cdots \mytyb_{i-1}))})
+    \end{array}
+    $}
+  \DisplayProof
+
+  \myderivspp
+
+  \AxiomC{$\mydataty(\mytyc{D}, \myctx)$}
+  \UnaryInfC{$
+      \myctx \vdash \myjm{\mytyc{D}.\mydc{c} \myappsp \vec{\myse{l}}}{\mytyc{D} \myappsp \vec{A}}{\mytyc{D}.\mydc{c'} \myappsp \vec{\myse{r}}}{\mytyc{D} \myappsp \vec{B}} \myred \mybot
+    $}
+  \DisplayProof
+
+  \myderivspp
+
+  \AxiomC{$
+    \begin{array}{@{}c}
+      \myisreco(\mytyc{D}, \myctx)\hspace{0.8cm}
+      \mytyc{D}.\myfun{f}_i : \mytele; (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \myse{F}_i  \in \myctx\\
+    \end{array}
+    $}
+  \UnaryInfC{$
+    \begin{array}{@{}l@{\ }l}
+      \myctx \vdash & \myjm{\myse{l}}{\mytyc{D} \myappsp \vec{A}}{\myse{r}}{\mytyc{D} \myappsp \vec{B}} \myred \\ & \myind{2} \mybigand_{i=1}^n(\myjm{\mytyc{D}.\myfun{f}_1 \myappsp \myse{l}}{(\mytele; (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \myse{F}_i)(\vec{\mytya};\myse{l})}{\mytyc{D}.\myfun{f}_i \myappsp \myse{r}}{(\mytele; (\myb{x} {:} \myapp{\mytyc{D}}{\mytelee}) \myarr \myse{F}_i)(\vec{\mytyb};\myse{r})})
+    \end{array}
+    $}
+  \DisplayProof
+  
+  \myderivspp
+  \AxiomC{}
+  \UnaryInfC{$\myjm{\mytmm}{\mytya}{\mytmn}{\mytyb}  \myred \mybot\ \text{if $\mytya$ and $\mytyb$ are canonical types.}$}
+  \DisplayProof
+}
+\caption{Propositions and equality reduction in $\mykant$.  We assume
+  the presence of $\mydataty$ and $\myisreco$ as operations on the
+  context to recognise whether a user defined type is a data type or a
+  record.}
+  \label{fig:kant-eq-red}
+\end{figure}
+
+\subsubsection{Coercions}
+
+% \begin{figure}[t]
+%   \mydesc{reduction}{\mytmsyn \myred \mytmsyn}{
+
+%   }
+%   \caption{Coercions in \mykant.}
+%   \label{fig:kant-coe}
+% \end{figure}
+
+% TODO finish
+
+\subsubsection{$\myprop$ and the hierarchy}
+
+Where is $\myprop$ placed in the type hierarchy?  The main indicator
+is the decoding operator, since it converts into things that already
+live in the hierarchy.  For example, if we
+have {\mysmall\[
+  \myprdec{\mynat \myarr \mybool \myeq \mynat \myarr \mybool} \myred
+  \mytop \myand ((\myb{x}\, \myb{y} : \mynat) \myarr \mytop \myarr \mytop)
+  \]} we will better make sure that the `to be decoded' is at the same
+level as its reduction as to preserve subject reduction.  In the example
+above, we'll have that proposition to be at least as large as the type
+of $\mynat$, since the reduced proof will abstract over it.  Pretending
+that we had explicit, non cumulative levels, it would be tempting to have
+\begin{center}
+\begin{tabular}{cc}
+  \AxiomC{$\myjud{\myse{Q}}{\myprop_l}$}
+  \UnaryInfC{$\myjud{\myprdec{\myse{Q}}}{\mytyp_l}$}
+  \DisplayProof
+&
+  \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+  \AxiomC{$\myjud{\mytyb}{\mytyp_l}$}
+  \BinaryInfC{$\myjud{\myjm{\mytya}{\mytyp_{l}}{\mytyb}{\mytyp_{l}}}{\myprop_l}$}
+  \DisplayProof
+\end{tabular}
+\end{center}
+$\mybot$ and $\mytop$ living at any level, $\myand$ and $\forall$
+following rules similar to the ones for $\myprod$ and $\myarr$ in
+section \ref{sec:itt}. However, we need to be careful with value
+equality since for example we have that {\mysmall\[
+  \myprdec{\myjm{\myse{f}_1}{\myfora{\myb{x_1}}{\mytya_1}{\mytyb_1}}{\myse{f}_2}{\myfora{\myb{x_2}}{\mytya_2}{\mytyb_2}}}
+  \myred
+  \myfora{\myb{x_1}}{\mytya_1}{\myfora{\myb{x_2}}{\mytya_2}{\cdots}}
+      \]} where the proposition decodes into something of type
+    $\mytyp_l$, where $\mytya : \mytyp_l$ and $\mytyb : \mytyp_l$.  We
+    can resolve this tension by making all equalities larger:
+\begin{prooftree}
+  \AxiomC{$\myjud{\mytmm}{\mytya}$}
+  \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+  \AxiomC{$\myjud{\mytmn}{\mytyb}$}
+  \AxiomC{$\myjud{\mytyb}{\mytyp_l}$}
+  \QuaternaryInfC{$\myjud{\myjm{\mytmm}{\mytya}{\mytmm}{\mytya}}{\myprop_l}$}
+\end{prooftree}
+This is disappointing, since type equalities will be needlessly large:
+$\myprdec{\myjm{\mytya}{\mytyp_l}{\mytyb}{\mytyp_l}} : \mytyp_{l + 1}$.
+
+However, considering that our theory is cumulative, we can do better.
+Assuming rules for $\myprop$ cumulativity similar to the ones for
+$\mytyp$, we will have (with the conversion rule reproduced as a
+reminder):
+\begin{center}
+  \begin{tabular}{cc}
+    \AxiomC{$\myctx \vdash \mytya \mycumul \mytyb$}
+    \AxiomC{$\myjud{\mytmt}{\mytya}$}
+    \BinaryInfC{$\myjud{\mytmt}{\mytyb}$}
+    \DisplayProof
+    &
+    \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+    \AxiomC{$\myjud{\mytyb}{\mytyp_l}$}
+    \BinaryInfC{$\myjud{\myjm{\mytya}{\mytyp_{l}}{\mytyb}{\mytyp_{l}}}{\myprop_l}$}
+    \DisplayProof
+  \end{tabular}
+
+  \myderivspp
+
+  \AxiomC{$\myjud{\mytmm}{\mytya}$}
+  \AxiomC{$\myjud{\mytya}{\mytyp_l}$}
+  \AxiomC{$\myjud{\mytmn}{\mytyb}$}
+  \AxiomC{$\myjud{\mytyb}{\mytyp_l}$}
+  \AxiomC{$\mytya$ and $\mytyb$ are not $\mytyp_{l'}$}
+  \QuinaryInfC{$\myjud{\myjm{\mytmm}{\mytya}{\mytmm}{\mytya}}{\myprop_l}$}
+  \DisplayProof
+\end{center}
+
+That is, we are small when we can (type equalities) and large otherwise.
+This would not work in a non-cumulative theory because subject reduction
+would not hold.  Consider for instance {\mysmall\[
+  \myjm{\mynat}{\myITE{\mytrue}{\mytyp_0}{\mytyp_0}}{\mybool}{\myITE{\mytrue}{\mytyp_0}{\mytyp_0}}
+  : \myprop_1
+\]}
+which reduces to
+{\mysmall\[
+  \myjm{\mynat}{\mytyp_0}{\mybool}{\mytyp_0} : \myprop_0
+  \]} We need $\myprop_0$ to be $\myprop_1$ too, which will be the case
+with cumulativity.  This is not the most elegant of systems, but it buys
+us a cheap type level equality without having to replicate functionality
+with a dedicated construct.
+
+\subsubsection{Quotation and term equality}
+\label{sec:kant-irr}
+
+% \begin{figure}[t]
+%   \mydesc{reduction}{\mytmsyn \myred \mytmsyn}{
+
+%   }
+%   \caption{Quotation in \mykant.}
+%   \label{fig:kant-quot}
+% \end{figure}
+
+% TODO finish
+
+\subsubsection{Why $\myprop$?}
+
+It is worth to ask if $\myprop$ is needed at all.  It is perfectly
+possible to have the type checker identify propositional types
+automatically, and in fact in some sense we already do during equality
+reduction and quotation.  However, this has the considerable
+disadvantage that we can never identify abstracted
+variables\footnote{And in general neutral terms, although we currently
+  don't have neutral propositions.} of type $\mytyp$ as $\myprop$, thus
+forbidding the user to talk about $\myprop$ explicitly.
+
+This is a considerable impediment, for example when implementing
+\emph{quotient types}.  With quotients, we let the user specify an
+equivalence class over a certain type, and then exploit this in various
+way---crucially, we need to be sure that the equivalence given is
+propositional, a fact which prevented the use of quotients in dependent
+type theories \citep{Jacobs1994}.
+
+% TODO finish
+
+\subsection{Type holes}
 
 \section{\mykant : The practice}
 \label{sec:kant-practice}
 
-The codebase consists of around 2500 lines of Haskell, as reported by the
-\texttt{cloc} utility.  The high level design is heavily inspired by Conor
-McBride's work on various incarnations of Epigram, and specifically by the
-first version as described \citep{McBride2004} and the codebase for the new
-version \footnote{Available intermittently as a \texttt{darcs} repository at
-  \url{http://sneezy.cs.nott.ac.uk/darcs/Pig09}.}.  In many ways \mykant\ is
-something in between the first and second version of Epigram.
+The codebase consists of around 2500 lines of Haskell, as reported by
+the \texttt{cloc} utility.  The high level design is inspired by Conor
+McBride's work on various incarnations of Epigram, and specifically by
+the first version as described \citep{McBride2004} and the codebase for
+the new version \footnote{Available intermittently as a \texttt{darcs}
+  repository at \url{http://sneezy.cs.nott.ac.uk/darcs/Pig09}.}.  In
+many ways \mykant\ is something in between the first and second version
+of Epigram.
 
-The interaction happens in a read-eval-print loop (REPL).  The repl is a
-available both as a commandline application and in a web interface, which is
-available at \url{kant.mazzo.li} and presents itself as in figure
-\ref{fig:kant-web}.
+The author learnt the hard way the implementations challenges for such a
+project, and while there is a solid and working base to work on, the
+implementation of observational equality is not currently complete.
+However, given the detailed plan in the previous section, doing so would
+should not prove to be too much work.
+
+The interaction happens in a read-eval-print loop (REPL).  The REPL is a
+available both as a commandline application and in a web interface,
+which is available at \url{kant.mazzo.li} and presents itself as in
+figure \ref{fig:kant-web}.
 
 \begin{figure}
   \centering{
@@ -1819,10 +3426,8 @@ diagrammatically in figure \ref{fig:kant-process}:
 
 \end{description}
 
-The details of each phase will be described in section % TODO insert section
-      
 \begin{figure}
-  \centering{\small
+  \centering{\mysmall
     \tikzstyle{block} = [rectangle, draw, text width=5em, text centered, rounded
     corners, minimum height=2.5em, node distance=0.7cm]
       
@@ -1866,10 +3471,15 @@ The details of each phase will be described in section % TODO insert section
   \label{fig:kant-process}
 \end{figure}
 
-\subsection{Term representation}
+\subsection{Parsing and \texttt{Sugar}}
+
+\subsection{Term representation and context}
 \label{sec:term-repr}
 
+\subsection{Type checking}
+
 \subsection{Type hierarchy}
+\label{sec:hier-impl}
 
 \subsection{Elaboration}
 
@@ -1877,6 +3487,19 @@ The details of each phase will be described in section % TODO insert section
 
 \section{Future work}
 
+\subsection{Coinduction}
+
+\subsection{Quotient types}
+
+\subsection{Partiality}
+
+\subsection{Pattern matching}
+
+\subsection{Pattern unification}
+
+% TODO coinduction (obscoin, gimenez, jacobs), pattern unification (miller,
+% gundry), partiality monad (NAD)
+
 \appendix
 
 \section{Notation and syntax}
@@ -1886,7 +3509,7 @@ the type of relation being established and the syntactic elements appearing,
 for example
 
 \mydesc{typing:}{\myjud{\mytmsyn}{\mytysyn}}{
-  \centering{Typing derivations here.}
+  Typing derivations here.
 }
 
 In the languages presented and Agda code samples I also highlight the syntax,
@@ -1917,7 +3540,6 @@ $\mytya$, $\mytyb$, or $\mytycc$).
 
 When presenting type derivations, I will often abbreviate and present multiple
 conclusions, each on a separate line:
-
 \begin{prooftree}
   \AxiomC{$\myjud{\mytmt}{\mytya \myprod \mytyb}$}
   \UnaryInfC{$\myjud{\myapp{\myfst}{\mytmt}}{\mytya}$}
@@ -1925,19 +3547,53 @@ conclusions, each on a separate line:
   \UnaryInfC{$\myjud{\myapp{\mysnd}{\mytmt}}{\mytyb}$}
 \end{prooftree}
 
-\section{Agda rendition of core ITT}
-\label{app:agda-code}
+I will often present `definition' in the described calculi and in
+$\mykant$\ itself, like so:
+{\mysmall\[
+\begin{array}{@{}l}
+  \myfun{name} : \mytysyn \\
+  \myfun{name} \myappsp \myb{arg_1} \myappsp \myb{arg_2} \myappsp \cdots \mapsto \mytmsyn
+\end{array}
+\]}
+To define operators, I use a mixfix notation similar
+to Agda, where $\myarg$s denote arguments, for example
+{\mysmall\[
+\begin{array}{@{}l}
+  \myarg \mathrel{\myfun{$\wedge$}} \myarg : \mybool \myarr \mybool \myarr \mybool \\
+  \myb{b_1} \mathrel{\myfun{$\wedge$}} \myb{b_2} \mapsto \cdots
+\end{array}
+\]}
+
+In explicitly typed systems, I will also omit type annotations when they
+are obvious, e.g. by not annotating the type of parameters of
+abstractions or of dependent pairs.
+
+\section{Code}
+
+\subsection{ITT renditions}
+\label{app:itt-code}
+
+\subsubsection{Agda}
+\label{app:agda-itt}
+
+Note that in what follows rules for `base' types are
+universe-polymorphic, to reflect the exposition.  Derived definitions,
+on the other hand, mostly work with \mytyc{Set}, reflecting the fact
+that in the theory presented we don't have universe polymorphism.
 
 \begin{code}
 module ITT where
   open import Level
 
-  data  : Set where
+  data Empty : Set where
 
-  absurd : ∀ {a} {A : Set a} →  → A
+  absurd : ∀ {a} {A : Set a} → Empty → A
   absurd ()
 
-  record ⊤ : Set where
+  ¬_ : ∀ {a} → (A : Set a) → Set a
+  ¬ A = A → Empty
+
+  record Unit : Set where
     constructor tt
 
   record _×_ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
@@ -1945,13 +3601,17 @@ module ITT where
     field
       fst  : A
       snd  : B fst
+  open _×_ public
 
   data Bool : Set where
     true false : Bool
 
-  if_then_else_ : ∀ {a} {P : Bool → Set a} (x : Bool) → P true → P false → P x
-  if true then x else _ = x
-  if false then _ else x = x
+  if_/_then_else_ : ∀ {a} (x : Bool) (P : Bool → Set a) → P true → P false → P x
+  if true / _ then x else _ = x
+  if false / _ then _ else x = x
+
+  if_then_else_ : ∀ {a} (x : Bool) {P : Bool → Set a} → P true → P false → P x
+  if_then_else_ x {P} = if_/_then_else_ x P
 
   data W {s p} (S : Set s) (P : S → Set p) : Set (s ⊔ p) where
     _◁_ : (s : S) → (P s → W S P) → W S P
@@ -1966,6 +3626,102 @@ module ITT where
     C x                       -- ...C always holds.
   rec C c (s ◁ f) = c s f (λ p → rec C c (f p))
 
+module Examples-→ where
+  open ITT
+
+  data ℕ : Set where
+    zero : ℕ
+    suc : ℕ → ℕ
+
+  -- These pragmas are needed so we can use number literals.
+  {-# BUILTIN NATURAL ℕ #-}
+  {-# BUILTIN ZERO zero #-}
+  {-# BUILTIN SUC suc #-}
+
+  data List (A : Set) : Set where
+    [] : List A
+    _∷_ : A → List A → List A
+
+  length : ∀ {A} → List A → ℕ
+  length [] = zero
+  length (_ ∷ l) = suc (length l)
+
+  _>_ : ℕ → ℕ → Set
+  zero > _ = Empty
+  suc _ > zero = Unit
+  suc x > suc y = x > y
+
+  head : ∀ {A} → (l : List A) → length l > 0 → A
+  head [] p = absurd p
+  head (x ∷ _) _ = x
+
+module Examples-× where
+  open ITT
+  open Examples-→
+
+  even : ℕ → Set
+  even zero = Unit
+  even (suc zero) = Empty
+  even (suc (suc n)) = even n
+
+  6-even : even 6
+  6-even = tt
+
+  5-not-even : ¬ (even 5)
+  5-not-even = absurd
+  
+  there-is-an-even-number : ℕ × even
+  there-is-an-even-number = 6 , 6-even
+
+  _∨_ : (A B : Set) → Set
+  A ∨ B = Bool × (λ b → if b then A else B)
+
+  left : ∀ {A B} → A → A ∨ B
+  left x = true , x
+
+  right : ∀ {A B} → B → A ∨ B
+  right x = false , x
+
+  [_,_] : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C
+  [ f , g ] x =
+    (if (fst x) / (λ b → if b then _ else _ → _) then f else g) (snd x)
+
+module Examples-W where
+  open ITT
+  open Examples-×
+
+  Tr : Bool → Set
+  Tr b = if b then Unit else Empty
+
+  ℕ : Set
+  ℕ = W Bool Tr
+
+  zero : ℕ
+  zero = false ◁ absurd
+
+  suc : ℕ → ℕ
+  suc n = true ◁ (λ _ → n)
+
+  plus : ℕ → ℕ → ℕ
+  plus x y = rec
+    (λ _ → ℕ)
+    (λ b →
+      if b / (λ b → (Tr b → ℕ) → (Tr b → ℕ) → ℕ)
+      then (λ _ f → (suc (f tt))) else (λ _ _ → y))
+    x
+
+  List : (A : Set) → Set
+  List A = W (A ∨ Unit) (λ s → Tr (fst s))
+
+  [] : ∀ {A} → List A
+  [] = (false , tt) ◁ absurd
+
+  _∷_ : ∀ {A} → A → List A → List A
+  x ∷ l = (true , x) ◁ (λ _ → l)
+
+module Equality where
+  open ITT
+  
   data _≡_ {a} {A : Set a} : A → A → Set a where
     refl : ∀ x → x ≡ x
 
@@ -1974,13 +3730,46 @@ module ITT where
     ∀ {x y} → P x x (refl x) → (x≡y : x ≡ y) → P x y x≡y
   ≡-elim P p (refl x) = p
 
-  subst : ∀ {a b} {A : Set a}
-    (P : A → Set b) →
-    ∀ {x y} → (x≡y : x ≡ y) → P x → P y
+  subst : ∀ {A : Set} (P : A → Set) → ∀ {x y} → (x≡y : x ≡ y) → P x → P y
   subst P x≡y p = ≡-elim (λ _ y _ → P y) p x≡y
+
+  sym : ∀ {A : Set} (x y : A) → x ≡ y → y ≡ x
+  sym x y p = subst (λ y′ → y′ ≡ x) p (refl x)
+
+  trans : ∀ {A : Set} (x y z : A) → x ≡ y → y ≡ z → x ≡ z
+  trans x y z p q = subst (λ z′ → x ≡ z′) q p
+
+  cong : ∀ {A B : Set} (x y : A) → x ≡ y → (f : A → B) → f x ≡ f y 
+  cong x y p f = subst (λ z → f x ≡ f z) p (refl (f x))
 \end{code}
 
-\nocite{*}
+\subsubsection{\mykant}
+
+The following things are missing: $\mytyc{W}$-types, since our
+positivity check is overly strict, and equality, since we haven't
+implemented that yet.
+
+{\small
+\verbatiminput{itt.ka}
+}
+
+\subsection{\mykant\ examples}
+
+{\small
+\verbatiminput{examples.ka}
+}
+
+\subsection{\mykant's hierachy}
+
+This rendition of the Hurken's paradox does not type check with the
+hierachy enabled, type checks and loops without it.  Adapted from an
+Agda version, available at
+\url{http://code.haskell.org/Agda/test/succeed/Hurkens.agda}.
+
+{\small
+\verbatiminput{hurkens.ka}
+}
+
 \bibliographystyle{authordate1}
 \bibliography{thesis}