atheros: fix mdio bus registration for multiple ethernet interfaces
[openwrt.git] / target / linux / atheros / patches-2.6.28 / 110-ar2313_ethernet.patch
1 --- a/drivers/net/Kconfig
2 +++ b/drivers/net/Kconfig
3 @@ -359,6 +359,12 @@ config AX88796_93CX6
4         help
5           Select this if your platform comes with an external 93CX6 eeprom.
6  
7 +config AR231X_ETHERNET
8 +       tristate "AR231x Ethernet support"
9 +       depends on NET_ETHERNET && ATHEROS
10 +       help
11 +         Support for the AR231x/531x ethernet controller
12 +
13  config MACE
14         tristate "MACE (Power Mac ethernet) support"
15         depends on PPC_PMAC && PPC32
16 --- a/drivers/net/Makefile
17 +++ b/drivers/net/Makefile
18 @@ -199,6 +199,7 @@ obj-$(CONFIG_EQUALIZER) += eql.o
19  obj-$(CONFIG_KORINA) += korina.o
20  obj-$(CONFIG_MIPS_JAZZ_SONIC) += jazzsonic.o
21  obj-$(CONFIG_MIPS_AU1X00_ENET) += au1000_eth.o
22 +obj-$(CONFIG_AR231X_ETHERNET) += ar231x.o
23  obj-$(CONFIG_MIPS_SIM_NET) += mipsnet.o
24  obj-$(CONFIG_SGI_IOC3_ETH) += ioc3-eth.o
25  obj-$(CONFIG_DECLANCE) += declance.o
26 --- /dev/null
27 +++ b/drivers/net/ar231x.c
28 @@ -0,0 +1,1268 @@
29 +/*
30 + * ar231x.c: Linux driver for the Atheros AR231x Ethernet device.
31 + *
32 + * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
33 + * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
34 + * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
35 + *
36 + * Thanks to Atheros for providing hardware and documentation
37 + * enabling me to write this driver.
38 + *
39 + * This program is free software; you can redistribute it and/or modify
40 + * it under the terms of the GNU General Public License as published by
41 + * the Free Software Foundation; either version 2 of the License, or
42 + * (at your option) any later version.
43 + *
44 + * Additional credits:
45 + *     This code is taken from John Taylor's Sibyte driver and then
46 + *     modified for the AR2313.
47 + */
48 +
49 +#include <linux/module.h>
50 +#include <linux/version.h>
51 +#include <linux/types.h>
52 +#include <linux/errno.h>
53 +#include <linux/ioport.h>
54 +#include <linux/pci.h>
55 +#include <linux/netdevice.h>
56 +#include <linux/etherdevice.h>
57 +#include <linux/skbuff.h>
58 +#include <linux/init.h>
59 +#include <linux/delay.h>
60 +#include <linux/mm.h>
61 +#include <linux/highmem.h>
62 +#include <linux/sockios.h>
63 +#include <linux/pkt_sched.h>
64 +#include <linux/mii.h>
65 +#include <linux/phy.h>
66 +#include <linux/ethtool.h>
67 +#include <linux/ctype.h>
68 +#include <linux/platform_device.h>
69 +
70 +#include <net/sock.h>
71 +#include <net/ip.h>
72 +
73 +#include <asm/system.h>
74 +#include <asm/io.h>
75 +#include <asm/irq.h>
76 +#include <asm/byteorder.h>
77 +#include <asm/uaccess.h>
78 +#include <asm/bootinfo.h>
79 +
80 +#define AR2313_MTU                     1692
81 +#define AR2313_PRIOS                   1
82 +#define AR2313_QUEUES                  (2*AR2313_PRIOS)
83 +#define AR2313_DESCR_ENTRIES           64
84 +
85 +
86 +#ifndef min
87 +#define min(a,b)       (((a)<(b))?(a):(b))
88 +#endif
89 +
90 +#ifndef SMP_CACHE_BYTES
91 +#define SMP_CACHE_BYTES        L1_CACHE_BYTES
92 +#endif
93 +
94 +#define AR2313_MBOX_SET_BIT  0x8
95 +
96 +#include "ar231x.h"
97 +
98 +/*
99 + * New interrupt handler strategy:
100 + *
101 + * An old interrupt handler worked using the traditional method of
102 + * replacing an skbuff with a new one when a packet arrives. However
103 + * the rx rings do not need to contain a static number of buffer
104 + * descriptors, thus it makes sense to move the memory allocation out
105 + * of the main interrupt handler and do it in a bottom half handler
106 + * and only allocate new buffers when the number of buffers in the
107 + * ring is below a certain threshold. In order to avoid starving the
108 + * NIC under heavy load it is however necessary to force allocation
109 + * when hitting a minimum threshold. The strategy for alloction is as
110 + * follows:
111 + *
112 + *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
113 + *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
114 + *                           the buffers in the interrupt handler
115 + *     RX_RING_THRES       - maximum number of buffers in the rx ring
116 + *
117 + * One advantagous side effect of this allocation approach is that the
118 + * entire rx processing can be done without holding any spin lock
119 + * since the rx rings and registers are totally independent of the tx
120 + * ring and its registers.  This of course includes the kmalloc's of
121 + * new skb's. Thus start_xmit can run in parallel with rx processing
122 + * and the memory allocation on SMP systems.
123 + *
124 + * Note that running the skb reallocation in a bottom half opens up
125 + * another can of races which needs to be handled properly. In
126 + * particular it can happen that the interrupt handler tries to run
127 + * the reallocation while the bottom half is either running on another
128 + * CPU or was interrupted on the same CPU. To get around this the
129 + * driver uses bitops to prevent the reallocation routines from being
130 + * reentered.
131 + *
132 + * TX handling can also be done without holding any spin lock, wheee
133 + * this is fun! since tx_csm is only written to by the interrupt
134 + * handler.
135 + */
136 +
137 +/*
138 + * Threshold values for RX buffer allocation - the low water marks for
139 + * when to start refilling the rings are set to 75% of the ring
140 + * sizes. It seems to make sense to refill the rings entirely from the
141 + * intrrupt handler once it gets below the panic threshold, that way
142 + * we don't risk that the refilling is moved to another CPU when the
143 + * one running the interrupt handler just got the slab code hot in its
144 + * cache.
145 + */
146 +#define RX_RING_SIZE           AR2313_DESCR_ENTRIES
147 +#define RX_PANIC_THRES         (RX_RING_SIZE/4)
148 +#define RX_LOW_THRES           ((3*RX_RING_SIZE)/4)
149 +#define CRC_LEN                 4
150 +#define RX_OFFSET               2
151 +
152 +#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
153 +#define VLAN_HDR                4
154 +#else
155 +#define VLAN_HDR                0
156 +#endif
157 +
158 +#define AR2313_BUFSIZE         (AR2313_MTU + VLAN_HDR + ETH_HLEN + CRC_LEN + RX_OFFSET)
159 +
160 +#ifdef MODULE
161 +MODULE_LICENSE("GPL");
162 +MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
163 +MODULE_DESCRIPTION("AR231x Ethernet driver");
164 +#endif
165 +
166 +#define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
167 +
168 +// prototypes
169 +static void ar231x_halt(struct net_device *dev);
170 +static void rx_tasklet_func(unsigned long data);
171 +static void rx_tasklet_cleanup(struct net_device *dev);
172 +static void ar231x_multicast_list(struct net_device *dev);
173 +
174 +static int ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum);
175 +static int ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value);
176 +static int ar231x_mdiobus_reset(struct mii_bus *bus);
177 +static int ar231x_mdiobus_probe (struct net_device *dev);
178 +static void ar231x_adjust_link(struct net_device *dev);
179 +
180 +#ifndef ERR
181 +#define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
182 +#endif
183 +
184 +
185 +int __init ar231x_probe(struct platform_device *pdev)
186 +{
187 +       struct net_device *dev;
188 +       struct ar231x_private *sp;
189 +       struct resource *res;
190 +       unsigned long ar_eth_base;
191 +       char buf[64];
192 +
193 +       dev = alloc_etherdev(sizeof(struct ar231x_private));
194 +
195 +       if (dev == NULL) {
196 +               printk(KERN_ERR
197 +                          "ar231x: Unable to allocate net_device structure!\n");
198 +               return -ENOMEM;
199 +       }
200 +
201 +       platform_set_drvdata(pdev, dev);
202 +
203 +       sp = netdev_priv(dev);
204 +       sp->dev = dev;
205 +       sp->cfg = pdev->dev.platform_data;
206 +
207 +       sprintf(buf, "eth%d_membase", pdev->id);
208 +       res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
209 +       if (!res)
210 +               return -ENODEV;
211 +
212 +       sp->link = 0;
213 +       ar_eth_base = res->start;
214 +
215 +       sprintf(buf, "eth%d_irq", pdev->id);
216 +       dev->irq = platform_get_irq_byname(pdev, buf);
217 +
218 +       spin_lock_init(&sp->lock);
219 +
220 +       /* initialize func pointers */
221 +       dev->open = &ar231x_open;
222 +       dev->stop = &ar231x_close;
223 +       dev->hard_start_xmit = &ar231x_start_xmit;
224 +
225 +       dev->set_multicast_list = &ar231x_multicast_list;
226 +       dev->do_ioctl = &ar231x_ioctl;
227 +
228 +       // SAMEER: do we need this?
229 +       dev->features |= NETIF_F_HIGHDMA;
230 +
231 +       tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
232 +       tasklet_disable(&sp->rx_tasklet);
233 +
234 +       sp->eth_regs =
235 +               ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
236 +       if (!sp->eth_regs) {
237 +               printk("Can't remap eth registers\n");
238 +               return (-ENXIO);
239 +       }
240 +
241 +       /*
242 +        * When there's only one MAC, PHY regs are typically on ENET0,
243 +        * even though the MAC might be on ENET1.
244 +        * Needto remap PHY regs separately in this case
245 +        */
246 +       if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
247 +               sp->phy_regs = sp->eth_regs;
248 +       else {
249 +               sp->phy_regs =
250 +                       ioremap_nocache(virt_to_phys(sp->cfg->phy_base),
251 +                                                       sizeof(*sp->phy_regs));
252 +               if (!sp->phy_regs) {
253 +                       printk("Can't remap phy registers\n");
254 +                       return (-ENXIO);
255 +               }
256 +       }
257 +
258 +       sp->dma_regs =
259 +               ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000),
260 +                                               sizeof(*sp->dma_regs));
261 +       dev->base_addr = (unsigned int) sp->dma_regs;
262 +       if (!sp->dma_regs) {
263 +               printk("Can't remap DMA registers\n");
264 +               return (-ENXIO);
265 +       }
266 +
267 +       sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
268 +       if (!sp->int_regs) {
269 +               printk("Can't remap INTERRUPT registers\n");
270 +               return (-ENXIO);
271 +       }
272 +
273 +       strncpy(sp->name, "Atheros AR231x", sizeof(sp->name) - 1);
274 +       sp->name[sizeof(sp->name) - 1] = '\0';
275 +       memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
276 +
277 +       if (ar231x_init(dev)) {
278 +               /*
279 +                * ar231x_init() calls ar231x_init_cleanup() on error.
280 +                */
281 +               kfree(dev);
282 +               return -ENODEV;
283 +       }
284 +
285 +       if (register_netdev(dev)) {
286 +               printk("%s: register_netdev failed\n", __func__);
287 +               return -1;
288 +       }
289 +
290 +       printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
291 +                  dev->name, sp->name,
292 +                  dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
293 +                  dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);
294 +
295 +       sp->mii_bus = mdiobus_alloc();
296 +       if (sp->mii_bus == NULL)
297 +               return -1;
298 +
299 +       sp->mii_bus->priv = dev;
300 +       sp->mii_bus->read = ar231x_mdiobus_read;
301 +       sp->mii_bus->write = ar231x_mdiobus_write;
302 +       sp->mii_bus->reset = ar231x_mdiobus_reset;
303 +       sp->mii_bus->name = "ar231x_eth_mii";
304 +       snprintf(sp->mii_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
305 +       sp->mii_bus->irq = kmalloc(sizeof(int), GFP_KERNEL);
306 +       *sp->mii_bus->irq = PHY_POLL;
307 +
308 +       mdiobus_register(sp->mii_bus);
309 +
310 +       if (ar231x_mdiobus_probe(dev) != 0) {
311 +               printk(KERN_ERR "%s: mdiobus_probe failed\n", dev->name);
312 +               rx_tasklet_cleanup(dev);
313 +               ar231x_init_cleanup(dev);
314 +               unregister_netdev(dev);
315 +               kfree(dev);
316 +               return -ENODEV;
317 +       }
318 +
319 +       /* start link poll timer */
320 +       ar231x_setup_timer(dev);
321 +
322 +       return 0;
323 +}
324 +
325 +
326 +static void ar231x_multicast_list(struct net_device *dev)
327 +{
328 +       struct ar231x_private *sp = netdev_priv(dev);
329 +       unsigned int filter;
330 +
331 +       filter = sp->eth_regs->mac_control;
332 +
333 +       if (dev->flags & IFF_PROMISC)
334 +               filter |= MAC_CONTROL_PR;
335 +       else
336 +               filter &= ~MAC_CONTROL_PR;
337 +       if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
338 +               filter |= MAC_CONTROL_PM;
339 +       else
340 +               filter &= ~MAC_CONTROL_PM;
341 +
342 +       sp->eth_regs->mac_control = filter;
343 +}
344 +
345 +static void rx_tasklet_cleanup(struct net_device *dev)
346 +{
347 +       struct ar231x_private *sp = netdev_priv(dev);
348 +
349 +       /*
350 +        * Tasklet may be scheduled. Need to get it removed from the list
351 +        * since we're about to free the struct.
352 +        */
353 +
354 +       sp->unloading = 1;
355 +       tasklet_enable(&sp->rx_tasklet);
356 +       tasklet_kill(&sp->rx_tasklet);
357 +}
358 +
359 +static int __exit ar231x_remove(struct platform_device *pdev)
360 +{
361 +       struct net_device *dev = platform_get_drvdata(pdev);
362 +       struct ar231x_private *sp = netdev_priv(dev);
363 +       rx_tasklet_cleanup(dev);
364 +       ar231x_init_cleanup(dev);
365 +       unregister_netdev(dev);
366 +       mdiobus_unregister(sp->mii_bus);
367 +       mdiobus_free(sp->mii_bus);
368 +       kfree(dev);
369 +       return 0;
370 +}
371 +
372 +
373 +/*
374 + * Restart the AR2313 ethernet controller.
375 + */
376 +static int ar231x_restart(struct net_device *dev)
377 +{
378 +       /* disable interrupts */
379 +       disable_irq(dev->irq);
380 +
381 +       /* stop mac */
382 +       ar231x_halt(dev);
383 +
384 +       /* initialize */
385 +       ar231x_init(dev);
386 +
387 +       /* enable interrupts */
388 +       enable_irq(dev->irq);
389 +
390 +       return 0;
391 +}
392 +
393 +static struct platform_driver ar231x_driver = {
394 +       .driver.name = "ar231x-eth",
395 +       .probe = ar231x_probe,
396 +       .remove = ar231x_remove,
397 +};
398 +
399 +int __init ar231x_module_init(void)
400 +{
401 +       return platform_driver_register(&ar231x_driver);
402 +}
403 +
404 +void __exit ar231x_module_cleanup(void)
405 +{
406 +       platform_driver_unregister(&ar231x_driver);
407 +}
408 +
409 +module_init(ar231x_module_init);
410 +module_exit(ar231x_module_cleanup);
411 +
412 +
413 +static void ar231x_free_descriptors(struct net_device *dev)
414 +{
415 +       struct ar231x_private *sp = netdev_priv(dev);
416 +       if (sp->rx_ring != NULL) {
417 +               kfree((void *) KSEG0ADDR(sp->rx_ring));
418 +               sp->rx_ring = NULL;
419 +               sp->tx_ring = NULL;
420 +       }
421 +}
422 +
423 +
424 +static int ar231x_allocate_descriptors(struct net_device *dev)
425 +{
426 +       struct ar231x_private *sp = netdev_priv(dev);
427 +       int size;
428 +       int j;
429 +       ar231x_descr_t *space;
430 +
431 +       if (sp->rx_ring != NULL) {
432 +               printk("%s: already done.\n", __FUNCTION__);
433 +               return 0;
434 +       }
435 +
436 +       size =
437 +               (sizeof(ar231x_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
438 +       space = kmalloc(size, GFP_KERNEL);
439 +       if (space == NULL)
440 +               return 1;
441 +
442 +       /* invalidate caches */
443 +       dma_cache_inv((unsigned int) space, size);
444 +
445 +       /* now convert pointer to KSEG1 */
446 +       space = (ar231x_descr_t *) KSEG1ADDR(space);
447 +
448 +       memset((void *) space, 0, size);
449 +
450 +       sp->rx_ring = space;
451 +       space += AR2313_DESCR_ENTRIES;
452 +
453 +       sp->tx_ring = space;
454 +       space += AR2313_DESCR_ENTRIES;
455 +
456 +       /* Initialize the transmit Descriptors */
457 +       for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
458 +               ar231x_descr_t *td = &sp->tx_ring[j];
459 +               td->status = 0;
460 +               td->devcs = DMA_TX1_CHAINED;
461 +               td->addr = 0;
462 +               td->descr =
463 +                       virt_to_phys(&sp->
464 +                                                tx_ring[(j + 1) & (AR2313_DESCR_ENTRIES - 1)]);
465 +       }
466 +
467 +       return 0;
468 +}
469 +
470 +
471 +/*
472 + * Generic cleanup handling data allocated during init. Used when the
473 + * module is unloaded or if an error occurs during initialization
474 + */
475 +static void ar231x_init_cleanup(struct net_device *dev)
476 +{
477 +       struct ar231x_private *sp = netdev_priv(dev);
478 +       struct sk_buff *skb;
479 +       int j;
480 +
481 +       ar231x_free_descriptors(dev);
482 +
483 +       if (sp->eth_regs)
484 +               iounmap((void *) sp->eth_regs);
485 +       if (sp->dma_regs)
486 +               iounmap((void *) sp->dma_regs);
487 +
488 +       if (sp->rx_skb) {
489 +               for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
490 +                       skb = sp->rx_skb[j];
491 +                       if (skb) {
492 +                               sp->rx_skb[j] = NULL;
493 +                               dev_kfree_skb(skb);
494 +                       }
495 +               }
496 +               kfree(sp->rx_skb);
497 +               sp->rx_skb = NULL;
498 +       }
499 +
500 +       if (sp->tx_skb) {
501 +               for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
502 +                       skb = sp->tx_skb[j];
503 +                       if (skb) {
504 +                               sp->tx_skb[j] = NULL;
505 +                               dev_kfree_skb(skb);
506 +                       }
507 +               }
508 +               kfree(sp->tx_skb);
509 +               sp->tx_skb = NULL;
510 +       }
511 +}
512 +
513 +static int ar231x_setup_timer(struct net_device *dev)
514 +{
515 +       struct ar231x_private *sp = netdev_priv(dev);
516 +
517 +       init_timer(&sp->link_timer);
518 +
519 +       sp->link_timer.function = ar231x_link_timer_fn;
520 +       sp->link_timer.data = (int) dev;
521 +       sp->link_timer.expires = jiffies + HZ;
522 +
523 +       add_timer(&sp->link_timer);
524 +       return 0;
525 +
526 +}
527 +
528 +static void ar231x_link_timer_fn(unsigned long data)
529 +{
530 +       struct net_device *dev = (struct net_device *) data;
531 +       struct ar231x_private *sp = netdev_priv(dev);
532 +
533 +       // see if the link status changed
534 +       // This was needed to make sure we set the PHY to the
535 +       // autonegotiated value of half or full duplex.
536 +       ar231x_check_link(dev);
537 +
538 +       // Loop faster when we don't have link.
539 +       // This was needed to speed up the AP bootstrap time.
540 +       if (sp->link == 0) {
541 +               mod_timer(&sp->link_timer, jiffies + HZ / 2);
542 +       } else {
543 +               mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
544 +       }
545 +}
546 +
547 +static void ar231x_check_link(struct net_device *dev)
548 +{
549 +       struct ar231x_private *sp = netdev_priv(dev);
550 +       u16 phyData;
551 +
552 +       phyData = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMSR);
553 +       if (sp->phyData != phyData) {
554 +               if (phyData & BMSR_LSTATUS) {
555 +                       /* link is present, ready link partner ability to deterine
556 +                          duplexity */
557 +                       int duplex = 0;
558 +                       u16 reg;
559 +
560 +                       sp->link = 1;
561 +                       reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_BMCR);
562 +                       if (reg & BMCR_ANENABLE) {
563 +                               /* auto neg enabled */
564 +                               reg = ar231x_mdiobus_read(sp->mii_bus, sp->phy, MII_LPA);
565 +                               duplex = (reg & (LPA_100FULL | LPA_10FULL)) ? 1 : 0;
566 +                       } else {
567 +                               /* no auto neg, just read duplex config */
568 +                               duplex = (reg & BMCR_FULLDPLX) ? 1 : 0;
569 +                       }
570 +
571 +                       printk(KERN_INFO "%s: Configuring MAC for %s duplex\n",
572 +                                  dev->name, (duplex) ? "full" : "half");
573 +
574 +                       if (duplex) {
575 +                               /* full duplex */
576 +                               sp->eth_regs->mac_control =
577 +                                       ((sp->eth_regs->
578 +                                         mac_control | MAC_CONTROL_F) & ~MAC_CONTROL_DRO);
579 +                       } else {
580 +                               /* half duplex */
581 +                               sp->eth_regs->mac_control =
582 +                                       ((sp->eth_regs->
583 +                                         mac_control | MAC_CONTROL_DRO) & ~MAC_CONTROL_F);
584 +                       }
585 +               } else {
586 +                       /* no link */
587 +                       sp->link = 0;
588 +               }
589 +               sp->phyData = phyData;
590 +       }
591 +}
592 +
593 +static int ar231x_reset_reg(struct net_device *dev)
594 +{
595 +       struct ar231x_private *sp = netdev_priv(dev);
596 +       unsigned int ethsal, ethsah;
597 +       unsigned int flags;
598 +
599 +       *sp->int_regs |= sp->cfg->reset_mac;
600 +       mdelay(10);
601 +       *sp->int_regs &= ~sp->cfg->reset_mac;
602 +       mdelay(10);
603 +       *sp->int_regs |= sp->cfg->reset_phy;
604 +       mdelay(10);
605 +       *sp->int_regs &= ~sp->cfg->reset_phy;
606 +       mdelay(10);
607 +
608 +       sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
609 +       mdelay(10);
610 +       sp->dma_regs->bus_mode =
611 +               ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
612 +
613 +       /* enable interrupts */
614 +       sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
615 +                                                         DMA_STATUS_NIS |
616 +                                                         DMA_STATUS_RI |
617 +                                                         DMA_STATUS_TI | DMA_STATUS_FBE);
618 +       sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
619 +       sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
620 +       sp->dma_regs->control =
621 +               (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
622 +
623 +       sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
624 +       sp->eth_regs->vlan_tag = (0x8100);
625 +
626 +       /* Enable Ethernet Interface */
627 +       flags = (MAC_CONTROL_TE |       /* transmit enable */
628 +                        MAC_CONTROL_PM |       /* pass mcast */
629 +                        MAC_CONTROL_F |        /* full duplex */
630 +                        MAC_CONTROL_HBD);      /* heart beat disabled */
631 +
632 +       if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
633 +               flags |= MAC_CONTROL_PR;
634 +       }
635 +       sp->eth_regs->mac_control = flags;
636 +
637 +       /* Set all Ethernet station address registers to their initial values */
638 +       ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
639 +                         (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
640 +
641 +       ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
642 +                         (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
643 +                         (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
644 +                         (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
645 +
646 +       sp->eth_regs->mac_addr[0] = ethsah;
647 +       sp->eth_regs->mac_addr[1] = ethsal;
648 +
649 +       mdelay(10);
650 +
651 +       return (0);
652 +}
653 +
654 +
655 +static int ar231x_init(struct net_device *dev)
656 +{
657 +       struct ar231x_private *sp = netdev_priv(dev);
658 +       int ecode = 0;
659 +
660 +       /*
661 +        * Allocate descriptors
662 +        */
663 +       if (ar231x_allocate_descriptors(dev)) {
664 +               printk("%s: %s: ar231x_allocate_descriptors failed\n",
665 +                          dev->name, __FUNCTION__);
666 +               ecode = -EAGAIN;
667 +               goto init_error;
668 +       }
669 +
670 +       /*
671 +        * Get the memory for the skb rings.
672 +        */
673 +       if (sp->rx_skb == NULL) {
674 +               sp->rx_skb =
675 +                       kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
676 +                                       GFP_KERNEL);
677 +               if (!(sp->rx_skb)) {
678 +                       printk("%s: %s: rx_skb kmalloc failed\n",
679 +                                  dev->name, __FUNCTION__);
680 +                       ecode = -EAGAIN;
681 +                       goto init_error;
682 +               }
683 +       }
684 +       memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
685 +
686 +       if (sp->tx_skb == NULL) {
687 +               sp->tx_skb =
688 +                       kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES,
689 +                                       GFP_KERNEL);
690 +               if (!(sp->tx_skb)) {
691 +                       printk("%s: %s: tx_skb kmalloc failed\n",
692 +                                  dev->name, __FUNCTION__);
693 +                       ecode = -EAGAIN;
694 +                       goto init_error;
695 +               }
696 +       }
697 +       memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
698 +
699 +       /*
700 +        * Set tx_csm before we start receiving interrupts, otherwise
701 +        * the interrupt handler might think it is supposed to process
702 +        * tx ints before we are up and running, which may cause a null
703 +        * pointer access in the int handler.
704 +        */
705 +       sp->rx_skbprd = 0;
706 +       sp->cur_rx = 0;
707 +       sp->tx_prd = 0;
708 +       sp->tx_csm = 0;
709 +
710 +       /*
711 +        * Zero the stats before starting the interface
712 +        */
713 +       memset(&dev->stats, 0, sizeof(dev->stats));
714 +
715 +       /*
716 +        * We load the ring here as there seem to be no way to tell the
717 +        * firmware to wipe the ring without re-initializing it.
718 +        */
719 +       ar231x_load_rx_ring(dev, RX_RING_SIZE);
720 +
721 +       /*
722 +        * Init hardware
723 +        */
724 +       ar231x_reset_reg(dev);
725 +
726 +       /*
727 +        * Get the IRQ
728 +        */
729 +       ecode =
730 +               request_irq(dev->irq, &ar231x_interrupt,
731 +                                       IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
732 +                                       dev->name, dev);
733 +       if (ecode) {
734 +               printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
735 +                          dev->name, __FUNCTION__, dev->irq);
736 +               goto init_error;
737 +       }
738 +
739 +
740 +       tasklet_enable(&sp->rx_tasklet);
741 +
742 +       return 0;
743 +
744 +  init_error:
745 +       ar231x_init_cleanup(dev);
746 +       return ecode;
747 +}
748 +
749 +/*
750 + * Load the rx ring.
751 + *
752 + * Loading rings is safe without holding the spin lock since this is
753 + * done only before the device is enabled, thus no interrupts are
754 + * generated and by the interrupt handler/tasklet handler.
755 + */
756 +static void ar231x_load_rx_ring(struct net_device *dev, int nr_bufs)
757 +{
758 +
759 +       struct ar231x_private *sp = netdev_priv(dev);
760 +       short i, idx;
761 +
762 +       idx = sp->rx_skbprd;
763 +
764 +       for (i = 0; i < nr_bufs; i++) {
765 +               struct sk_buff *skb;
766 +               ar231x_descr_t *rd;
767 +
768 +               if (sp->rx_skb[idx])
769 +                       break;
770 +
771 +               // partha: create additional room for the second GRE fragment
772 +               skb = alloc_skb(AR2313_BUFSIZE + 128, GFP_ATOMIC);
773 +               if (!skb) {
774 +                       printk("\n\n\n\n %s: No memory in system\n\n\n\n",
775 +                                  __FUNCTION__);
776 +                       break;
777 +               }
778 +               // partha: create additional room in the front for tx pkt capture
779 +               skb_reserve(skb, 32);
780 +
781 +               /*
782 +                * Make sure IP header starts on a fresh cache line.
783 +                */
784 +               skb->dev = dev;
785 +               skb_reserve(skb, RX_OFFSET);
786 +               sp->rx_skb[idx] = skb;
787 +
788 +               rd = (ar231x_descr_t *) & sp->rx_ring[idx];
789 +
790 +               /* initialize dma descriptor */
791 +               rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
792 +                                        DMA_RX1_CHAINED);
793 +               rd->addr = virt_to_phys(skb->data);
794 +               rd->descr =
795 +                       virt_to_phys(&sp->
796 +                                                rx_ring[(idx + 1) & (AR2313_DESCR_ENTRIES - 1)]);
797 +               rd->status = DMA_RX_OWN;
798 +
799 +               idx = DSC_NEXT(idx);
800 +       }
801 +
802 +       if (i)
803 +               sp->rx_skbprd = idx;
804 +
805 +       return;
806 +}
807 +
808 +#define AR2313_MAX_PKTS_PER_CALL        64
809 +
810 +static int ar231x_rx_int(struct net_device *dev)
811 +{
812 +       struct ar231x_private *sp = netdev_priv(dev);
813 +       struct sk_buff *skb, *skb_new;
814 +       ar231x_descr_t *rxdesc;
815 +       unsigned int status;
816 +       u32 idx;
817 +       int pkts = 0;
818 +       int rval;
819 +
820 +       idx = sp->cur_rx;
821 +
822 +       /* process at most the entire ring and then wait for another interrupt
823 +        */
824 +       while (1) {
825 +
826 +               rxdesc = &sp->rx_ring[idx];
827 +               status = rxdesc->status;
828 +               if (status & DMA_RX_OWN) {
829 +                       /* SiByte owns descriptor or descr not yet filled in */
830 +                       rval = 0;
831 +                       break;
832 +               }
833 +
834 +               if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
835 +                       rval = 1;
836 +                       break;
837 +               }
838 +
839 +               if ((status & (DMA_RX_ERROR | DMA_RX_ERR_LENGTH)) &&
840 +                       (!(status & DMA_RX_LONG))) {
841 +                       dev->stats.rx_errors++;
842 +                       dev->stats.rx_dropped++;
843 +
844 +                       /* add statistics counters */
845 +                       if (status & DMA_RX_ERR_CRC)
846 +                               dev->stats.rx_crc_errors++;
847 +                       if (status & DMA_RX_ERR_COL)
848 +                               dev->stats.rx_over_errors++;
849 +                       if (status & DMA_RX_ERR_LENGTH)
850 +                               dev->stats.rx_length_errors++;
851 +                       if (status & DMA_RX_ERR_RUNT)
852 +                               dev->stats.rx_over_errors++;
853 +                       if (status & DMA_RX_ERR_DESC)
854 +                               dev->stats.rx_over_errors++;
855 +
856 +               } else {
857 +                       /* alloc new buffer. */
858 +                       skb_new = dev_alloc_skb(AR2313_BUFSIZE + RX_OFFSET + 128);
859 +                       if (skb_new != NULL) {
860 +
861 +                               skb = sp->rx_skb[idx];
862 +                               /* set skb */
863 +                               skb_put(skb,
864 +                                               ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
865 +
866 +                               dev->stats.rx_bytes += skb->len;
867 +                               skb->protocol = eth_type_trans(skb, dev);
868 +                               /* pass the packet to upper layers */
869 +                               netif_rx(skb);
870 +
871 +                               skb_new->dev = dev;
872 +                               /* 16 bit align */
873 +                               skb_reserve(skb_new, RX_OFFSET + 32);
874 +                               /* reset descriptor's curr_addr */
875 +                               rxdesc->addr = virt_to_phys(skb_new->data);
876 +
877 +                               dev->stats.rx_packets++;
878 +                               sp->rx_skb[idx] = skb_new;
879 +                       } else {
880 +                               dev->stats.rx_dropped++;
881 +                       }
882 +               }
883 +
884 +               rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
885 +                                                DMA_RX1_CHAINED);
886 +               rxdesc->status = DMA_RX_OWN;
887 +
888 +               idx = DSC_NEXT(idx);
889 +       }
890 +
891 +       sp->cur_rx = idx;
892 +
893 +       return rval;
894 +}
895 +
896 +
897 +static void ar231x_tx_int(struct net_device *dev)
898 +{
899 +       struct ar231x_private *sp = netdev_priv(dev);
900 +       u32 idx;
901 +       struct sk_buff *skb;
902 +       ar231x_descr_t *txdesc;
903 +       unsigned int status = 0;
904 +
905 +       idx = sp->tx_csm;
906 +
907 +       while (idx != sp->tx_prd) {
908 +               txdesc = &sp->tx_ring[idx];
909 +
910 +               if ((status = txdesc->status) & DMA_TX_OWN) {
911 +                       /* ar231x dma still owns descr */
912 +                       break;
913 +               }
914 +               /* done with this descriptor */
915 +               dma_unmap_single(NULL, txdesc->addr,
916 +                                                txdesc->devcs & DMA_TX1_BSIZE_MASK,
917 +                                                DMA_TO_DEVICE);
918 +               txdesc->status = 0;
919 +
920 +               if (status & DMA_TX_ERROR) {
921 +                       dev->stats.tx_errors++;
922 +                       dev->stats.tx_dropped++;
923 +                       if (status & DMA_TX_ERR_UNDER)
924 +                               dev->stats.tx_fifo_errors++;
925 +                       if (status & DMA_TX_ERR_HB)
926 +                               dev->stats.tx_heartbeat_errors++;
927 +                       if (status & (DMA_TX_ERR_LOSS | DMA_TX_ERR_LINK))
928 +                               dev->stats.tx_carrier_errors++;
929 +                       if (status & (DMA_TX_ERR_LATE |
930 +                                                 DMA_TX_ERR_COL |
931 +                                                 DMA_TX_ERR_JABBER | DMA_TX_ERR_DEFER))
932 +                               dev->stats.tx_aborted_errors++;
933 +               } else {
934 +                       /* transmit OK */
935 +                       dev->stats.tx_packets++;
936 +               }
937 +
938 +               skb = sp->tx_skb[idx];
939 +               sp->tx_skb[idx] = NULL;
940 +               idx = DSC_NEXT(idx);
941 +               dev->stats.tx_bytes += skb->len;
942 +               dev_kfree_skb_irq(skb);
943 +       }
944 +
945 +       sp->tx_csm = idx;
946 +
947 +       return;
948 +}
949 +
950 +
951 +static void rx_tasklet_func(unsigned long data)
952 +{
953 +       struct net_device *dev = (struct net_device *) data;
954 +       struct ar231x_private *sp = netdev_priv(dev);
955 +
956 +       if (sp->unloading) {
957 +               return;
958 +       }
959 +
960 +       if (ar231x_rx_int(dev)) {
961 +               tasklet_hi_schedule(&sp->rx_tasklet);
962 +       } else {
963 +               unsigned long flags;
964 +               spin_lock_irqsave(&sp->lock, flags);
965 +               sp->dma_regs->intr_ena |= DMA_STATUS_RI;
966 +               spin_unlock_irqrestore(&sp->lock, flags);
967 +       }
968 +}
969 +
970 +static void rx_schedule(struct net_device *dev)
971 +{
972 +       struct ar231x_private *sp = netdev_priv(dev);
973 +
974 +       sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
975 +
976 +       tasklet_hi_schedule(&sp->rx_tasklet);
977 +}
978 +
979 +static irqreturn_t ar231x_interrupt(int irq, void *dev_id)
980 +{
981 +       struct net_device *dev = (struct net_device *) dev_id;
982 +       struct ar231x_private *sp = netdev_priv(dev);
983 +       unsigned int status, enabled;
984 +
985 +       /* clear interrupt */
986 +       /*
987 +        * Don't clear RI bit if currently disabled.
988 +        */
989 +       status = sp->dma_regs->status;
990 +       enabled = sp->dma_regs->intr_ena;
991 +       sp->dma_regs->status = status & enabled;
992 +
993 +       if (status & DMA_STATUS_NIS) {
994 +               /* normal status */
995 +               /*
996 +                * Don't schedule rx processing if interrupt
997 +                * is already disabled.
998 +                */
999 +               if (status & enabled & DMA_STATUS_RI) {
1000 +                       /* receive interrupt */
1001 +                       rx_schedule(dev);
1002 +               }
1003 +               if (status & DMA_STATUS_TI) {
1004 +                       /* transmit interrupt */
1005 +                       ar231x_tx_int(dev);
1006 +               }
1007 +       }
1008 +
1009 +       /* abnormal status */
1010 +       if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
1011 +               ar231x_restart(dev);
1012 +       }
1013 +       return IRQ_HANDLED;
1014 +}
1015 +
1016 +
1017 +static int ar231x_open(struct net_device *dev)
1018 +{
1019 +       struct ar231x_private *sp = netdev_priv(dev);
1020 +       unsigned int ethsal, ethsah;
1021 +
1022 +       /* reset the hardware, in case the MAC address changed */
1023 +       ethsah = ((((u_int) (dev->dev_addr[5]) << 8) & (u_int) 0x0000FF00) |
1024 +                         (((u_int) (dev->dev_addr[4]) << 0) & (u_int) 0x000000FF));
1025 +
1026 +       ethsal = ((((u_int) (dev->dev_addr[3]) << 24) & (u_int) 0xFF000000) |
1027 +                         (((u_int) (dev->dev_addr[2]) << 16) & (u_int) 0x00FF0000) |
1028 +                         (((u_int) (dev->dev_addr[1]) << 8) & (u_int) 0x0000FF00) |
1029 +                         (((u_int) (dev->dev_addr[0]) << 0) & (u_int) 0x000000FF));
1030 +
1031 +       sp->eth_regs->mac_addr[0] = ethsah;
1032 +       sp->eth_regs->mac_addr[1] = ethsal;
1033 +
1034 +       mdelay(10);
1035 +
1036 +       dev->mtu = 1500;
1037 +       netif_start_queue(dev);
1038 +
1039 +       sp->eth_regs->mac_control |= MAC_CONTROL_RE;
1040 +
1041 +       return 0;
1042 +}
1043 +
1044 +static void ar231x_halt(struct net_device *dev)
1045 +{
1046 +       struct ar231x_private *sp = netdev_priv(dev);
1047 +       int j;
1048 +
1049 +       tasklet_disable(&sp->rx_tasklet);
1050 +
1051 +       /* kill the MAC */
1052 +       sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
1053 +                                                                  MAC_CONTROL_TE);     /* disable Transmits */
1054 +       /* stop dma */
1055 +       sp->dma_regs->control = 0;
1056 +       sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
1057 +
1058 +       /* place phy and MAC in reset */
1059 +       *sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
1060 +
1061 +       /* free buffers on tx ring */
1062 +       for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
1063 +               struct sk_buff *skb;
1064 +               ar231x_descr_t *txdesc;
1065 +
1066 +               txdesc = &sp->tx_ring[j];
1067 +               txdesc->descr = 0;
1068 +
1069 +               skb = sp->tx_skb[j];
1070 +               if (skb) {
1071 +                       dev_kfree_skb(skb);
1072 +                       sp->tx_skb[j] = NULL;
1073 +               }
1074 +       }
1075 +}
1076 +
1077 +/*
1078 + * close should do nothing. Here's why. It's called when
1079 + * 'ifconfig bond0 down' is run. If it calls free_irq then
1080 + * the irq is gone forever ! When bond0 is made 'up' again,
1081 + * the ar231x_open () does not call request_irq (). Worse,
1082 + * the call to ar231x_halt() generates a WDOG reset due to
1083 + * the write to 'sp->int_regs' and the box reboots.
1084 + * Commenting this out is good since it allows the
1085 + * system to resume when bond0 is made up again.
1086 + */
1087 +static int ar231x_close(struct net_device *dev)
1088 +{
1089 +#if 0
1090 +       /*
1091 +        * Disable interrupts
1092 +        */
1093 +       disable_irq(dev->irq);
1094 +
1095 +       /*
1096 +        * Without (or before) releasing irq and stopping hardware, this
1097 +        * is an absolute non-sense, by the way. It will be reset instantly
1098 +        * by the first irq.
1099 +        */
1100 +       netif_stop_queue(dev);
1101 +
1102 +       /* stop the MAC and DMA engines */
1103 +       ar231x_halt(dev);
1104 +
1105 +       /* release the interrupt */
1106 +       free_irq(dev->irq, dev);
1107 +
1108 +#endif
1109 +       return 0;
1110 +}
1111 +
1112 +static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev)
1113 +{
1114 +       struct ar231x_private *sp = netdev_priv(dev);
1115 +       ar231x_descr_t *td;
1116 +       u32 idx;
1117 +
1118 +       idx = sp->tx_prd;
1119 +       td = &sp->tx_ring[idx];
1120 +
1121 +       if (td->status & DMA_TX_OWN) {
1122 +               /* free skbuf and lie to the caller that we sent it out */
1123 +               dev->stats.tx_dropped++;
1124 +               dev_kfree_skb(skb);
1125 +
1126 +               /* restart transmitter in case locked */
1127 +               sp->dma_regs->xmt_poll = 0;
1128 +               return 0;
1129 +       }
1130 +
1131 +       /* Setup the transmit descriptor. */
1132 +       td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
1133 +                                (DMA_TX1_LS | DMA_TX1_IC | DMA_TX1_CHAINED));
1134 +       td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
1135 +       td->status = DMA_TX_OWN;
1136 +
1137 +       /* kick transmitter last */
1138 +       sp->dma_regs->xmt_poll = 0;
1139 +
1140 +       sp->tx_skb[idx] = skb;
1141 +       idx = DSC_NEXT(idx);
1142 +       sp->tx_prd = idx;
1143 +
1144 +       return 0;
1145 +}
1146 +
1147 +static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1148 +{
1149 +       struct mii_ioctl_data *data = (struct mii_ioctl_data *) &ifr->ifr_data;
1150 +       struct ar231x_private *sp = netdev_priv(dev);
1151 +       int ret;
1152 +
1153 +       switch (cmd) {
1154 +
1155 +       case SIOCETHTOOL:
1156 +               spin_lock_irq(&sp->lock);
1157 +               ret = phy_ethtool_ioctl(sp->phy_dev, (void *) ifr->ifr_data);
1158 +               spin_unlock_irq(&sp->lock);
1159 +               return ret;
1160 +
1161 +       case SIOCSIFHWADDR:
1162 +               if (copy_from_user
1163 +                       (dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
1164 +                       return -EFAULT;
1165 +               return 0;
1166 +
1167 +       case SIOCGIFHWADDR:
1168 +               if (copy_to_user
1169 +                       (ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
1170 +                       return -EFAULT;
1171 +               return 0;
1172 +
1173 +       case SIOCGMIIPHY:
1174 +       case SIOCGMIIREG:
1175 +       case SIOCSMIIREG:
1176 +               return phy_mii_ioctl(sp->phy_dev, data, cmd);
1177 +
1178 +       default:
1179 +               break;
1180 +       }
1181 +
1182 +       return -EOPNOTSUPP;
1183 +}
1184 +
1185 +static void ar231x_adjust_link(struct net_device *dev)
1186 +{
1187 +       struct ar231x_private *sp = netdev_priv(dev);
1188 +       unsigned int mc;
1189 +
1190 +       if (!sp->phy_dev->link)
1191 +               return;
1192 +
1193 +       if (sp->phy_dev->duplex != sp->oldduplex) {
1194 +               mc = readl(&sp->eth_regs->mac_control);
1195 +               mc &= ~(MAC_CONTROL_F | MAC_CONTROL_DRO);
1196 +               if (sp->phy_dev->duplex)
1197 +                       mc |= MAC_CONTROL_F;
1198 +               else
1199 +                       mc |= MAC_CONTROL_DRO;
1200 +               writel(mc, &sp->eth_regs->mac_control);
1201 +               sp->oldduplex = sp->phy_dev->duplex;
1202 +       }
1203 +}
1204 +
1205 +#define MII_ADDR(phy, reg) \
1206 +       ((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
1207 +
1208 +static int
1209 +ar231x_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1210 +{
1211 +       struct net_device *const dev = bus->priv;
1212 +       struct ar231x_private *sp = netdev_priv(dev);
1213 +       volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1214 +
1215 +       ethernet->mii_addr = MII_ADDR(phy_addr, regnum);
1216 +       while (ethernet->mii_addr & MII_ADDR_BUSY);
1217 +       return (ethernet->mii_data >> MII_DATA_SHIFT);
1218 +}
1219 +
1220 +static int
1221 +ar231x_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
1222 +             u16 value)
1223 +{
1224 +       struct net_device *const dev = bus->priv;
1225 +       struct ar231x_private *sp = netdev_priv(dev);
1226 +       volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1227 +
1228 +       while (ethernet->mii_addr & MII_ADDR_BUSY);
1229 +       ethernet->mii_data = value << MII_DATA_SHIFT;
1230 +       ethernet->mii_addr = MII_ADDR(phy_addr, regnum) | MII_ADDR_WRITE;
1231 +
1232 +       return 0;
1233 +}
1234 +
1235 +static int ar231x_mdiobus_reset(struct mii_bus *bus)
1236 +{
1237 +       struct net_device *const dev = bus->priv;
1238 +
1239 +       ar231x_reset_reg(dev);
1240 +
1241 +       return 0;
1242 +}
1243 +
1244 +static int ar231x_mdiobus_probe (struct net_device *dev)
1245 +{
1246 +       struct ar231x_private *const sp = netdev_priv(dev);
1247 +       struct phy_device *phydev = NULL;
1248 +       int phy_addr;
1249 +
1250 +       /* find the first (lowest address) PHY on the current MAC's MII bus */
1251 +       for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
1252 +               if (sp->mii_bus->phy_map[phy_addr]) {
1253 +                       phydev = sp->mii_bus->phy_map[phy_addr];
1254 +                       sp->phy = phy_addr;
1255 +                       break; /* break out with first one found */
1256 +               }
1257 +
1258 +       if (!phydev) {
1259 +               printk (KERN_ERR "ar231x: %s: no PHY found\n", dev->name);
1260 +               return -1;
1261 +       }
1262 +
1263 +       /* now we are supposed to have a proper phydev, to attach to... */
1264 +       BUG_ON(!phydev);
1265 +       BUG_ON(phydev->attached_dev);
1266 +
1267 +       phydev = phy_connect(dev, phydev->dev.bus_id, &ar231x_adjust_link, 0,
1268 +               PHY_INTERFACE_MODE_MII);
1269 +
1270 +       if (IS_ERR(phydev)) {
1271 +               printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
1272 +               return PTR_ERR(phydev);
1273 +       }
1274 +
1275 +       /* mask with MAC supported features */
1276 +       phydev->supported &= (SUPPORTED_10baseT_Half
1277 +               | SUPPORTED_10baseT_Full
1278 +               | SUPPORTED_100baseT_Half
1279 +               | SUPPORTED_100baseT_Full
1280 +               | SUPPORTED_Autoneg
1281 +               /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
1282 +               | SUPPORTED_MII
1283 +               | SUPPORTED_TP);
1284 +
1285 +       phydev->advertising = phydev->supported;
1286 +
1287 +       sp->oldduplex = -1;
1288 +       sp->phy_dev = phydev;
1289 +
1290 +       printk(KERN_INFO "%s: attached PHY driver [%s] "
1291 +               "(mii_bus:phy_addr=%s)\n",
1292 +               dev->name, phydev->drv->name, phydev->dev.bus_id);
1293 +
1294 +       return 0;
1295 +}
1296 +
1297 --- /dev/null
1298 +++ b/drivers/net/ar231x.h
1299 @@ -0,0 +1,302 @@
1300 +/*
1301 + * ar231x.h: Linux driver for the Atheros AR231x Ethernet device.
1302 + *
1303 + * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
1304 + * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
1305 + * Copyright (C) 2006-2009 Felix Fietkau <nbd@openwrt.org>
1306 + *
1307 + * Thanks to Atheros for providing hardware and documentation
1308 + * enabling me to write this driver.
1309 + *
1310 + * This program is free software; you can redistribute it and/or modify
1311 + * it under the terms of the GNU General Public License as published by
1312 + * the Free Software Foundation; either version 2 of the License, or
1313 + * (at your option) any later version.
1314 + */
1315 +
1316 +#ifndef _AR2313_H_
1317 +#define _AR2313_H_
1318 +
1319 +#include <linux/autoconf.h>
1320 +#include <linux/bitops.h>
1321 +#include <asm/bootinfo.h>
1322 +#include <ar231x_platform.h>
1323 +
1324 +/*
1325 + * probe link timer - 5 secs
1326 + */
1327 +#define LINK_TIMER    (5*HZ)
1328 +
1329 +#define IS_DMA_TX_INT(X)   (((X) & (DMA_STATUS_TI)) != 0)
1330 +#define IS_DMA_RX_INT(X)   (((X) & (DMA_STATUS_RI)) != 0)
1331 +#define IS_DRIVER_OWNED(X) (((X) & (DMA_TX_OWN))    == 0)
1332 +
1333 +#define AR2313_TX_TIMEOUT (HZ/4)
1334 +
1335 +/*
1336 + * Rings
1337 + */
1338 +#define DSC_RING_ENTRIES_SIZE  (AR2313_DESCR_ENTRIES * sizeof(struct desc))
1339 +#define DSC_NEXT(idx)          ((idx + 1) & (AR2313_DESCR_ENTRIES - 1))
1340 +
1341 +#define AR2313_MBGET           2
1342 +#define AR2313_MBSET           3
1343 +#define AR2313_PCI_RECONFIG    4
1344 +#define AR2313_PCI_DUMP                5
1345 +#define AR2313_TEST_PANIC      6
1346 +#define AR2313_TEST_NULLPTR    7
1347 +#define AR2313_READ_DATA       8
1348 +#define AR2313_WRITE_DATA      9
1349 +#define AR2313_GET_VERSION     10
1350 +#define AR2313_TEST_HANG       11
1351 +#define AR2313_SYNC            12
1352 +
1353 +#define DMA_RX_ERR_CRC         BIT(1)
1354 +#define DMA_RX_ERR_DRIB                BIT(2)
1355 +#define DMA_RX_ERR_MII         BIT(3)
1356 +#define DMA_RX_EV2             BIT(5)
1357 +#define DMA_RX_ERR_COL         BIT(6)
1358 +#define DMA_RX_LONG            BIT(7)
1359 +#define DMA_RX_LS              BIT(8)  /* last descriptor */
1360 +#define DMA_RX_FS              BIT(9)  /* first descriptor */
1361 +#define DMA_RX_MF              BIT(10) /* multicast frame */
1362 +#define DMA_RX_ERR_RUNT                BIT(11) /* runt frame */
1363 +#define DMA_RX_ERR_LENGTH      BIT(12) /* length error */
1364 +#define DMA_RX_ERR_DESC                BIT(14) /* descriptor error */
1365 +#define DMA_RX_ERROR           BIT(15) /* error summary */
1366 +#define DMA_RX_LEN_MASK                0x3fff0000
1367 +#define DMA_RX_LEN_SHIFT       16
1368 +#define DMA_RX_FILT            BIT(30)
1369 +#define DMA_RX_OWN             BIT(31) /* desc owned by DMA controller */
1370 +
1371 +#define DMA_RX1_BSIZE_MASK     0x000007ff
1372 +#define DMA_RX1_BSIZE_SHIFT    0
1373 +#define DMA_RX1_CHAINED                BIT(24)
1374 +#define DMA_RX1_RER            BIT(25)
1375 +
1376 +#define DMA_TX_ERR_UNDER       BIT(1)  /* underflow error */
1377 +#define DMA_TX_ERR_DEFER       BIT(2)  /* excessive deferral */
1378 +#define DMA_TX_COL_MASK                0x78
1379 +#define DMA_TX_COL_SHIFT       3
1380 +#define DMA_TX_ERR_HB          BIT(7)  /* hearbeat failure */
1381 +#define DMA_TX_ERR_COL         BIT(8)  /* excessive collisions */
1382 +#define DMA_TX_ERR_LATE                BIT(9)  /* late collision */
1383 +#define DMA_TX_ERR_LINK                BIT(10) /* no carrier */
1384 +#define DMA_TX_ERR_LOSS                BIT(11) /* loss of carrier */
1385 +#define DMA_TX_ERR_JABBER      BIT(14) /* transmit jabber timeout */
1386 +#define DMA_TX_ERROR           BIT(15) /* frame aborted */
1387 +#define DMA_TX_OWN             BIT(31) /* descr owned by DMA controller */
1388 +
1389 +#define DMA_TX1_BSIZE_MASK     0x000007ff
1390 +#define DMA_TX1_BSIZE_SHIFT    0
1391 +#define DMA_TX1_CHAINED                BIT(24) /* chained descriptors */
1392 +#define DMA_TX1_TER            BIT(25) /* transmit end of ring */
1393 +#define DMA_TX1_FS             BIT(29) /* first segment */
1394 +#define DMA_TX1_LS             BIT(30) /* last segment */
1395 +#define DMA_TX1_IC             BIT(31) /* interrupt on completion */
1396 +
1397 +#define RCVPKT_LENGTH(X)       (X  >> 16)      /* Received pkt Length */
1398 +
1399 +#define MAC_CONTROL_RE         BIT(2)  /* receive enable */
1400 +#define MAC_CONTROL_TE         BIT(3)  /* transmit enable */
1401 +#define MAC_CONTROL_DC         BIT(5)  /* Deferral check */
1402 +#define MAC_CONTROL_ASTP       BIT(8)  /* Auto pad strip */
1403 +#define MAC_CONTROL_DRTY       BIT(10) /* Disable retry */
1404 +#define MAC_CONTROL_DBF                BIT(11) /* Disable bcast frames */
1405 +#define MAC_CONTROL_LCC                BIT(12) /* late collision ctrl */
1406 +#define MAC_CONTROL_HP         BIT(13) /* Hash Perfect filtering */
1407 +#define MAC_CONTROL_HASH       BIT(14) /* Unicast hash filtering */
1408 +#define MAC_CONTROL_HO         BIT(15) /* Hash only filtering */
1409 +#define MAC_CONTROL_PB         BIT(16) /* Pass Bad frames */
1410 +#define MAC_CONTROL_IF         BIT(17) /* Inverse filtering */
1411 +#define MAC_CONTROL_PR         BIT(18) /* promiscuous mode (valid frames only) */
1412 +#define MAC_CONTROL_PM         BIT(19) /* pass multicast */
1413 +#define MAC_CONTROL_F          BIT(20) /* full-duplex */
1414 +#define MAC_CONTROL_DRO                BIT(23) /* Disable Receive Own */
1415 +#define MAC_CONTROL_HBD                BIT(28) /* heart-beat disabled (MUST BE SET) */
1416 +#define MAC_CONTROL_BLE                BIT(30) /* big endian mode */
1417 +#define MAC_CONTROL_RA         BIT(31) /* receive all (valid and invalid frames) */
1418 +
1419 +#define MII_ADDR_BUSY          BIT(0)
1420 +#define MII_ADDR_WRITE         BIT(1)
1421 +#define MII_ADDR_REG_SHIFT     6
1422 +#define MII_ADDR_PHY_SHIFT     11
1423 +#define MII_DATA_SHIFT         0
1424 +
1425 +#define FLOW_CONTROL_FCE       BIT(1)
1426 +
1427 +#define DMA_BUS_MODE_SWR       BIT(0)  /* software reset */
1428 +#define DMA_BUS_MODE_BLE       BIT(7)  /* big endian mode */
1429 +#define DMA_BUS_MODE_PBL_SHIFT 8       /* programmable burst length 32 */
1430 +#define DMA_BUS_MODE_DBO       BIT(20) /* big-endian descriptors */
1431 +
1432 +#define DMA_STATUS_TI          BIT(0)  /* transmit interrupt */
1433 +#define DMA_STATUS_TPS         BIT(1)  /* transmit process stopped */
1434 +#define DMA_STATUS_TU          BIT(2)  /* transmit buffer unavailable */
1435 +#define DMA_STATUS_TJT         BIT(3)  /* transmit buffer timeout */
1436 +#define DMA_STATUS_UNF         BIT(5)  /* transmit underflow */
1437 +#define DMA_STATUS_RI          BIT(6)  /* receive interrupt */
1438 +#define DMA_STATUS_RU          BIT(7)  /* receive buffer unavailable */
1439 +#define DMA_STATUS_RPS         BIT(8)  /* receive process stopped */
1440 +#define DMA_STATUS_ETI         BIT(10) /* early transmit interrupt */
1441 +#define DMA_STATUS_FBE         BIT(13) /* fatal bus interrupt */
1442 +#define DMA_STATUS_ERI         BIT(14) /* early receive interrupt */
1443 +#define DMA_STATUS_AIS         BIT(15) /* abnormal interrupt summary */
1444 +#define DMA_STATUS_NIS         BIT(16) /* normal interrupt summary */
1445 +#define DMA_STATUS_RS_SHIFT    17      /* receive process state */
1446 +#define DMA_STATUS_TS_SHIFT    20      /* transmit process state */
1447 +#define DMA_STATUS_EB_SHIFT    23      /* error bits */
1448 +
1449 +#define DMA_CONTROL_SR         BIT(1)  /* start receive */
1450 +#define DMA_CONTROL_ST         BIT(13) /* start transmit */
1451 +#define DMA_CONTROL_SF         BIT(21) /* store and forward */
1452 +
1453 +
1454 +typedef struct {
1455 +       volatile unsigned int status;   // OWN, Device control and status.
1456 +       volatile unsigned int devcs;    // pkt Control bits + Length
1457 +       volatile unsigned int addr;     // Current Address.
1458 +       volatile unsigned int descr;    // Next descriptor in chain.
1459 +} ar231x_descr_t;
1460 +
1461 +
1462 +
1463 +//
1464 +// New Combo structure for Both Eth0 AND eth1
1465 +//
1466 +typedef struct {
1467 +       volatile unsigned int mac_control;      /* 0x00 */
1468 +       volatile unsigned int mac_addr[2];      /* 0x04 - 0x08 */
1469 +       volatile unsigned int mcast_table[2];   /* 0x0c - 0x10 */
1470 +       volatile unsigned int mii_addr; /* 0x14 */
1471 +       volatile unsigned int mii_data; /* 0x18 */
1472 +       volatile unsigned int flow_control;     /* 0x1c */
1473 +       volatile unsigned int vlan_tag; /* 0x20 */
1474 +       volatile unsigned int pad[7];   /* 0x24 - 0x3c */
1475 +       volatile unsigned int ucast_table[8];   /* 0x40-0x5c */
1476 +
1477 +} ETHERNET_STRUCT;
1478 +
1479 +/********************************************************************
1480 + * Interrupt controller
1481 + ********************************************************************/
1482 +
1483 +typedef struct {
1484 +       volatile unsigned int wdog_control;     /* 0x08 */
1485 +       volatile unsigned int wdog_timer;       /* 0x0c */
1486 +       volatile unsigned int misc_status;      /* 0x10 */
1487 +       volatile unsigned int misc_mask;        /* 0x14 */
1488 +       volatile unsigned int global_status;    /* 0x18 */
1489 +       volatile unsigned int reserved; /* 0x1c */
1490 +       volatile unsigned int reset_control;    /* 0x20 */
1491 +} INTERRUPT;
1492 +
1493 +/********************************************************************
1494 + * DMA controller
1495 + ********************************************************************/
1496 +typedef struct {
1497 +       volatile unsigned int bus_mode; /* 0x00 (CSR0) */
1498 +       volatile unsigned int xmt_poll; /* 0x04 (CSR1) */
1499 +       volatile unsigned int rcv_poll; /* 0x08 (CSR2) */
1500 +       volatile unsigned int rcv_base; /* 0x0c (CSR3) */
1501 +       volatile unsigned int xmt_base; /* 0x10 (CSR4) */
1502 +       volatile unsigned int status;   /* 0x14 (CSR5) */
1503 +       volatile unsigned int control;  /* 0x18 (CSR6) */
1504 +       volatile unsigned int intr_ena; /* 0x1c (CSR7) */
1505 +       volatile unsigned int rcv_missed;       /* 0x20 (CSR8) */
1506 +       volatile unsigned int reserved[11];     /* 0x24-0x4c (CSR9-19) */
1507 +       volatile unsigned int cur_tx_buf_addr;  /* 0x50 (CSR20) */
1508 +       volatile unsigned int cur_rx_buf_addr;  /* 0x50 (CSR21) */
1509 +} DMA;
1510 +
1511 +/*
1512 + * Struct private for the Sibyte.
1513 + *
1514 + * Elements are grouped so variables used by the tx handling goes
1515 + * together, and will go into the same cache lines etc. in order to
1516 + * avoid cache line contention between the rx and tx handling on SMP.
1517 + *
1518 + * Frequently accessed variables are put at the beginning of the
1519 + * struct to help the compiler generate better/shorter code.
1520 + */
1521 +struct ar231x_private {
1522 +       struct net_device *dev;
1523 +       int version;
1524 +       u32 mb[2];
1525 +
1526 +       volatile ETHERNET_STRUCT *phy_regs;
1527 +       volatile ETHERNET_STRUCT *eth_regs;
1528 +       volatile DMA *dma_regs;
1529 +       volatile u32 *int_regs;
1530 +       struct ar231x_eth *cfg;
1531 +
1532 +       spinlock_t lock;                        /* Serialise access to device */
1533 +
1534 +       /*
1535 +        * RX and TX descriptors, must be adjacent
1536 +        */
1537 +       ar231x_descr_t *rx_ring;
1538 +       ar231x_descr_t *tx_ring;
1539 +
1540 +
1541 +       struct sk_buff **rx_skb;
1542 +       struct sk_buff **tx_skb;
1543 +
1544 +       /*
1545 +        * RX elements
1546 +        */
1547 +       u32 rx_skbprd;
1548 +       u32 cur_rx;
1549 +
1550 +       /*
1551 +        * TX elements
1552 +        */
1553 +       u32 tx_prd;
1554 +       u32 tx_csm;
1555 +
1556 +       /*
1557 +        * Misc elements
1558 +        */
1559 +       char name[48];
1560 +       struct {
1561 +               u32 address;
1562 +               u32 length;
1563 +               char *mapping;
1564 +       } desc;
1565 +
1566 +
1567 +       struct timer_list link_timer;
1568 +       unsigned short phy;                     /* merlot phy = 1, samsung phy = 0x1f */
1569 +       unsigned short mac;
1570 +       unsigned short link;            /* 0 - link down, 1 - link up */
1571 +       u16 phyData;
1572 +
1573 +       struct tasklet_struct rx_tasklet;
1574 +       int unloading;
1575 +
1576 +       struct phy_device *phy_dev;
1577 +       struct mii_bus *mii_bus;
1578 +       int oldduplex;
1579 +};
1580 +
1581 +
1582 +/*
1583 + * Prototypes
1584 + */
1585 +static int ar231x_init(struct net_device *dev);
1586 +#ifdef TX_TIMEOUT
1587 +static void ar231x_tx_timeout(struct net_device *dev);
1588 +#endif
1589 +static int ar231x_restart(struct net_device *dev);
1590 +static void ar231x_load_rx_ring(struct net_device *dev, int bufs);
1591 +static irqreturn_t ar231x_interrupt(int irq, void *dev_id);
1592 +static int ar231x_open(struct net_device *dev);
1593 +static int ar231x_start_xmit(struct sk_buff *skb, struct net_device *dev);
1594 +static int ar231x_close(struct net_device *dev);
1595 +static int ar231x_ioctl(struct net_device *dev, struct ifreq *ifr,
1596 +                                               int cmd);
1597 +static void ar231x_init_cleanup(struct net_device *dev);
1598 +static int ar231x_setup_timer(struct net_device *dev);
1599 +static void ar231x_link_timer_fn(unsigned long data);
1600 +static void ar231x_check_link(struct net_device *dev);
1601 +#endif                                                 /* _AR2313_H_ */