From 18a076fccdba90cd7bea1dd4cff1b6b0559b75f0 Mon Sep 17 00:00:00 2001 From: blogic Date: Sun, 12 Dec 2010 22:57:16 +0000 Subject: [lantiq] adds new lantiq kernel. once the codebase is fully tested and know to be working on all the devices previously supported by ifxmips, we will drop ifxmips support. git-svn-id: svn://svn.openwrt.org/openwrt/trunk@24526 3c298f89-4303-0410-b956-a3cf2f4a3e73 --- target/linux/lantiq/Makefile | 25 + target/linux/lantiq/base-files/etc/config/network | 26 + target/linux/lantiq/base-files/etc/inittab | 4 + .../lantiq/base-files/lib/upgrade/platform.sh | 25 + target/linux/lantiq/config-default | 163 + target/linux/lantiq/image/Makefile | 89 + target/linux/lantiq/modules.mk | 47 + .../linux/lantiq/patches/000-mips-bad-intctl.patch | 35 + .../patches/010-mips_clocksource_init_war.patch | 33 + target/linux/lantiq/patches/020-genirq_fix.patch | 12 + target/linux/lantiq/patches/100-board.patch | 641 + target/linux/lantiq/patches/101-header.patch | 136 + target/linux/lantiq/patches/104-board_xway.patch | 3129 ++++ target/linux/lantiq/patches/105-header_xway.patch | 565 + target/linux/lantiq/patches/106-early_printk.patch | 93 + target/linux/lantiq/patches/110-machine.patch | 55 + target/linux/lantiq/patches/200-serial.patch | 799 + target/linux/lantiq/patches/210-nor.patch | 245 + target/linux/lantiq/patches/211-nor_split.patch | 99 + target/linux/lantiq/patches/230-xway_etop.patch | 580 + target/linux/lantiq/patches/250-watchdog.patch | 246 + target/linux/lantiq/patches/260-pci.patch | 436 + target/linux/lantiq/patches/270-crypto.patch | 6209 ++++++++ target/linux/lantiq/patches/300-udp_redirect.patch | 346 + target/linux/lantiq/patches/310-atm_hack.patch | 42 + target/linux/lantiq/patches/400-mach-arv45xx.patch | 211 + target/linux/lantiq/patches/700-dwc_otg.patch | 15693 +++++++++++++++++++ target/linux/lantiq/patches/809-mt-vpe.patch | 1173 ++ .../linux/lantiq/patches/810-ar9-cache-split.patch | 301 + .../linux/lantiq/patches/900-pci_ath5k_hook.patch | 40 + target/linux/lantiq/xway/config-default | 21 + target/linux/lantiq/xway/target.mk | 11 + 32 files changed, 31530 insertions(+) create mode 100644 target/linux/lantiq/Makefile create mode 100644 target/linux/lantiq/base-files/etc/config/network create mode 100644 target/linux/lantiq/base-files/etc/inittab create mode 100755 target/linux/lantiq/base-files/lib/upgrade/platform.sh create mode 100644 target/linux/lantiq/config-default create mode 100644 target/linux/lantiq/image/Makefile create mode 100644 target/linux/lantiq/modules.mk create mode 100644 target/linux/lantiq/patches/000-mips-bad-intctl.patch create mode 100644 target/linux/lantiq/patches/010-mips_clocksource_init_war.patch create mode 100644 target/linux/lantiq/patches/020-genirq_fix.patch create mode 100644 target/linux/lantiq/patches/100-board.patch create mode 100644 target/linux/lantiq/patches/101-header.patch create mode 100644 target/linux/lantiq/patches/104-board_xway.patch create mode 100644 target/linux/lantiq/patches/105-header_xway.patch create mode 100644 target/linux/lantiq/patches/106-early_printk.patch create mode 100644 target/linux/lantiq/patches/110-machine.patch create mode 100644 target/linux/lantiq/patches/200-serial.patch create mode 100644 target/linux/lantiq/patches/210-nor.patch create mode 100644 target/linux/lantiq/patches/211-nor_split.patch create mode 100644 target/linux/lantiq/patches/230-xway_etop.patch create mode 100644 target/linux/lantiq/patches/250-watchdog.patch create mode 100644 target/linux/lantiq/patches/260-pci.patch create mode 100644 target/linux/lantiq/patches/270-crypto.patch create mode 100644 target/linux/lantiq/patches/300-udp_redirect.patch create mode 100644 target/linux/lantiq/patches/310-atm_hack.patch create mode 100644 target/linux/lantiq/patches/400-mach-arv45xx.patch create mode 100644 target/linux/lantiq/patches/700-dwc_otg.patch create mode 100644 target/linux/lantiq/patches/809-mt-vpe.patch create mode 100644 target/linux/lantiq/patches/810-ar9-cache-split.patch create mode 100644 target/linux/lantiq/patches/900-pci_ath5k_hook.patch create mode 100644 target/linux/lantiq/xway/config-default create mode 100644 target/linux/lantiq/xway/target.mk (limited to 'target') diff --git a/target/linux/lantiq/Makefile b/target/linux/lantiq/Makefile new file mode 100644 index 0000000000..5afe5662da --- /dev/null +++ b/target/linux/lantiq/Makefile @@ -0,0 +1,25 @@ +# +# Copyright (C) 2007-2010 OpenWrt.org +# +# This is free software, licensed under the GNU General Public License v2. +# See /LICENSE for more information. +# +include $(TOPDIR)/rules.mk + +ARCH:=mips +BOARD:=lantiq +BOARDNAME:=Lantiq GPON/XWAY +FEATURES:=squashfs jffs2 atm +SUBTARGETS:=xway + +LINUX_VERSION:=2.6.35.9 + +CFLAGS=-Os -pipe -mips32r2 -mtune=mips32r2 -funit-at-a-time + +include $(INCLUDE_DIR)/target.mk + +define Target/Description + Build firmware images for Lantiq SoC +endef + +$(eval $(call BuildTarget)) diff --git a/target/linux/lantiq/base-files/etc/config/network b/target/linux/lantiq/base-files/etc/config/network new file mode 100644 index 0000000000..183e6bf34c --- /dev/null +++ b/target/linux/lantiq/base-files/etc/config/network @@ -0,0 +1,26 @@ +config interface loopback + option ifname lo + option proto static + option ipaddr 127.0.0.1 + option netmask 255.0.0.0 + +config interface lan + option ifname eth0 + option type bridge + option proto static + option ipaddr 192.168.1.1 + option netmask 255.255.255.0 + +config atm-bridge + option unit 0 + option encaps llc + option vpi 1 + option vci 32 + option payload bridged # some ISPs need this set to 'routed' + +config interface wan + option ifname nas0 + option proto pppoe + option username "" + option password "" + option unit 0 diff --git a/target/linux/lantiq/base-files/etc/inittab b/target/linux/lantiq/base-files/etc/inittab new file mode 100644 index 0000000000..7989a7f60e --- /dev/null +++ b/target/linux/lantiq/base-files/etc/inittab @@ -0,0 +1,4 @@ +::sysinit:/etc/init.d/rcS S boot +::shutdown:/etc/init.d/rcS K stop +ttyS0::askfirst:/bin/ash --login +ttyS1::askfirst:/bin/ash --login diff --git a/target/linux/lantiq/base-files/lib/upgrade/platform.sh b/target/linux/lantiq/base-files/lib/upgrade/platform.sh new file mode 100755 index 0000000000..247ba1a25c --- /dev/null +++ b/target/linux/lantiq/base-files/lib/upgrade/platform.sh @@ -0,0 +1,25 @@ +PART_NAME=linux + +platform_check_image() { + [ "$ARGC" -gt 1 ] && return 1 + + case "$(get_magic_word "$1")" in + # .trx files + 2705) return 0;; + *) + echo "Invalid image type" + return 1 + ;; + esac +} + +# use default for platform_do_upgrade() + +disable_watchdog() { + killall watchdog + ( ps | grep -v 'grep' | grep '/dev/watchdog' ) && { + echo 'Could not disable watchdog' + return 1 + } +} +append sysupgrade_pre_upgrade disable_watchdog diff --git a/target/linux/lantiq/config-default b/target/linux/lantiq/config-default new file mode 100644 index 0000000000..95104710ac --- /dev/null +++ b/target/linux/lantiq/config-default @@ -0,0 +1,163 @@ +# CONFIG_TC35815 is not set +# CONFIG_TINY_RCU is not set +# CONFIG_TREE_PREEMPT_RCU is not set +# CONFIG_HAVE_IDE is not set +# CONFIG_64BIT is not set +# CONFIG_ALCHEMY_GPIO_INDIRECT is not set +# CONFIG_AR7 is not set +# CONFIG_ARCH_HAS_ILOG2_U32 is not set +# CONFIG_ARCH_HAS_ILOG2_U64 is not set +# CONFIG_ARCH_SUPPORTS_MSI is not set +# CONFIG_BCM47XX is not set +# CONFIG_BCM63XX is not set +# CONFIG_CAVIUM_OCTEON_REFERENCE_BOARD is not set +# CONFIG_CAVIUM_OCTEON_SIMULATOR is not set +# CONFIG_CPU_CAVIUM_OCTEON is not set +# CONFIG_CPU_LITTLE_ENDIAN is not set +# CONFIG_CPU_LOONGSON2E is not set +# CONFIG_CPU_LOONGSON2F is not set +# CONFIG_CPU_MIPS32_R1 is not set +# CONFIG_CPU_MIPS64_R1 is not set +# CONFIG_CPU_MIPS64_R2 is not set +# CONFIG_CPU_NEVADA is not set +# CONFIG_CPU_R10000 is not set +# CONFIG_CPU_R3000 is not set +# CONFIG_CPU_R4300 is not set +# CONFIG_CPU_R4X00 is not set +# CONFIG_CPU_R5000 is not set +# CONFIG_CPU_R5432 is not set +# CONFIG_CPU_R5500 is not set +# CONFIG_CPU_R6000 is not set +# CONFIG_CPU_R8000 is not set +# CONFIG_CPU_RM7000 is not set +# CONFIG_CPU_RM9000 is not set +# CONFIG_CPU_SB1 is not set +# CONFIG_CPU_TX39XX is not set +# CONFIG_CPU_TX49XX is not set +# CONFIG_CPU_VR41XX is not set +# CONFIG_DM9000 is not set +# CONFIG_FSNOTIFY is not set +# CONFIG_HZ_100 is not set +# CONFIG_LOONGSON_UART_BASE is not set +# CONFIG_MACH_ALCHEMY is not set +# CONFIG_MACH_DECSTATION is not set +# CONFIG_MACH_JAZZ is not set +# CONFIG_MACH_LOONGSON is not set +# CONFIG_MACH_TX39XX is not set +# CONFIG_MACH_TX49XX is not set +# CONFIG_MACH_VR41XX is not set +# CONFIG_MIKROTIK_RB532 is not set +# CONFIG_MIPS_COBALT is not set +# CONFIG_MIPS_MALTA is not set +# CONFIG_MIPS_MT_SMP is not set +# CONFIG_MIPS_MT_SMTC is not set +# CONFIG_MIPS_SIM is not set +# CONFIG_MIPS_VPE_LOADER is not set +# CONFIG_NO_IOPORT is not set +# CONFIG_NXP_STB220 is not set +# CONFIG_NXP_STB225 is not set +# CONFIG_PMC_MSP is not set +# CONFIG_PMC_YOSEMITE is not set +# CONFIG_PNX8550_JBS is not set +# CONFIG_PNX8550_STB810 is not set +# CONFIG_POWERTV is not set +# CONFIG_SCSI_DMA is not set +# CONFIG_SERIAL_8250 is not set +# CONFIG_SERIAL_8250_EXTENDED is not set +# CONFIG_SGI_IP22 is not set +# CONFIG_SGI_IP27 is not set +# CONFIG_SGI_IP28 is not set +# CONFIG_SGI_IP32 is not set +# CONFIG_SIBYTE_BIGSUR is not set +# CONFIG_SIBYTE_CARMEL is not set +# CONFIG_SIBYTE_CRHINE is not set +# CONFIG_SIBYTE_CRHONE is not set +# CONFIG_SIBYTE_LITTLESUR is not set +# CONFIG_SIBYTE_RHONE is not set +# CONFIG_SIBYTE_SENTOSA is not set +# CONFIG_SIBYTE_SWARM is not set +CONFIG_32BIT=y +CONFIG_ADM6996_PHY=y +CONFIG_ARCH_HIBERNATION_POSSIBLE=y +CONFIG_ARCH_POPULATES_NODE_MAP=y +CONFIG_ARCH_REQUIRE_GPIOLIB=y +CONFIG_ARCH_SUPPORTS_OPROFILE=y +CONFIG_ARCH_SUSPEND_POSSIBLE=y +CONFIG_BITREVERSE=y +CONFIG_CEVT_R4K=y +CONFIG_CEVT_R4K_LIB=y +CONFIG_CPU_BIG_ENDIAN=y +CONFIG_CPU_HAS_PREFETCH=y +CONFIG_CPU_HAS_SYNC=y +CONFIG_CPU_MIPS32=y +CONFIG_CPU_MIPS32_R2=y +CONFIG_CPU_MIPSR2=y +CONFIG_CPU_SUPPORTS_32BIT_KERNEL=y +CONFIG_CPU_SUPPORTS_HIGHMEM=y +CONFIG_CRYPTO_BLKCIPHER=y +CONFIG_CRYPTO_BLKCIPHER2=y +CONFIG_CRYPTO_HW=y +CONFIG_CRYPTO_RNG2=y +CONFIG_CRYPTO_WORKQUEUE=y +CONFIG_CSRC_R4K=y +CONFIG_CSRC_R4K_LIB=y +CONFIG_DECOMPRESS_LZMA=y +CONFIG_DEVPORT=y +CONFIG_DMA_NEED_PCI_MAP_STATE=y +CONFIG_DMA_NONCOHERENT=y +CONFIG_EARLY_PRINTK=y +CONFIG_GENERIC_CLOCKEVENTS=y +CONFIG_GENERIC_CLOCKEVENTS_BUILD=y +CONFIG_GENERIC_CMOS_UPDATE=y +CONFIG_GENERIC_FIND_LAST_BIT=y +CONFIG_GENERIC_FIND_NEXT_BIT=y +CONFIG_GENERIC_GPIO=y +CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ=y +CONFIG_GPIOLIB=y +CONFIG_GPIO_SYSFS=y +CONFIG_HARDWARE_WATCHPOINTS=y +CONFIG_HAS_DMA=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_IOPORT=y +CONFIG_HAVE_ARCH_KGDB=y +CONFIG_HAVE_DYNAMIC_FTRACE=y +CONFIG_HAVE_FTRACE_MCOUNT_RECORD=y +CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y +CONFIG_HAVE_FUNCTION_TRACER=y +CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST=y +CONFIG_HAVE_GENERIC_DMA_COHERENT=y +CONFIG_HAVE_OPROFILE=y +CONFIG_HW_RANDOM=y +CONFIG_HZ=250 +CONFIG_HZ_250=y +CONFIG_INITRAMFS_SOURCE="" +CONFIG_IRQ_CPU=y +CONFIG_LANTIQ=y +CONFIG_MIPS=y +CONFIG_MIPS_L1_CACHE_SHIFT=5 +CONFIG_MIPS_MACHINE=y +CONFIG_MIPS_MT_DISABLED=y +CONFIG_MTD_CFI_ADV_OPTIONS=y +CONFIG_MTD_CFI_GEOMETRY=y +CONFIG_MTD_CMDLINE_PARTS=y +CONFIG_MTD_LANTIQ=y +CONFIG_NLS=y +CONFIG_PAGEFLAGS_EXTENDED=y +CONFIG_PCI=y +CONFIG_PCI_DOMAINS=y +CONFIG_PHYLIB=y +CONFIG_SCHED_OMIT_FRAME_POINTER=y +CONFIG_SERIAL_LANTIQ=y +CONFIG_SWAP_IO_SPACE=y +CONFIG_SWCONFIG=y +CONFIG_SYS_HAS_CPU_MIPS32_R1=y +CONFIG_SYS_HAS_CPU_MIPS32_R2=y +CONFIG_SYS_HAS_EARLY_PRINTK=y +CONFIG_SYS_SUPPORTS_32BIT_KERNEL=y +CONFIG_SYS_SUPPORTS_ARBIT_HZ=y +CONFIG_SYS_SUPPORTS_BIG_ENDIAN=y +CONFIG_SYS_SUPPORTS_MULTITHREADING=y +CONFIG_TRAD_SIGNALS=y +CONFIG_TREE_RCU=y +CONFIG_ZONE_DMA_FLAG=0 +CONFIG_IFX_UDP_REDIRECT=y diff --git a/target/linux/lantiq/image/Makefile b/target/linux/lantiq/image/Makefile new file mode 100644 index 0000000000..ee1f86dd45 --- /dev/null +++ b/target/linux/lantiq/image/Makefile @@ -0,0 +1,89 @@ +# +# Copyright (C) 2010 OpenWrt.org +# +# This is free software, licensed under the GNU General Public License v2. +# See /LICENSE for more information. +# +include $(TOPDIR)/rules.mk +include $(INCLUDE_DIR)/image.mk + +JFFS2_BLOCKSIZE = 64k 128k 256k + +xway_cmdline=-console=ttyS1,115200 rootfstype=squashfs,jffs2 +falcon_cmdline=-console=ttyS0,115200 rootfstype=squashfs,jffs2 + +define CompressLzma + $(STAGING_DIR_HOST)/bin/lzma e $(1) $(2) +endef + +define PatchKernelLzma + cp $(KDIR)/vmlinux $(KDIR)/vmlinux-$(1) + $(STAGING_DIR_HOST)/bin/patch-cmdline $(KDIR)/vmlinux-$(1) '$(strip $(2))' + $(call CompressLzma,$(KDIR)/vmlinux-$(1),$(KDIR)/vmlinux-$(1).lzma) +endef + +define MkImageLzma + mkimage -A mips -O linux -T kernel -a 0x80002000 -C lzma \ + -e 0x80002000 -n 'MIPS OpenWrt Linux-$(LINUX_VERSION)' \ + -d $(KDIR)/vmlinux-$(1).lzma $(KDIR)/uImage-$(1) +endef + +define Image/Build/squashfs + cat $(KDIR)/uImage-$(2) $(KDIR)/root.$(1) > $(BIN_DIR)/$(IMG_PREFIX)-$(2)-$(1).image + $(call prepare_generic_squashfs,$(BIN_DIR)/$(IMG_PREFIX)-$(2)-$(1).image) +endef + +define Image/Build/jffs2-64k + dd if=$(KDIR)/uImage-$(2) of=$(KDIR)/uImage-$(2)-$(1) bs=64k conv=sync + cat $(KDIR)/uImage-$(2)-$(1) $(KDIR)/root.$(1) > $(BIN_DIR)/$(IMG_PREFIX)-$(2)-$(1).image +endef + +define Image/Build/jffs2-128k + dd if=$(KDIR)/uImage-$(2) of=$(KDIR)/uImage-$(2)-$(1) bs=128k conv=sync + cat $(KDIR)/uImage-$(2)-$(1) $(KDIR)/root.$(1) > $(BIN_DIR)/$(IMG_PREFIX)-$(2)-$(1).image +endef + +define Image/Build/jffs2-256k + dd if=$(KDIR)/uImage-$(2) of=$(KDIR)/uImage-$(2)-$(1) bs=256k conv=sync + cat $(KDIR)/uImage-$(2)-$(1) $(KDIR)/root.$(1) > $(BIN_DIR)/$(IMG_PREFIX)-$(2)-$(1).image +endef + +define Image/BuildKernel/Template + $(call PatchKernelLzma,$(1),$(if $(2),$(2) machtype=$(1),)) + $(call MkImageLzma,$(1)) + $(CP) $(KDIR)/uImage-$(1) $(BIN_DIR)/$(IMG_PREFIX)-$(1)-uImage +endef + +ifeq ($(CONFIG_SOC_LANTIQ_XWAY),y) +define Image/BuildKernel + $(call Image/BuildKernel/Template,EASY4010,$(xway_cmdline)) + $(call Image/BuildKernel/Template,EASY50712,$(xway_cmdline)) + $(call Image/BuildKernel/Template,EASY50812,$(xway_cmdline)) + $(call Image/BuildKernel/Template,ARV452,$(xway_cmdline)) + $(call Image/BuildKernel/Template,NONE) +endef + +define Image/Build + $(call Image/Build/$(1),$(1),EASY4010) + $(call Image/Build/$(1),$(1),EASY50712) + $(call Image/Build/$(1),$(1),EASY50812) + $(call Image/Build/$(1),$(1),ARV452) + $(call Image/Build/$(1),$(1),NONE) + $(CP) $(KDIR)/root.$(1) $(BIN_DIR)/$(IMG_PREFIX)-$(1).rootfs +endef +endif + +ifeq ($(CONFIG_SOC_LANTIQ_FALCON),y) +define Image/BuildKernel + $(call Image/BuildKernel/Template,EASY98000,$(falcon_cmdline)) + $(call Image/BuildKernel/Template,NONE) +endef + +define Image/Build + $(call Image/Build/$(1),$(1),EASY98000) + $(call Image/Build/$(1),$(1),NONE) + $(CP) $(KDIR)/root.$(1) $(BIN_DIR)/$(IMG_PREFIX)-$(1).rootfs +endef +endif + +$(eval $(call BuildImage)) diff --git a/target/linux/lantiq/modules.mk b/target/linux/lantiq/modules.mk new file mode 100644 index 0000000000..78289a1a11 --- /dev/null +++ b/target/linux/lantiq/modules.mk @@ -0,0 +1,47 @@ +# +# Copyright (C) 2010 OpenWrt.org +# +# This is free software, licensed under the GNU General Public License v2. +# See /LICENSE for more information. +# + +define KernelPackage/lantiq-deu + TITLE:=Lantiq data encryption unit + SUBMENU:=$(CRYPTO_MENU) + DEPENDS:=@TARGET_lantiq + KCONFIG:=CONFIG_CRYPTO_DEV_LANTIQ \ + CONFIG_CRYPTO_HW=y \ + CONFIG_CRYPTO_DEV_LANTIQ_AES=y \ + CONFIG_CRYPTO_DEV_LANTIQ_DES=y \ + CONFIG_CRYPTO_DEV_LANTIQ_MD5=y \ + CONFIG_CRYPTO_DEV_LANTIQ_SHA1=y + $(call AddDepends/crypto) +endef + +define KernelPackage/lantiq-deu/description + Kernel support for the Lantiq crypto HW +endef + +$(eval $(call KernelPackage,lantiq-deu)) + +USB_MENU:=USB Support + +define KernelPackage/usb-dwc-otg + TITLE:=Synopsis DWC_OTG support + SUBMENU:=$(USB_MENU) + DEPENDS+=@TARGET_lantiq_xway +kmod-usb-core + KCONFIG:=CONFIG_DWC_OTG \ + CONFIG_DWC_OTG_DEBUG=n \ + CONFIG_DWC_OTG_LANTIQ=y \ + CONFIG_DWC_OTG_HOST_ONLY=y + FILES:=$(LINUX_DIR)/drivers/usb/dwc_otg/dwc_otg.ko + AUTOLOAD:=$(call AutoLoad,50,dwc_otg) +endef + +define KernelPackage/usb-dwc-otg/description + Kernel support for Synopsis USB on XWAY +endef + +$(eval $(call KernelPackage,usb-dwc-otg)) + + diff --git a/target/linux/lantiq/patches/000-mips-bad-intctl.patch b/target/linux/lantiq/patches/000-mips-bad-intctl.patch new file mode 100644 index 0000000000..7c0f52db06 --- /dev/null +++ b/target/linux/lantiq/patches/000-mips-bad-intctl.patch @@ -0,0 +1,35 @@ +--- a/arch/mips/kernel/traps.c ++++ b/arch/mips/kernel/traps.c +@@ -1496,7 +1496,18 @@ void __cpuinit per_cpu_trap_init(void) + if (cpu_has_mips_r2) { + cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; + cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; ++ ++ if (!cp0_compare_irq) ++ cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; ++ + cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; ++ ++ if (!cp0_perfcount_irq) ++ cp0_perfcount_irq = CP0_LEGACY_PERFCNT_IRQ; ++ ++ if (arch_fixup_c0_irqs) ++ arch_fixup_c0_irqs(); ++ + if (cp0_perfcount_irq == cp0_compare_irq) + cp0_perfcount_irq = -1; + } else { +--- a/arch/mips/include/asm/irq.h ++++ b/arch/mips/include/asm/irq.h +@@ -133,9 +133,11 @@ extern void free_irqno(unsigned int irq) + * IE7. Since R2 their number has to be read from the c0_intctl register. + */ + #define CP0_LEGACY_COMPARE_IRQ 7 ++#define CP0_LEGACY_PERFCNT_IRQ 7 + + extern int cp0_compare_irq; + extern int cp0_compare_irq_shift; + extern int cp0_perfcount_irq; ++extern void __weak arch_fixup_c0_irqs(void); + + #endif /* _ASM_IRQ_H */ diff --git a/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch b/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch new file mode 100644 index 0000000000..81eabc6dcd --- /dev/null +++ b/target/linux/lantiq/patches/010-mips_clocksource_init_war.patch @@ -0,0 +1,33 @@ +--- a/arch/mips/kernel/cevt-r4k.c ++++ b/arch/mips/kernel/cevt-r4k.c +@@ -22,6 +22,22 @@ + + #ifndef CONFIG_MIPS_MT_SMTC + ++/* ++ * Compare interrupt can be routed and latched outside the core, ++ * so a single execution hazard barrier may not be enough to give ++ * it time to clear as seen in the Cause register. 4 time the ++ * pipeline depth seems reasonably conservative, and empirically ++ * works better in configurations with high CPU/bus clock ratios. ++ */ ++ ++#define compare_change_hazard() \ ++ do { \ ++ irq_disable_hazard(); \ ++ irq_disable_hazard(); \ ++ irq_disable_hazard(); \ ++ irq_disable_hazard(); \ ++ } while (0) ++ + static int mips_next_event(unsigned long delta, + struct clock_event_device *evt) + { +@@ -31,6 +47,7 @@ static int mips_next_event(unsigned long + cnt = read_c0_count(); + cnt += delta; + write_c0_compare(cnt); ++ compare_change_hazard(); + res = ((int)(read_c0_count() - cnt) > 0) ? -ETIME : 0; + return res; + } diff --git a/target/linux/lantiq/patches/020-genirq_fix.patch b/target/linux/lantiq/patches/020-genirq_fix.patch new file mode 100644 index 0000000000..0503d0d2ac --- /dev/null +++ b/target/linux/lantiq/patches/020-genirq_fix.patch @@ -0,0 +1,12 @@ +--- a/kernel/irq/chip.c ++++ b/kernel/irq/chip.c +@@ -650,6 +650,9 @@ handle_percpu_irq(unsigned int irq, stru + + kstat_incr_irqs_this_cpu(irq, desc); + ++ if (unlikely(!desc->action || (desc->status & IRQ_DISABLED))) ++ return; ++ + if (desc->chip->ack) + desc->chip->ack(irq); + diff --git a/target/linux/lantiq/patches/100-board.patch b/target/linux/lantiq/patches/100-board.patch new file mode 100644 index 0000000000..201fa96737 --- /dev/null +++ b/target/linux/lantiq/patches/100-board.patch @@ -0,0 +1,641 @@ +--- a/arch/mips/Kconfig ++++ b/arch/mips/Kconfig +@@ -139,6 +139,9 @@ config MACH_DECSTATION + + otherwise choose R3000. + ++config LANTIQ ++ bool "Lantiq MIPS" ++ + config MACH_JAZZ + bool "Jazz family of machines" + select ARC +@@ -693,6 +696,7 @@ source "arch/mips/txx9/Kconfig" + source "arch/mips/vr41xx/Kconfig" + source "arch/mips/cavium-octeon/Kconfig" + source "arch/mips/loongson/Kconfig" ++source "arch/mips/lantiq/Kconfig" + + endmenu + +--- a/arch/mips/Makefile ++++ b/arch/mips/Makefile +@@ -317,6 +317,17 @@ cflags-$(CONFIG_MIPS_COBALT) += -I$(srct + load-$(CONFIG_MIPS_COBALT) += 0xffffffff80080000 + + # ++# Lantiq ++# ++load-$(CONFIG_LANTIQ) += 0xffffffff80002000 ++core-$(CONFIG_LANTIQ) += arch/mips/lantiq/ ++cflags-$(CONFIG_LANTIQ) += -I$(srctree)/arch/mips/include/asm/mach-lantiq ++core-$(CONFIG_SOC_LANTIQ_FALCON) += arch/mips/lantiq/falcon/ ++cflags-$(CONFIG_SOC_LANTIQ_FALCON) += -I$(srctree)/arch/mips/include/asm/mach-lantiq/falcon ++core-$(CONFIG_SOC_LANTIQ_XWAY) += arch/mips/lantiq/xway/ ++cflags-$(CONFIG_SOC_LANTIQ_XWAY) += -I$(srctree)/arch/mips/include/asm/mach-lantiq/xway ++ ++# + # DECstation family + # + core-$(CONFIG_MACH_DECSTATION) += arch/mips/dec/ +--- /dev/null ++++ b/arch/mips/lantiq/Kconfig +@@ -0,0 +1,36 @@ ++if LANTIQ ++ ++config SOC_LANTIQ ++ bool ++ select DMA_NONCOHERENT ++ select IRQ_CPU ++ select CEVT_R4K ++ select CSRC_R4K ++ select SYS_HAS_CPU_MIPS32_R1 ++ select SYS_HAS_CPU_MIPS32_R2 ++ select SYS_SUPPORTS_BIG_ENDIAN ++ select SYS_SUPPORTS_32BIT_KERNEL ++ select SYS_SUPPORTS_MULTITHREADING ++ select SYS_HAS_EARLY_PRINTK ++ select HW_HAS_PCI ++ select ARCH_REQUIRE_GPIOLIB ++ select SWAP_IO_SPACE ++ select MIPS_MACHINE ++ ++choice ++ prompt "SoC Type" ++ default SOC_LANTIQ_XWAY ++ ++#config SOC_LANTIQ_FALCON ++# bool "FALCON" ++# select SOC_LANTIQ ++ ++config SOC_LANTIQ_XWAY ++ bool "XWAY" ++ select SOC_LANTIQ ++endchoice ++ ++#source "arch/mips/lantiq/falcon/Kconfig" ++source "arch/mips/lantiq/xway/Kconfig" ++ ++endif +--- /dev/null ++++ b/arch/mips/lantiq/Makefile +@@ -0,0 +1,2 @@ ++obj-y := irq.o setup.o clk.o prom.o ++obj-$(CONFIG_EARLY_PRINTK) += early_printk.o +--- /dev/null ++++ b/arch/mips/lantiq/irq.c +@@ -0,0 +1,212 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++ ++#define LQ_ICU_BASE_ADDR (KSEG1 | 0x1F880200) ++ ++#define LQ_ICU_IM0_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0000)) ++#define LQ_ICU_IM0_IER ((u32 *)(LQ_ICU_BASE_ADDR + 0x0008)) ++#define LQ_ICU_IM0_IOSR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0010)) ++#define LQ_ICU_IM0_IRSR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0018)) ++#define LQ_ICU_IM0_IMR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0020)) ++ ++#define LQ_ICU_IM1_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0028)) ++#define LQ_ICU_IM2_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0050)) ++#define LQ_ICU_IM3_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x0078)) ++#define LQ_ICU_IM4_ISR ((u32 *)(LQ_ICU_BASE_ADDR + 0x00A0)) ++ ++#define LQ_ICU_OFFSET (LQ_ICU_IM1_ISR - LQ_ICU_IM0_ISR) ++ ++void ++lq_disable_irq(unsigned int irq_nr) ++{ ++ u32 *ier = LQ_ICU_IM0_IER; ++ irq_nr -= INT_NUM_IRQ0; ++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET); ++ irq_nr %= INT_NUM_IM_OFFSET; ++ lq_w32(lq_r32(ier) & ~(1 << irq_nr), ier); ++} ++EXPORT_SYMBOL(lq_disable_irq); ++ ++void ++lq_mask_and_ack_irq(unsigned int irq_nr) ++{ ++ u32 *ier = LQ_ICU_IM0_IER; ++ u32 *isr = LQ_ICU_IM0_ISR; ++ irq_nr -= INT_NUM_IRQ0; ++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET); ++ isr += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET); ++ irq_nr %= INT_NUM_IM_OFFSET; ++ lq_w32(lq_r32(ier) & ~(1 << irq_nr), ier); ++ lq_w32((1 << irq_nr), isr); ++} ++EXPORT_SYMBOL(lq_mask_and_ack_irq); ++ ++static void ++lq_ack_irq(unsigned int irq_nr) ++{ ++ u32 *isr = LQ_ICU_IM0_ISR; ++ irq_nr -= INT_NUM_IRQ0; ++ isr += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET); ++ irq_nr %= INT_NUM_IM_OFFSET; ++ lq_w32((1 << irq_nr), isr); ++} ++ ++void ++lq_enable_irq(unsigned int irq_nr) ++{ ++ u32 *ier = LQ_ICU_IM0_IER; ++ irq_nr -= INT_NUM_IRQ0; ++ ier += LQ_ICU_OFFSET * (irq_nr / INT_NUM_IM_OFFSET); ++ irq_nr %= INT_NUM_IM_OFFSET; ++ lq_w32(lq_r32(ier) | (1 << irq_nr), ier); ++} ++EXPORT_SYMBOL(lq_enable_irq); ++ ++static unsigned int ++lq_startup_irq(unsigned int irq) ++{ ++ lq_enable_irq(irq); ++ return 0; ++} ++ ++static void ++lq_end_irq(unsigned int irq) ++{ ++ if (!(irq_desc[irq].status & (IRQ_DISABLED | IRQ_INPROGRESS))) ++ lq_enable_irq(irq); ++} ++ ++static struct irq_chip ++lq_irq_type = { ++ "lq_irq", ++ .startup = lq_startup_irq, ++ .enable = lq_enable_irq, ++ .disable = lq_disable_irq, ++ .unmask = lq_enable_irq, ++ .ack = lq_ack_irq, ++ .mask = lq_disable_irq, ++ .mask_ack = lq_mask_and_ack_irq, ++ .end = lq_end_irq, ++}; ++ ++static void ++lq_hw_irqdispatch(int module) ++{ ++ u32 irq; ++ ++ irq = lq_r32(LQ_ICU_IM0_IOSR + (module * LQ_ICU_OFFSET)); ++ if (irq == 0) ++ return; ++ ++ /* silicon bug causes only the msb set to 1 to be valid. all ++ other bits might be bogus */ ++ irq = __fls(irq); ++ do_IRQ((int)irq + INT_NUM_IM0_IRL0 + (INT_NUM_IM_OFFSET * module)); ++} ++ ++#define DEFINE_HWx_IRQDISPATCH(x) \ ++static void lq_hw ## x ## _irqdispatch(void)\ ++{\ ++ lq_hw_irqdispatch(x); \ ++} ++static void lq_hw5_irqdispatch(void) ++{ ++ do_IRQ(MIPS_CPU_TIMER_IRQ); ++} ++DEFINE_HWx_IRQDISPATCH(0) ++DEFINE_HWx_IRQDISPATCH(1) ++DEFINE_HWx_IRQDISPATCH(2) ++DEFINE_HWx_IRQDISPATCH(3) ++DEFINE_HWx_IRQDISPATCH(4) ++/*DEFINE_HWx_IRQDISPATCH(5)*/ ++ ++asmlinkage void ++plat_irq_dispatch(void) ++{ ++ unsigned int pending = read_c0_status() & read_c0_cause() & ST0_IM; ++ unsigned int i; ++ ++ if (pending & CAUSEF_IP7) ++ { ++ do_IRQ(MIPS_CPU_TIMER_IRQ); ++ goto out; ++ } else { ++ for (i = 0; i < 5; i++) ++ { ++ if (pending & (CAUSEF_IP2 << i)) ++ { ++ lq_hw_irqdispatch(i); ++ goto out; ++ } ++ } ++ } ++ printk(KERN_ALERT "Spurious IRQ: CAUSE=0x%08x\n", read_c0_status()); ++ ++out: ++ return; ++} ++ ++static struct irqaction ++cascade = { ++ .handler = no_action, ++ .flags = IRQF_DISABLED, ++ .name = "cascade", ++}; ++ ++void __init ++arch_init_irq(void) ++{ ++ int i; ++ ++ for (i = 0; i < 5; i++) ++ lq_w32(0, LQ_ICU_IM0_IER + (i * LQ_ICU_OFFSET)); ++ ++ mips_cpu_irq_init(); ++ ++ for (i = 2; i <= 6; i++) ++ setup_irq(i, &cascade); ++ ++ if (cpu_has_vint) { ++ printk(KERN_INFO "Setting up vectored interrupts\n"); ++ set_vi_handler(2, lq_hw0_irqdispatch); ++ set_vi_handler(3, lq_hw1_irqdispatch); ++ set_vi_handler(4, lq_hw2_irqdispatch); ++ set_vi_handler(5, lq_hw3_irqdispatch); ++ set_vi_handler(6, lq_hw4_irqdispatch); ++ set_vi_handler(7, lq_hw5_irqdispatch); ++ } ++ ++ for (i = INT_NUM_IRQ0; i <= (INT_NUM_IRQ0 + (5 * INT_NUM_IM_OFFSET)); i++) ++ set_irq_chip_and_handler(i, &lq_irq_type, ++ handle_level_irq); ++ ++ #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC) ++ set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | ++ IE_IRQ3 | IE_IRQ4 | IE_IRQ5); ++ #else ++ set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ0 | IE_IRQ1 | ++ IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5); ++ #endif ++} ++ ++void __cpuinit ++arch_fixup_c0_irqs(void) ++{ ++ /* FIXME: check for CPUID and only do fix for specific chips/versions */ ++ cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; ++ cp0_perfcount_irq = CP0_LEGACY_PERFCNT_IRQ; ++} +--- /dev/null ++++ b/arch/mips/lantiq/setup.c +@@ -0,0 +1,47 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++void __init ++plat_mem_setup(void) ++{ ++ /* assume 16M as default */ ++ int memsize = 16; ++ char **envp = (char **) KSEG1ADDR(fw_arg2); ++ u32 status; ++ ++ /* make sure to have no "reverse endian" for user mode! */ ++ status = read_c0_status(); ++ status &= (~(1<<25)); ++ write_c0_status(status); ++ ++ ioport_resource.start = IOPORT_RESOURCE_START; ++ ioport_resource.end = IOPORT_RESOURCE_END; ++ iomem_resource.start = IOMEM_RESOURCE_START; ++ iomem_resource.end = IOMEM_RESOURCE_END; ++ ++ while (*envp) ++ { ++ char *e = (char *)KSEG1ADDR(*envp); ++ if (!strncmp(e, "memsize=", 8)) ++ { ++ e += 8; ++ memsize = simple_strtoul(e, NULL, 10); ++ } ++ envp++; ++ } ++ memsize *= 1024 * 1024; ++ add_memory_region(0x00000000, memsize, BOOT_MEM_RAM); ++} +--- /dev/null ++++ b/arch/mips/lantiq/clk.c +@@ -0,0 +1,141 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 Thomas Langer, Lantiq Deutschland ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#include ++ ++#include ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++#include ++#endif ++ ++extern unsigned long lq_get_cpu_hz(void); ++extern unsigned long lq_get_fpi_hz(void); ++extern unsigned long lq_get_io_region_clock(void); ++ ++struct clk { ++ const char *name; ++ unsigned long rate; ++ unsigned long (*get_rate) (void); ++}; ++ ++static struct clk *cpu_clk = 0; ++static int cpu_clk_cnt = 0; ++ ++static unsigned int r4k_offset; ++static unsigned int r4k_cur; ++ ++static struct clk cpu_clk_generic[] = { ++ { ++ .name = "cpu", ++ .get_rate = lq_get_cpu_hz, ++ }, { ++ .name = "fpi", ++ .get_rate = lq_get_fpi_hz, ++ }, { ++ .name = "io", ++ .get_rate = lq_get_io_region_clock, ++ }, ++}; ++ ++void ++clk_init(void) ++{ ++ int i; ++ cpu_clk = cpu_clk_generic; ++ cpu_clk_cnt = ARRAY_SIZE(cpu_clk_generic); ++ for(i = 0; i < cpu_clk_cnt; i++) ++ printk("%s: %ld\n", cpu_clk[i].name, clk_get_rate(&cpu_clk[i])); ++} ++ ++static inline int ++clk_good(struct clk *clk) ++{ ++ return clk && !IS_ERR(clk); ++} ++ ++unsigned long ++clk_get_rate(struct clk *clk) ++{ ++ if (unlikely(!clk_good(clk))) ++ return 0; ++ ++ if (clk->rate != 0) ++ return clk->rate; ++ ++ if (clk->get_rate != NULL) ++ return clk->get_rate(); ++ ++ return 0; ++} ++EXPORT_SYMBOL(clk_get_rate); ++ ++struct clk* ++clk_get(struct device *dev, const char *id) ++{ ++ int i; ++ for(i = 0; i < cpu_clk_cnt; i++) ++ if (!strcmp(id, cpu_clk[i].name)) ++ return &cpu_clk[i]; ++ BUG(); ++ return ERR_PTR(-ENOENT); ++} ++EXPORT_SYMBOL(clk_get); ++ ++void ++clk_put(struct clk *clk) ++{ ++ /* not used */ ++} ++EXPORT_SYMBOL(clk_put); ++ ++static inline u32 ++lq_get_counter_resolution(void) ++{ ++ u32 res; ++ __asm__ __volatile__( ++ ".set push\n" ++ ".set mips32r2\n" ++ ".set noreorder\n" ++ "rdhwr %0, $3\n" ++ "ehb\n" ++ ".set pop\n" ++ : "=&r" (res) ++ : /* no input */ ++ : "memory"); ++ instruction_hazard(); ++ return res; ++} ++ ++void __init ++plat_time_init(void) ++{ ++ struct clk *clk = clk_get(0, "cpu"); ++ mips_hpt_frequency = clk_get_rate(clk) / lq_get_counter_resolution(); ++ r4k_cur = (read_c0_count() + r4k_offset); ++ write_c0_compare(r4k_cur); ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++#define LQ_GPTU_GPT_CLC ((u32 *)(LQ_GPTU_BASE_ADDR + 0x0000)) ++ lq_pmu_enable(PMU_GPT); ++ lq_pmu_enable(PMU_FPI); ++ ++ lq_w32(0x100, LQ_GPTU_GPT_CLC); ++#endif ++} +--- /dev/null ++++ b/arch/mips/lantiq/prom.c +@@ -0,0 +1,118 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include "prom.h" ++ ++static struct lq_soc_info soc_info; ++ ++/* for Multithreading (APRP) on MIPS34K */ ++unsigned long physical_memsize; ++ ++/* all access to the ebu must be locked */ ++DEFINE_SPINLOCK(ebu_lock); ++EXPORT_SYMBOL_GPL(ebu_lock); ++ ++extern void clk_init(void); ++ ++unsigned int ++lq_get_cpu_ver(void) ++{ ++ return soc_info.rev; ++} ++EXPORT_SYMBOL(lq_get_cpu_ver); ++ ++unsigned int ++lq_get_soc_type(void) ++{ ++ return soc_info.type; ++} ++EXPORT_SYMBOL(lq_get_soc_type); ++ ++const char* ++get_system_type(void) ++{ ++ return soc_info.sys_type; ++} ++ ++void ++prom_free_prom_memory(void) ++{ ++} ++ ++#ifdef CONFIG_IMAGE_CMDLINE_HACK ++extern char __image_cmdline[]; ++ ++static void __init ++prom_init_image_cmdline(void) ++{ ++ char *p = __image_cmdline; ++ int replace = 0; ++ ++ if (*p == '-') { ++ replace = 1; ++ p++; ++ } ++ ++ if (*p == '\0') ++ return; ++ ++ if (replace) { ++ strlcpy(arcs_cmdline, p, sizeof(arcs_cmdline)); ++ } else { ++ strlcat(arcs_cmdline, " ", sizeof(arcs_cmdline)); ++ strlcat(arcs_cmdline, p, sizeof(arcs_cmdline)); ++ } ++} ++#else ++static void __init prom_init_image_cmdline(void) { return; } ++#endif ++ ++static void __init ++prom_init_cmdline(void) ++{ ++ int argc = fw_arg0; ++ char **argv = (char**)KSEG1ADDR(fw_arg1); ++ int i; ++ ++ arcs_cmdline[0] = '\0'; ++ if(argc) ++ for (i = 1; i < argc; i++) ++ { ++ strlcat(arcs_cmdline, (char*)KSEG1ADDR(argv[i]), COMMAND_LINE_SIZE); ++ if(i + 1 != argc) ++ strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); ++ } ++ ++ if (!*arcs_cmdline) ++ strcpy(&(arcs_cmdline[0]), ++ "console=ttyS1,115200 rootfstype=squashfs,jffs2"); ++ prom_init_image_cmdline(); ++} ++ ++void __init ++prom_init(void) ++{ ++ struct clk *clk; ++ lq_soc_detect(&soc_info); ++ ++ clk_init(); ++ clk = clk_get(0, "cpu"); ++ snprintf(soc_info.sys_type, LQ_SYS_TYPE_LEN - 1, "%s rev1.%d %ldMhz", ++ soc_info.name, soc_info.rev, clk_get_rate(clk) / 1000000); ++ soc_info.sys_type[LQ_SYS_TYPE_LEN - 1] = '\0'; ++ printk("SoC: %s\n", soc_info.sys_type); ++ ++ prom_init_cmdline(); ++} +--- /dev/null ++++ b/arch/mips/lantiq/prom.h +@@ -0,0 +1,24 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LQ_PROM_H__ ++#define _LQ_PROM_H__ ++ ++#define LQ_SYS_TYPE_LEN 0x100 ++ ++struct lq_soc_info { ++ unsigned char *name; ++ unsigned int rev; ++ unsigned int partnum; ++ unsigned int type; ++ unsigned char sys_type[LQ_SYS_TYPE_LEN]; ++}; ++ ++void lq_soc_detect(struct lq_soc_info *i); ++ ++#endif diff --git a/target/linux/lantiq/patches/101-header.patch b/target/linux/lantiq/patches/101-header.patch new file mode 100644 index 0000000000..3d0caf2f16 --- /dev/null +++ b/target/linux/lantiq/patches/101-header.patch @@ -0,0 +1,136 @@ +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/war.h +@@ -0,0 +1,24 @@ ++/* ++ * This file is subject to the terms and conditions of the GNU General Public ++ * License. See the file "COPYING" in the main directory of this archive ++ * for more details. ++ * ++ */ ++#ifndef __ASM_MIPS_MACH_LANTIQ_WAR_H ++#define __ASM_MIPS_MACH_LANTIQ_WAR_H ++ ++#define R4600_V1_INDEX_ICACHEOP_WAR 0 ++#define R4600_V1_HIT_CACHEOP_WAR 0 ++#define R4600_V2_HIT_CACHEOP_WAR 0 ++#define R5432_CP0_INTERRUPT_WAR 0 ++#define BCM1250_M3_WAR 0 ++#define SIBYTE_1956_WAR 0 ++#define MIPS4K_ICACHE_REFILL_WAR 0 ++#define MIPS_CACHE_SYNC_WAR 0 ++#define TX49XX_ICACHE_INDEX_INV_WAR 0 ++#define RM9000_CDEX_SMP_WAR 0 ++#define ICACHE_REFILLS_WORKAROUND_WAR 0 ++#define R10000_LLSC_WAR 0 ++#define MIPS34K_MISSED_ITLB_WAR 0 ++ ++#endif +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/lantiq.h +@@ -0,0 +1,47 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LANTIQ_H__ ++#define _LANTIQ_H__ ++ ++/* generic reg access functions */ ++#define lq_r32(reg) __raw_readl(reg) ++#define lq_w32(val, reg) __raw_writel(val, reg) ++#define lq_w32_mask(clear, set, reg) lq_w32((lq_r32(reg) & ~clear) | set, reg) ++ ++extern unsigned int lq_get_cpu_ver(void); ++extern unsigned int lq_get_soc_type(void); ++ ++/* clock speeds */ ++#define CLOCK_60M 60000000 ++#define CLOCK_83M 83333333 ++#define CLOCK_111M 111111111 ++#define CLOCK_111M 111111111 ++#define CLOCK_133M 133333333 ++#define CLOCK_167M 166666667 ++#define CLOCK_200M 200000000 ++#define CLOCK_333M 333333333 ++#define CLOCK_400M 400000000 ++ ++/* spinlock all ebu i/o */ ++extern spinlock_t ebu_lock; ++ ++/* some irq helpers */ ++extern void lq_disable_irq(unsigned int irq_nr); ++extern void lq_mask_and_ack_irq(unsigned int irq_nr); ++extern void lq_enable_irq(unsigned int irq_nr); ++ ++#define IOPORT_RESOURCE_START 0x10000000 ++#define IOPORT_RESOURCE_END 0xffffffff ++#define IOMEM_RESOURCE_START 0x10000000 ++#define IOMEM_RESOURCE_END 0xffffffff ++ ++#define LQ_FLASH_START 0x10000000 ++#define LQ_FLASH_MAX 0x04000000 ++ ++#endif +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/lantiq_regs.h +@@ -0,0 +1,17 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LANTIQ_REGS_H__ ++#define _LANTIQ_REGS_H__ ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++#include ++#include ++#endif ++ ++#endif +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/lantiq_platform.h +@@ -0,0 +1,36 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LANTIQ_PLATFORM_H__ ++#define _LANTIQ_PLATFORM_H__ ++ ++#include ++ ++/* struct used to pass info to network drivers */ ++enum { ++ MII_MODE, ++ REV_MII_MODE, ++}; ++ ++struct lq_eth_data { ++ unsigned char *mac; ++ int mii_mode; ++}; ++ ++/* struct used to pass info to the pci core */ ++enum { ++ PCI_CLOCK_INT = 0, ++ PCI_CLOCK_EXT ++}; ++ ++struct lq_pci_data { ++ int clock; ++ int req_mask; ++}; ++ ++#endif diff --git a/target/linux/lantiq/patches/104-board_xway.patch b/target/linux/lantiq/patches/104-board_xway.patch new file mode 100644 index 0000000000..1aaeab63e1 --- /dev/null +++ b/target/linux/lantiq/patches/104-board_xway.patch @@ -0,0 +1,3129 @@ + +--- /dev/null ++++ b/arch/mips/lantiq/xway/Kconfig +@@ -0,0 +1,19 @@ ++if SOC_LANTIQ_XWAY ++ ++menu "Mips Machine" ++ ++config LANTIQ_MACH_EASY50812 ++ bool "Easy50812" ++ default y ++ ++config LANTIQ_MACH_EASY50712 ++ bool "Easy50712" ++ default y ++ ++config LANTIQ_MACH_EASY4010 ++ bool "Easy4010" ++ default y ++ ++endmenu ++ ++endif +--- /dev/null ++++ b/arch/mips/lantiq/xway/gpio_ebu.c +@@ -0,0 +1,107 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_EBU_BUSCON 0x1e7ff ++#define LQ_EBU_WP 0x80000000 ++ ++static int shadow = 0x0000; ++static void __iomem *virt; ++ ++static int ++lq_ebu_direction_output(struct gpio_chip *chip, unsigned offset, int value) ++{ ++ return 0; ++} ++ ++static void ++lq_ebu_set(struct gpio_chip *chip, unsigned offset, int value) ++{ ++ unsigned long flags; ++ if(value) ++ shadow |= (1 << offset); ++ else ++ shadow &= ~(1 << offset); ++ spin_lock_irqsave(&ebu_lock, flags); ++ lq_w32(LQ_EBU_BUSCON, LQ_EBU_BUSCON1); ++ *((__u16*)virt) = shadow; ++ lq_w32(LQ_EBU_BUSCON | LQ_EBU_WP, LQ_EBU_BUSCON1); ++ spin_unlock_irqrestore(&ebu_lock, flags); ++} ++ ++static struct gpio_chip ++lq_ebu_chip = ++{ ++ .label = "lq_ebu", ++ .direction_output = lq_ebu_direction_output, ++ .set = lq_ebu_set, ++ .base = 32, ++ .ngpio = 16, ++ .can_sleep = 1, ++ .owner = THIS_MODULE, ++}; ++ ++static int __devinit ++lq_ebu_probe(struct platform_device *pdev) ++{ ++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ int ret = 0; ++ if (!res) ++ return -ENOENT; ++ res = request_mem_region(res->start, resource_size(res), ++ dev_name(&pdev->dev)); ++ if (!res) ++ return -EBUSY; ++ ++ /* tell the ebu controller which mem addr we will be using */ ++ lq_w32(pdev->resource->start | 0x1, LQ_EBU_ADDRSEL1); ++ lq_w32(LQ_EBU_BUSCON | LQ_EBU_WP, LQ_EBU_BUSCON1); ++ ++ virt = ioremap_nocache(res->start, resource_size(res)); ++ if (!virt) ++ { ++ dev_err(&pdev->dev, "Failed to ioremap mem region\n"); ++ ret = -ENOMEM; ++ goto err_release_mem_region; ++ } ++ /* grab the default settings passed form the platform code */ ++ shadow = (unsigned int) pdev->dev.platform_data; ++ ++ ret = gpiochip_add(&lq_ebu_chip); ++ if (!ret) ++ return 0; ++ ++err_release_mem_region: ++ release_mem_region(res->start, resource_size(res)); ++ return ret; ++} ++ ++static struct platform_driver ++lq_ebu_driver = { ++ .probe = lq_ebu_probe, ++ .driver = { ++ .name = "lq_ebu", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++static int __init ++init_lq_ebu(void) ++{ ++ return platform_driver_register(&lq_ebu_driver); ++} ++ ++arch_initcall(init_lq_ebu); +--- /dev/null ++++ b/arch/mips/lantiq/xway/gpio_leds.c +@@ -0,0 +1,161 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2007 John Crispin ++ * ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_STP_BASE 0x1E100BB0 ++#define LQ_STP_SIZE 0x40 ++ ++#define LQ_STP_CON0 0x00 ++#define LQ_STP_CON1 0x04 ++#define LQ_STP_CPU0 0x08 ++#define LQ_STP_CPU1 0x0C ++#define LQ_STP_AR 0x10 ++ ++#define STP_CON0_SWU (1 << 31) ++ ++#define LQ_STP_2HZ (0) ++#define LQ_STP_4HZ (1 << 23) ++#define LQ_STP_8HZ (2 << 23) ++#define LQ_STP_10HZ (3 << 23) ++#define LQ_STP_MASK (0xf << 23) ++ ++#define LQ_STP_UPD_SRC_FPI (1 << 31) ++#define LQ_STP_UPD_MASK (3 << 30) ++#define LQ_STP_ADSL_SRC (3 << 24) ++ ++#define LQ_STP_GROUP0 (1 << 0) ++ ++#define LQ_STP_RISING 0 ++#define LQ_STP_FALLING (1 << 26) ++#define LQ_STP_EDGE_MASK (1 << 26) ++ ++#define lq_stp_r32(reg) __raw_readl(virt + reg) ++#define lq_stp_w32(val, reg) __raw_writel(val, virt + reg) ++#define lq_stp_w32_mask(clear, set, reg) \ ++ lq_w32((lq_r32(virt + reg) & ~clear) | set, virt + reg) ++ ++static int shadow = 0xffff; ++static void __iomem *virt; ++ ++static int ++lq_stp_direction_output(struct gpio_chip *chip, unsigned offset, int value) ++{ ++ return 0; ++} ++ ++static void ++lq_stp_set(struct gpio_chip *chip, unsigned offset, int value) ++{ ++ if(value) ++ shadow |= (1 << offset); ++ else ++ shadow &= ~(1 << offset); ++ lq_stp_w32(shadow, LQ_STP_CPU0); ++} ++ ++static struct gpio_chip lq_stp_chip = ++{ ++ .label = "lq_stp", ++ .direction_output = lq_stp_direction_output, ++ .set = lq_stp_set, ++ .base = 48, ++ .ngpio = 24, ++ .can_sleep = 1, ++ .owner = THIS_MODULE, ++}; ++ ++static int ++lq_stp_hw_init(void) ++{ ++ /* the 3 pins used to control the external stp */ ++ lq_gpio_request(4, 1, 0, 1, "stp-st"); ++ lq_gpio_request(5, 1, 0, 1, "stp-d"); ++ lq_gpio_request(6, 1, 0, 1, "stp-sh"); ++ ++ /* sane defaults */ ++ lq_stp_w32(0, LQ_STP_AR); ++ lq_stp_w32(0, LQ_STP_CPU0); ++ lq_stp_w32(0, LQ_STP_CPU1); ++ lq_stp_w32(STP_CON0_SWU, LQ_STP_CON0); ++ lq_stp_w32(0, LQ_STP_CON1); ++ ++ /* rising or falling edge */ ++ lq_stp_w32_mask(LQ_STP_EDGE_MASK, LQ_STP_FALLING, LQ_STP_CON0); ++ ++ /* per default stp 15-0 are set */ ++ lq_stp_w32_mask(0, LQ_STP_GROUP0, LQ_STP_CON1); ++ ++ /* stp are update periodically by the FPID */ ++ lq_stp_w32_mask(LQ_STP_UPD_MASK, LQ_STP_UPD_SRC_FPI, LQ_STP_CON1); ++ ++ /* set stp update speed */ ++ lq_stp_w32_mask(LQ_STP_MASK, LQ_STP_8HZ, LQ_STP_CON1); ++ ++ /* adsl 0 and 1 stp are updated by the arc */ ++ lq_stp_w32_mask(0, LQ_STP_ADSL_SRC, LQ_STP_CON0); ++ ++ lq_pmu_enable(PMU_LED); ++ return 0; ++} ++ ++static int ++lq_stp_probe(struct platform_device *pdev) ++{ ++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ int ret = 0; ++ if (!res) ++ return -ENOENT; ++ res = request_mem_region(res->start, resource_size(res), ++ dev_name(&pdev->dev)); ++ if (!res) ++ return -EBUSY; ++ virt = ioremap_nocache(res->start, resource_size(res)); ++ if(!virt) ++ { ++ ret = -ENOMEM; ++ goto err_release_mem_region; ++ } ++ ret = gpiochip_add(&lq_stp_chip); ++ if(!ret) ++ return lq_stp_hw_init(); ++ ++ iounmap(virt); ++err_release_mem_region: ++ release_mem_region(res->start, resource_size(res)); ++ return ret; ++} ++ ++static struct platform_driver lq_stp_driver = { ++ .probe = lq_stp_probe, ++ .driver = { ++ .name = "lq_stp", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init ++init_lq_stp(void) ++{ ++ int ret = platform_driver_register(&lq_stp_driver); ++ if (ret) ++ printk(KERN_INFO ++ "lq_stp: error registering platfom driver"); ++ return ret; ++} ++ ++arch_initcall(init_lq_stp); +--- /dev/null ++++ b/arch/mips/lantiq/xway/mach-easy4010.c +@@ -0,0 +1,79 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++ ++#include "devices.h" ++ ++#ifdef CONFIG_MTD_PARTITIONS ++static struct mtd_partition easy4010_partitions[] = ++{ ++ { ++ .name = "uboot", ++ .offset = 0x0, ++ .size = 0x20000, ++ }, ++ { ++ .name = "uboot_env", ++ .offset = 0x20000, ++ .size = 0x10000, ++ }, ++ { ++ .name = "linux", ++ .offset = 0x30000, ++ .size = 0x3D0000, ++ }, ++}; ++#endif ++ ++static struct physmap_flash_data easy4010_flash_data = { ++#ifdef CONFIG_MTD_PARTITIONS ++ .nr_parts = ARRAY_SIZE(easy4010_partitions), ++ .parts = easy4010_partitions, ++#endif ++}; ++ ++static struct lq_pci_data lq_pci_data = { ++ .clock = PCI_CLOCK_INT, ++ .req_mask = 0xf, ++}; ++ ++static struct lq_eth_data lq_eth_data = { ++ .mii_mode = REV_MII_MODE, ++}; ++ ++static void __init ++easy4010_init(void) ++{ ++ lq_register_gpio(); ++ lq_register_gpio_stp(); ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_nor(&easy4010_flash_data); ++ lq_register_wdt(); ++ lq_register_pci(&lq_pci_data); ++ lq_register_ethernet(&lq_eth_data); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_EASY4010, ++ "EASY4010", ++ "EASY4010 Eval Board", ++ easy4010_init); +--- /dev/null ++++ b/arch/mips/lantiq/xway/mach-easy50712.c +@@ -0,0 +1,79 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++ ++#include "devices.h" ++ ++#ifdef CONFIG_MTD_PARTITIONS ++static struct mtd_partition easy50712_partitions[] = ++{ ++ { ++ .name = "uboot", ++ .offset = 0x0, ++ .size = 0x20000, ++ }, ++ { ++ .name = "uboot_env", ++ .offset = 0x20000, ++ .size = 0x10000, ++ }, ++ { ++ .name = "linux", ++ .offset = 0x30000, ++ .size = 0x3D0000, ++ }, ++}; ++#endif ++ ++static struct physmap_flash_data easy50712_flash_data = { ++#ifdef CONFIG_MTD_PARTITIONS ++ .nr_parts = ARRAY_SIZE(easy50712_partitions), ++ .parts = easy50712_partitions, ++#endif ++}; ++ ++static struct lq_pci_data lq_pci_data = { ++ .clock = PCI_CLOCK_INT, ++ .req_mask = 0xf, ++}; ++ ++static struct lq_eth_data lq_eth_data = { ++ .mii_mode = REV_MII_MODE, ++}; ++ ++static void __init ++easy50712_init(void) ++{ ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_gpio(); ++ lq_register_gpio_stp(); ++ lq_register_nor(&easy50712_flash_data); ++ lq_register_wdt(); ++ lq_register_pci(&lq_pci_data); ++ lq_register_ethernet(&lq_eth_data); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_EASY50712, ++ "EASY50712", ++ "EASY50712 Eval Board", ++ easy50712_init); +--- /dev/null ++++ b/arch/mips/lantiq/xway/mach-easy50812.c +@@ -0,0 +1,78 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++ ++#include "devices.h" ++ ++#ifdef CONFIG_MTD_PARTITIONS ++static struct mtd_partition easy50812_partitions[] = ++{ ++ { ++ .name = "uboot", ++ .offset = 0x0, ++ .size = 0x40000, ++ }, ++ { ++ .name = "uboot_env", ++ .offset = 0x40000, ++ .size = 0x10000, ++ }, ++ { ++ .name = "linux", ++ .offset = 0x50000, ++ .size = 0x3B0000, ++ }, ++}; ++#endif ++ ++static struct physmap_flash_data easy50812_flash_data = { ++#ifdef CONFIG_MTD_PARTITIONS ++ .nr_parts = ARRAY_SIZE(easy50812_partitions), ++ .parts = easy50812_partitions, ++#endif ++}; ++ ++static struct lq_pci_data lq_pci_data = { ++ .clock = PCI_CLOCK_INT, ++ .req_mask = 0xf, ++}; ++ ++static struct lq_eth_data lq_eth_data = { ++ .mii_mode = REV_MII_MODE, ++}; ++ ++static void __init ++easy50812_init(void) ++{ ++ lq_register_gpio(); ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_nor(&easy50812_flash_data); ++ lq_register_wdt(); ++ lq_register_pci(&lq_pci_data); ++ lq_register_ethernet(&lq_eth_data); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_EASY50812, ++ "EASY50812", ++ "EASY50812 Eval Board", ++ easy50812_init); +--- /dev/null ++++ b/arch/mips/lantiq/xway/prom.c +@@ -0,0 +1,52 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include "../prom.h" ++ ++#define SOC_DANUBE "Danube" ++#define SOC_TWINPASS "Twinpass" ++#define SOC_AR9 "AR9" ++ ++void __init ++lq_soc_detect(struct lq_soc_info *i) ++{ ++ i->partnum = (lq_r32(LQ_MPS_CHIPID) & 0x0FFFFFFF) >> 12; ++ i->rev = (lq_r32(LQ_MPS_CHIPID) & 0xF0000000) >> 28; ++ switch (i->partnum) ++ { ++ case SOC_ID_DANUBE1: ++ case SOC_ID_DANUBE2: ++ i->name = SOC_DANUBE; ++ i->type = SOC_TYPE_DANUBE; ++ break; ++ ++ case SOC_ID_TWINPASS: ++ i->name = SOC_TWINPASS; ++ i->type = SOC_TYPE_DANUBE; ++ break; ++ ++ case SOC_ID_ARX188: ++ case SOC_ID_ARX168: ++ case SOC_ID_ARX182: ++ i->name = SOC_AR9; ++ i->type = SOC_TYPE_AR9; ++ break; ++ ++ default: ++ printk(KERN_ERR "unknown chiprev : 0x%08X\n", i->partnum); ++ while(1) { }; ++ break; ++ } ++} +--- /dev/null ++++ b/arch/mips/lantiq/xway/devices.c +@@ -0,0 +1,278 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++#include ++ ++#define IRQ_RES(resname,irq) {.name=#resname,.start=(irq),.flags=IORESOURCE_IRQ} ++ ++/* gpio leds */ ++static struct gpio_led_platform_data lq_gpio_led_data; ++ ++static struct platform_device lq_gpio_leds = ++{ ++ .name = "leds-gpio", ++ .dev = { ++ .platform_data = (void *) &lq_gpio_led_data, ++ } ++}; ++ ++void __init ++lq_register_gpio_leds(struct gpio_led *leds, int cnt) ++{ ++ lq_gpio_led_data.leds = leds; ++ lq_gpio_led_data.num_leds = cnt; ++ platform_device_register(&lq_gpio_leds); ++} ++ ++/* serial to parallel conversion */ ++static struct resource lq_stp_resource = ++{ ++ .name = "stp", ++ .start = LQ_STP_BASE, ++ .end = LQ_STP_BASE + LQ_STP_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++}; ++ ++void __init ++lq_register_gpio_stp(void) ++{ ++ platform_device_register_simple("lq_stp", 0, &lq_stp_resource, 1); ++} ++ ++/* nor flash */ ++static struct resource lq_nor_resource = ++{ ++ .name = "nor", ++ .start = LQ_FLASH_START, ++ .end = LQ_FLASH_START + LQ_FLASH_MAX - 1, ++ .flags = IORESOURCE_MEM, ++}; ++ ++static struct platform_device lq_nor = ++{ ++ .name = "lq_nor", ++ .resource = &lq_nor_resource, ++ .num_resources = 1, ++}; ++ ++void __init ++lq_register_nor(struct physmap_flash_data *data) ++{ ++ lq_nor.dev.platform_data = data; ++ platform_device_register(&lq_nor); ++} ++ ++/* watchdog */ ++static struct resource lq_wdt_resource = ++{ ++ .name = "watchdog", ++ .start = LQ_WDT_BASE, ++ .end = LQ_WDT_BASE + LQ_WDT_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++}; ++ ++void __init ++lq_register_wdt(void) ++{ ++ platform_device_register_simple("lq_wdt", 0, &lq_wdt_resource, 1); ++} ++ ++/* gpio */ ++static struct resource lq_gpio_resource[] = { ++ { ++ .name = "gpio0", ++ .start = LQ_GPIO0_BASE_ADDR, ++ .end = LQ_GPIO0_BASE_ADDR + LQ_GPIO_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, { ++ .name = "gpio1", ++ .start = LQ_GPIO1_BASE_ADDR, ++ .end = LQ_GPIO1_BASE_ADDR + LQ_GPIO_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ } ++}; ++ ++void __init ++lq_register_gpio(void) ++{ ++ platform_device_register_simple("lq_gpio", 0, &lq_gpio_resource[0], 1); ++ platform_device_register_simple("lq_gpio", 1, &lq_gpio_resource[1], 1); ++} ++ ++/* pci */ ++static struct platform_device lq_pci = ++{ ++ .name = "lq_pci", ++ .num_resources = 0, ++}; ++ ++void __init ++lq_register_pci(struct lq_pci_data *data) ++{ ++ lq_pci.dev.platform_data = data; ++ platform_device_register(&lq_pci); ++} ++ ++/* ebu */ ++static struct resource lq_ebu_resource = ++{ ++ .name = "gpio_ebu", ++ .start = LQ_EBU_GPIO_START, ++ .end = LQ_EBU_GPIO_START + LQ_EBU_GPIO_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++}; ++ ++void __init ++lq_register_gpio_ebu(unsigned int value) ++{ ++ platform_device_register_simple("lq_ebu", 0, &lq_ebu_resource, 1); ++} ++ ++/* ethernet */ ++unsigned char lq_ethaddr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; ++ ++static int __init ++lq_set_ethaddr(char *str) ++{ ++ sscanf(&str[8], "0%02hhx:0%02hhx:0%02hhx:0%02hhx:0%02hhx:0%02hhx", ++ &lq_ethaddr[0], &lq_ethaddr[1], &lq_ethaddr[2], ++ &lq_ethaddr[3], &lq_ethaddr[4], &lq_ethaddr[5]); ++ return 0; ++} ++__setup("ethaddr=", lq_set_ethaddr); ++ ++static struct resource lq_ethernet_resources = ++{ ++ .name = "etop", ++ .start = LQ_PPE32_BASE_ADDR, ++ .end = LQ_PPE32_BASE_ADDR + LQ_PPE32_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++}; ++ ++static struct platform_device lq_ethernet = ++{ ++ .name = "lq_etop", ++ .resource = &lq_ethernet_resources, ++ .num_resources = 1, ++}; ++ ++void __init ++lq_register_ethernet(struct lq_eth_data *eth) ++{ ++ if(!eth) ++ return; ++ if(!eth->mac) ++ eth->mac = lq_ethaddr; ++ if(!is_valid_ether_addr(eth->mac)) ++ random_ether_addr(eth->mac); ++ lq_ethernet.dev.platform_data = eth; ++ platform_device_register(&lq_ethernet); ++} ++ ++/* tapi */ ++static struct resource mps_resources[] = { ++ { ++ .name = "voice-mem", ++ .flags = IORESOURCE_MEM, ++ .start = 0x1f107000, ++ .end = 0x1f1073ff, ++ }, ++ { ++ .name = "voice-mailbox", ++ .flags = IORESOURCE_MEM, ++ .start = 0x1f200000, ++ .end = 0x1f2007ff, ++ }, ++}; ++ ++static struct platform_device mps_device = { ++ .name = "mps", ++ .resource = mps_resources, ++ .num_resources = ARRAY_SIZE(mps_resources), ++}; ++ ++static struct platform_device vmmc_device = { ++ .name = "vmmc", ++ .dev = { ++ .parent = &mps_device.dev, ++ }, ++}; ++ ++void __init ++lq_register_tapi(void) ++{ ++#define CP1_SIZE (1 << 20) ++ dma_addr_t dma; ++ mps_device.dev.platform_data = ++ (void*)CPHYSADDR(dma_alloc_coherent(NULL, CP1_SIZE, &dma, GFP_ATOMIC)); ++ platform_device_register(&mps_device); ++ platform_device_register(&vmmc_device); ++} ++ ++/* asc ports */ ++static struct resource lq_asc0_resources[] = ++{ ++ { ++ .start = LQ_ASC0_BASE, ++ .end = LQ_ASC0_BASE + LQ_ASC_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ IRQ_RES(tx, INT_NUM_IM3_IRL0), ++ IRQ_RES(rx, INT_NUM_IM3_IRL0 + 1), ++ IRQ_RES(err, INT_NUM_IM3_IRL0 + 2), ++}; ++ ++static struct resource lq_asc1_resources[] = ++{ ++ { ++ .start = LQ_ASC1_BASE, ++ .end = LQ_ASC1_BASE + LQ_ASC_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ IRQ_RES(tx, INT_NUM_IM3_IRL0 + 8), ++ IRQ_RES(rx, INT_NUM_IM3_IRL0 + 9), ++ IRQ_RES(err, INT_NUM_IM3_IRL0 + 10), ++}; ++ ++void __init ++lq_register_asc(int port) ++{ ++ switch (port) { ++ case 0: ++ platform_device_register_simple("lq_asc", 0, ++ lq_asc0_resources, ARRAY_SIZE(lq_asc0_resources)); ++ break; ++ case 1: ++ platform_device_register_simple("lq_asc", 1, ++ lq_asc1_resources, ARRAY_SIZE(lq_asc1_resources)); ++ break; ++ default: ++ break; ++ } ++} +--- /dev/null ++++ b/arch/mips/lantiq/xway/devices.h +@@ -0,0 +1,24 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LQ_DEVICES_H__ ++#define _LQ_DEVICES_H__ ++ ++#include ++ ++extern void __init lq_register_gpio(void); ++extern void __init lq_register_gpio_stp(void); ++extern void __init lq_register_gpio_ebu(unsigned int value); ++extern void __init lq_register_gpio_leds(struct gpio_led *leds, int cnt); ++extern void __init lq_register_pci(struct lq_pci_data *data); ++extern void __init lq_register_nor(struct physmap_flash_data *data); ++extern void __init lq_register_wdt(void); ++extern void __init lq_register_ethernet(struct lq_eth_data *eth); ++extern void __init lq_register_asc(int port); ++ ++#endif +--- /dev/null ++++ b/arch/mips/lantiq/xway/dma.c +@@ -0,0 +1,701 @@ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#include ++ ++#define LQ_DMA_CS ((u32 *)(LQ_DMA_BASE_ADDR + 0x18)) ++#define LQ_DMA_CIE ((u32 *)(LQ_DMA_BASE_ADDR + 0x2C)) ++#define LQ_DMA_IRNEN ((u32 *)(LQ_DMA_BASE_ADDR + 0xf4)) ++#define LQ_DMA_CCTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x1C)) ++#define LQ_DMA_CIS ((u32 *)(LQ_DMA_BASE_ADDR + 0x28)) ++#define LQ_DMA_CDLEN ((u32 *)(LQ_DMA_BASE_ADDR + 0x24)) ++#define LQ_DMA_PS ((u32 *)(LQ_DMA_BASE_ADDR + 0x40)) ++#define LQ_DMA_PCTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x44)) ++#define LQ_DMA_CTRL ((u32 *)(LQ_DMA_BASE_ADDR + 0x10)) ++#define LQ_DMA_CPOLL ((u32 *)(LQ_DMA_BASE_ADDR + 0x14)) ++#define LQ_DMA_CDBA ((u32 *)(LQ_DMA_BASE_ADDR + 0x20)) ++ ++/*25 descriptors for each dma channel,4096/8/20=25.xx*/ ++#define LQ_DMA_DESCRIPTOR_OFFSET 25 ++ ++#define MAX_DMA_DEVICE_NUM 6 /*max ports connecting to dma */ ++#define MAX_DMA_CHANNEL_NUM 20 /*max dma channels */ ++#define DMA_INT_BUDGET 100 /*budget for interrupt handling */ ++#define DMA_POLL_COUNTER 4 /*fix me, set the correct counter value here! */ ++ ++extern void lq_mask_and_ack_irq(unsigned int irq_nr); ++extern void lq_enable_irq(unsigned int irq_nr); ++extern void lq_disable_irq(unsigned int irq_nr); ++ ++u64 *g_desc_list; ++struct dma_device_info dma_devs[MAX_DMA_DEVICE_NUM]; ++struct dma_channel_info dma_chan[MAX_DMA_CHANNEL_NUM]; ++ ++static const char *global_device_name[MAX_DMA_DEVICE_NUM] = ++ { "PPE", "DEU", "SPI", "SDIO", "MCTRL0", "MCTRL1" }; ++ ++struct dma_chan_map default_dma_map[MAX_DMA_CHANNEL_NUM] = { ++ {"PPE", LQ_DMA_RX, 0, LQ_DMA_CH0_INT, 0}, ++ {"PPE", LQ_DMA_TX, 0, LQ_DMA_CH1_INT, 0}, ++ {"PPE", LQ_DMA_RX, 1, LQ_DMA_CH2_INT, 1}, ++ {"PPE", LQ_DMA_TX, 1, LQ_DMA_CH3_INT, 1}, ++ {"PPE", LQ_DMA_RX, 2, LQ_DMA_CH4_INT, 2}, ++ {"PPE", LQ_DMA_TX, 2, LQ_DMA_CH5_INT, 2}, ++ {"PPE", LQ_DMA_RX, 3, LQ_DMA_CH6_INT, 3}, ++ {"PPE", LQ_DMA_TX, 3, LQ_DMA_CH7_INT, 3}, ++ {"DEU", LQ_DMA_RX, 0, LQ_DMA_CH8_INT, 0}, ++ {"DEU", LQ_DMA_TX, 0, LQ_DMA_CH9_INT, 0}, ++ {"DEU", LQ_DMA_RX, 1, LQ_DMA_CH10_INT, 1}, ++ {"DEU", LQ_DMA_TX, 1, LQ_DMA_CH11_INT, 1}, ++ {"SPI", LQ_DMA_RX, 0, LQ_DMA_CH12_INT, 0}, ++ {"SPI", LQ_DMA_TX, 0, LQ_DMA_CH13_INT, 0}, ++ {"SDIO", LQ_DMA_RX, 0, LQ_DMA_CH14_INT, 0}, ++ {"SDIO", LQ_DMA_TX, 0, LQ_DMA_CH15_INT, 0}, ++ {"MCTRL0", LQ_DMA_RX, 0, LQ_DMA_CH16_INT, 0}, ++ {"MCTRL0", LQ_DMA_TX, 0, LQ_DMA_CH17_INT, 0}, ++ {"MCTRL1", LQ_DMA_RX, 1, LQ_DMA_CH18_INT, 1}, ++ {"MCTRL1", LQ_DMA_TX, 1, LQ_DMA_CH19_INT, 1} ++}; ++ ++struct dma_chan_map *chan_map = default_dma_map; ++volatile u32 g_lq_dma_int_status; ++volatile int g_lq_dma_in_process; /* 0=not in process, 1=in process */ ++ ++void do_dma_tasklet(unsigned long); ++DECLARE_TASKLET(dma_tasklet, do_dma_tasklet, 0); ++ ++u8 *common_buffer_alloc(int len, int *byte_offset, void **opt) ++{ ++ u8 *buffer = kmalloc(len * sizeof(u8), GFP_KERNEL); ++ ++ *byte_offset = 0; ++ ++ return buffer; ++} ++ ++void common_buffer_free(u8 *dataptr, void *opt) ++{ ++ kfree(dataptr); ++} ++ ++void enable_ch_irq(struct dma_channel_info *pCh) ++{ ++ int chan_no = (int)(pCh - dma_chan); ++ unsigned long flag; ++ ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(0x4a, LQ_DMA_CIE); ++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN); ++ local_irq_restore(flag); ++ lq_enable_irq(pCh->irq); ++} ++ ++void disable_ch_irq(struct dma_channel_info *pCh) ++{ ++ unsigned long flag; ++ int chan_no = (int) (pCh - dma_chan); ++ ++ local_irq_save(flag); ++ g_lq_dma_int_status &= ~(1 << chan_no); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(0, LQ_DMA_CIE); ++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN); ++ local_irq_restore(flag); ++ lq_mask_and_ack_irq(pCh->irq); ++} ++ ++void open_chan(struct dma_channel_info *pCh) ++{ ++ unsigned long flag; ++ int chan_no = (int)(pCh - dma_chan); ++ ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 1, LQ_DMA_CCTRL); ++ if (pCh->dir == LQ_DMA_RX) ++ enable_ch_irq(pCh); ++ local_irq_restore(flag); ++} ++ ++void close_chan(struct dma_channel_info *pCh) ++{ ++ unsigned long flag; ++ int chan_no = (int) (pCh - dma_chan); ++ ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL); ++ disable_ch_irq(pCh); ++ local_irq_restore(flag); ++} ++ ++void reset_chan(struct dma_channel_info *pCh) ++{ ++ int chan_no = (int) (pCh - dma_chan); ++ ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL); ++} ++ ++void rx_chan_intr_handler(int chan_no) ++{ ++ struct dma_device_info *pDev = (struct dma_device_info *)dma_chan[chan_no].dma_dev; ++ struct dma_channel_info *pCh = &dma_chan[chan_no]; ++ struct rx_desc *rx_desc_p; ++ int tmp; ++ unsigned long flag; ++ ++ /*handle command complete interrupt */ ++ rx_desc_p = (struct rx_desc *)pCh->desc_base + pCh->curr_desc; ++ if (rx_desc_p->status.field.OWN == CPU_OWN ++ && rx_desc_p->status.field.C ++ && rx_desc_p->status.field.data_length < 1536){ ++ /* Every thing is correct, then we inform the upper layer */ ++ pDev->current_rx_chan = pCh->rel_chan_no; ++ if (pDev->intr_handler) ++ pDev->intr_handler(pDev, RCV_INT); ++ pCh->weight--; ++ } else { ++ local_irq_save(flag); ++ tmp = lq_r32(LQ_DMA_CS); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(lq_r32(LQ_DMA_CIS) | 0x7e, LQ_DMA_CIS); ++ lq_w32(tmp, LQ_DMA_CS); ++ g_lq_dma_int_status &= ~(1 << chan_no); ++ local_irq_restore(flag); ++ lq_enable_irq(dma_chan[chan_no].irq); ++ } ++} ++ ++inline void tx_chan_intr_handler(int chan_no) ++{ ++ struct dma_device_info *pDev = (struct dma_device_info *)dma_chan[chan_no].dma_dev; ++ struct dma_channel_info *pCh = &dma_chan[chan_no]; ++ int tmp; ++ unsigned long flag; ++ ++ local_irq_save(flag); ++ tmp = lq_r32(LQ_DMA_CS); ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(lq_r32(LQ_DMA_CIS) | 0x7e, LQ_DMA_CIS); ++ lq_w32(tmp, LQ_DMA_CS); ++ g_lq_dma_int_status &= ~(1 << chan_no); ++ local_irq_restore(flag); ++ pDev->current_tx_chan = pCh->rel_chan_no; ++ if (pDev->intr_handler) ++ pDev->intr_handler(pDev, TRANSMIT_CPT_INT); ++} ++ ++void do_dma_tasklet(unsigned long unused) ++{ ++ int i; ++ int chan_no = 0; ++ int budget = DMA_INT_BUDGET; ++ int weight = 0; ++ unsigned long flag; ++ ++ while (g_lq_dma_int_status) { ++ if (budget-- < 0) { ++ tasklet_schedule(&dma_tasklet); ++ return; ++ } ++ chan_no = -1; ++ weight = 0; ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { ++ if ((g_lq_dma_int_status & (1 << i)) && dma_chan[i].weight > 0) { ++ if (dma_chan[i].weight > weight) { ++ chan_no = i; ++ weight = dma_chan[chan_no].weight; ++ } ++ } ++ } ++ ++ if (chan_no >= 0) { ++ if (chan_map[chan_no].dir == LQ_DMA_RX) ++ rx_chan_intr_handler(chan_no); ++ else ++ tx_chan_intr_handler(chan_no); ++ } else { ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) ++ dma_chan[i].weight = dma_chan[i].default_weight; ++ } ++ } ++ ++ local_irq_save(flag); ++ g_lq_dma_in_process = 0; ++ if (g_lq_dma_int_status) { ++ g_lq_dma_in_process = 1; ++ tasklet_schedule(&dma_tasklet); ++ } ++ local_irq_restore(flag); ++} ++ ++irqreturn_t dma_interrupt(int irq, void *dev_id) ++{ ++ struct dma_channel_info *pCh; ++ int chan_no = 0; ++ int tmp; ++ ++ pCh = (struct dma_channel_info *)dev_id; ++ chan_no = (int)(pCh - dma_chan); ++ if (chan_no < 0 || chan_no > 19) ++ BUG(); ++ ++ tmp = lq_r32(LQ_DMA_IRNEN); ++ lq_w32(0, LQ_DMA_IRNEN); ++ g_lq_dma_int_status |= 1 << chan_no; ++ lq_w32(tmp, LQ_DMA_IRNEN); ++ lq_mask_and_ack_irq(irq); ++ ++ if (!g_lq_dma_in_process) { ++ g_lq_dma_in_process = 1; ++ tasklet_schedule(&dma_tasklet); ++ } ++ ++ return IRQ_HANDLED; ++} ++ ++struct dma_device_info *dma_device_reserve(char *dev_name) ++{ ++ int i; ++ ++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) { ++ if (strcmp(dev_name, dma_devs[i].device_name) == 0) { ++ if (dma_devs[i].reserved) ++ return NULL; ++ dma_devs[i].reserved = 1; ++ break; ++ } ++ } ++ ++ return &dma_devs[i]; ++} ++EXPORT_SYMBOL(dma_device_reserve); ++ ++void dma_device_release(struct dma_device_info *dev) ++{ ++ dev->reserved = 0; ++} ++EXPORT_SYMBOL(dma_device_release); ++ ++void dma_device_register(struct dma_device_info *dev) ++{ ++ int i, j; ++ int chan_no = 0; ++ u8 *buffer; ++ int byte_offset; ++ unsigned long flag; ++ struct dma_device_info *pDev; ++ struct dma_channel_info *pCh; ++ struct rx_desc *rx_desc_p; ++ struct tx_desc *tx_desc_p; ++ ++ for (i = 0; i < dev->max_tx_chan_num; i++) { ++ pCh = dev->tx_chan[i]; ++ if (pCh->control == LQ_DMA_CH_ON) { ++ chan_no = (int)(pCh - dma_chan); ++ for (j = 0; j < pCh->desc_len; j++) { ++ tx_desc_p = (struct tx_desc *)pCh->desc_base + j; ++ memset(tx_desc_p, 0, sizeof(struct tx_desc)); ++ } ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ /* check if the descriptor length is changed */ ++ if (lq_r32(LQ_DMA_CDLEN) != pCh->desc_len) ++ lq_w32(pCh->desc_len, LQ_DMA_CDLEN); ++ ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL); ++ while (lq_r32(LQ_DMA_CCTRL) & 2) ++ ; ++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN); ++ lq_w32(0x30100, LQ_DMA_CCTRL); /* reset and enable channel,enable channel later */ ++ local_irq_restore(flag); ++ } ++ } ++ ++ for (i = 0; i < dev->max_rx_chan_num; i++) { ++ pCh = dev->rx_chan[i]; ++ if (pCh->control == LQ_DMA_CH_ON) { ++ chan_no = (int)(pCh - dma_chan); ++ ++ for (j = 0; j < pCh->desc_len; j++) { ++ rx_desc_p = (struct rx_desc *)pCh->desc_base + j; ++ pDev = (struct dma_device_info *)(pCh->dma_dev); ++ buffer = pDev->buffer_alloc(pCh->packet_size, &byte_offset, (void *)&(pCh->opt[j])); ++ if (!buffer) ++ break; ++ ++ dma_cache_inv((unsigned long) buffer, pCh->packet_size); ++ ++ rx_desc_p->Data_Pointer = (u32)CPHYSADDR((u32)buffer); ++ rx_desc_p->status.word = 0; ++ rx_desc_p->status.field.byte_offset = byte_offset; ++ rx_desc_p->status.field.OWN = DMA_OWN; ++ rx_desc_p->status.field.data_length = pCh->packet_size; ++ } ++ ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ /* check if the descriptor length is changed */ ++ if (lq_r32(LQ_DMA_CDLEN) != pCh->desc_len) ++ lq_w32(pCh->desc_len, LQ_DMA_CDLEN); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) | 2, LQ_DMA_CCTRL); ++ while (lq_r32(LQ_DMA_CCTRL) & 2) ++ ; ++ lq_w32(0x0a, LQ_DMA_CIE); /* fix me, should enable all the interrupts here? */ ++ lq_w32(lq_r32(LQ_DMA_IRNEN) | (1 << chan_no), LQ_DMA_IRNEN); ++ lq_w32(0x30000, LQ_DMA_CCTRL); ++ local_irq_restore(flag); ++ lq_enable_irq(dma_chan[chan_no].irq); ++ } ++ } ++} ++EXPORT_SYMBOL(dma_device_register); ++ ++void dma_device_unregister(struct dma_device_info *dev) ++{ ++ int i, j; ++ int chan_no; ++ struct dma_channel_info *pCh; ++ struct rx_desc *rx_desc_p; ++ struct tx_desc *tx_desc_p; ++ unsigned long flag; ++ ++ for (i = 0; i < dev->max_tx_chan_num; i++) { ++ pCh = dev->tx_chan[i]; ++ if (pCh->control == LQ_DMA_CH_ON) { ++ chan_no = (int)(dev->tx_chan[i] - dma_chan); ++ local_irq_save(flag); ++ lq_w32(chan_no, LQ_DMA_CS); ++ pCh->curr_desc = 0; ++ pCh->prev_desc = 0; ++ pCh->control = LQ_DMA_CH_OFF; ++ lq_w32(0, LQ_DMA_CIE); /* fix me, should disable all the interrupts here? */ ++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN); /* disable interrupts */ ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL); ++ while (lq_r32(LQ_DMA_CCTRL) & 1) ++ ; ++ local_irq_restore(flag); ++ ++ for (j = 0; j < pCh->desc_len; j++) { ++ tx_desc_p = (struct tx_desc *)pCh->desc_base + j; ++ if ((tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C) ++ || (tx_desc_p->status.field.OWN == DMA_OWN && tx_desc_p->status.field.data_length > 0)) { ++ dev->buffer_free((u8 *) __va(tx_desc_p->Data_Pointer), (void *)pCh->opt[j]); ++ } ++ tx_desc_p->status.field.OWN = CPU_OWN; ++ memset(tx_desc_p, 0, sizeof(struct tx_desc)); ++ } ++ /* TODO should free buffer that is not transferred by dma */ ++ } ++ } ++ ++ for (i = 0; i < dev->max_rx_chan_num; i++) { ++ pCh = dev->rx_chan[i]; ++ chan_no = (int)(dev->rx_chan[i] - dma_chan); ++ lq_disable_irq(pCh->irq); ++ ++ local_irq_save(flag); ++ g_lq_dma_int_status &= ~(1 << chan_no); ++ pCh->curr_desc = 0; ++ pCh->prev_desc = 0; ++ pCh->control = LQ_DMA_CH_OFF; ++ ++ lq_w32(chan_no, LQ_DMA_CS); ++ lq_w32(0, LQ_DMA_CIE); /* fix me, should disable all the interrupts here? */ ++ lq_w32(lq_r32(LQ_DMA_IRNEN) & ~(1 << chan_no), LQ_DMA_IRNEN); /* disable interrupts */ ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~1, LQ_DMA_CCTRL); ++ while (lq_r32(LQ_DMA_CCTRL) & 1) ++ ; ++ ++ local_irq_restore(flag); ++ for (j = 0; j < pCh->desc_len; j++) { ++ rx_desc_p = (struct rx_desc *) pCh->desc_base + j; ++ if ((rx_desc_p->status.field.OWN == CPU_OWN ++ && rx_desc_p->status.field.C) ++ || (rx_desc_p->status.field.OWN == DMA_OWN ++ && rx_desc_p->status.field.data_length > 0)) { ++ dev->buffer_free((u8 *) ++ __va(rx_desc_p->Data_Pointer), ++ (void *) pCh->opt[j]); ++ } ++ } ++ } ++} ++EXPORT_SYMBOL(dma_device_unregister); ++ ++int dma_device_read(struct dma_device_info *dma_dev, u8 **dataptr, void **opt) ++{ ++ u8 *buf; ++ int len; ++ int byte_offset = 0; ++ void *p = NULL; ++ struct dma_channel_info *pCh = dma_dev->rx_chan[dma_dev->current_rx_chan]; ++ struct rx_desc *rx_desc_p; ++ ++ /* get the rx data first */ ++ rx_desc_p = (struct rx_desc *) pCh->desc_base + pCh->curr_desc; ++ if (!(rx_desc_p->status.field.OWN == CPU_OWN && rx_desc_p->status.field.C)) ++ return 0; ++ ++ buf = (u8 *) __va(rx_desc_p->Data_Pointer); ++ *(u32 *)dataptr = (u32)buf; ++ len = rx_desc_p->status.field.data_length; ++ ++ if (opt) ++ *(int *)opt = (int)pCh->opt[pCh->curr_desc]; ++ ++ /* replace with a new allocated buffer */ ++ buf = dma_dev->buffer_alloc(pCh->packet_size, &byte_offset, &p); ++ ++ if (buf) { ++ dma_cache_inv((unsigned long) buf, pCh->packet_size); ++ pCh->opt[pCh->curr_desc] = p; ++ wmb(); ++ ++ rx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) buf); ++ rx_desc_p->status.word = (DMA_OWN << 31) | ((byte_offset) << 23) | pCh->packet_size; ++ wmb(); ++ } else { ++ *(u32 *) dataptr = 0; ++ if (opt) ++ *(int *) opt = 0; ++ len = 0; ++ } ++ ++ /* increase the curr_desc pointer */ ++ pCh->curr_desc++; ++ if (pCh->curr_desc == pCh->desc_len) ++ pCh->curr_desc = 0; ++ ++ return len; ++} ++EXPORT_SYMBOL(dma_device_read); ++ ++int dma_device_write(struct dma_device_info *dma_dev, u8 *dataptr, int len, void *opt) ++{ ++ unsigned long flag; ++ u32 tmp, byte_offset; ++ struct dma_channel_info *pCh; ++ int chan_no; ++ struct tx_desc *tx_desc_p; ++ local_irq_save(flag); ++ ++ pCh = dma_dev->tx_chan[dma_dev->current_tx_chan]; ++ chan_no = (int)(pCh - (struct dma_channel_info *) dma_chan); ++ ++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->prev_desc; ++ while (tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C) { ++ dma_dev->buffer_free((u8 *) __va(tx_desc_p->Data_Pointer), pCh->opt[pCh->prev_desc]); ++ memset(tx_desc_p, 0, sizeof(struct tx_desc)); ++ pCh->prev_desc = (pCh->prev_desc + 1) % (pCh->desc_len); ++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->prev_desc; ++ } ++ tx_desc_p = (struct tx_desc *)pCh->desc_base + pCh->curr_desc; ++ /* Check whether this descriptor is available */ ++ if (tx_desc_p->status.field.OWN == DMA_OWN || tx_desc_p->status.field.C) { ++ /* if not, the tell the upper layer device */ ++ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT); ++ local_irq_restore(flag); ++ printk(KERN_INFO "%s %d: failed to write!\n", __func__, __LINE__); ++ ++ return 0; ++ } ++ pCh->opt[pCh->curr_desc] = opt; ++ /* byte offset----to adjust the starting address of the data buffer, should be multiple of the burst length. */ ++ byte_offset = ((u32) CPHYSADDR((u32) dataptr)) % ((dma_dev->tx_burst_len) * 4); ++ dma_cache_wback((unsigned long) dataptr, len); ++ wmb(); ++ tx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) dataptr) - byte_offset; ++ wmb(); ++ tx_desc_p->status.word = (DMA_OWN << 31) | DMA_DESC_SOP_SET | DMA_DESC_EOP_SET | ((byte_offset) << 23) | len; ++ wmb(); ++ ++ pCh->curr_desc++; ++ if (pCh->curr_desc == pCh->desc_len) ++ pCh->curr_desc = 0; ++ ++ /*Check whether this descriptor is available */ ++ tx_desc_p = (struct tx_desc *) pCh->desc_base + pCh->curr_desc; ++ if (tx_desc_p->status.field.OWN == DMA_OWN) { ++ /*if not , the tell the upper layer device */ ++ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT); ++ } ++ ++ lq_w32(chan_no, LQ_DMA_CS); ++ tmp = lq_r32(LQ_DMA_CCTRL); ++ ++ if (!(tmp & 1)) ++ pCh->open(pCh); ++ ++ local_irq_restore(flag); ++ ++ return len; ++} ++EXPORT_SYMBOL(dma_device_write); ++ ++int map_dma_chan(struct dma_chan_map *map) ++{ ++ int i, j; ++ int result; ++ ++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) ++ strcpy(dma_devs[i].device_name, global_device_name[i]); ++ ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { ++ dma_chan[i].irq = map[i].irq; ++ result = request_irq(dma_chan[i].irq, dma_interrupt, IRQF_DISABLED, map[i].dev_name, (void *)&dma_chan[i]); ++ if (result) { ++ printk(KERN_WARNING "error, cannot get dma_irq!\n"); ++ free_irq(dma_chan[i].irq, (void *) &dma_interrupt); ++ ++ return -EFAULT; ++ } ++ } ++ ++ for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) { ++ dma_devs[i].num_tx_chan = 0; /*set default tx channel number to be one */ ++ dma_devs[i].num_rx_chan = 0; /*set default rx channel number to be one */ ++ dma_devs[i].max_rx_chan_num = 0; ++ dma_devs[i].max_tx_chan_num = 0; ++ dma_devs[i].buffer_alloc = &common_buffer_alloc; ++ dma_devs[i].buffer_free = &common_buffer_free; ++ dma_devs[i].intr_handler = NULL; ++ dma_devs[i].tx_burst_len = 4; ++ dma_devs[i].rx_burst_len = 4; ++ if (i == 0) { ++ lq_w32(0, LQ_DMA_PS); ++ lq_w32(lq_r32(LQ_DMA_PCTRL) | ((0xf << 8) | (1 << 6)), LQ_DMA_PCTRL); /*enable dma drop */ ++ } ++ ++ if (i == 1) { ++ lq_w32(1, LQ_DMA_PS); ++ lq_w32(0x14, LQ_DMA_PCTRL); /*deu port setting */ ++ } ++ ++ for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) { ++ dma_chan[j].byte_offset = 0; ++ dma_chan[j].open = &open_chan; ++ dma_chan[j].close = &close_chan; ++ dma_chan[j].reset = &reset_chan; ++ dma_chan[j].enable_irq = &enable_ch_irq; ++ dma_chan[j].disable_irq = &disable_ch_irq; ++ dma_chan[j].rel_chan_no = map[j].rel_chan_no; ++ dma_chan[j].control = LQ_DMA_CH_OFF; ++ dma_chan[j].default_weight = LQ_DMA_CH_DEFAULT_WEIGHT; ++ dma_chan[j].weight = dma_chan[j].default_weight; ++ dma_chan[j].curr_desc = 0; ++ dma_chan[j].prev_desc = 0; ++ } ++ ++ for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) { ++ if (strcmp(dma_devs[i].device_name, map[j].dev_name) == 0) { ++ if (map[j].dir == LQ_DMA_RX) { ++ dma_chan[j].dir = LQ_DMA_RX; ++ dma_devs[i].max_rx_chan_num++; ++ dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1] = &dma_chan[j]; ++ dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1]->pri = map[j].pri; ++ dma_chan[j].dma_dev = (void *)&dma_devs[i]; ++ } else if (map[j].dir == LQ_DMA_TX) { ++ /*TX direction */ ++ dma_chan[j].dir = LQ_DMA_TX; ++ dma_devs[i].max_tx_chan_num++; ++ dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1] = &dma_chan[j]; ++ dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1]->pri = map[j].pri; ++ dma_chan[j].dma_dev = (void *)&dma_devs[i]; ++ } else { ++ printk(KERN_WARNING "WRONG DMA MAP!\n"); ++ } ++ } ++ } ++ } ++ ++ return 0; ++} ++ ++void dma_chip_init(void) ++{ ++ int i; ++ ++ /* enable DMA from PMU */ ++ lq_pmu_enable(PMU_DMA); ++ ++ /* reset DMA */ ++ lq_w32(lq_r32(LQ_DMA_CTRL) | 1, LQ_DMA_CTRL); ++ ++ /* disable all interrupts */ ++ lq_w32(0, LQ_DMA_IRNEN); ++ ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { ++ lq_w32(i, LQ_DMA_CS); ++ lq_w32(0x2, LQ_DMA_CCTRL); ++ lq_w32(0x80000040, LQ_DMA_CPOLL); ++ lq_w32(lq_r32(LQ_DMA_CCTRL) & ~0x1, LQ_DMA_CCTRL); ++ } ++} ++ ++int lq_dma_init(void) ++{ ++ int i; ++ ++ dma_chip_init(); ++ ++ if (map_dma_chan(default_dma_map)) ++ BUG(); ++ ++ g_desc_list = (u64 *)KSEG1ADDR(__get_free_page(GFP_DMA)); ++ ++ if (g_desc_list == NULL) { ++ printk(KERN_WARNING "no memory for desriptor\n"); ++ return -ENOMEM; ++ } ++ ++ memset(g_desc_list, 0, PAGE_SIZE); ++ ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { ++ dma_chan[i].desc_base = (u32)g_desc_list + i * LQ_DMA_DESCRIPTOR_OFFSET * 8; ++ dma_chan[i].curr_desc = 0; ++ dma_chan[i].desc_len = LQ_DMA_DESCRIPTOR_OFFSET; ++ ++ lq_w32(i, LQ_DMA_CS); ++ lq_w32((u32)CPHYSADDR(dma_chan[i].desc_base), LQ_DMA_CDBA); ++ lq_w32(dma_chan[i].desc_len, LQ_DMA_CDLEN); ++ } ++ return 0; ++} ++ ++arch_initcall(lq_dma_init); ++ ++void dma_cleanup(void) ++{ ++ int i; ++ ++ free_page(KSEG0ADDR((unsigned long) g_desc_list)); ++ for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) ++ free_irq(dma_chan[i].irq, (void *)&dma_interrupt); ++} ++ ++MODULE_LICENSE("GPL"); +--- /dev/null ++++ b/arch/mips/lantiq/xway/pmu.c +@@ -0,0 +1,36 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_PMU_PWDCR ((u32 *)(LQ_PMU_BASE_ADDR + 0x001C)) ++#define LQ_PMU_PWDSR ((u32 *)(LQ_PMU_BASE_ADDR + 0x0020)) ++ ++void ++lq_pmu_enable(unsigned int module) ++{ ++ int err = 1000000; ++ ++ lq_w32(lq_r32(LQ_PMU_PWDCR) & ~module, LQ_PMU_PWDCR); ++ while (--err && (lq_r32(LQ_PMU_PWDSR) & module)); ++ ++ if (!err) ++ panic("activating PMU module failed!"); ++} ++EXPORT_SYMBOL(lq_pmu_enable); ++ ++void ++lq_pmu_disable(unsigned int module) ++{ ++ lq_w32(lq_r32(LQ_PMU_PWDCR) | module, LQ_PMU_PWDCR); ++} ++EXPORT_SYMBOL(lq_pmu_disable); +--- /dev/null ++++ b/arch/mips/lantiq/xway/timer.c +@@ -0,0 +1,828 @@ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++#include ++ ++#define MAX_NUM_OF_32BIT_TIMER_BLOCKS 6 ++ ++#ifdef TIMER1A ++#define FIRST_TIMER TIMER1A ++#else ++#define FIRST_TIMER 2 ++#endif ++ ++/* ++ * GPTC divider is set or not. ++ */ ++#define GPTU_CLC_RMC_IS_SET 0 ++ ++/* ++ * Timer Interrupt (IRQ) ++ */ ++/* Must be adjusted when ICU driver is available */ ++#define TIMER_INTERRUPT (INT_NUM_IM3_IRL0 + 22) ++ ++/* ++ * Bits Operation ++ */ ++#define GET_BITS(x, msb, lsb) \ ++ (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb)) ++#define SET_BITS(x, msb, lsb, value) \ ++ (((x) & ~(((1 << ((msb) + 1)) - 1) ^ ((1 << (lsb)) - 1))) | \ ++ (((value) & ((1 << (1 + (msb) - (lsb))) - 1)) << (lsb))) ++ ++/* ++ * GPTU Register Mapping ++ */ ++#define LQ_GPTU (KSEG1 + 0x1E100A00) ++#define LQ_GPTU_CLC ((volatile u32 *)(LQ_GPTU + 0x0000)) ++#define LQ_GPTU_ID ((volatile u32 *)(LQ_GPTU + 0x0008)) ++#define LQ_GPTU_CON(n, X) ((volatile u32 *)(LQ_GPTU + 0x0010 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */ ++#define LQ_GPTU_RUN(n, X) ((volatile u32 *)(LQ_GPTU + 0x0018 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */ ++#define LQ_GPTU_RELOAD(n, X) ((volatile u32 *)(LQ_GPTU + 0x0020 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */ ++#define LQ_GPTU_COUNT(n, X) ((volatile u32 *)(LQ_GPTU + 0x0028 + ((X) * 4) + ((n) - 1) * 0x0020)) /* X must be either A or B */ ++#define LQ_GPTU_IRNEN ((volatile u32 *)(LQ_GPTU + 0x00F4)) ++#define LQ_GPTU_IRNICR ((volatile u32 *)(LQ_GPTU + 0x00F8)) ++#define LQ_GPTU_IRNCR ((volatile u32 *)(LQ_GPTU + 0x00FC)) ++ ++/* ++ * Clock Control Register ++ */ ++#define GPTU_CLC_SMC GET_BITS(*LQ_GPTU_CLC, 23, 16) ++#define GPTU_CLC_RMC GET_BITS(*LQ_GPTU_CLC, 15, 8) ++#define GPTU_CLC_FSOE (*LQ_GPTU_CLC & (1 << 5)) ++#define GPTU_CLC_EDIS (*LQ_GPTU_CLC & (1 << 3)) ++#define GPTU_CLC_SPEN (*LQ_GPTU_CLC & (1 << 2)) ++#define GPTU_CLC_DISS (*LQ_GPTU_CLC & (1 << 1)) ++#define GPTU_CLC_DISR (*LQ_GPTU_CLC & (1 << 0)) ++ ++#define GPTU_CLC_SMC_SET(value) SET_BITS(0, 23, 16, (value)) ++#define GPTU_CLC_RMC_SET(value) SET_BITS(0, 15, 8, (value)) ++#define GPTU_CLC_FSOE_SET(value) ((value) ? (1 << 5) : 0) ++#define GPTU_CLC_SBWE_SET(value) ((value) ? (1 << 4) : 0) ++#define GPTU_CLC_EDIS_SET(value) ((value) ? (1 << 3) : 0) ++#define GPTU_CLC_SPEN_SET(value) ((value) ? (1 << 2) : 0) ++#define GPTU_CLC_DISR_SET(value) ((value) ? (1 << 0) : 0) ++ ++/* ++ * ID Register ++ */ ++#define GPTU_ID_ID GET_BITS(*LQ_GPTU_ID, 15, 8) ++#define GPTU_ID_CFG GET_BITS(*LQ_GPTU_ID, 7, 5) ++#define GPTU_ID_REV GET_BITS(*LQ_GPTU_ID, 4, 0) ++ ++/* ++ * Control Register of Timer/Counter nX ++ * n is the index of block (1 based index) ++ * X is either A or B ++ */ ++#define GPTU_CON_SRC_EG(n, X) (*LQ_GPTU_CON(n, X) & (1 << 10)) ++#define GPTU_CON_SRC_EXT(n, X) (*LQ_GPTU_CON(n, X) & (1 << 9)) ++#define GPTU_CON_SYNC(n, X) (*LQ_GPTU_CON(n, X) & (1 << 8)) ++#define GPTU_CON_EDGE(n, X) GET_BITS(*LQ_GPTU_CON(n, X), 7, 6) ++#define GPTU_CON_INV(n, X) (*LQ_GPTU_CON(n, X) & (1 << 5)) ++#define GPTU_CON_EXT(n, X) (*LQ_GPTU_CON(n, A) & (1 << 4)) /* Timer/Counter B does not have this bit */ ++#define GPTU_CON_STP(n, X) (*LQ_GPTU_CON(n, X) & (1 << 3)) ++#define GPTU_CON_CNT(n, X) (*LQ_GPTU_CON(n, X) & (1 << 2)) ++#define GPTU_CON_DIR(n, X) (*LQ_GPTU_CON(n, X) & (1 << 1)) ++#define GPTU_CON_EN(n, X) (*LQ_GPTU_CON(n, X) & (1 << 0)) ++ ++#define GPTU_CON_SRC_EG_SET(value) ((value) ? 0 : (1 << 10)) ++#define GPTU_CON_SRC_EXT_SET(value) ((value) ? (1 << 9) : 0) ++#define GPTU_CON_SYNC_SET(value) ((value) ? (1 << 8) : 0) ++#define GPTU_CON_EDGE_SET(value) SET_BITS(0, 7, 6, (value)) ++#define GPTU_CON_INV_SET(value) ((value) ? (1 << 5) : 0) ++#define GPTU_CON_EXT_SET(value) ((value) ? (1 << 4) : 0) ++#define GPTU_CON_STP_SET(value) ((value) ? (1 << 3) : 0) ++#define GPTU_CON_CNT_SET(value) ((value) ? (1 << 2) : 0) ++#define GPTU_CON_DIR_SET(value) ((value) ? (1 << 1) : 0) ++ ++#define GPTU_RUN_RL_SET(value) ((value) ? (1 << 2) : 0) ++#define GPTU_RUN_CEN_SET(value) ((value) ? (1 << 1) : 0) ++#define GPTU_RUN_SEN_SET(value) ((value) ? (1 << 0) : 0) ++ ++#define GPTU_IRNEN_TC_SET(n, X, value) ((value) ? (1 << (((n) - 1) * 2 + (X))) : 0) ++#define GPTU_IRNCR_TC_SET(n, X, value) ((value) ? (1 << (((n) - 1) * 2 + (X))) : 0) ++ ++#define TIMER_FLAG_MASK_SIZE(x) (x & 0x0001) ++#define TIMER_FLAG_MASK_TYPE(x) (x & 0x0002) ++#define TIMER_FLAG_MASK_STOP(x) (x & 0x0004) ++#define TIMER_FLAG_MASK_DIR(x) (x & 0x0008) ++#define TIMER_FLAG_NONE_EDGE 0x0000 ++#define TIMER_FLAG_MASK_EDGE(x) (x & 0x0030) ++#define TIMER_FLAG_REAL 0x0000 ++#define TIMER_FLAG_INVERT 0x0040 ++#define TIMER_FLAG_MASK_INVERT(x) (x & 0x0040) ++#define TIMER_FLAG_MASK_TRIGGER(x) (x & 0x0070) ++#define TIMER_FLAG_MASK_SYNC(x) (x & 0x0080) ++#define TIMER_FLAG_CALLBACK_IN_HB 0x0200 ++#define TIMER_FLAG_MASK_HANDLE(x) (x & 0x0300) ++#define TIMER_FLAG_MASK_SRC(x) (x & 0x1000) ++ ++struct timer_dev_timer { ++ unsigned int f_irq_on; ++ unsigned int irq; ++ unsigned int flag; ++ unsigned long arg1; ++ unsigned long arg2; ++}; ++ ++struct timer_dev { ++ struct mutex gptu_mutex; ++ unsigned int number_of_timers; ++ unsigned int occupation; ++ unsigned int f_gptu_on; ++ struct timer_dev_timer timer[MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2]; ++}; ++ ++static int gptu_ioctl(struct inode *, struct file *, unsigned int, unsigned long); ++static int gptu_open(struct inode *, struct file *); ++static int gptu_release(struct inode *, struct file *); ++ ++static struct file_operations gptu_fops = { ++ .owner = THIS_MODULE, ++ .ioctl = gptu_ioctl, ++ .open = gptu_open, ++ .release = gptu_release ++}; ++ ++static struct miscdevice gptu_miscdev = { ++ .minor = MISC_DYNAMIC_MINOR, ++ .name = "gptu", ++ .fops = &gptu_fops, ++}; ++ ++static struct timer_dev timer_dev; ++ ++static irqreturn_t timer_irq_handler(int irq, void *p) ++{ ++ unsigned int timer; ++ unsigned int flag; ++ struct timer_dev_timer *dev_timer = (struct timer_dev_timer *)p; ++ ++ timer = irq - TIMER_INTERRUPT; ++ if (timer < timer_dev.number_of_timers ++ && dev_timer == &timer_dev.timer[timer]) { ++ /* Clear interrupt. */ ++ lq_w32(1 << timer, LQ_GPTU_IRNCR); ++ ++ /* Call user hanler or signal. */ ++ flag = dev_timer->flag; ++ if (!(timer & 0x01) ++ || TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT) { ++ /* 16-bit timer or timer A of 32-bit timer */ ++ switch (TIMER_FLAG_MASK_HANDLE(flag)) { ++ case TIMER_FLAG_CALLBACK_IN_IRQ: ++ case TIMER_FLAG_CALLBACK_IN_HB: ++ if (dev_timer->arg1) ++ (*(timer_callback)dev_timer->arg1)(dev_timer->arg2); ++ break; ++ case TIMER_FLAG_SIGNAL: ++ send_sig((int)dev_timer->arg2, (struct task_struct *)dev_timer->arg1, 0); ++ break; ++ } ++ } ++ } ++ return IRQ_HANDLED; ++} ++ ++static inline void lq_enable_gptu(void) ++{ ++ lq_pmu_enable(PMU_GPT); ++ ++ /* Set divider as 1, disable write protection for SPEN, enable module. */ ++ *LQ_GPTU_CLC = ++ GPTU_CLC_SMC_SET(0x00) | ++ GPTU_CLC_RMC_SET(0x01) | ++ GPTU_CLC_FSOE_SET(0) | ++ GPTU_CLC_SBWE_SET(1) | ++ GPTU_CLC_EDIS_SET(0) | ++ GPTU_CLC_SPEN_SET(0) | ++ GPTU_CLC_DISR_SET(0); ++} ++ ++static inline void lq_disable_gptu(void) ++{ ++ lq_w32(0x00, LQ_GPTU_IRNEN); ++ lq_w32(0xfff, LQ_GPTU_IRNCR); ++ ++ /* Set divider as 0, enable write protection for SPEN, disable module. */ ++ *LQ_GPTU_CLC = ++ GPTU_CLC_SMC_SET(0x00) | ++ GPTU_CLC_RMC_SET(0x00) | ++ GPTU_CLC_FSOE_SET(0) | ++ GPTU_CLC_SBWE_SET(0) | ++ GPTU_CLC_EDIS_SET(0) | ++ GPTU_CLC_SPEN_SET(0) | ++ GPTU_CLC_DISR_SET(1); ++ ++ lq_pmu_disable(PMU_GPT); ++} ++ ++int lq_request_timer(unsigned int timer, unsigned int flag, ++ unsigned long value, unsigned long arg1, unsigned long arg2) ++{ ++ int ret = 0; ++ unsigned int con_reg, irnen_reg; ++ int n, X; ++ ++ if (timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ printk(KERN_INFO "request_timer(%d, 0x%08X, %lu)...", ++ timer, flag, value); ++ ++ if (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT) ++ value &= 0xFFFF; ++ else ++ timer &= ~0x01; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ /* ++ * Allocate timer. ++ */ ++ if (timer < FIRST_TIMER) { ++ unsigned int mask; ++ unsigned int shift; ++ /* This takes care of TIMER1B which is the only choice for Voice TAPI system */ ++ unsigned int offset = TIMER2A; ++ ++ /* ++ * Pick up a free timer. ++ */ ++ if (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT) { ++ mask = 1 << offset; ++ shift = 1; ++ } else { ++ mask = 3 << offset; ++ shift = 2; ++ } ++ for (timer = offset; ++ timer < offset + timer_dev.number_of_timers; ++ timer += shift, mask <<= shift) ++ if (!(timer_dev.occupation & mask)) { ++ timer_dev.occupation |= mask; ++ break; ++ } ++ if (timer >= offset + timer_dev.number_of_timers) { ++ printk("failed![%d]\n", __LINE__); ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } else ++ ret = timer; ++ } else { ++ register unsigned int mask; ++ ++ /* ++ * Check if the requested timer is free. ++ */ ++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if ((timer_dev.occupation & mask)) { ++ printk("failed![%d] mask %#x, timer_dev.occupation %#x\n", ++ __LINE__, mask, timer_dev.occupation); ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EBUSY; ++ } else { ++ timer_dev.occupation |= mask; ++ ret = 0; ++ } ++ } ++ ++ /* ++ * Prepare control register value. ++ */ ++ switch (TIMER_FLAG_MASK_EDGE(flag)) { ++ default: ++ case TIMER_FLAG_NONE_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x00); ++ break; ++ case TIMER_FLAG_RISE_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x01); ++ break; ++ case TIMER_FLAG_FALL_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x02); ++ break; ++ case TIMER_FLAG_ANY_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x03); ++ break; ++ } ++ if (TIMER_FLAG_MASK_TYPE(flag) == TIMER_FLAG_TIMER) ++ con_reg |= ++ TIMER_FLAG_MASK_SRC(flag) == ++ TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EXT_SET(1) : ++ GPTU_CON_SRC_EXT_SET(0); ++ else ++ con_reg |= ++ TIMER_FLAG_MASK_SRC(flag) == ++ TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EG_SET(1) : ++ GPTU_CON_SRC_EG_SET(0); ++ con_reg |= ++ TIMER_FLAG_MASK_SYNC(flag) == ++ TIMER_FLAG_UNSYNC ? GPTU_CON_SYNC_SET(0) : ++ GPTU_CON_SYNC_SET(1); ++ con_reg |= ++ TIMER_FLAG_MASK_INVERT(flag) == ++ TIMER_FLAG_REAL ? GPTU_CON_INV_SET(0) : GPTU_CON_INV_SET(1); ++ con_reg |= ++ TIMER_FLAG_MASK_SIZE(flag) == ++ TIMER_FLAG_16BIT ? GPTU_CON_EXT_SET(0) : ++ GPTU_CON_EXT_SET(1); ++ con_reg |= ++ TIMER_FLAG_MASK_STOP(flag) == ++ TIMER_FLAG_ONCE ? GPTU_CON_STP_SET(1) : GPTU_CON_STP_SET(0); ++ con_reg |= ++ TIMER_FLAG_MASK_TYPE(flag) == ++ TIMER_FLAG_TIMER ? GPTU_CON_CNT_SET(0) : ++ GPTU_CON_CNT_SET(1); ++ con_reg |= ++ TIMER_FLAG_MASK_DIR(flag) == ++ TIMER_FLAG_UP ? GPTU_CON_DIR_SET(1) : GPTU_CON_DIR_SET(0); ++ ++ /* ++ * Fill up running data. ++ */ ++ timer_dev.timer[timer - FIRST_TIMER].flag = flag; ++ timer_dev.timer[timer - FIRST_TIMER].arg1 = arg1; ++ timer_dev.timer[timer - FIRST_TIMER].arg2 = arg2; ++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT) ++ timer_dev.timer[timer - FIRST_TIMER + 1].flag = flag; ++ ++ /* ++ * Enable GPTU module. ++ */ ++ if (!timer_dev.f_gptu_on) { ++ lq_enable_gptu(); ++ timer_dev.f_gptu_on = 1; ++ } ++ ++ /* ++ * Enable IRQ. ++ */ ++ if (TIMER_FLAG_MASK_HANDLE(flag) != TIMER_FLAG_NO_HANDLE) { ++ if (TIMER_FLAG_MASK_HANDLE(flag) == TIMER_FLAG_SIGNAL) ++ timer_dev.timer[timer - FIRST_TIMER].arg1 = ++ (unsigned long) find_task_by_vpid((int) arg1); ++ ++ irnen_reg = 1 << (timer - FIRST_TIMER); ++ ++ if (TIMER_FLAG_MASK_HANDLE(flag) == TIMER_FLAG_SIGNAL ++ || (TIMER_FLAG_MASK_HANDLE(flag) == ++ TIMER_FLAG_CALLBACK_IN_IRQ ++ && timer_dev.timer[timer - FIRST_TIMER].arg1)) { ++ enable_irq(timer_dev.timer[timer - FIRST_TIMER].irq); ++ timer_dev.timer[timer - FIRST_TIMER].f_irq_on = 1; ++ } ++ } else ++ irnen_reg = 0; ++ ++ /* ++ * Write config register, reload value and enable interrupt. ++ */ ++ n = timer >> 1; ++ X = timer & 0x01; ++ *LQ_GPTU_CON(n, X) = con_reg; ++ *LQ_GPTU_RELOAD(n, X) = value; ++ /* printk("reload value = %d\n", (u32)value); */ ++ *LQ_GPTU_IRNEN |= irnen_reg; ++ ++ mutex_unlock(&timer_dev.gptu_mutex); ++ printk("successful!\n"); ++ return ret; ++} ++EXPORT_SYMBOL(lq_request_timer); ++ ++int lq_free_timer(unsigned int timer) ++{ ++ unsigned int flag; ++ unsigned int mask; ++ int n, X; ++ ++ if (!timer_dev.f_gptu_on) ++ return -EINVAL; ++ ++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ flag = timer_dev.timer[timer - FIRST_TIMER].flag; ++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT) ++ timer &= ~0x01; ++ ++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if (((timer_dev.occupation & mask) ^ mask)) { ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } ++ ++ n = timer >> 1; ++ X = timer & 0x01; ++ ++ if (GPTU_CON_EN(n, X)) ++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_CEN_SET(1); ++ ++ *LQ_GPTU_IRNEN &= ~GPTU_IRNEN_TC_SET(n, X, 1); ++ *LQ_GPTU_IRNCR |= GPTU_IRNCR_TC_SET(n, X, 1); ++ ++ if (timer_dev.timer[timer - FIRST_TIMER].f_irq_on) { ++ disable_irq(timer_dev.timer[timer - FIRST_TIMER].irq); ++ timer_dev.timer[timer - FIRST_TIMER].f_irq_on = 0; ++ } ++ ++ timer_dev.occupation &= ~mask; ++ if (!timer_dev.occupation && timer_dev.f_gptu_on) { ++ lq_disable_gptu(); ++ timer_dev.f_gptu_on = 0; ++ } ++ ++ mutex_unlock(&timer_dev.gptu_mutex); ++ ++ return 0; ++} ++EXPORT_SYMBOL(lq_free_timer); ++ ++int lq_start_timer(unsigned int timer, int is_resume) ++{ ++ unsigned int flag; ++ unsigned int mask; ++ int n, X; ++ ++ if (!timer_dev.f_gptu_on) ++ return -EINVAL; ++ ++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ flag = timer_dev.timer[timer - FIRST_TIMER].flag; ++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT) ++ timer &= ~0x01; ++ ++ mask = (TIMER_FLAG_MASK_SIZE(flag) == ++ TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if (((timer_dev.occupation & mask) ^ mask)) { ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } ++ ++ n = timer >> 1; ++ X = timer & 0x01; ++ ++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_RL_SET(!is_resume) | GPTU_RUN_SEN_SET(1); ++ ++ mutex_unlock(&timer_dev.gptu_mutex); ++ ++ return 0; ++} ++EXPORT_SYMBOL(lq_start_timer); ++ ++int lq_stop_timer(unsigned int timer) ++{ ++ unsigned int flag; ++ unsigned int mask; ++ int n, X; ++ ++ if (!timer_dev.f_gptu_on) ++ return -EINVAL; ++ ++ if (timer < FIRST_TIMER ++ || timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ flag = timer_dev.timer[timer - FIRST_TIMER].flag; ++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT) ++ timer &= ~0x01; ++ ++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if (((timer_dev.occupation & mask) ^ mask)) { ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } ++ ++ n = timer >> 1; ++ X = timer & 0x01; ++ ++ *LQ_GPTU_RUN(n, X) = GPTU_RUN_CEN_SET(1); ++ ++ mutex_unlock(&timer_dev.gptu_mutex); ++ ++ return 0; ++} ++EXPORT_SYMBOL(lq_stop_timer); ++ ++int lq_reset_counter_flags(u32 timer, u32 flags) ++{ ++ unsigned int oflag; ++ unsigned int mask, con_reg; ++ int n, X; ++ ++ if (!timer_dev.f_gptu_on) ++ return -EINVAL; ++ ++ if (timer < FIRST_TIMER || timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ oflag = timer_dev.timer[timer - FIRST_TIMER].flag; ++ if (TIMER_FLAG_MASK_SIZE(oflag) != TIMER_FLAG_16BIT) ++ timer &= ~0x01; ++ ++ mask = (TIMER_FLAG_MASK_SIZE(oflag) == TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if (((timer_dev.occupation & mask) ^ mask)) { ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } ++ ++ switch (TIMER_FLAG_MASK_EDGE(flags)) { ++ default: ++ case TIMER_FLAG_NONE_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x00); ++ break; ++ case TIMER_FLAG_RISE_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x01); ++ break; ++ case TIMER_FLAG_FALL_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x02); ++ break; ++ case TIMER_FLAG_ANY_EDGE: ++ con_reg = GPTU_CON_EDGE_SET(0x03); ++ break; ++ } ++ if (TIMER_FLAG_MASK_TYPE(flags) == TIMER_FLAG_TIMER) ++ con_reg |= TIMER_FLAG_MASK_SRC(flags) == TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EXT_SET(1) : GPTU_CON_SRC_EXT_SET(0); ++ else ++ con_reg |= TIMER_FLAG_MASK_SRC(flags) == TIMER_FLAG_EXT_SRC ? GPTU_CON_SRC_EG_SET(1) : GPTU_CON_SRC_EG_SET(0); ++ con_reg |= TIMER_FLAG_MASK_SYNC(flags) == TIMER_FLAG_UNSYNC ? GPTU_CON_SYNC_SET(0) : GPTU_CON_SYNC_SET(1); ++ con_reg |= TIMER_FLAG_MASK_INVERT(flags) == TIMER_FLAG_REAL ? GPTU_CON_INV_SET(0) : GPTU_CON_INV_SET(1); ++ con_reg |= TIMER_FLAG_MASK_SIZE(flags) == TIMER_FLAG_16BIT ? GPTU_CON_EXT_SET(0) : GPTU_CON_EXT_SET(1); ++ con_reg |= TIMER_FLAG_MASK_STOP(flags) == TIMER_FLAG_ONCE ? GPTU_CON_STP_SET(1) : GPTU_CON_STP_SET(0); ++ con_reg |= TIMER_FLAG_MASK_TYPE(flags) == TIMER_FLAG_TIMER ? GPTU_CON_CNT_SET(0) : GPTU_CON_CNT_SET(1); ++ con_reg |= TIMER_FLAG_MASK_DIR(flags) == TIMER_FLAG_UP ? GPTU_CON_DIR_SET(1) : GPTU_CON_DIR_SET(0); ++ ++ timer_dev.timer[timer - FIRST_TIMER].flag = flags; ++ if (TIMER_FLAG_MASK_SIZE(flags) != TIMER_FLAG_16BIT) ++ timer_dev.timer[timer - FIRST_TIMER + 1].flag = flags; ++ ++ n = timer >> 1; ++ X = timer & 0x01; ++ ++ *LQ_GPTU_CON(n, X) = con_reg; ++ smp_wmb(); ++ printk(KERN_INFO "[%s]: counter%d oflags %#x, nflags %#x, GPTU_CON %#x\n", __func__, timer, oflag, flags, *LQ_GPTU_CON(n, X)); ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return 0; ++} ++EXPORT_SYMBOL(lq_reset_counter_flags); ++ ++int lq_get_count_value(unsigned int timer, unsigned long *value) ++{ ++ unsigned int flag; ++ unsigned int mask; ++ int n, X; ++ ++ if (!timer_dev.f_gptu_on) ++ return -EINVAL; ++ ++ if (timer < FIRST_TIMER ++ || timer >= FIRST_TIMER + timer_dev.number_of_timers) ++ return -EINVAL; ++ ++ mutex_lock(&timer_dev.gptu_mutex); ++ ++ flag = timer_dev.timer[timer - FIRST_TIMER].flag; ++ if (TIMER_FLAG_MASK_SIZE(flag) != TIMER_FLAG_16BIT) ++ timer &= ~0x01; ++ ++ mask = (TIMER_FLAG_MASK_SIZE(flag) == TIMER_FLAG_16BIT ? 1 : 3) << timer; ++ if (((timer_dev.occupation & mask) ^ mask)) { ++ mutex_unlock(&timer_dev.gptu_mutex); ++ return -EINVAL; ++ } ++ ++ n = timer >> 1; ++ X = timer & 0x01; ++ ++ *value = *LQ_GPTU_COUNT(n, X); ++ ++ mutex_unlock(&timer_dev.gptu_mutex); ++ ++ return 0; ++} ++EXPORT_SYMBOL(lq_get_count_value); ++ ++u32 lq_cal_divider(unsigned long freq) ++{ ++ u64 module_freq, fpi = lq_get_fpi_bus_clock(2); ++ u32 clock_divider = 1; ++ module_freq = fpi * 1000; ++ do_div(module_freq, clock_divider * freq); ++ return module_freq; ++} ++EXPORT_SYMBOL(lq_cal_divider); ++ ++int lq_set_timer(unsigned int timer, unsigned int freq, int is_cyclic, ++ int is_ext_src, unsigned int handle_flag, unsigned long arg1, ++ unsigned long arg2) ++{ ++ unsigned long divider; ++ unsigned int flag; ++ ++ divider = lq_cal_divider(freq); ++ if (divider == 0) ++ return -EINVAL; ++ flag = ((divider & ~0xFFFF) ? TIMER_FLAG_32BIT : TIMER_FLAG_16BIT) ++ | (is_cyclic ? TIMER_FLAG_CYCLIC : TIMER_FLAG_ONCE) ++ | (is_ext_src ? TIMER_FLAG_EXT_SRC : TIMER_FLAG_INT_SRC) ++ | TIMER_FLAG_TIMER | TIMER_FLAG_DOWN ++ | TIMER_FLAG_MASK_HANDLE(handle_flag); ++ ++ printk(KERN_INFO "lq_set_timer(%d, %d), divider = %lu\n", ++ timer, freq, divider); ++ return lq_request_timer(timer, flag, divider, arg1, arg2); ++} ++EXPORT_SYMBOL(lq_set_timer); ++ ++int lq_set_counter(unsigned int timer, unsigned int flag, u32 reload, ++ unsigned long arg1, unsigned long arg2) ++{ ++ printk(KERN_INFO "lq_set_counter(%d, %#x, %d)\n", timer, flag, reload); ++ return lq_request_timer(timer, flag, reload, arg1, arg2); ++} ++EXPORT_SYMBOL(lq_set_counter); ++ ++static int gptu_ioctl(struct inode *inode, struct file *file, unsigned int cmd, ++ unsigned long arg) ++{ ++ int ret; ++ struct gptu_ioctl_param param; ++ ++ if (!access_ok(VERIFY_READ, arg, sizeof(struct gptu_ioctl_param))) ++ return -EFAULT; ++ copy_from_user(¶m, (void *) arg, sizeof(param)); ++ ++ if ((((cmd == GPTU_REQUEST_TIMER || cmd == GPTU_SET_TIMER ++ || GPTU_SET_COUNTER) && param.timer < 2) ++ || cmd == GPTU_GET_COUNT_VALUE || cmd == GPTU_CALCULATE_DIVIDER) ++ && !access_ok(VERIFY_WRITE, arg, ++ sizeof(struct gptu_ioctl_param))) ++ return -EFAULT; ++ ++ switch (cmd) { ++ case GPTU_REQUEST_TIMER: ++ ret = lq_request_timer(param.timer, param.flag, param.value, ++ (unsigned long) param.pid, ++ (unsigned long) param.sig); ++ if (ret > 0) { ++ copy_to_user(&((struct gptu_ioctl_param *) arg)-> ++ timer, &ret, sizeof(&ret)); ++ ret = 0; ++ } ++ break; ++ case GPTU_FREE_TIMER: ++ ret = lq_free_timer(param.timer); ++ break; ++ case GPTU_START_TIMER: ++ ret = lq_start_timer(param.timer, param.flag); ++ break; ++ case GPTU_STOP_TIMER: ++ ret = lq_stop_timer(param.timer); ++ break; ++ case GPTU_GET_COUNT_VALUE: ++ ret = lq_get_count_value(param.timer, ¶m.value); ++ if (!ret) ++ copy_to_user(&((struct gptu_ioctl_param *) arg)-> ++ value, ¶m.value, ++ sizeof(param.value)); ++ break; ++ case GPTU_CALCULATE_DIVIDER: ++ param.value = lq_cal_divider(param.value); ++ if (param.value == 0) ++ ret = -EINVAL; ++ else { ++ copy_to_user(&((struct gptu_ioctl_param *) arg)-> ++ value, ¶m.value, ++ sizeof(param.value)); ++ ret = 0; ++ } ++ break; ++ case GPTU_SET_TIMER: ++ ret = lq_set_timer(param.timer, param.value, ++ TIMER_FLAG_MASK_STOP(param.flag) != ++ TIMER_FLAG_ONCE ? 1 : 0, ++ TIMER_FLAG_MASK_SRC(param.flag) == ++ TIMER_FLAG_EXT_SRC ? 1 : 0, ++ TIMER_FLAG_MASK_HANDLE(param.flag) == ++ TIMER_FLAG_SIGNAL ? TIMER_FLAG_SIGNAL : ++ TIMER_FLAG_NO_HANDLE, ++ (unsigned long) param.pid, ++ (unsigned long) param.sig); ++ if (ret > 0) { ++ copy_to_user(&((struct gptu_ioctl_param *) arg)-> ++ timer, &ret, sizeof(&ret)); ++ ret = 0; ++ } ++ break; ++ case GPTU_SET_COUNTER: ++ lq_set_counter(param.timer, param.flag, param.value, 0, 0); ++ if (ret > 0) { ++ copy_to_user(&((struct gptu_ioctl_param *) arg)-> ++ timer, &ret, sizeof(&ret)); ++ ret = 0; ++ } ++ break; ++ default: ++ ret = -ENOTTY; ++ } ++ ++ return ret; ++} ++ ++static int gptu_open(struct inode *inode, struct file *file) ++{ ++ return 0; ++} ++ ++static int gptu_release(struct inode *inode, struct file *file) ++{ ++ return 0; ++} ++ ++int __init lq_gptu_init(void) ++{ ++ int ret; ++ unsigned int i; ++ ++ lq_w32(0, LQ_GPTU_IRNEN); ++ lq_w32(0xfff, LQ_GPTU_IRNCR); ++ ++ memset(&timer_dev, 0, sizeof(timer_dev)); ++ mutex_init(&timer_dev.gptu_mutex); ++ ++ lq_enable_gptu(); ++ timer_dev.number_of_timers = GPTU_ID_CFG * 2; ++ lq_disable_gptu(); ++ if (timer_dev.number_of_timers > MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2) ++ timer_dev.number_of_timers = MAX_NUM_OF_32BIT_TIMER_BLOCKS * 2; ++ printk(KERN_INFO "gptu: totally %d 16-bit timers/counters\n", timer_dev.number_of_timers); ++ ++ ret = misc_register(&gptu_miscdev); ++ if (ret) { ++ printk(KERN_ERR "gptu: can't misc_register, get error %d\n", -ret); ++ return ret; ++ } else { ++ printk(KERN_INFO "gptu: misc_register on minor %d\n", gptu_miscdev.minor); ++ } ++ ++ for (i = 0; i < timer_dev.number_of_timers; i++) { ++ ret = request_irq(TIMER_INTERRUPT + i, timer_irq_handler, IRQF_TIMER, gptu_miscdev.name, &timer_dev.timer[i]); ++ if (ret) { ++ for (; i >= 0; i--) ++ free_irq(TIMER_INTERRUPT + i, &timer_dev.timer[i]); ++ misc_deregister(&gptu_miscdev); ++ printk(KERN_ERR "gptu: failed in requesting irq (%d), get error %d\n", i, -ret); ++ return ret; ++ } else { ++ timer_dev.timer[i].irq = TIMER_INTERRUPT + i; ++ disable_irq(timer_dev.timer[i].irq); ++ printk(KERN_INFO "gptu: succeeded to request irq %d\n", timer_dev.timer[i].irq); ++ } ++ } ++ ++ return 0; ++} ++ ++void __exit lq_gptu_exit(void) ++{ ++ unsigned int i; ++ ++ for (i = 0; i < timer_dev.number_of_timers; i++) { ++ if (timer_dev.timer[i].f_irq_on) ++ disable_irq(timer_dev.timer[i].irq); ++ free_irq(timer_dev.timer[i].irq, &timer_dev.timer[i]); ++ } ++ lq_disable_gptu(); ++ misc_deregister(&gptu_miscdev); ++} ++ ++module_init(lq_gptu_init); ++module_exit(lq_gptu_exit); +--- /dev/null ++++ b/arch/mips/lantiq/xway/timer.h +@@ -0,0 +1,155 @@ ++#ifndef __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ ++#define __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ ++ ++ ++/****************************************************************************** ++ Copyright (c) 2002, Infineon Technologies. All rights reserved. ++ ++ No Warranty ++ Because the program is licensed free of charge, there is no warranty for ++ the program, to the extent permitted by applicable law. Except when ++ otherwise stated in writing the copyright holders and/or other parties ++ provide the program "as is" without warranty of any kind, either ++ expressed or implied, including, but not limited to, the implied ++ warranties of merchantability and fitness for a particular purpose. The ++ entire risk as to the quality and performance of the program is with ++ you. should the program prove defective, you assume the cost of all ++ necessary servicing, repair or correction. ++ ++ In no event unless required by applicable law or agreed to in writing ++ will any copyright holder, or any other party who may modify and/or ++ redistribute the program as permitted above, be liable to you for ++ damages, including any general, special, incidental or consequential ++ damages arising out of the use or inability to use the program ++ (including but not limited to loss of data or data being rendered ++ inaccurate or losses sustained by you or third parties or a failure of ++ the program to operate with any other programs), even if such holder or ++ other party has been advised of the possibility of such damages. ++******************************************************************************/ ++ ++ ++/* ++ * #################################### ++ * Definition ++ * #################################### ++ */ ++ ++/* ++ * Available Timer/Counter Index ++ */ ++#define TIMER(n, X) (n * 2 + (X ? 1 : 0)) ++#define TIMER_ANY 0x00 ++#define TIMER1A TIMER(1, 0) ++#define TIMER1B TIMER(1, 1) ++#define TIMER2A TIMER(2, 0) ++#define TIMER2B TIMER(2, 1) ++#define TIMER3A TIMER(3, 0) ++#define TIMER3B TIMER(3, 1) ++ ++/* ++ * Flag of Timer/Counter ++ * These flags specify the way in which timer is configured. ++ */ ++/* Bit size of timer/counter. */ ++#define TIMER_FLAG_16BIT 0x0000 ++#define TIMER_FLAG_32BIT 0x0001 ++/* Switch between timer and counter. */ ++#define TIMER_FLAG_TIMER 0x0000 ++#define TIMER_FLAG_COUNTER 0x0002 ++/* Stop or continue when overflowing/underflowing. */ ++#define TIMER_FLAG_ONCE 0x0000 ++#define TIMER_FLAG_CYCLIC 0x0004 ++/* Count up or counter down. */ ++#define TIMER_FLAG_UP 0x0000 ++#define TIMER_FLAG_DOWN 0x0008 ++/* Count on specific level or edge. */ ++#define TIMER_FLAG_HIGH_LEVEL_SENSITIVE 0x0000 ++#define TIMER_FLAG_LOW_LEVEL_SENSITIVE 0x0040 ++#define TIMER_FLAG_RISE_EDGE 0x0010 ++#define TIMER_FLAG_FALL_EDGE 0x0020 ++#define TIMER_FLAG_ANY_EDGE 0x0030 ++/* Signal is syncronous to module clock or not. */ ++#define TIMER_FLAG_UNSYNC 0x0000 ++#define TIMER_FLAG_SYNC 0x0080 ++/* Different interrupt handle type. */ ++#define TIMER_FLAG_NO_HANDLE 0x0000 ++#if defined(__KERNEL__) ++ #define TIMER_FLAG_CALLBACK_IN_IRQ 0x0100 ++#endif // defined(__KERNEL__) ++#define TIMER_FLAG_SIGNAL 0x0300 ++/* Internal clock source or external clock source */ ++#define TIMER_FLAG_INT_SRC 0x0000 ++#define TIMER_FLAG_EXT_SRC 0x1000 ++ ++ ++/* ++ * ioctl Command ++ */ ++#define GPTU_REQUEST_TIMER 0x01 /* General method to setup timer/counter. */ ++#define GPTU_FREE_TIMER 0x02 /* Free timer/counter. */ ++#define GPTU_START_TIMER 0x03 /* Start or resume timer/counter. */ ++#define GPTU_STOP_TIMER 0x04 /* Suspend timer/counter. */ ++#define GPTU_GET_COUNT_VALUE 0x05 /* Get current count value. */ ++#define GPTU_CALCULATE_DIVIDER 0x06 /* Calculate timer divider from given freq.*/ ++#define GPTU_SET_TIMER 0x07 /* Simplified method to setup timer. */ ++#define GPTU_SET_COUNTER 0x08 /* Simplified method to setup counter. */ ++ ++/* ++ * Data Type Used to Call ioctl ++ */ ++struct gptu_ioctl_param { ++ unsigned int timer; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and * ++ * GPTU_SET_COUNTER, this field is ID of expected * ++ * timer/counter. If it's zero, a timer/counter would * ++ * be dynamically allocated and ID would be stored in * ++ * this field. * ++ * In command GPTU_GET_COUNT_VALUE, this field is * ++ * ignored. * ++ * In other command, this field is ID of timer/counter * ++ * allocated. */ ++ unsigned int flag; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and * ++ * GPTU_SET_COUNTER, this field contains flags to * ++ * specify how to configure timer/counter. * ++ * In command GPTU_START_TIMER, zero indicate start * ++ * and non-zero indicate resume timer/counter. * ++ * In other command, this field is ignored. */ ++ unsigned long value; /* In command GPTU_REQUEST_TIMER, this field contains * ++ * init/reload value. * ++ * In command GPTU_SET_TIMER, this field contains * ++ * frequency (0.001Hz) of timer. * ++ * In command GPTU_GET_COUNT_VALUE, current count * ++ * value would be stored in this field. * ++ * In command GPTU_CALCULATE_DIVIDER, this field * ++ * contains frequency wanted, and after calculation, * ++ * divider would be stored in this field to overwrite * ++ * the frequency. * ++ * In other command, this field is ignored. */ ++ int pid; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, * ++ * if signal is required, this field contains process * ++ * ID to which signal would be sent. * ++ * In other command, this field is ignored. */ ++ int sig; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, * ++ * if signal is required, this field contains signal * ++ * number which would be sent. * ++ * In other command, this field is ignored. */ ++}; ++ ++/* ++ * #################################### ++ * Data Type ++ * #################################### ++ */ ++typedef void (*timer_callback)(unsigned long arg); ++ ++extern int ifxmips_request_timer(unsigned int, unsigned int, unsigned long, unsigned long, unsigned long); ++extern int ifxmips_free_timer(unsigned int); ++extern int ifxmips_start_timer(unsigned int, int); ++extern int ifxmips_stop_timer(unsigned int); ++extern int ifxmips_reset_counter_flags(u32 timer, u32 flags); ++extern int ifxmips_get_count_value(unsigned int, unsigned long *); ++extern u32 ifxmips_cal_divider(unsigned long); ++extern int ifxmips_set_timer(unsigned int, unsigned int, int, int, unsigned int, unsigned long, unsigned long); ++extern int ifxmips_set_counter(unsigned int timer, unsigned int flag, ++ u32 reload, unsigned long arg1, unsigned long arg2); ++ ++#endif /* __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ */ +--- /dev/null ++++ b/arch/mips/lantiq/xway/Makefile +@@ -0,0 +1,5 @@ ++obj-y := pmu.o prom.o dma.o timer.o reset.o clk-xway.o ++obj-y += gpio.o gpio_ebu.o gpio_leds.o devices.o ++obj-$(CONFIG_LANTIQ_MACH_EASY50812) += mach-easy50812.o ++obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o ++obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o +--- /dev/null ++++ b/arch/mips/lantiq/xway/clk-xway.c +@@ -0,0 +1,219 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2007 Xu Liang, infineon ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#include ++ ++#include ++ ++static unsigned int lq_ram_clocks[] = {CLOCK_167M, CLOCK_133M, CLOCK_111M, CLOCK_83M }; ++#define DDR_HZ lq_ram_clocks[lq_r32(LQ_CGU_SYS) & 0x3] ++ ++#define BASIC_FREQUENCY_1 35328000 ++#define BASIC_FREQUENCY_2 36000000 ++#define BASIS_REQUENCY_USB 12000000 ++ ++#define GET_BITS(x, msb, lsb) (((x) & ((1 << ((msb) + 1)) - 1)) >> (lsb)) ++ ++#define CGU_PLL0_PHASE_DIVIDER_ENABLE (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 31)) ++#define CGU_PLL0_BYPASS (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 30)) ++#define CGU_PLL0_CFG_DSMSEL (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 28)) ++#define CGU_PLL0_CFG_FRAC_EN (lq_r32(LQ_CGU_PLL0_CFG) & (1 << 27)) ++#define CGU_PLL1_SRC (lq_r32(LQ_CGU_PLL1_CFG) & (1 << 31)) ++#define CGU_PLL2_PHASE_DIVIDER_ENABLE (lq_r32(LQ_CGU_PLL2_CFG) & (1 << 20)) ++#define CGU_SYS_FPI_SEL (1 << 6) ++#define CGU_SYS_DDR_SEL 0x3 ++#define CGU_PLL0_SRC (1 << 29) ++ ++#define CGU_PLL0_CFG_PLLK GET_BITS(*LQ_CGU_PLL0_CFG, 26, 17) ++#define CGU_PLL0_CFG_PLLN GET_BITS(*LQ_CGU_PLL0_CFG, 12, 6) ++#define CGU_PLL0_CFG_PLLM GET_BITS(*LQ_CGU_PLL0_CFG, 5, 2) ++#define CGU_PLL2_SRC GET_BITS(*LQ_CGU_PLL2_CFG, 18, 17) ++#define CGU_PLL2_CFG_INPUT_DIV GET_BITS(*LQ_CGU_PLL2_CFG, 16, 13) ++ ++#define LQ_GPTU_GPT_CLC ((u32 *)(LQ_GPTU_BASE_ADDR + 0x0000)) ++#define LQ_CGU_PLL0_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x0004)) ++#define LQ_CGU_PLL1_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x0008)) ++#define LQ_CGU_PLL2_CFG ((u32 *)(LQ_CGU_BASE_ADDR + 0x000C)) ++#define LQ_CGU_SYS ((u32 *)(LQ_CGU_BASE_ADDR + 0x0010)) ++#define LQ_CGU_UPDATE ((u32 *)(LQ_CGU_BASE_ADDR + 0x0014)) ++#define LQ_CGU_IF_CLK ((u32 *)(LQ_CGU_BASE_ADDR + 0x0018)) ++#define LQ_CGU_OSC_CON ((u32 *)(LQ_CGU_BASE_ADDR + 0x001C)) ++#define LQ_CGU_SMD ((u32 *)(LQ_CGU_BASE_ADDR + 0x0020)) ++#define LQ_CGU_CT1SR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0028)) ++#define LQ_CGU_CT2SR ((u32 *)(LQ_CGU_BASE_ADDR + 0x002C)) ++#define LQ_CGU_PCMCR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0030)) ++#define LQ_CGU_PCI_CR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0034)) ++#define LQ_CGU_PD_PC ((u32 *)(LQ_CGU_BASE_ADDR + 0x0038)) ++#define LQ_CGU_FMR ((u32 *)(LQ_CGU_BASE_ADDR + 0x003C)) ++ ++static unsigned int lq_get_pll0_fdiv(void); ++ ++static inline unsigned int ++get_input_clock(int pll) ++{ ++ switch (pll) { ++ case 0: ++ if (lq_r32(LQ_CGU_PLL0_CFG) & CGU_PLL0_SRC) ++ return BASIS_REQUENCY_USB; ++ else if (CGU_PLL0_PHASE_DIVIDER_ENABLE) ++ return BASIC_FREQUENCY_1; ++ else ++ return BASIC_FREQUENCY_2; ++ case 1: ++ if (CGU_PLL1_SRC) ++ return BASIS_REQUENCY_USB; ++ else if (CGU_PLL0_PHASE_DIVIDER_ENABLE) ++ return BASIC_FREQUENCY_1; ++ else ++ return BASIC_FREQUENCY_2; ++ case 2: ++ switch (CGU_PLL2_SRC) { ++ case 0: ++ return lq_get_pll0_fdiv(); ++ case 1: ++ return CGU_PLL2_PHASE_DIVIDER_ENABLE ? ++ BASIC_FREQUENCY_1 : ++ BASIC_FREQUENCY_2; ++ case 2: ++ return BASIS_REQUENCY_USB; ++ } ++ default: ++ return 0; ++ } ++} ++ ++static inline unsigned int ++cal_dsm(int pll, unsigned int num, unsigned int den) ++{ ++ u64 res, clock = get_input_clock(pll); ++ res = num * clock; ++ do_div(res, den); ++ return res; ++} ++ ++static inline unsigned int ++mash_dsm(int pll, unsigned int M, unsigned int N, unsigned int K) ++{ ++ unsigned int num = ((N + 1) << 10) + K; ++ unsigned int den = (M + 1) << 10; ++ return cal_dsm(pll, num, den); ++} ++ ++static inline unsigned int ++ssff_dsm_1(int pll, unsigned int M, unsigned int N, unsigned int K) ++{ ++ unsigned int num = ((N + 1) << 11) + K + 512; ++ unsigned int den = (M + 1) << 11; ++ return cal_dsm(pll, num, den); ++} ++ ++static inline unsigned int ++ssff_dsm_2(int pll, unsigned int M, unsigned int N, unsigned int K) ++{ ++ unsigned int num = K >= 512 ? ++ ((N + 1) << 12) + K - 512 : ((N + 1) << 12) + K + 3584; ++ unsigned int den = (M + 1) << 12; ++ return cal_dsm(pll, num, den); ++} ++ ++static inline unsigned int ++dsm(int pll, unsigned int M, unsigned int N, unsigned int K, ++ unsigned int dsmsel, unsigned int phase_div_en) ++{ ++ if (!dsmsel) ++ return mash_dsm(pll, M, N, K); ++ else if (!phase_div_en) ++ return mash_dsm(pll, M, N, K); ++ else ++ return ssff_dsm_2(pll, M, N, K); ++} ++ ++static inline unsigned int ++lq_get_pll0_fosc(void) ++{ ++ if (CGU_PLL0_BYPASS) ++ return get_input_clock(0); ++ else ++ return !CGU_PLL0_CFG_FRAC_EN ++ ? dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, 0, CGU_PLL0_CFG_DSMSEL, ++ CGU_PLL0_PHASE_DIVIDER_ENABLE) ++ : dsm(0, CGU_PLL0_CFG_PLLM, CGU_PLL0_CFG_PLLN, CGU_PLL0_CFG_PLLK, ++ CGU_PLL0_CFG_DSMSEL, CGU_PLL0_PHASE_DIVIDER_ENABLE); ++} ++ ++static unsigned int ++lq_get_pll0_fdiv(void) ++{ ++ unsigned int div = CGU_PLL2_CFG_INPUT_DIV + 1; ++ return (lq_get_pll0_fosc() + (div >> 1)) / div; ++} ++ ++unsigned int ++lq_get_io_region_clock(void) ++{ ++ unsigned int ret = lq_get_pll0_fosc(); ++ switch (lq_r32(LQ_CGU_PLL2_CFG) & CGU_SYS_DDR_SEL) { ++ default: ++ case 0: ++ return (ret + 1) / 2; ++ case 1: ++ return (ret * 2 + 2) / 5; ++ case 2: ++ return (ret + 1) / 3; ++ case 3: ++ return (ret + 2) / 4; ++ } ++} ++EXPORT_SYMBOL(lq_get_io_region_clock); ++ ++unsigned int ++lq_get_fpi_bus_clock(int fpi) ++{ ++ unsigned int ret = lq_get_io_region_clock(); ++ if ((fpi == 2) && (lq_r32(LQ_CGU_SYS) & CGU_SYS_FPI_SEL)) ++ ret >>= 1; ++ return ret; ++} ++EXPORT_SYMBOL(lq_get_fpi_bus_clock); ++ ++unsigned int ++lq_get_cpu_hz(void) ++{ ++ switch (lq_r32(LQ_CGU_SYS) & 0xc) ++ { ++ case 0: ++ return CLOCK_333M; ++ case 4: ++ return DDR_HZ; ++ case 8: ++ return DDR_HZ << 1; ++ default: ++ return DDR_HZ >> 1; ++ } ++} ++EXPORT_SYMBOL(lq_get_cpu_hz); ++ ++unsigned int ++lq_get_fpi_hz(void) ++{ ++ unsigned int ddr_clock = DDR_HZ; ++ if (lq_r32(LQ_CGU_SYS) & 0x40) ++ return ddr_clock >> 1; ++ return ddr_clock; ++} ++EXPORT_SYMBOL(lq_get_fpi_hz); ++ ++ +--- /dev/null ++++ b/arch/mips/lantiq/xway/gpio.c +@@ -0,0 +1,203 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_GPIO0_BASE_ADDR 0x1E100B10 ++#define LQ_GPIO1_BASE_ADDR 0x1E100B40 ++#define LQ_GPIO_SIZE 0x30 ++ ++#define LQ_GPIO_OUT 0x00 ++#define LQ_GPIO_IN 0x04 ++#define LQ_GPIO_DIR 0x08 ++#define LQ_GPIO_ALTSEL0 0x0C ++#define LQ_GPIO_ALTSEL1 0x10 ++#define LQ_GPIO_OD 0x14 ++ ++#define PINS_PER_PORT 16 ++ ++#define lq_gpio_getbit(m, r, p) !!(lq_r32(m + r) & (1 << p)) ++#define lq_gpio_setbit(m, r, p) lq_w32_mask(0, (1 << p), m + r) ++#define lq_gpio_clearbit(m, r, p) lq_w32_mask((1 << p), 0, m + r) ++ ++struct lq_gpio ++{ ++ void __iomem *membase; ++ struct gpio_chip chip; ++}; ++ ++int ++gpio_to_irq(unsigned int gpio) ++{ ++ return -EINVAL; ++} ++EXPORT_SYMBOL(gpio_to_irq); ++ ++int ++lq_gpio_setconfig(unsigned int pin, unsigned int reg, unsigned int val) ++{ ++ void __iomem *membase = (void*)KSEG1ADDR(LQ_GPIO0_BASE_ADDR); ++ if(pin >= (2 * PINS_PER_PORT)) ++ return -EINVAL; ++ if(pin >= PINS_PER_PORT) ++ { ++ pin -= PINS_PER_PORT; ++ membase += LQ_GPIO_SIZE; ++ } ++ if(val) ++ lq_w32_mask(0, (1 << pin), membase + reg); ++ else ++ lq_w32_mask((1 << pin), 0, membase + reg); ++ return 0; ++} ++EXPORT_SYMBOL(lq_gpio_setconfig); ++ ++int ++lq_gpio_request(unsigned int pin, unsigned int alt0, ++ unsigned int alt1, unsigned int dir, const char *name) ++{ ++ void __iomem *membase = (void*)KSEG1ADDR(LQ_GPIO0_BASE_ADDR); ++ if(pin >= (2 * PINS_PER_PORT)) ++ return -EINVAL; ++ if(gpio_request(pin, name)) ++ { ++ printk("failed to register %s gpio\n", name); ++ return -EBUSY; ++ } ++ gpio_direction_output(pin, dir); ++ if(pin >= PINS_PER_PORT) ++ { ++ pin -= PINS_PER_PORT; ++ membase += LQ_GPIO_SIZE; ++ } ++ if(alt0) ++ lq_gpio_setbit(membase, LQ_GPIO_ALTSEL0, pin); ++ else ++ lq_gpio_clearbit(membase, LQ_GPIO_ALTSEL0, pin); ++ if(alt1) ++ lq_gpio_setbit(membase, LQ_GPIO_ALTSEL1, pin); ++ else ++ lq_gpio_clearbit(membase, LQ_GPIO_ALTSEL1, pin); ++ return 0; ++} ++EXPORT_SYMBOL(lq_gpio_request); ++ ++static void ++lq_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) ++{ ++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip); ++ if(value) ++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_OUT, offset); ++ else ++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_OUT, offset); ++} ++ ++static int ++lq_gpio_get(struct gpio_chip *chip, unsigned int offset) ++{ ++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip); ++ return lq_gpio_getbit(lq_gpio->membase, LQ_GPIO_IN, offset); ++} ++ ++static int ++lq_gpio_direction_input(struct gpio_chip *chip, unsigned int offset) ++{ ++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip); ++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_OD, offset); ++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_DIR, offset); ++ return 0; ++} ++ ++static int ++lq_gpio_direction_output(struct gpio_chip *chip, unsigned int offset, int value) ++{ ++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip); ++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_OD, offset); ++ lq_gpio_setbit(lq_gpio->membase, LQ_GPIO_DIR, offset); ++ lq_gpio_set(chip, offset, value); ++ return 0; ++} ++ ++static int ++lq_gpio_req(struct gpio_chip *chip, unsigned offset) ++{ ++ struct lq_gpio *lq_gpio = container_of(chip, struct lq_gpio, chip); ++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_ALTSEL0, offset); ++ lq_gpio_clearbit(lq_gpio->membase, LQ_GPIO_ALTSEL1, offset); ++ return 0; ++} ++ ++static int ++lq_gpio_probe(struct platform_device *pdev) ++{ ++ struct lq_gpio *lq_gpio = kzalloc(sizeof(struct lq_gpio), GFP_KERNEL); ++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ int ret = 0; ++ if(!res) ++ { ++ ret = -ENOENT; ++ goto err_free; ++ } ++ res = request_mem_region(res->start, resource_size(res), ++ dev_name(&pdev->dev)); ++ if(!res) ++ { ++ ret = -EBUSY; ++ goto err_free; ++ } ++ lq_gpio->membase = ioremap_nocache(res->start, resource_size(res)); ++ if(!lq_gpio->membase) ++ { ++ ret = -ENOMEM; ++ goto err_release_mem_region; ++ } ++ lq_gpio->chip.label = "lq_gpio"; ++ lq_gpio->chip.direction_input = lq_gpio_direction_input; ++ lq_gpio->chip.direction_output = lq_gpio_direction_output; ++ lq_gpio->chip.get = lq_gpio_get; ++ lq_gpio->chip.set = lq_gpio_set; ++ lq_gpio->chip.request = lq_gpio_req; ++ lq_gpio->chip.base = PINS_PER_PORT * pdev->id; ++ lq_gpio->chip.ngpio = PINS_PER_PORT; ++ platform_set_drvdata(pdev, lq_gpio); ++ ret = gpiochip_add(&lq_gpio->chip); ++ if(!ret) ++ return 0; ++ ++ iounmap(lq_gpio->membase); ++err_release_mem_region: ++ release_mem_region(res->start, resource_size(res)); ++err_free: ++ kfree(lq_gpio); ++ return ret; ++} ++ ++static struct platform_driver ++lq_gpio_driver = { ++ .probe = lq_gpio_probe, ++ .driver = { ++ .name = "lq_gpio", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init ++lq_gpio_init(void) ++{ ++ int ret = platform_driver_register(&lq_gpio_driver); ++ if(ret) ++ printk(KERN_INFO "lq_gpio : Error registering platfom driver!"); ++ return ret; ++} ++ ++arch_initcall(lq_gpio_init); +--- /dev/null ++++ b/arch/mips/lantiq/xway/reset.c +@@ -0,0 +1,53 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_RCU_RST ((u32 *)(LQ_RCU_BASE_ADDR + 0x0010)) ++#define LQ_RCU_RST_ALL 0x40000000 ++ ++static void ++lq_machine_restart(char *command) ++{ ++ printk(KERN_NOTICE "System restart\n"); ++ local_irq_disable(); ++ lq_w32(lq_r32(LQ_RCU_RST) | LQ_RCU_RST_ALL, LQ_RCU_RST); ++ for(;;); ++} ++ ++static void ++lq_machine_halt(void) ++{ ++ printk(KERN_NOTICE "System halted.\n"); ++ local_irq_disable(); ++ for(;;); ++} ++ ++static void ++lq_machine_power_off(void) ++{ ++ printk(KERN_NOTICE "Please turn off the power now.\n"); ++ local_irq_disable(); ++ for(;;); ++} ++ ++static int __init ++mips_reboot_setup(void) ++{ ++ _machine_restart = lq_machine_restart; ++ _machine_halt = lq_machine_halt; ++ pm_power_off = lq_machine_power_off; ++ return 0; ++} ++ ++arch_initcall(mips_reboot_setup); diff --git a/target/linux/lantiq/patches/105-header_xway.patch b/target/linux/lantiq/patches/105-header_xway.patch new file mode 100644 index 0000000000..f41e335a6c --- /dev/null +++ b/target/linux/lantiq/patches/105-header_xway.patch @@ -0,0 +1,565 @@ +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/xway/irq.h +@@ -0,0 +1,18 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef __LANTIQ_IRQ_H ++#define __LANTIQ_IRQ_H ++ ++#include ++ ++#define NR_IRQS 256 ++ ++#include_next ++ ++#endif +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/lantiq_timer.h +@@ -0,0 +1,155 @@ ++#ifndef __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ ++#define __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ ++ ++ ++/****************************************************************************** ++ Copyright (c) 2002, Infineon Technologies. All rights reserved. ++ ++ No Warranty ++ Because the program is licensed free of charge, there is no warranty for ++ the program, to the extent permitted by applicable law. Except when ++ otherwise stated in writing the copyright holders and/or other parties ++ provide the program "as is" without warranty of any kind, either ++ expressed or implied, including, but not limited to, the implied ++ warranties of merchantability and fitness for a particular purpose. The ++ entire risk as to the quality and performance of the program is with ++ you. should the program prove defective, you assume the cost of all ++ necessary servicing, repair or correction. ++ ++ In no event unless required by applicable law or agreed to in writing ++ will any copyright holder, or any other party who may modify and/or ++ redistribute the program as permitted above, be liable to you for ++ damages, including any general, special, incidental or consequential ++ damages arising out of the use or inability to use the program ++ (including but not limited to loss of data or data being rendered ++ inaccurate or losses sustained by you or third parties or a failure of ++ the program to operate with any other programs), even if such holder or ++ other party has been advised of the possibility of such damages. ++******************************************************************************/ ++ ++ ++/* ++ * #################################### ++ * Definition ++ * #################################### ++ */ ++ ++/* ++ * Available Timer/Counter Index ++ */ ++#define TIMER(n, X) (n * 2 + (X ? 1 : 0)) ++#define TIMER_ANY 0x00 ++#define TIMER1A TIMER(1, 0) ++#define TIMER1B TIMER(1, 1) ++#define TIMER2A TIMER(2, 0) ++#define TIMER2B TIMER(2, 1) ++#define TIMER3A TIMER(3, 0) ++#define TIMER3B TIMER(3, 1) ++ ++/* ++ * Flag of Timer/Counter ++ * These flags specify the way in which timer is configured. ++ */ ++/* Bit size of timer/counter. */ ++#define TIMER_FLAG_16BIT 0x0000 ++#define TIMER_FLAG_32BIT 0x0001 ++/* Switch between timer and counter. */ ++#define TIMER_FLAG_TIMER 0x0000 ++#define TIMER_FLAG_COUNTER 0x0002 ++/* Stop or continue when overflowing/underflowing. */ ++#define TIMER_FLAG_ONCE 0x0000 ++#define TIMER_FLAG_CYCLIC 0x0004 ++/* Count up or counter down. */ ++#define TIMER_FLAG_UP 0x0000 ++#define TIMER_FLAG_DOWN 0x0008 ++/* Count on specific level or edge. */ ++#define TIMER_FLAG_HIGH_LEVEL_SENSITIVE 0x0000 ++#define TIMER_FLAG_LOW_LEVEL_SENSITIVE 0x0040 ++#define TIMER_FLAG_RISE_EDGE 0x0010 ++#define TIMER_FLAG_FALL_EDGE 0x0020 ++#define TIMER_FLAG_ANY_EDGE 0x0030 ++/* Signal is syncronous to module clock or not. */ ++#define TIMER_FLAG_UNSYNC 0x0000 ++#define TIMER_FLAG_SYNC 0x0080 ++/* Different interrupt handle type. */ ++#define TIMER_FLAG_NO_HANDLE 0x0000 ++#if defined(__KERNEL__) ++ #define TIMER_FLAG_CALLBACK_IN_IRQ 0x0100 ++#endif // defined(__KERNEL__) ++#define TIMER_FLAG_SIGNAL 0x0300 ++/* Internal clock source or external clock source */ ++#define TIMER_FLAG_INT_SRC 0x0000 ++#define TIMER_FLAG_EXT_SRC 0x1000 ++ ++ ++/* ++ * ioctl Command ++ */ ++#define GPTU_REQUEST_TIMER 0x01 /* General method to setup timer/counter. */ ++#define GPTU_FREE_TIMER 0x02 /* Free timer/counter. */ ++#define GPTU_START_TIMER 0x03 /* Start or resume timer/counter. */ ++#define GPTU_STOP_TIMER 0x04 /* Suspend timer/counter. */ ++#define GPTU_GET_COUNT_VALUE 0x05 /* Get current count value. */ ++#define GPTU_CALCULATE_DIVIDER 0x06 /* Calculate timer divider from given freq.*/ ++#define GPTU_SET_TIMER 0x07 /* Simplified method to setup timer. */ ++#define GPTU_SET_COUNTER 0x08 /* Simplified method to setup counter. */ ++ ++/* ++ * Data Type Used to Call ioctl ++ */ ++struct gptu_ioctl_param { ++ unsigned int timer; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and * ++ * GPTU_SET_COUNTER, this field is ID of expected * ++ * timer/counter. If it's zero, a timer/counter would * ++ * be dynamically allocated and ID would be stored in * ++ * this field. * ++ * In command GPTU_GET_COUNT_VALUE, this field is * ++ * ignored. * ++ * In other command, this field is ID of timer/counter * ++ * allocated. */ ++ unsigned int flag; /* In command GPTU_REQUEST_TIMER, GPTU_SET_TIMER, and * ++ * GPTU_SET_COUNTER, this field contains flags to * ++ * specify how to configure timer/counter. * ++ * In command GPTU_START_TIMER, zero indicate start * ++ * and non-zero indicate resume timer/counter. * ++ * In other command, this field is ignored. */ ++ unsigned long value; /* In command GPTU_REQUEST_TIMER, this field contains * ++ * init/reload value. * ++ * In command GPTU_SET_TIMER, this field contains * ++ * frequency (0.001Hz) of timer. * ++ * In command GPTU_GET_COUNT_VALUE, current count * ++ * value would be stored in this field. * ++ * In command GPTU_CALCULATE_DIVIDER, this field * ++ * contains frequency wanted, and after calculation, * ++ * divider would be stored in this field to overwrite * ++ * the frequency. * ++ * In other command, this field is ignored. */ ++ int pid; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, * ++ * if signal is required, this field contains process * ++ * ID to which signal would be sent. * ++ * In other command, this field is ignored. */ ++ int sig; /* In command GPTU_REQUEST_TIMER and GPTU_SET_TIMER, * ++ * if signal is required, this field contains signal * ++ * number which would be sent. * ++ * In other command, this field is ignored. */ ++}; ++ ++/* ++ * #################################### ++ * Data Type ++ * #################################### ++ */ ++typedef void (*timer_callback)(unsigned long arg); ++ ++extern int ifxmips_request_timer(unsigned int, unsigned int, unsigned long, unsigned long, unsigned long); ++extern int ifxmips_free_timer(unsigned int); ++extern int ifxmips_start_timer(unsigned int, int); ++extern int ifxmips_stop_timer(unsigned int); ++extern int ifxmips_reset_counter_flags(u32 timer, u32 flags); ++extern int ifxmips_get_count_value(unsigned int, unsigned long *); ++extern u32 ifxmips_cal_divider(unsigned long); ++extern int ifxmips_set_timer(unsigned int, unsigned int, int, int, unsigned int, unsigned long, unsigned long); ++extern int ifxmips_set_counter(unsigned int timer, unsigned int flag, ++ u32 reload, unsigned long arg1, unsigned long arg2); ++ ++#endif /* __DANUBE_GPTU_DEV_H__2005_07_26__10_19__ */ +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/xway/xway.h +@@ -0,0 +1,121 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2005 infineon ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++ ++#ifndef _LQ_XWAY_H__ ++#define _LQ_XWAY_H__ ++ ++#include ++ ++/* request a non-gpio and set the PIO config */ ++extern int lq_gpio_request(unsigned int pin, unsigned int alt0, ++ unsigned int alt1, unsigned int dir, const char *name); ++extern int lq_gpio_setconfig(unsigned int pin, unsigned int reg, unsigned int val); ++ ++extern void lq_pmu_enable(unsigned int module); ++extern void lq_pmu_disable(unsigned int module); ++ ++extern unsigned int lq_get_fpi_bus_clock(int bus); ++ ++#define BOARD_SYSTEM_TYPE "LANTIQ" ++ ++/*------------ Chip IDs */ ++#define SOC_ID_DANUBE1 0x129 ++#define SOC_ID_DANUBE2 0x12B ++#define SOC_ID_TWINPASS 0x12D ++#define SOC_ID_ARX188 0x16C ++#define SOC_ID_ARX168 0x16D ++#define SOC_ID_ARX182 0x16F ++ ++/*------------ SoC Types */ ++#define SOC_TYPE_DANUBE 0x01 ++#define SOC_TYPE_TWINPASS 0x02 ++#define SOC_TYPE_AR9 0x03 ++ ++/*------------ ASC0/1 */ ++#define LQ_ASC0_BASE 0x1E100400 ++#define LQ_ASC1_BASE 0x1E100C00 ++#define LQ_ASC_SIZE 0x400 ++ ++/*------------ RCU */ ++#define LQ_RCU_BASE_ADDR 0xBF203000 ++ ++/*------------ GPTU */ ++#define LQ_GPTU_BASE_ADDR 0xB8000300 ++ ++/*------------ EBU */ ++#define LQ_EBU_GPIO_START 0x14000000 ++#define LQ_EBU_GPIO_SIZE 0x1000 ++ ++#define LQ_EBU_BASE_ADDR 0xBE105300 ++ ++#define LQ_EBU_BUSCON0 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0060)) ++#define LQ_EBU_PCC_CON ((u32 *)(LQ_EBU_BASE_ADDR + 0x0090)) ++#define LQ_EBU_PCC_IEN ((u32 *)(LQ_EBU_BASE_ADDR + 0x00A4)) ++#define LQ_EBU_PCC_ISTAT ((u32 *)(LQ_EBU_BASE_ADDR + 0x00A0)) ++#define LQ_EBU_BUSCON1 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0064)) ++#define LQ_EBU_ADDRSEL1 ((u32 *)(LQ_EBU_BASE_ADDR + 0x0024)) ++ ++#define EBU_WRDIS 0x80000000 ++ ++/*------------ CGU */ ++#define LQ_CGU_BASE_ADDR (KSEG1 + 0x1F103000) ++ ++/*------------ PMU */ ++#define LQ_PMU_BASE_ADDR (KSEG1 + 0x1F102000) ++ ++#define PMU_DMA 0x0020 ++#define PMU_USB 0x8041 ++#define PMU_LED 0x0800 ++#define PMU_GPT 0x1000 ++#define PMU_PPE 0x2000 ++#define PMU_FPI 0x4000 ++#define PMU_SWITCH 0x10000000 ++ ++/*------------ ETOP */ ++#define LQ_PPE32_BASE_ADDR 0xBE180000 ++#define LQ_PPE32_SIZE 0x40000 ++ ++/*------------ DMA */ ++#define LQ_DMA_BASE_ADDR 0xBE104100 ++ ++/*------------ PCI */ ++#define PCI_CR_PR_BASE_ADDR (KSEG1 + 0x1E105400) ++#define PCI_CS_PR_BASE_ADDR (KSEG1 + 0x17000000) ++ ++/*------------ WDT */ ++#define LQ_WDT_BASE 0x1F880000 ++#define LQ_WDT_SIZE 0x400 ++ ++/*------------ Serial To Parallel conversion */ ++#define LQ_STP_BASE 0x1E100BB0 ++#define LQ_STP_SIZE 0x40 ++ ++/*------------ GPIO */ ++#define LQ_GPIO0_BASE_ADDR 0x1E100B10 ++#define LQ_GPIO1_BASE_ADDR 0x1E100B40 ++#define LQ_GPIO_SIZE 0x30 ++ ++/*------------ SSC */ ++#define LQ_SSC_BASE_ADDR (KSEG1 + 0x1e100800) ++ ++/*------------ MEI */ ++#define LQ_MEI_BASE_ADDR (KSEG1 + 0x1E116000) ++ ++/*------------ DEU */ ++#define LQ_DEU_BASE (KSEG1 + 0x1E103100) ++ ++/*------------ MPS */ ++#define LQ_MPS_BASE_ADDR (KSEG1 + 0x1F107000) ++#define LQ_MPS_CHIPID ((u32 *)(LQ_MPS_BASE_ADDR + 0x0344)) ++ ++#endif ++ ++#endif +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/xway/xway_dma.h +@@ -0,0 +1,144 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2005 infineon ++ * Copyright (C) 2007 John Crispin ++ * ++ */ ++#ifndef _LQ_DMA_H__ ++#define _LQ_DMA_H__ ++ ++#define RCV_INT 1 ++#define TX_BUF_FULL_INT 2 ++#define TRANSMIT_CPT_INT 4 ++#define LQ_DMA_CH_ON 1 ++#define LQ_DMA_CH_OFF 0 ++#define LQ_DMA_CH_DEFAULT_WEIGHT 100 ++ ++enum attr_t{ ++ TX = 0, ++ RX = 1, ++ RESERVED = 2, ++ DEFAULT = 3, ++}; ++ ++#define DMA_OWN 1 ++#define CPU_OWN 0 ++#define DMA_MAJOR 250 ++ ++#define DMA_DESC_OWN_CPU 0x0 ++#define DMA_DESC_OWN_DMA 0x80000000 ++#define DMA_DESC_CPT_SET 0x40000000 ++#define DMA_DESC_SOP_SET 0x20000000 ++#define DMA_DESC_EOP_SET 0x10000000 ++ ++#define MISCFG_MASK 0x40 ++#define RDERR_MASK 0x20 ++#define CHOFF_MASK 0x10 ++#define DESCPT_MASK 0x8 ++#define DUR_MASK 0x4 ++#define EOP_MASK 0x2 ++ ++#define DMA_DROP_MASK (1<<31) ++ ++#define LQ_DMA_RX -1 ++#define LQ_DMA_TX 1 ++ ++struct dma_chan_map { ++ const char *dev_name; ++ enum attr_t dir; ++ int pri; ++ int irq; ++ int rel_chan_no; ++}; ++ ++#ifdef CONFIG_CPU_LITTLE_ENDIAN ++struct rx_desc { ++ u32 data_length:16; ++ volatile u32 reserved:7; ++ volatile u32 byte_offset:2; ++ volatile u32 Burst_length_offset:3; ++ volatile u32 EoP:1; ++ volatile u32 Res:1; ++ volatile u32 C:1; ++ volatile u32 OWN:1; ++ volatile u32 Data_Pointer; /* fixme: should be 28 bits here */ ++}; ++ ++struct tx_desc { ++ volatile u32 data_length:16; ++ volatile u32 reserved1:7; ++ volatile u32 byte_offset:5; ++ volatile u32 EoP:1; ++ volatile u32 SoP:1; ++ volatile u32 C:1; ++ volatile u32 OWN:1; ++ volatile u32 Data_Pointer; /* fixme: should be 28 bits here */ ++}; ++#else /* BIG */ ++struct rx_desc { ++ union { ++ struct { ++ volatile u32 OWN:1; ++ volatile u32 C:1; ++ volatile u32 SoP:1; ++ volatile u32 EoP:1; ++ volatile u32 Burst_length_offset:3; ++ volatile u32 byte_offset:2; ++ volatile u32 reserve:7; ++ volatile u32 data_length:16; ++ } field; ++ volatile u32 word; ++ } status; ++ volatile u32 Data_Pointer; ++}; ++ ++struct tx_desc { ++ union { ++ struct { ++ volatile u32 OWN:1; ++ volatile u32 C:1; ++ volatile u32 SoP:1; ++ volatile u32 EoP:1; ++ volatile u32 byte_offset:5; ++ volatile u32 reserved:7; ++ volatile u32 data_length:16; ++ } field; ++ volatile u32 word; ++ } status; ++ volatile u32 Data_Pointer; ++}; ++#endif /* ENDIAN */ ++ ++struct dma_channel_info { ++ /* relative channel number */ ++ int rel_chan_no; ++ /* class for this channel for QoS */ ++ int pri; ++ /* specify byte_offset */ ++ int byte_offset; ++ /* direction */ ++ int dir; ++ /* irq number */ ++ int irq; ++ /* descriptor parameter */ ++ int desc_base; ++ int desc_len; ++ int curr_desc; ++ int prev_desc; /* only used if it is a tx channel*/ ++ /* weight setting for WFQ algorithm*/ ++ int weight; ++ int default_weight; ++ int packet_size; ++ int burst_len; ++ /* on or off of this channel */ ++ int control; ++ /* optional information for the upper layer devices */ ++#if defined(CONFIG_LQ_ETHERNET_D2) || defined(CONFIG_LQ_PPA) ++ void *opt[64]; ++#else ++ void *opt[25]; ++#endif ++ /* Pointer to the peripheral device who is using this channel */ ++ void *dma_dev; ++ /* channel operations */ ++ void (*open)(struct dma_channel_info *pCh); ++ void (*close)(struct dma_channel_info *pCh); ++ void (*reset)(struct dma_channel_info *pCh); ++ void (*enable_irq)(struct dma_channel_info *pCh); ++ void (*disable_irq)(struct dma_channel_info *pCh); ++}; ++ ++struct dma_device_info { ++ /* device name of this peripheral */ ++ char device_name[15]; ++ int reserved; ++ int tx_burst_len; ++ int rx_burst_len; ++ int default_weight; ++ int current_tx_chan; ++ int current_rx_chan; ++ int num_tx_chan; ++ int num_rx_chan; ++ int max_rx_chan_num; ++ int max_tx_chan_num; ++ struct dma_channel_info *tx_chan[20]; ++ struct dma_channel_info *rx_chan[20]; ++ /*functions, optional*/ ++ u8 *(*buffer_alloc)(int len, int *offset, void **opt); ++ void (*buffer_free)(u8 *dataptr, void *opt); ++ int (*intr_handler)(struct dma_device_info *info, int status); ++ void *priv; /* used by peripheral driver only */ ++}; ++ ++struct dma_device_info *dma_device_reserve(char *dev_name); ++void dma_device_release(struct dma_device_info *dev); ++void dma_device_register(struct dma_device_info *info); ++void dma_device_unregister(struct dma_device_info *info); ++int dma_device_read(struct dma_device_info *info, u8 **dataptr, void **opt); ++int dma_device_write(struct dma_device_info *info, u8 *dataptr, int len, ++ void *opt); ++ ++#endif ++ +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/xway/xway_irq.h +@@ -0,0 +1,62 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LANTIQ_XWAY_IRQ_H__ ++#define _LANTIQ_XWAY_IRQ_H__ ++ ++#define INT_NUM_IRQ0 8 ++#define INT_NUM_IM0_IRL0 (INT_NUM_IRQ0 + 0) ++#define INT_NUM_IM1_IRL0 (INT_NUM_IRQ0 + 32) ++#define INT_NUM_IM2_IRL0 (INT_NUM_IRQ0 + 64) ++#define INT_NUM_IM3_IRL0 (INT_NUM_IRQ0 + 96) ++#define INT_NUM_IM4_IRL0 (INT_NUM_IRQ0 + 128) ++#define INT_NUM_IM_OFFSET (INT_NUM_IM1_IRL0 - INT_NUM_IM0_IRL0) ++ ++#define LQ_ASC_TIR(x) (INT_NUM_IM3_IRL0 + (x * 7)) ++#define LQ_ASC_RIR(x) (INT_NUM_IM3_IRL0 + (x * 7) + 2) ++#define LQ_ASC_EIR(x) (INT_NUM_IM3_IRL0 + (x * 7) + 3) ++ ++#define LQ_SSC_TIR (INT_NUM_IM0_IRL0 + 15) ++#define LQ_SSC_RIR (INT_NUM_IM0_IRL0 + 14) ++#define LQ_SSC_EIR (INT_NUM_IM0_IRL0 + 16) ++ ++#define LQ_MEI_DYING_GASP_INT (INT_NUM_IM1_IRL0 + 21) ++#define LQ_MEI_INT (INT_NUM_IM1_IRL0 + 23) ++ ++#define LQ_TIMER6_INT (INT_NUM_IM1_IRL0 + 23) ++#define LQ_USB_INT (INT_NUM_IM1_IRL0 + 22) ++#define LQ_USB_OC_INT (INT_NUM_IM4_IRL0 + 23) ++ ++#define MIPS_CPU_TIMER_IRQ 7 ++ ++#define LQ_DMA_CH0_INT (INT_NUM_IM2_IRL0) ++#define LQ_DMA_CH1_INT (INT_NUM_IM2_IRL0 + 1) ++#define LQ_DMA_CH2_INT (INT_NUM_IM2_IRL0 + 2) ++#define LQ_DMA_CH3_INT (INT_NUM_IM2_IRL0 + 3) ++#define LQ_DMA_CH4_INT (INT_NUM_IM2_IRL0 + 4) ++#define LQ_DMA_CH5_INT (INT_NUM_IM2_IRL0 + 5) ++#define LQ_DMA_CH6_INT (INT_NUM_IM2_IRL0 + 6) ++#define LQ_DMA_CH7_INT (INT_NUM_IM2_IRL0 + 7) ++#define LQ_DMA_CH8_INT (INT_NUM_IM2_IRL0 + 8) ++#define LQ_DMA_CH9_INT (INT_NUM_IM2_IRL0 + 9) ++#define LQ_DMA_CH10_INT (INT_NUM_IM2_IRL0 + 10) ++#define LQ_DMA_CH11_INT (INT_NUM_IM2_IRL0 + 11) ++#define LQ_DMA_CH12_INT (INT_NUM_IM2_IRL0 + 25) ++#define LQ_DMA_CH13_INT (INT_NUM_IM2_IRL0 + 26) ++#define LQ_DMA_CH14_INT (INT_NUM_IM2_IRL0 + 27) ++#define LQ_DMA_CH15_INT (INT_NUM_IM2_IRL0 + 28) ++#define LQ_DMA_CH16_INT (INT_NUM_IM2_IRL0 + 29) ++#define LQ_DMA_CH17_INT (INT_NUM_IM2_IRL0 + 30) ++#define LQ_DMA_CH18_INT (INT_NUM_IM2_IRL0 + 16) ++#define LQ_DMA_CH19_INT (INT_NUM_IM2_IRL0 + 21) ++ ++#define LQ_PPE_MBOX_INT (INT_NUM_IM2_IRL0 + 24) ++ ++#define INT_NUM_IM4_IRL14 (INT_NUM_IM4_IRL0 + 14) ++ ++#endif diff --git a/target/linux/lantiq/patches/106-early_printk.patch b/target/linux/lantiq/patches/106-early_printk.patch new file mode 100644 index 0000000000..34e0bdf4d2 --- /dev/null +++ b/target/linux/lantiq/patches/106-early_printk.patch @@ -0,0 +1,93 @@ +--- a/arch/mips/lantiq/Kconfig ++++ b/arch/mips/lantiq/Kconfig +@@ -33,4 +33,19 @@ endchoice + source "arch/mips/lantiq/falcon/Kconfig" + source "arch/mips/lantiq/xway/Kconfig" + ++if EARLY_PRINTK ++choice ++ prompt "Early printk port" ++ default LANTIQ_PROM_ASC1 ++ help ++ Choose which serial port is used, until the console driver is loaded ++ ++config LANTIQ_PROM_ASC0 ++ bool "ASC0" ++ ++config LANTIQ_PROM_ASC1 ++ bool "ASC1" ++endchoice ++endif ++ + endif +--- /dev/null ++++ b/arch/mips/lantiq/early_printk.c +@@ -0,0 +1,68 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++ ++#include ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++#include ++#ifdef CONFIG_LANTIQ_PROM_ASC0 ++#define LQ_ASC_BASE KSEG1ADDR(LQ_ASC0_BASE) ++#else ++#define LQ_ASC_BASE KSEG1ADDR(LQ_ASC1_BASE) ++#endif ++ ++#elif CONFIG_SOC_LANTIQ_FALCON ++#include ++#ifdef CONFIG_LANTIQ_PROM_ASC0 ++#define LQ_ASC_BASE GPON_ASC0_BASE ++#else ++#define LQ_ASC_BASE GPON_ASC1_BASE ++#endif ++ ++#endif ++ ++#define ASC_BUF 1024 ++#define LQ_ASC_FSTAT 0x0048 ++#define LQ_ASC_TBUF 0x0020 ++#define TXMASK 0x3F00 ++#define TXOFFSET 8 ++ ++static char buf[ASC_BUF]; ++ ++void ++prom_putchar(char c) ++{ ++ unsigned long flags; ++ ++ local_irq_save(flags); ++ while ((lq_r32((u32 *)(LQ_ASC_BASE + LQ_ASC_FSTAT)) & TXMASK) >> TXOFFSET); ++ ++ if (c == '\n') ++ lq_w32('\r', (u32 *)(LQ_ASC_BASE + LQ_ASC_TBUF)); ++ lq_w32(c, (u32 *)(LQ_ASC_BASE + LQ_ASC_TBUF)); ++ local_irq_restore(flags); ++} ++ ++void ++early_printf(const char *fmt, ...) ++{ ++ va_list args; ++ int l; ++ char *p, *buf_end; ++ ++ va_start(args, fmt); ++ l = vsnprintf(buf, ASC_BUF, fmt, args); ++ va_end(args); ++ buf_end = buf + l; ++ ++ for (p = buf; p < buf_end; p++) ++ prom_putchar(*p); ++} diff --git a/target/linux/lantiq/patches/110-machine.patch b/target/linux/lantiq/patches/110-machine.patch new file mode 100644 index 0000000000..9d0b7b71c8 --- /dev/null +++ b/target/linux/lantiq/patches/110-machine.patch @@ -0,0 +1,55 @@ +--- a/arch/mips/lantiq/setup.c ++++ b/arch/mips/lantiq/setup.c +@@ -13,7 +13,8 @@ + #include + + #include +-#include ++ ++#include + + void __init + plat_mem_setup(void) +@@ -46,3 +47,25 @@ plat_mem_setup(void) + memsize *= 1024 * 1024; + add_memory_region(0x00000000, memsize, BOOT_MEM_RAM); + } ++ ++static int __init ++lq_machine_setup(void) ++{ ++ mips_machine_setup(); ++ return 0; ++} ++ ++static void __init ++mach_generic_init(void) ++{ ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_GENERIC, ++ "Generic", ++ "Generic", ++ mach_generic_init); ++ ++arch_initcall(lq_machine_setup); ++ ++/* for backward compatibility, define "board=" as alias for "machtype=" */ ++__setup("board=", mips_machtype_setup); +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/machine.h +@@ -0,0 +1,14 @@ ++#include ++ ++enum lantiq_mach_type { ++ LANTIQ_MACH_GENERIC, ++ ++ /* FALCON */ ++ LANTIQ_MACH_EASY98000, /* Falcon Eval Board, NOR Flash */ ++ LANTIQ_MACH_EASY98020, /* Falcon Reference Board */ ++ ++ /* XWAY */ ++ LANTIQ_MACH_EASY4010, /* Twinpass evalkit */ ++ LANTIQ_MACH_EASY50712, /* Danube evalkit */ ++ LANTIQ_MACH_EASY50812, /* AR9 eval board */ ++}; diff --git a/target/linux/lantiq/patches/200-serial.patch b/target/linux/lantiq/patches/200-serial.patch new file mode 100644 index 0000000000..a13022786b --- /dev/null +++ b/target/linux/lantiq/patches/200-serial.patch @@ -0,0 +1,799 @@ +--- a/drivers/serial/Kconfig ++++ b/drivers/serial/Kconfig +@@ -1397,6 +1397,14 @@ + help + Support for Console on the NWP serial ports. + ++config SERIAL_LANTIQ ++ bool "Lantiq serial driver" ++ depends on LANTIQ ++ select SERIAL_CORE ++ select SERIAL_CORE_CONSOLE ++ help ++ Driver for the Lantiq SoC ASC hardware ++ + config SERIAL_QE + tristate "Freescale QUICC Engine serial port support" + depends on QUICC_ENGINE +--- a/drivers/serial/Makefile ++++ b/drivers/serial/Makefile +@@ -84,3 +84,4 @@ + obj-$(CONFIG_SERIAL_GRLIB_GAISLER_APBUART) += apbuart.o + obj-$(CONFIG_SERIAL_ALTERA_JTAGUART) += altera_jtaguart.o + obj-$(CONFIG_SERIAL_ALTERA_UART) += altera_uart.o ++obj-$(CONFIG_SERIAL_LANTIQ) += lantiq.o +--- /dev/null ++++ b/drivers/serial/lantiq.c +@@ -0,0 +1,772 @@ ++/* ++ * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. ++ * ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ++ * ++ * Copyright (C) 2004 Infineon IFAP DC COM CPE ++ * Copyright (C) 2007 Felix Fietkau ++ * Copyright (C) 2007 John Crispin ++ * Copyright (C) 2010 Thomas Langer, Lantiq Deutschland ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#define lq_r32(reg) __raw_readl(reg) ++#define lq_r8(reg) __raw_readb(reg) ++#define lq_w32(val, reg) __raw_writel(val, reg) ++#define lq_w8(val, reg) __raw_writeb(val, reg) ++#define lq_w32_mask(clear, set, reg) lq_w32((lq_r32(reg) & ~(clear)) | (set), reg) ++ ++#define PORT_IFXMIPSASC 111 ++#define MAXPORTS 2 ++ ++#define UART_DUMMY_UER_RX 1 ++ ++#define DRVNAME "lq_asc" ++ ++#ifdef __BIG_ENDIAN ++#define IFXMIPS_ASC_TBUF (0x0020 + 3) ++#define IFXMIPS_ASC_RBUF (0x0024 + 3) ++#else ++#define IFXMIPS_ASC_TBUF 0x0020 ++#define IFXMIPS_ASC_RBUF 0x0024 ++#endif ++ ++#define IFXMIPS_ASC_FSTAT 0x0048 ++#define IFXMIPS_ASC_WHBSTATE 0x0018 ++#define IFXMIPS_ASC_STATE 0x0014 ++#define IFXMIPS_ASC_IRNCR 0x00F8 ++#define IFXMIPS_ASC_CLC 0x0000 ++#define IFXMIPS_ASC_ID 0x0008 ++#define IFXMIPS_ASC_PISEL 0x0004 ++#define IFXMIPS_ASC_TXFCON 0x0044 ++#define IFXMIPS_ASC_RXFCON 0x0040 ++#define IFXMIPS_ASC_CON 0x0010 ++#define IFXMIPS_ASC_BG 0x0050 ++#define IFXMIPS_ASC_IRNREN 0x00F4 ++ ++#define ASC_IRNREN_TX 0x1 ++#define ASC_IRNREN_RX 0x2 ++#define ASC_IRNREN_ERR 0x4 ++#define ASC_IRNREN_TX_BUF 0x8 ++#define ASC_IRNCR_TIR 0x1 ++#define ASC_IRNCR_RIR 0x2 ++#define ASC_IRNCR_EIR 0x4 ++ ++#define ASCOPT_CSIZE 0x3 ++#define ASCOPT_CS7 0x1 ++#define ASCOPT_CS8 0x2 ++#define ASCOPT_PARENB 0x4 ++#define ASCOPT_STOPB 0x8 ++#define ASCOPT_PARODD 0x0 ++#define ASCOPT_CREAD 0x20 ++#define TXFIFO_FL 1 ++#define RXFIFO_FL 1 ++#define ASCCLC_DISS 0x2 ++#define ASCCLC_RMCMASK 0x0000FF00 ++#define ASCCLC_RMCOFFSET 8 ++#define ASCCON_M_8ASYNC 0x0 ++#define ASCCON_M_7ASYNC 0x2 ++#define ASCCON_ODD 0x00000020 ++#define ASCCON_STP 0x00000080 ++#define ASCCON_BRS 0x00000100 ++#define ASCCON_FDE 0x00000200 ++#define ASCCON_R 0x00008000 ++#define ASCCON_FEN 0x00020000 ++#define ASCCON_ROEN 0x00080000 ++#define ASCCON_TOEN 0x00100000 ++#define ASCSTATE_PE 0x00010000 ++#define ASCSTATE_FE 0x00020000 ++#define ASCSTATE_ROE 0x00080000 ++#define ASCSTATE_ANY (ASCSTATE_ROE|ASCSTATE_PE|ASCSTATE_FE) ++#define ASCWHBSTATE_CLRREN 0x00000001 ++#define ASCWHBSTATE_SETREN 0x00000002 ++#define ASCWHBSTATE_CLRPE 0x00000004 ++#define ASCWHBSTATE_CLRFE 0x00000008 ++#define ASCWHBSTATE_CLRROE 0x00000020 ++#define ASCTXFCON_TXFEN 0x0001 ++#define ASCTXFCON_TXFFLU 0x0002 ++#define ASCTXFCON_TXFITLMASK 0x3F00 ++#define ASCTXFCON_TXFITLOFF 8 ++#define ASCRXFCON_RXFEN 0x0001 ++#define ASCRXFCON_RXFFLU 0x0002 ++#define ASCRXFCON_RXFITLMASK 0x3F00 ++#define ASCRXFCON_RXFITLOFF 8 ++#define ASCFSTAT_RXFFLMASK 0x003F ++#define ASCFSTAT_TXFFLMASK 0x3F00 ++#define ASCFSTAT_TXFFLOFF 8 ++#define ASCFSTAT_RXFREEMASK 0x003F0000 ++#define ASCFSTAT_RXFREEOFF 16 ++#define ASCFSTAT_TXFREEMASK 0x3F000000 ++#define ASCFSTAT_TXFREEOFF 24 ++ ++static void lqasc_tx_chars(struct uart_port *port); ++extern void prom_printf(const char *fmt, ...); ++static struct lq_uart_port *lqasc_port[2]; ++static struct uart_driver lqasc_reg; ++ ++struct lq_uart_port { ++ struct uart_port port; ++ struct clk *clk; ++ unsigned int tx_irq; ++ unsigned int rx_irq; ++ unsigned int err_irq; ++}; ++ ++static inline struct ++lq_uart_port *to_lq_uart_port(struct uart_port *port) ++{ ++ return container_of(port, struct lq_uart_port, port); ++} ++ ++static void ++lqasc_stop_tx(struct uart_port *port) ++{ ++ return; ++} ++ ++static void ++lqasc_start_tx(struct uart_port *port) ++{ ++ unsigned long flags; ++ local_irq_save(flags); ++ lqasc_tx_chars(port); ++ local_irq_restore(flags); ++ return; ++} ++ ++static void ++lqasc_stop_rx(struct uart_port *port) ++{ ++ lq_w32(ASCWHBSTATE_CLRREN, port->membase + IFXMIPS_ASC_WHBSTATE); ++} ++ ++static void ++lqasc_enable_ms(struct uart_port *port) ++{ ++} ++ ++static void ++lqasc_rx_chars(struct uart_port *port) ++{ ++ struct tty_struct *tty = port->state->port.tty; ++ unsigned int ch = 0, rsr = 0, fifocnt; ++ ++ fifocnt = lq_r32(port->membase + IFXMIPS_ASC_FSTAT) & ASCFSTAT_RXFFLMASK; ++ while (fifocnt--) { ++ u8 flag = TTY_NORMAL; ++ ch = lq_r8(port->membase + IFXMIPS_ASC_RBUF); ++ rsr = (lq_r32(port->membase + IFXMIPS_ASC_STATE) ++ & ASCSTATE_ANY) | UART_DUMMY_UER_RX; ++ tty_flip_buffer_push(tty); ++ port->icount.rx++; ++ ++ /* ++ * Note that the error handling code is ++ * out of the main execution path ++ */ ++ if (rsr & ASCSTATE_ANY) { ++ if (rsr & ASCSTATE_PE) { ++ port->icount.parity++; ++ lq_w32_mask(0, ASCWHBSTATE_CLRPE, ++ port->membase + IFXMIPS_ASC_WHBSTATE); ++ } else if (rsr & ASCSTATE_FE) { ++ port->icount.frame++; ++ lq_w32_mask(0, ASCWHBSTATE_CLRFE, ++ port->membase + IFXMIPS_ASC_WHBSTATE); ++ } ++ if (rsr & ASCSTATE_ROE) { ++ port->icount.overrun++; ++ lq_w32_mask(0, ASCWHBSTATE_CLRROE, ++ port->membase + IFXMIPS_ASC_WHBSTATE); ++ } ++ ++ rsr &= port->read_status_mask; ++ ++ if (rsr & ASCSTATE_PE) ++ flag = TTY_PARITY; ++ else if (rsr & ASCSTATE_FE) ++ flag = TTY_FRAME; ++ } ++ ++ if ((rsr & port->ignore_status_mask) == 0) ++ tty_insert_flip_char(tty, ch, flag); ++ ++ if (rsr & ASCSTATE_ROE) ++ /* ++ * Overrun is special, since it's reported ++ * immediately, and doesn't affect the current ++ * character ++ */ ++ tty_insert_flip_char(tty, 0, TTY_OVERRUN); ++ } ++ if (ch != 0) ++ tty_flip_buffer_push(tty); ++ return; ++} ++ ++static void ++lqasc_tx_chars(struct uart_port *port) ++{ ++ struct circ_buf *xmit = &port->state->xmit; ++ if (uart_tx_stopped(port)) { ++ lqasc_stop_tx(port); ++ return; ++ } ++ ++ while (((lq_r32(port->membase + IFXMIPS_ASC_FSTAT) & ++ ASCFSTAT_TXFREEMASK) >> ASCFSTAT_TXFREEOFF) != 0) { ++ if (port->x_char) { ++ lq_w8(port->x_char, port->membase + IFXMIPS_ASC_TBUF); ++ port->icount.tx++; ++ port->x_char = 0; ++ continue; ++ } ++ ++ if (uart_circ_empty(xmit)) ++ break; ++ ++ lq_w8(port->state->xmit.buf[port->state->xmit.tail], ++ port->membase + IFXMIPS_ASC_TBUF); ++ xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); ++ port->icount.tx++; ++ } ++ ++ if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) ++ uart_write_wakeup(port); ++} ++ ++static irqreturn_t ++lqasc_tx_int(int irq, void *_port) ++{ ++ struct uart_port *port = (struct uart_port *)_port; ++ lq_w32(ASC_IRNCR_TIR, port->membase + IFXMIPS_ASC_IRNCR); ++ lqasc_start_tx(port); ++ return IRQ_HANDLED; ++} ++ ++static irqreturn_t ++lqasc_err_int(int irq, void *_port) ++{ ++ struct uart_port *port = (struct uart_port *)_port; ++ /* clear any pending interrupts */ ++ lq_w32_mask(0, ASCWHBSTATE_CLRPE | ASCWHBSTATE_CLRFE | ASCWHBSTATE_CLRROE, ++ port->membase + IFXMIPS_ASC_WHBSTATE); ++ return IRQ_HANDLED; ++} ++ ++static irqreturn_t ++lqasc_rx_int(int irq, void *_port) ++{ ++ struct uart_port *port = (struct uart_port *)_port; ++ lq_w32(ASC_IRNCR_RIR, port->membase + IFXMIPS_ASC_IRNCR); ++ lqasc_rx_chars(port); ++ return IRQ_HANDLED; ++} ++ ++static unsigned int ++lqasc_tx_empty(struct uart_port *port) ++{ ++ int status; ++ status = lq_r32(port->membase + IFXMIPS_ASC_FSTAT) & ASCFSTAT_TXFFLMASK; ++ return status ? 0 : TIOCSER_TEMT; ++} ++ ++static unsigned int ++lqasc_get_mctrl(struct uart_port *port) ++{ ++ return TIOCM_CTS | TIOCM_CAR | TIOCM_DSR; ++} ++ ++static void ++lqasc_set_mctrl(struct uart_port *port, u_int mctrl) ++{ ++} ++ ++static void ++lqasc_break_ctl(struct uart_port *port, int break_state) ++{ ++} ++ ++static int ++lqasc_startup(struct uart_port *port) ++{ ++ struct lq_uart_port *ifx_port = to_lq_uart_port(port); ++ int retval; ++ ++ port->uartclk = clk_get_rate(ifx_port->clk); ++ ++ lq_w32_mask(ASCCLC_DISS | ASCCLC_RMCMASK, (1 << ASCCLC_RMCOFFSET), ++ port->membase + IFXMIPS_ASC_CLC); ++ ++ lq_w32(0, port->membase + IFXMIPS_ASC_PISEL); ++ lq_w32( ++ ((TXFIFO_FL << ASCTXFCON_TXFITLOFF) & ASCTXFCON_TXFITLMASK) | ++ ASCTXFCON_TXFEN | ASCTXFCON_TXFFLU, ++ port->membase + IFXMIPS_ASC_TXFCON); ++ lq_w32( ++ ((RXFIFO_FL << ASCRXFCON_RXFITLOFF) & ASCRXFCON_RXFITLMASK) ++ | ASCRXFCON_RXFEN | ASCRXFCON_RXFFLU, ++ port->membase + IFXMIPS_ASC_RXFCON); ++ /* make sure other settings are written to hardware before setting enable bits */ ++ wmb(); ++ lq_w32_mask(0, ASCCON_M_8ASYNC | ASCCON_FEN | ASCCON_TOEN | ++ ASCCON_ROEN, port->membase + IFXMIPS_ASC_CON); ++ ++ retval = request_irq(ifx_port->tx_irq, lqasc_tx_int, ++ IRQF_DISABLED, "asc_tx", port); ++ if (retval) { ++ pr_err("failed to request lqasc_tx_int\n"); ++ return retval; ++ } ++ ++ retval = request_irq(ifx_port->rx_irq, lqasc_rx_int, ++ IRQF_DISABLED, "asc_rx", port); ++ if (retval) { ++ pr_err("failed to request lqasc_rx_int\n"); ++ goto err1; ++ } ++ ++ retval = request_irq(ifx_port->err_irq, lqasc_err_int, ++ IRQF_DISABLED, "asc_err", port); ++ if (retval) { ++ pr_err("failed to request lqasc_err_int\n"); ++ goto err2; ++ } ++ ++ lq_w32(ASC_IRNREN_RX | ASC_IRNREN_ERR | ASC_IRNREN_TX, ++ port->membase + IFXMIPS_ASC_IRNREN); ++ return 0; ++ ++err2: ++ free_irq(ifx_port->rx_irq, port); ++err1: ++ free_irq(ifx_port->tx_irq, port); ++ return retval; ++} ++ ++static void ++lqasc_shutdown(struct uart_port *port) ++{ ++ struct lq_uart_port *ifx_port = to_lq_uart_port(port); ++ free_irq(ifx_port->tx_irq, port); ++ free_irq(ifx_port->rx_irq, port); ++ free_irq(ifx_port->err_irq, port); ++ ++ lq_w32(0, port->membase + IFXMIPS_ASC_CON); ++ lq_w32_mask(ASCRXFCON_RXFEN, ASCRXFCON_RXFFLU, ++ port->membase + IFXMIPS_ASC_RXFCON); ++ lq_w32_mask(ASCTXFCON_TXFEN, ASCTXFCON_TXFFLU, ++ port->membase + IFXMIPS_ASC_TXFCON); ++} ++ ++static void ++lqasc_set_termios(struct uart_port *port, ++ struct ktermios *new, struct ktermios *old) ++{ ++ unsigned int cflag; ++ unsigned int iflag; ++ unsigned int quot; ++ unsigned int baud; ++ unsigned int con = 0; ++ unsigned long flags; ++ ++ cflag = new->c_cflag; ++ iflag = new->c_iflag; ++ ++ switch (cflag & CSIZE) { ++ case CS7: ++ con = ASCCON_M_7ASYNC; ++ break; ++ ++ case CS5: ++ case CS6: ++ default: ++ con = ASCCON_M_8ASYNC; ++ break; ++ } ++ ++ if (cflag & CSTOPB) ++ con |= ASCCON_STP; ++ ++ if (cflag & PARENB) { ++ if (!(cflag & PARODD)) ++ con &= ~ASCCON_ODD; ++ else ++ con |= ASCCON_ODD; ++ } ++ ++ port->read_status_mask = ASCSTATE_ROE; ++ if (iflag & INPCK) ++ port->read_status_mask |= ASCSTATE_FE | ASCSTATE_PE; ++ ++ port->ignore_status_mask = 0; ++ if (iflag & IGNPAR) ++ port->ignore_status_mask |= ASCSTATE_FE | ASCSTATE_PE; ++ ++ if (iflag & IGNBRK) { ++ /* ++ * If we're ignoring parity and break indicators, ++ * ignore overruns too (for real raw support). ++ */ ++ if (iflag & IGNPAR) ++ port->ignore_status_mask |= ASCSTATE_ROE; ++ } ++ ++ if ((cflag & CREAD) == 0) ++ port->ignore_status_mask |= UART_DUMMY_UER_RX; ++ ++ /* set error signals - framing, parity and overrun, enable receiver */ ++ con |= ASCCON_FEN | ASCCON_TOEN | ASCCON_ROEN; ++ ++ local_irq_save(flags); ++ ++ /* set up CON */ ++ lq_w32_mask(0, con, port->membase + IFXMIPS_ASC_CON); ++ ++ /* Set baud rate - take a divider of 2 into account */ ++ baud = uart_get_baud_rate(port, new, old, 0, port->uartclk / 16); ++ quot = uart_get_divisor(port, baud); ++ quot = quot / 2 - 1; ++ ++ /* disable the baudrate generator */ ++ lq_w32_mask(ASCCON_R, 0, port->membase + IFXMIPS_ASC_CON); ++ ++ /* make sure the fractional divider is off */ ++ lq_w32_mask(ASCCON_FDE, 0, port->membase + IFXMIPS_ASC_CON); ++ ++ /* set up to use divisor of 2 */ ++ lq_w32_mask(ASCCON_BRS, 0, port->membase + IFXMIPS_ASC_CON); ++ ++ /* now we can write the new baudrate into the register */ ++ lq_w32(quot, port->membase + IFXMIPS_ASC_BG); ++ ++ /* turn the baudrate generator back on */ ++ lq_w32_mask(0, ASCCON_R, port->membase + IFXMIPS_ASC_CON); ++ ++ /* enable rx */ ++ lq_w32(ASCWHBSTATE_SETREN, port->membase + IFXMIPS_ASC_WHBSTATE); ++ ++ local_irq_restore(flags); ++} ++ ++static const char* ++lqasc_type(struct uart_port *port) ++{ ++ if (port->type == PORT_IFXMIPSASC) ++ return DRVNAME; ++ else ++ return NULL; ++} ++ ++static void ++lqasc_release_port(struct uart_port *port) ++{ ++ if (port->flags & UPF_IOREMAP) { ++ iounmap(port->membase); ++ port->membase = NULL; ++ } ++} ++ ++static int ++lqasc_request_port(struct uart_port *port) ++{ ++ struct platform_device *pdev = to_platform_device(port->dev); ++ struct resource *mmres; ++ int size; ++ ++ mmres = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (!mmres) ++ return -ENODEV; ++ size = resource_size(mmres); ++ ++ if (port->flags & UPF_IOREMAP) { ++ port->membase = ioremap_nocache(port->mapbase, size); ++ if (port->membase == NULL) ++ return -ENOMEM; ++ } ++ return 0; ++} ++ ++static void ++lqasc_config_port(struct uart_port *port, int flags) ++{ ++ if (flags & UART_CONFIG_TYPE) { ++ port->type = PORT_IFXMIPSASC; ++ lqasc_request_port(port); ++ } ++} ++ ++static int ++lqasc_verify_port(struct uart_port *port, ++ struct serial_struct *ser) ++{ ++ int ret = 0; ++ if (ser->type != PORT_UNKNOWN && ser->type != PORT_IFXMIPSASC) ++ ret = -EINVAL; ++ if (ser->irq < 0 || ser->irq >= NR_IRQS) ++ ret = -EINVAL; ++ if (ser->baud_base < 9600) ++ ret = -EINVAL; ++ return ret; ++} ++ ++static struct uart_ops lqasc_pops = { ++ .tx_empty = lqasc_tx_empty, ++ .set_mctrl = lqasc_set_mctrl, ++ .get_mctrl = lqasc_get_mctrl, ++ .stop_tx = lqasc_stop_tx, ++ .start_tx = lqasc_start_tx, ++ .stop_rx = lqasc_stop_rx, ++ .enable_ms = lqasc_enable_ms, ++ .break_ctl = lqasc_break_ctl, ++ .startup = lqasc_startup, ++ .shutdown = lqasc_shutdown, ++ .set_termios = lqasc_set_termios, ++ .type = lqasc_type, ++ .release_port = lqasc_release_port, ++ .request_port = lqasc_request_port, ++ .config_port = lqasc_config_port, ++ .verify_port = lqasc_verify_port, ++}; ++ ++static void ++lqasc_console_putchar(struct uart_port *port, int ch) ++{ ++ int fifofree; ++ ++ if (!port->membase) ++ return; ++ ++ do { ++ fifofree = (lq_r32(port->membase + IFXMIPS_ASC_FSTAT) ++ & ASCFSTAT_TXFREEMASK) >> ASCFSTAT_TXFREEOFF; ++ } while (fifofree == 0); ++ lq_w8(ch, port->membase + IFXMIPS_ASC_TBUF); ++} ++ ++ ++static void ++lqasc_console_write(struct console *co, const char *s, u_int count) ++{ ++ struct lq_uart_port *ifx_port; ++ struct uart_port *port; ++ unsigned long flags; ++ ++ if (co->index >= MAXPORTS) ++ return; ++ ++ ifx_port = lqasc_port[co->index]; ++ if (!ifx_port) ++ return; ++ ++ port = &ifx_port->port; ++ ++ local_irq_save(flags); ++ uart_console_write(port, s, count, lqasc_console_putchar); ++ local_irq_restore(flags); ++} ++ ++static int __init ++lqasc_console_setup(struct console *co, char *options) ++{ ++ struct lq_uart_port *ifx_port; ++ struct uart_port *port; ++ int baud = 115200; ++ int bits = 8; ++ int parity = 'n'; ++ int flow = 'n'; ++ ++ if (co->index >= MAXPORTS) ++ return -ENODEV; ++ ++ ifx_port = lqasc_port[co->index]; ++ if (!ifx_port) ++ return -ENODEV; ++ ++ port = &ifx_port->port; ++ ++ port->uartclk = clk_get_rate(ifx_port->clk); ++ ++ if (options) ++ uart_parse_options(options, &baud, &parity, &bits, &flow); ++ return uart_set_options(port, co, baud, parity, bits, flow); ++} ++ ++static struct console lqasc_console = { ++ .name = "ttyS", ++ .write = lqasc_console_write, ++ .device = uart_console_device, ++ .setup = lqasc_console_setup, ++ .flags = CON_PRINTBUFFER, ++ .index = -1, ++ .data = &lqasc_reg, ++}; ++ ++static int __init ++lqasc_console_init(void) ++{ ++ register_console(&lqasc_console); ++ return 0; ++} ++console_initcall(lqasc_console_init); ++ ++static struct uart_driver lqasc_reg = { ++ .owner = THIS_MODULE, ++ .driver_name = DRVNAME, ++ .dev_name = "ttyS", ++ .major = TTY_MAJOR, ++ .minor = 64, ++ .nr = MAXPORTS, ++ .cons = &lqasc_console, ++}; ++ ++static int __devinit ++lqasc_probe(struct platform_device *pdev) ++{ ++ struct lq_uart_port *ifx_port; ++ struct uart_port *port; ++ struct resource *mmres, *irqres; ++ int tx_irq, rx_irq, err_irq; ++ struct clk *clk; ++ int ret; ++ ++ mmres = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ irqres = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (!mmres || !irqres) ++ return -ENODEV; ++ ++ if (pdev->id >= MAXPORTS) ++ return -EBUSY; ++ ++ if (lqasc_port[pdev->id] != NULL) ++ return -EBUSY; ++ ++ clk = clk_get(&pdev->dev, "fpi"); ++ if (IS_ERR(clk)) { ++ pr_err("failed to get fpi clk\n"); ++ return -ENOENT; ++ } ++ ++ tx_irq = platform_get_irq_byname(pdev, "tx"); ++ if (tx_irq < 0) { ++ /* without named resources: assume standard irq scheme */ ++ tx_irq = irqres->start; ++ rx_irq = irqres->start+2; ++ err_irq = irqres->start+3; ++ } else { ++ /* other irqs must be named also! */ ++ rx_irq = platform_get_irq_byname(pdev, "rx"); ++ err_irq = platform_get_irq_byname(pdev, "err"); ++ if ((rx_irq < 0) | (err_irq < 0)) ++ return -ENODEV; ++ } ++ ++ ifx_port = kzalloc(sizeof(struct lq_uart_port), GFP_KERNEL); ++ if (!ifx_port) ++ return -ENOMEM; ++ ++ port = &ifx_port->port; ++ ++ port->iotype = SERIAL_IO_MEM; ++ port->flags = ASYNC_BOOT_AUTOCONF | UPF_IOREMAP; ++ port->ops = &lqasc_pops; ++ port->fifosize = 16; ++ port->type = PORT_IFXMIPSASC, ++ port->line = pdev->id; ++ port->dev = &pdev->dev; ++ ++ port->irq = tx_irq; /* unused, just to be backward-compatibe */ ++ port->mapbase = mmres->start; ++ ++ ifx_port->clk = clk; ++ ++ ifx_port->tx_irq = tx_irq; ++ ifx_port->rx_irq = rx_irq; ++ ifx_port->err_irq = err_irq; ++ ++ lqasc_port[pdev->id] = ifx_port; ++ platform_set_drvdata(pdev, ifx_port); ++ ++ ret = uart_add_one_port(&lqasc_reg, port); ++ ++ return ret; ++} ++ ++static int __devexit ++lqasc_remove(struct platform_device *pdev) ++{ ++ struct lq_uart_port *ifx_port = platform_get_drvdata(pdev); ++ int ret; ++ ++ clk_put(ifx_port->clk); ++ platform_set_drvdata(pdev, NULL); ++ lqasc_port[pdev->id] = NULL; ++ ret = uart_remove_one_port(&lqasc_reg, &ifx_port->port); ++ kfree(ifx_port); ++ ++ return 0; ++} ++ ++static struct platform_driver lqasc_driver = { ++ .probe = lqasc_probe, ++ .remove = __devexit_p(lqasc_remove), ++ ++ .driver = { ++ .name = DRVNAME, ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init ++init_lqasc(void) ++{ ++ int ret; ++ ++ ret = uart_register_driver(&lqasc_reg); ++ if (ret != 0) ++ return ret; ++ ++ ret = platform_driver_register(&lqasc_driver); ++ if (ret != 0) ++ uart_unregister_driver(&lqasc_reg); ++ ++ return ret; ++} ++ ++void __exit ++exit_lqasc(void) ++{ ++ platform_driver_unregister(&lqasc_driver); ++ uart_unregister_driver(&lqasc_reg); ++} ++ ++module_init(init_lqasc); ++module_exit(exit_lqasc); ++ ++MODULE_DESCRIPTION("Lantiq serial port driver"); ++MODULE_LICENSE("GPL"); diff --git a/target/linux/lantiq/patches/210-nor.patch b/target/linux/lantiq/patches/210-nor.patch new file mode 100644 index 0000000000..510ac6bdf3 --- /dev/null +++ b/target/linux/lantiq/patches/210-nor.patch @@ -0,0 +1,245 @@ +--- a/drivers/mtd/maps/Kconfig ++++ b/drivers/mtd/maps/Kconfig +@@ -251,6 +251,12 @@ + help + Support for flash chips on NETtel/SecureEdge/SnapGear boards. + ++config MTD_LANTIQ ++ bool "Lantiq SoC NOR support" ++ depends on LANTIQ && MTD_PARTITIONS ++ help ++ Support for NOR flsh chips on Lantiq SoC ++ + config MTD_DILNETPC + tristate "CFI Flash device mapped on DIL/Net PC" + depends on X86 && MTD_CONCAT && MTD_PARTITIONS && MTD_CFI_INTELEXT && BROKEN +--- a/drivers/mtd/maps/Makefile ++++ b/drivers/mtd/maps/Makefile +@@ -59,3 +59,4 @@ + obj-$(CONFIG_MTD_RBTX4939) += rbtx4939-flash.o + obj-$(CONFIG_MTD_VMU) += vmu-flash.o + obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o ++obj-$(CONFIG_MTD_LANTIQ) += lantiq.o +--- /dev/null ++++ b/drivers/mtd/maps/lantiq.c +@@ -0,0 +1,169 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2004 Liu Peng Infineon IFAP DC COM CPE ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++static map_word ++lq_read16(struct map_info *map, unsigned long adr) ++{ ++ unsigned long flags; ++ map_word temp; ++ spin_lock_irqsave(&ebu_lock, flags); ++ adr ^= 2; ++ temp.x[0] = *((__u16 *)(map->virt + adr)); ++ spin_unlock_irqrestore(&ebu_lock, flags); ++ return temp; ++} ++ ++static void ++lq_write16(struct map_info *map, map_word d, unsigned long adr) ++{ ++ unsigned long flags; ++ spin_lock_irqsave(&ebu_lock, flags); ++ adr ^= 2; ++ *((__u16 *)(map->virt + adr)) = d.x[0]; ++ spin_unlock_irqrestore(&ebu_lock, flags); ++} ++ ++void ++lq_copy_from(struct map_info *map, void *to, ++ unsigned long from, ssize_t len) ++{ ++ unsigned char *p; ++ unsigned char *to_8; ++ unsigned long flags; ++ spin_lock_irqsave(&ebu_lock, flags); ++ from = (unsigned long)(from + map->virt); ++ p = (unsigned char *) from; ++ to_8 = (unsigned char *) to; ++ while (len--) ++ *to_8++ = *p++; ++ spin_unlock_irqrestore(&ebu_lock, flags); ++} ++ ++void ++lq_copy_to(struct map_info *map, unsigned long to, ++ const void *from, ssize_t len) ++{ ++ unsigned char *p = (unsigned char *)from; ++ unsigned char *to_8; ++ unsigned long flags; ++ spin_lock_irqsave(&ebu_lock, flags); ++ to += (unsigned long) map->virt; ++ to_8 = (unsigned char *)to; ++ while (len--) ++ *p++ = *to_8++; ++ spin_unlock_irqrestore(&ebu_lock, flags); ++} ++ ++static const char *part_probe_types[] = { "cmdlinepart", NULL }; ++ ++static struct map_info lq_map = { ++ .name = "lq_nor", ++ .bankwidth = 2, ++ .read = lq_read16, ++ .write = lq_write16, ++ .copy_from = lq_copy_from, ++ .copy_to = lq_copy_to, ++}; ++ ++static int ++lq_mtd_probe(struct platform_device *pdev) ++{ ++ struct physmap_flash_data *lq_mtd_data = ++ (struct physmap_flash_data*) dev_get_platdata(&pdev->dev); ++ struct mtd_info *lq_mtd = NULL; ++ struct mtd_partition *parts = NULL; ++ struct resource *res = 0; ++ int nr_parts = 0; ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++ lq_w32(lq_r32(LQ_EBU_BUSCON0) & ~EBU_WRDIS, LQ_EBU_BUSCON0); ++#endif ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if(!res) ++ { ++ dev_err(&pdev->dev, "failed to get memory resource"); ++ return -ENOENT; ++ } ++ res = request_mem_region(res->start, resource_size(res), ++ dev_name(&pdev->dev)); ++ if(!res) ++ { ++ dev_err(&pdev->dev, "failed to request mem resource"); ++ return -EBUSY; ++ } ++ ++ lq_map.phys = res->start; ++ lq_map.size = resource_size(res); ++ lq_map.virt = ioremap_nocache(lq_map.phys, lq_map.size); ++ ++ if (!lq_map.virt ) { ++ dev_err(&pdev->dev, "failed to ioremap!\n"); ++ return -EIO; ++ } ++ ++ lq_mtd = (struct mtd_info *) do_map_probe("cfi_probe", &lq_map); ++ if (!lq_mtd) { ++ iounmap(lq_map.virt); ++ dev_err(&pdev->dev, "probing failed\n"); ++ return -ENXIO; ++ } ++ ++ lq_mtd->owner = THIS_MODULE; ++ ++ nr_parts = parse_mtd_partitions(lq_mtd, part_probe_types, &parts, 0); ++ if (nr_parts > 0) { ++ dev_info(&pdev->dev, "using %d partitions from cmdline", nr_parts); ++ } else { ++ nr_parts = lq_mtd_data->nr_parts; ++ parts = lq_mtd_data->parts; ++ } ++ ++ add_mtd_partitions(lq_mtd, parts, nr_parts); ++ return 0; ++} ++ ++static struct platform_driver lq_mtd_driver = { ++ .probe = lq_mtd_probe, ++ .driver = { ++ .name = "lq_nor", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init ++init_lq_mtd(void) ++{ ++ int ret = platform_driver_register(&lq_mtd_driver); ++ if (ret) ++ printk(KERN_INFO "lq_nor: error registering platfom driver"); ++ return ret; ++} ++ ++module_init(init_lq_mtd); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("John Crispin "); ++MODULE_DESCRIPTION("Lantiq SoC NOR"); +--- a/drivers/mtd/chips/cfi_cmdset_0001.c ++++ b/drivers/mtd/chips/cfi_cmdset_0001.c +@@ -41,7 +41,11 @@ + /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ + + // debugging, turns off buffer write mode if set to 1 +-#define FORCE_WORD_WRITE 0 ++#ifdef CONFIG_LANTIQ ++# define FORCE_WORD_WRITE 1 ++#else ++# define FORCE_WORD_WRITE 0 ++#endif + + /* Intel chips */ + #define I82802AB 0x00ad +@@ -1491,6 +1495,9 @@ + int ret=0; + + adr += chip->start; ++#ifdef CONFIG_LANTIQ ++ adr ^= 2; ++#endif + + switch (mode) { + case FL_WRITING: +--- a/drivers/mtd/chips/cfi_cmdset_0002.c ++++ b/drivers/mtd/chips/cfi_cmdset_0002.c +@@ -40,7 +40,11 @@ + #include + + #define AMD_BOOTLOC_BUG +-#define FORCE_WORD_WRITE 0 ++#ifdef CONFIG_LANTIQ ++# define FORCE_WORD_WRITE 1 ++#else ++# define FORCE_WORD_WRITE 0 ++#endif + + #define MAX_WORD_RETRIES 3 + +@@ -1156,6 +1160,10 @@ + + adr += chip->start; + ++#ifdef CONFIG_LANTIQ ++ adr ^= 2; ++#endif ++ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { diff --git a/target/linux/lantiq/patches/211-nor_split.patch b/target/linux/lantiq/patches/211-nor_split.patch new file mode 100644 index 0000000000..2f77681b8c --- /dev/null +++ b/target/linux/lantiq/patches/211-nor_split.patch @@ -0,0 +1,99 @@ +--- a/drivers/mtd/maps/lantiq.c ++++ b/drivers/mtd/maps/lantiq.c +@@ -24,6 +24,10 @@ + #include + #include + ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++#include ++#endif ++ + static map_word + lq_read16(struct map_info *map, unsigned long adr) + { +@@ -77,6 +81,75 @@ lq_copy_to(struct map_info *map, unsigne + spin_unlock_irqrestore(&ebu_lock, flags); + } + ++static unsigned long ++find_uImage_size(struct map_info *map, unsigned long offset) ++{ ++#define UBOOT_MAGIC 0x56190527 ++ unsigned long magic; ++ unsigned long temp; ++ map->copy_from(map, &magic, offset, 4); ++ if (le32_to_cpu(magic) != UBOOT_MAGIC) ++ return 0; ++ map->copy_from(map, &temp, offset + 12, 4); ++ return temp + 0x40; ++} ++ ++static int ++detect_squashfs_partition(struct map_info *map, unsigned long offset) ++{ ++ unsigned long temp; ++ map->copy_from(map, &temp, offset, 4); ++ return le32_to_cpu(temp) == SQUASHFS_MAGIC; ++} ++ ++static struct mtd_partition split_partitions[] = { ++ { ++ .name = "kernel", ++ .offset = 0x0, ++ .size = 0x0, ++ }, { ++ .name = "rootfs", ++ .offset = 0x0, ++ .size = 0x0, ++ }, ++}; ++ ++static int ++mtd_split_linux(struct map_info *map, struct mtd_info *mtd, ++ struct mtd_partition *parts, int nr_parts) ++{ ++ int base_part = 0; ++ int i; ++ for (i = 0; i < nr_parts && !base_part; i++) { ++ if(!strcmp("linux", parts[i].name)) ++ base_part = i; ++ } ++ if (!base_part) ++ return 0; ++ split_partitions[0].size = find_uImage_size(map, parts[base_part].offset); ++ if (!split_partitions[0].size) { ++ printk(KERN_INFO "lq_nor: no uImage found in linux partition"); ++ return -1; ++ } ++ if (!detect_squashfs_partition(map, ++ parts[base_part].offset + split_partitions[0].size)) { ++ split_partitions[0].size &= ~(mtd->erasesize - 1); ++ split_partitions[0].size += mtd->erasesize; ++ } ++ split_partitions[0].offset = parts[base_part].offset; ++ split_partitions[1].offset = ++ parts[base_part].offset + split_partitions[0].size; ++ split_partitions[1].size = ++ parts[base_part].size - split_partitions[0].size; ++ ++ base_part++; ++ add_mtd_partitions(mtd, parts, base_part); ++ add_mtd_partitions(mtd, split_partitions, 2); ++ if(nr_parts != base_part) ++ add_mtd_partitions(mtd, &parts[base_part], nr_parts - base_part); ++ return nr_parts + 2; ++} ++ + static const char *part_probe_types[] = { "cmdlinepart", NULL }; + + static struct map_info lq_map = { +@@ -142,7 +215,8 @@ lq_mtd_probe(struct platform_device *pde + parts = lq_mtd_data->parts; + } + +- add_mtd_partitions(lq_mtd, parts, nr_parts); ++ if (!mtd_split_linux(&lq_map, lq_mtd, parts, nr_parts)) ++ add_mtd_partitions(lq_mtd, parts, nr_parts); + return 0; + } + diff --git a/target/linux/lantiq/patches/230-xway_etop.patch b/target/linux/lantiq/patches/230-xway_etop.patch new file mode 100644 index 0000000000..28955cf9ad --- /dev/null +++ b/target/linux/lantiq/patches/230-xway_etop.patch @@ -0,0 +1,580 @@ +--- a/drivers/net/Kconfig ++++ b/drivers/net/Kconfig +@@ -343,6 +343,12 @@ config MACB + + source "drivers/net/arm/Kconfig" + ++config LANTIQ_ETOP ++ tristate "Lantiq SoC ETOP driver" ++ depends on SOC_LANTIQ_XWAY ++ help ++ Support for the MII0 inside the Lantiq SoC ++ + config AX88796 + tristate "ASIX AX88796 NE2000 clone support" + depends on ARM || MIPS || SUPERH +--- a/drivers/net/Makefile ++++ b/drivers/net/Makefile +@@ -204,6 +204,7 @@ obj-$(CONFIG_SNI_82596) += sni_82596.o + obj-$(CONFIG_MVME16x_NET) += 82596.o + obj-$(CONFIG_BVME6000_NET) += 82596.o + obj-$(CONFIG_SC92031) += sc92031.o ++obj-$(CONFIG_LANTIQ_ETOP) += lantiq_etop.o + + # This is also a 82596 and should probably be merged + obj-$(CONFIG_LP486E) += lp486e.o +--- /dev/null ++++ b/drivers/net/lantiq_etop.c +@@ -0,0 +1,552 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2005 Wu Qi Ming ++ * Copyright (C) 2008 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++#include ++ ++#define ETHERNET_PACKET_DMA_BUFFER_SIZE 0x600 ++#define LQ_PPE32_MEM_MAP ((u32 *)(LQ_PPE32_BASE_ADDR + 0x10000)) ++#define LQ_PPE32_SRST ((u32 *)(LQ_PPE32_BASE_ADDR + 0x10080)) ++ ++/* mdio access */ ++#define LQ_PPE32_MDIO_CFG ((u32 *)(LQ_PPE32_BASE_ADDR + 0x11800)) ++#define LQ_PPE32_MDIO_ACC ((u32 *)(LQ_PPE32_BASE_ADDR + 0x11804)) ++ ++#define MDIO_ACC_REQUEST 0x80000000 ++#define MDIO_ACC_READ 0x40000000 ++#define MDIO_ACC_ADDR_MASK 0x1f ++#define MDIO_ACC_ADDR_OFFSET 0x15 ++#define MDIO_ACC_REG_MASK 0x1f ++#define MDIO_ACC_REG_OFFSET 0x10 ++#define MDIO_ACC_VAL_MASK 0xffff ++ ++/* configuration */ ++#define LQ_PPE32_CFG ((u32 *)(LQ_PPE32_MEM_MAP + 0x1808)) ++ ++#define PPE32_MII_MASK 0xfffffffc ++#define PPE32_MII_NORMAL 0x8 ++#define PPE32_MII_REVERSE 0xe ++ ++/* packet length */ ++#define LQ_PPE32_IG_PLEN_CTRL ((u32 *)(LQ_PPE32_MEM_MAP + 0x1820)) ++ ++#define PPE32_PLEN_OVER 0x5ee ++#define PPE32_PLEN_UNDER 0x400000 ++ ++/* enet */ ++#define LQ_PPE32_ENET_MAC_CFG ((u32 *)(LQ_PPE32_MEM_MAP + 0x1840)) ++ ++#define PPE32_CGEN 0x800 ++ ++struct lq_mii_priv { ++ struct net_device_stats stats; ++ struct dma_device_info *dma_device; ++ struct sk_buff *skb; ++ ++ struct mii_bus *mii_bus; ++ struct phy_device *phydev; ++ int oldlink, oldspeed, oldduplex; ++}; ++ ++static struct net_device *lq_etop_dev; ++static unsigned char mac_addr[MAX_ADDR_LEN]; ++ ++static int lq_mdiobus_write(struct mii_bus *bus, int phy_addr, ++ int phy_reg, u16 phy_data) ++{ ++ u32 val = MDIO_ACC_REQUEST | ++ ((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) | ++ ((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET) | ++ phy_data; ++ ++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST) ++ ; ++ lq_w32(val, LQ_PPE32_MDIO_ACC); ++ ++ return 0; ++} ++ ++static int lq_mdiobus_read(struct mii_bus *bus, int phy_addr, int phy_reg) ++{ ++ u32 val = MDIO_ACC_REQUEST | MDIO_ACC_READ | ++ ((phy_addr & MDIO_ACC_ADDR_MASK) << MDIO_ACC_ADDR_OFFSET) | ++ ((phy_reg & MDIO_ACC_REG_MASK) << MDIO_ACC_REG_OFFSET); ++ ++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST) ++ ; ++ lq_w32(val, LQ_PPE32_MDIO_ACC); ++ while (lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_REQUEST) ++ ; ++ val = lq_r32(LQ_PPE32_MDIO_ACC) & MDIO_ACC_VAL_MASK; ++ return val; ++} ++ ++int lq_mii_open(struct net_device *dev) ++{ ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev); ++ struct dma_device_info *dma_dev = priv->dma_device; ++ int i; ++ ++ for (i = 0; i < dma_dev->max_rx_chan_num; i++) { ++ if ((dma_dev->rx_chan[i])->control == LQ_DMA_CH_ON) ++ (dma_dev->rx_chan[i])->open(dma_dev->rx_chan[i]); ++ } ++ netif_start_queue(dev); ++ return 0; ++} ++ ++int lq_mii_release(struct net_device *dev) ++{ ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev); ++ struct dma_device_info *dma_dev = priv->dma_device; ++ int i; ++ ++ for (i = 0; i < dma_dev->max_rx_chan_num; i++) ++ dma_dev->rx_chan[i]->close(dma_dev->rx_chan[i]); ++ netif_stop_queue(dev); ++ return 0; ++} ++ ++int lq_mii_hw_receive(struct net_device *dev, struct dma_device_info *dma_dev) ++{ ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev); ++ unsigned char *buf = NULL; ++ struct sk_buff *skb = NULL; ++ int len = 0; ++ ++ len = dma_device_read(dma_dev, &buf, (void **)&skb); ++ ++ if (len >= ETHERNET_PACKET_DMA_BUFFER_SIZE) { ++ printk(KERN_INFO "lq_etop: packet too large %d\n", len); ++ goto lq_mii_hw_receive_err_exit; ++ } ++ ++ /* remove CRC */ ++ len -= 4; ++ if (skb == NULL) { ++ printk(KERN_INFO "lq_etop: cannot restore pointer\n"); ++ goto lq_mii_hw_receive_err_exit; ++ } ++ ++ if (len > (skb->end - skb->tail)) { ++ printk(KERN_INFO "lq_etop: BUG, len:%d end:%p tail:%p\n", ++ (len+4), skb->end, skb->tail); ++ goto lq_mii_hw_receive_err_exit; ++ } ++ ++ skb_put(skb, len); ++ skb->dev = dev; ++ skb->protocol = eth_type_trans(skb, dev); ++ netif_rx(skb); ++ ++ priv->stats.rx_packets++; ++ priv->stats.rx_bytes += len; ++ return 0; ++ ++lq_mii_hw_receive_err_exit: ++ if (len == 0) { ++ if (skb) ++ dev_kfree_skb_any(skb); ++ priv->stats.rx_errors++; ++ priv->stats.rx_dropped++; ++ return -EIO; ++ } else { ++ return len; ++ } ++} ++ ++int lq_mii_hw_tx(char *buf, int len, struct net_device *dev) ++{ ++ int ret = 0; ++ struct lq_mii_priv *priv = netdev_priv(dev); ++ struct dma_device_info *dma_dev = priv->dma_device; ++ ret = dma_device_write(dma_dev, buf, len, priv->skb); ++ return ret; ++} ++ ++int lq_mii_tx(struct sk_buff *skb, struct net_device *dev) ++{ ++ int len; ++ char *data; ++ struct lq_mii_priv *priv = netdev_priv(dev); ++ struct dma_device_info *dma_dev = priv->dma_device; ++ ++ len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len; ++ data = skb->data; ++ priv->skb = skb; ++ dev->trans_start = jiffies; ++ /* TODO: we got more than 1 dma channel, ++ so we should do something intelligent here to select one */ ++ dma_dev->current_tx_chan = 0; ++ ++ wmb(); ++ ++ if (lq_mii_hw_tx(data, len, dev) != len) { ++ dev_kfree_skb_any(skb); ++ priv->stats.tx_errors++; ++ priv->stats.tx_dropped++; ++ } else { ++ priv->stats.tx_packets++; ++ priv->stats.tx_bytes += len; ++ } ++ ++ return 0; ++} ++ ++void lq_mii_tx_timeout(struct net_device *dev) ++{ ++ int i; ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev); ++ ++ priv->stats.tx_errors++; ++ for (i = 0; i < priv->dma_device->max_tx_chan_num; i++) ++ priv->dma_device->tx_chan[i]->disable_irq(priv->dma_device->tx_chan[i]); ++ netif_wake_queue(dev); ++ return; ++} ++ ++int dma_intr_handler(struct dma_device_info *dma_dev, int status) ++{ ++ int i; ++ ++ switch (status) { ++ case RCV_INT: ++ lq_mii_hw_receive(lq_etop_dev, dma_dev); ++ break; ++ ++ case TX_BUF_FULL_INT: ++ printk(KERN_INFO "lq_etop: tx buffer full\n"); ++ netif_stop_queue(lq_etop_dev); ++ for (i = 0; i < dma_dev->max_tx_chan_num; i++) { ++ if ((dma_dev->tx_chan[i])->control == LQ_DMA_CH_ON) ++ dma_dev->tx_chan[i]->enable_irq(dma_dev->tx_chan[i]); ++ } ++ break; ++ ++ case TRANSMIT_CPT_INT: ++ for (i = 0; i < dma_dev->max_tx_chan_num; i++) ++ dma_dev->tx_chan[i]->disable_irq(dma_dev->tx_chan[i]); ++ ++ netif_wake_queue(lq_etop_dev); ++ break; ++ } ++ ++ return 0; ++} ++ ++unsigned char *lq_etop_dma_buffer_alloc(int len, int *byte_offset, void **opt) ++{ ++ unsigned char *buffer = NULL; ++ struct sk_buff *skb = NULL; ++ ++ skb = dev_alloc_skb(ETHERNET_PACKET_DMA_BUFFER_SIZE); ++ if (skb == NULL) ++ return NULL; ++ ++ buffer = (unsigned char *)(skb->data); ++ skb_reserve(skb, 2); ++ *(int *)opt = (int)skb; ++ *byte_offset = 2; ++ ++ return buffer; ++} ++ ++void lq_etop_dma_buffer_free(unsigned char *dataptr, void *opt) ++{ ++ struct sk_buff *skb = NULL; ++ ++ if (opt == NULL) { ++ kfree(dataptr); ++ } else { ++ skb = (struct sk_buff *)opt; ++ dev_kfree_skb_any(skb); ++ } ++} ++ ++static void ++lq_adjust_link(struct net_device *dev) ++{ ++ struct lq_mii_priv *priv = netdev_priv(dev); ++ struct phy_device *phydev = priv->phydev; ++ int new_state = 0; ++ ++ /* Did anything change? */ ++ if (priv->oldlink != phydev->link || ++ priv->oldduplex != phydev->duplex || ++ priv->oldspeed != phydev->speed) { ++ /* Yes, so update status and mark as changed */ ++ new_state = 1; ++ priv->oldduplex = phydev->duplex; ++ priv->oldspeed = phydev->speed; ++ priv->oldlink = phydev->link; ++ } ++ ++ /* If link status changed, show new status */ ++ if (new_state) ++ phy_print_status(phydev); ++} ++ ++static int mii_probe(struct net_device *dev) ++{ ++ struct lq_mii_priv *priv = netdev_priv(dev); ++ struct phy_device *phydev = NULL; ++ int phy_addr; ++ ++ priv->oldlink = 0; ++ priv->oldspeed = 0; ++ priv->oldduplex = -1; ++ ++ /* find the first (lowest address) PHY on the current MAC's MII bus */ ++ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { ++ if (priv->mii_bus->phy_map[phy_addr]) { ++ phydev = priv->mii_bus->phy_map[phy_addr]; ++ break; /* break out with first one found */ ++ } ++ } ++ ++ if (!phydev) { ++ printk (KERN_ERR "%s: no PHY found\n", dev->name); ++ return -ENODEV; ++ } ++ ++ /* now we are supposed to have a proper phydev, to attach to... */ ++ BUG_ON(!phydev); ++ BUG_ON(phydev->attached_dev); ++ ++ phydev = phy_connect(dev, dev_name(&phydev->dev), &lq_adjust_link, ++ 0, PHY_INTERFACE_MODE_MII); ++ ++ if (IS_ERR(phydev)) { ++ printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); ++ return PTR_ERR(phydev); ++ } ++ ++ /* mask with MAC supported features */ ++ phydev->supported &= (SUPPORTED_10baseT_Half ++ | SUPPORTED_10baseT_Full ++ | SUPPORTED_100baseT_Half ++ | SUPPORTED_100baseT_Full ++ | SUPPORTED_Autoneg ++ /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ ++ | SUPPORTED_MII ++ | SUPPORTED_TP); ++ ++ phydev->advertising = phydev->supported; ++ ++ priv->phydev = phydev; ++ ++ printk(KERN_INFO "%s: attached PHY driver [%s] " ++ "(mii_bus:phy_addr=%s, irq=%d)\n", ++ dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->irq); ++ ++ return 0; ++} ++ ++ ++static int lq_mii_dev_init(struct net_device *dev) ++{ ++ int i; ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(dev); ++ ether_setup(dev); ++ dev->watchdog_timeo = 10 * HZ; ++ dev->mtu = 1500; ++ memset(priv, 0, sizeof(struct lq_mii_priv)); ++ priv->dma_device = dma_device_reserve("PPE"); ++ if (!priv->dma_device) { ++ BUG(); ++ return -ENODEV; ++ } ++ priv->dma_device->buffer_alloc = &lq_etop_dma_buffer_alloc; ++ priv->dma_device->buffer_free = &lq_etop_dma_buffer_free; ++ priv->dma_device->intr_handler = &dma_intr_handler; ++ priv->dma_device->max_rx_chan_num = 4; ++ ++ for (i = 0; i < priv->dma_device->max_rx_chan_num; i++) { ++ priv->dma_device->rx_chan[i]->packet_size = ETHERNET_PACKET_DMA_BUFFER_SIZE; ++ priv->dma_device->rx_chan[i]->control = LQ_DMA_CH_ON; ++ } ++ ++ for (i = 0; i < priv->dma_device->max_tx_chan_num; i++) ++ if (i == 0) ++ priv->dma_device->tx_chan[i]->control = LQ_DMA_CH_ON; ++ else ++ priv->dma_device->tx_chan[i]->control = LQ_DMA_CH_OFF; ++ ++ dma_device_register(priv->dma_device); ++ ++ printk(KERN_INFO "%s: using mac=", dev->name); ++ for (i = 0; i < 6; i++) { ++ dev->dev_addr[i] = mac_addr[i]; ++ printk("%02X%c", dev->dev_addr[i], (i == 5) ? ('\n') : (':')); ++ } ++ ++ priv->mii_bus = mdiobus_alloc(); ++ if (priv->mii_bus == NULL) ++ return -ENOMEM; ++ ++ priv->mii_bus->priv = dev; ++ priv->mii_bus->read = lq_mdiobus_read; ++ priv->mii_bus->write = lq_mdiobus_write; ++ priv->mii_bus->name = "lq_mii"; ++ snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%x", 0); ++ priv->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); ++ for(i = 0; i < PHY_MAX_ADDR; ++i) ++ priv->mii_bus->irq[i] = PHY_POLL; ++ ++ mdiobus_register(priv->mii_bus); ++ ++ return mii_probe(dev); ++} ++ ++static void lq_mii_chip_init(int mode) ++{ ++ lq_pmu_enable(PMU_DMA); ++ lq_pmu_enable(PMU_PPE); ++ ++ if (mode == REV_MII_MODE) ++ lq_w32_mask(PPE32_MII_MASK, PPE32_MII_REVERSE, LQ_PPE32_CFG); ++ else if (mode == MII_MODE) ++ lq_w32_mask(PPE32_MII_MASK, PPE32_MII_NORMAL, LQ_PPE32_CFG); ++ lq_w32(PPE32_PLEN_UNDER | PPE32_PLEN_OVER, LQ_PPE32_IG_PLEN_CTRL); ++ lq_w32(PPE32_CGEN, LQ_PPE32_ENET_MAC_CFG); ++ wmb(); ++} ++ ++static int lq_mii_eth_mac_addr(struct net_device *dev, void *p) ++{ ++ int retcode; ++ ++ retcode = eth_mac_addr(dev, p); ++ ++ if (retcode) ++ return retcode; ++ ++ // set rx_addr for unicast filter ++ lq_w32(((dev->dev_addr[0]<<24)|(dev->dev_addr[1]<<16)|(dev->dev_addr[2]<< 8)|dev->dev_addr[3]), (u32*)(LQ_PPE32_BASE_ADDR|(0x461b<<2))); ++ lq_w32(((dev->dev_addr[4]<<24)|(dev->dev_addr[5]<<16)), (u32*)(LQ_PPE32_BASE_ADDR|(0x461c<<2))); ++ ++ return 0; ++} ++ ++static void lq_mii_set_rx_mode (struct net_device *dev) ++{ ++ // rx_mode promisc: unset unicast filter ++ if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) ++ lq_w32(lq_r32((u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))) & ~(1<<28), (u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))); ++ // enable unicast filter ++ else ++ lq_w32(lq_r32((u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))) | (1<<28), (u32*)(LQ_PPE32_BASE_ADDR|(0x4614<<2))); ++} ++ ++static const struct net_device_ops lq_eth_netdev_ops = { ++ .ndo_init = lq_mii_dev_init, ++ .ndo_open = lq_mii_open, ++ .ndo_stop = lq_mii_release, ++ .ndo_start_xmit = lq_mii_tx, ++ .ndo_tx_timeout = lq_mii_tx_timeout, ++ .ndo_change_mtu = eth_change_mtu, ++ .ndo_set_mac_address = lq_mii_eth_mac_addr, ++ .ndo_validate_addr = eth_validate_addr, ++ .ndo_set_multicast_list = lq_mii_set_rx_mode, ++}; ++ ++static int ++lq_mii_probe(struct platform_device *dev) ++{ ++ int result = 0; ++ struct lq_eth_data *eth = (struct lq_eth_data*)dev->dev.platform_data; ++ lq_etop_dev = alloc_etherdev(sizeof(struct lq_mii_priv)); ++ lq_etop_dev->netdev_ops = &lq_eth_netdev_ops; ++ memcpy(mac_addr, eth->mac, 6); ++ strcpy(lq_etop_dev->name, "eth%d"); ++ lq_mii_chip_init(eth->mii_mode); ++ result = register_netdev(lq_etop_dev); ++ if (result) { ++ printk(KERN_INFO "lq_etop: error %i registering device \"%s\"\n", result, lq_etop_dev->name); ++ goto out; ++ } ++ ++ printk(KERN_INFO "lq_etop: driver loaded!\n"); ++ ++out: ++ return result; ++} ++ ++static int lq_mii_remove(struct platform_device *dev) ++{ ++ struct lq_mii_priv *priv = (struct lq_mii_priv *)netdev_priv(lq_etop_dev); ++ ++ printk(KERN_INFO "lq_etop: lq_etop cleanup\n"); ++ ++ dma_device_unregister(priv->dma_device); ++ dma_device_release(priv->dma_device); ++ kfree(priv->dma_device); ++ unregister_netdev(lq_etop_dev); ++ return 0; ++} ++ ++static struct platform_driver lq_mii_driver = { ++ .probe = lq_mii_probe, ++ .remove = lq_mii_remove, ++ .driver = { ++ .name = "lq_etop", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init lq_mii_init(void) ++{ ++ int ret = platform_driver_register(&lq_mii_driver); ++ if (ret) ++ printk(KERN_INFO "lq_etop: Error registering platfom driver!"); ++ return ret; ++} ++ ++static void __exit lq_mii_cleanup(void) ++{ ++ platform_driver_unregister(&lq_mii_driver); ++} ++ ++module_init(lq_mii_init); ++module_exit(lq_mii_cleanup); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("John Crispin "); ++MODULE_DESCRIPTION("ethernet driver for IFXMIPS boards"); diff --git a/target/linux/lantiq/patches/250-watchdog.patch b/target/linux/lantiq/patches/250-watchdog.patch new file mode 100644 index 0000000000..f86ff71868 --- /dev/null +++ b/target/linux/lantiq/patches/250-watchdog.patch @@ -0,0 +1,246 @@ +--- a/drivers/watchdog/Kconfig ++++ b/drivers/watchdog/Kconfig +@@ -840,6 +840,12 @@ config TXX9_WDT + help + Hardware driver for the built-in watchdog timer on TXx9 MIPS SoCs. + ++config LANTIQ_WDT ++ bool "Lantiq SoC watchdog" ++ depends on LANTIQ ++ help ++ Hardware driver for the Lantiq SoC Watchdog Timer. ++ + # PARISC Architecture + + # POWERPC Architecture +--- a/drivers/watchdog/Makefile ++++ b/drivers/watchdog/Makefile +@@ -112,6 +112,7 @@ obj-$(CONFIG_PNX833X_WDT) += pnx833x_wdt + obj-$(CONFIG_SIBYTE_WDOG) += sb_wdog.o + obj-$(CONFIG_AR7_WDT) += ar7_wdt.o + obj-$(CONFIG_TXX9_WDT) += txx9wdt.o ++obj-$(CONFIG_LANTIQ_WDT) += lantiq_wdt.o + + # PARISC Architecture + +--- /dev/null ++++ b/drivers/watchdog/lantiq_wdt.c +@@ -0,0 +1,218 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ * Based on EP93xx wdt driver ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_WDT_PW1 0x00BE0000 ++#define LQ_WDT_PW2 0x00DC0000 ++ ++#define LQ_BIU_WDT_CR 0x3F0 ++#define LQ_BIU_WDT_SR 0x3F8 ++ ++#ifndef CONFIG_WATCHDOG_NOWAYOUT ++static int wdt_ok_to_close; ++#endif ++ ++static int wdt_timeout = 30; ++static __iomem void *wdt_membase = NULL; ++static unsigned long io_region_clk = 0; ++ ++static int ++lq_wdt_enable(unsigned int timeout) ++{ ++/* printk("%s:%s[%d] %08X\n", ++ __FILE__, __func__, __LINE__, ++ lq_r32(wdt_membase + LQ_BIU_WDT_SR)); ++ if(!lq_r32(wdt_membase + LQ_BIU_WDT_SR)) ++ { ++*/ lq_w32(LQ_WDT_PW1, wdt_membase + LQ_BIU_WDT_CR); ++ lq_w32(LQ_WDT_PW2 | ++ (0x3 << 26) | /* PWL */ ++ (0x3 << 24) | /* CLKDIV */ ++ (0x1 << 31) | /* enable */ ++ ((timeout * (io_region_clk / 0x40000)) + 0x1000), /* reload */ ++ wdt_membase + LQ_BIU_WDT_CR); ++// } ++ return 0; ++} ++ ++static void ++lq_wdt_disable(void) ++{ ++#ifndef CONFIG_WATCHDOG_NOWAYOUT ++ wdt_ok_to_close = 0; ++#endif ++ lq_w32(LQ_WDT_PW1, wdt_membase + LQ_BIU_WDT_CR); ++ lq_w32(LQ_WDT_PW2, wdt_membase+ LQ_BIU_WDT_CR); ++} ++ ++static ssize_t ++lq_wdt_write(struct file *file, const char __user *data, ++ size_t len, loff_t *ppos) ++{ ++ size_t i; ++ ++ if (!len) ++ return 0; ++ ++#ifndef CONFIG_WATCHDOG_NOWAYOUT ++ for (i = 0; i != len; i++) { ++ char c; ++ if (get_user(c, data + i)) ++ return -EFAULT; ++ if (c == 'V') ++ wdt_ok_to_close = 1; ++ } ++#endif ++ lq_wdt_enable(wdt_timeout); ++ return len; ++} ++ ++static struct watchdog_info ident = { ++ .options = WDIOF_MAGICCLOSE, ++ .identity = "lq_wdt", ++}; ++ ++static int ++lq_wdt_ioctl(struct inode *inode, struct file *file, ++ unsigned int cmd, unsigned long arg) ++{ ++ int ret = -ENOTTY; ++ ++ switch (cmd) { ++ case WDIOC_GETSUPPORT: ++ ret = copy_to_user((struct watchdog_info __user *)arg, &ident, ++ sizeof(ident)) ? -EFAULT : 0; ++ break; ++ ++ case WDIOC_GETTIMEOUT: ++ ret = put_user(wdt_timeout, (int __user *)arg); ++ break; ++ ++ case WDIOC_SETTIMEOUT: ++ ret = get_user(wdt_timeout, (int __user *)arg); ++ break; ++ ++ case WDIOC_KEEPALIVE: ++ lq_wdt_enable(wdt_timeout); ++ ret = 0; ++ break; ++ } ++ return ret; ++} ++ ++static int ++lq_wdt_open(struct inode *inode, struct file *file) ++{ ++ lq_wdt_enable(wdt_timeout); ++ return nonseekable_open(inode, file); ++} ++ ++static int ++lq_wdt_release(struct inode *inode, struct file *file) ++{ ++#ifndef CONFIG_WATCHDOG_NOWAYOUT ++ if (wdt_ok_to_close) ++ lq_wdt_disable(); ++ else ++#endif ++ printk(KERN_ERR "lq_wdt: watchdog closed without warning," ++ " rebooting system\n"); ++ return 0; ++} ++ ++static const struct file_operations lq_wdt_fops = { ++ .owner = THIS_MODULE, ++ .write = lq_wdt_write, ++ .ioctl = lq_wdt_ioctl, ++ .open = lq_wdt_open, ++ .release = lq_wdt_release, ++}; ++ ++static struct miscdevice lq_wdt_miscdev = { ++ .minor = WATCHDOG_MINOR, ++ .name = "watchdog", ++ .fops = &lq_wdt_fops, ++}; ++ ++static int ++lq_wdt_probe(struct platform_device *pdev) ++{ ++ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ struct clk *clk; ++ int ret = 0; ++ if(!res) ++ return -ENOENT; ++ res = request_mem_region(res->start, resource_size(res), ++ dev_name(&pdev->dev)); ++ if(!res) ++ return -EBUSY; ++ wdt_membase = ioremap_nocache(res->start, resource_size(res)); ++ if(!wdt_membase) ++ { ++ ret = -ENOMEM; ++ goto err_release_mem_region; ++ } ++ clk = clk_get(&pdev->dev, "io"); ++ io_region_clk = clk_get_rate(clk);; ++ ret = misc_register(&lq_wdt_miscdev); ++ if(!ret) ++ return 0; ++ ++ iounmap(wdt_membase); ++err_release_mem_region: ++ release_mem_region(res->start, resource_size(res)); ++ return ret; ++} ++ ++static int ++lq_wdt_remove(struct platform_device *dev) ++{ ++ lq_wdt_disable(); ++ misc_deregister(&lq_wdt_miscdev); ++ return 0; ++} ++ ++static struct platform_driver lq_wdt_driver = { ++ .probe = lq_wdt_probe, ++ .remove = lq_wdt_remove, ++ .driver = { ++ .name = "lq_wdt", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++static int __init ++init_lq_wdt(void) ++{ ++ return platform_driver_register(&lq_wdt_driver); ++} ++ ++static void __exit ++exit_lq_wdt(void) ++{ ++ platform_driver_unregister(&lq_wdt_driver); ++} ++ ++module_init(init_lq_wdt); ++module_exit(exit_lq_wdt); ++ ++MODULE_AUTHOR("John Crispin "); ++MODULE_DESCRIPTION("ifxmips Watchdog"); ++MODULE_LICENSE("GPL"); ++MODULE_ALIAS_MISCDEV(WATCHDOG_MINOR); diff --git a/target/linux/lantiq/patches/260-pci.patch b/target/linux/lantiq/patches/260-pci.patch new file mode 100644 index 0000000000..d086b25e8b --- /dev/null +++ b/target/linux/lantiq/patches/260-pci.patch @@ -0,0 +1,436 @@ +--- a/arch/mips/pci/Makefile ++++ b/arch/mips/pci/Makefile +@@ -55,6 +55,7 @@ obj-$(CONFIG_ZAO_CAPCELLA) += fixup-capc + obj-$(CONFIG_WR_PPMC) += fixup-wrppmc.o + obj-$(CONFIG_MIKROTIK_RB532) += pci-rc32434.o ops-rc32434.o fixup-rc32434.o + obj-$(CONFIG_CPU_CAVIUM_OCTEON) += pci-octeon.o pcie-octeon.o ++obj-$(CONFIG_LANTIQ) += pci-lantiq.o ops-lantiq.o + + ifdef CONFIG_PCI_MSI + obj-$(CONFIG_CPU_CAVIUM_OCTEON) += msi-octeon.o +--- /dev/null ++++ b/arch/mips/pci/ops-lantiq.c +@@ -0,0 +1,127 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#define LQ_PCI_CFG_BUSNUM_SHF 16 ++#define LQ_PCI_CFG_DEVNUM_SHF 11 ++#define LQ_PCI_CFG_FUNNUM_SHF 8 ++ ++#define PCI_ACCESS_READ 0 ++#define PCI_ACCESS_WRITE 1 ++ ++extern u32 lq_pci_mapped_cfg; ++ ++static int ++lq_pci_config_access(unsigned char access_type, ++ struct pci_bus *bus, unsigned int devfn, unsigned int where, u32 *data) ++{ ++ unsigned long cfg_base; ++ unsigned long flags; ++ ++ u32 temp; ++ ++ /* we support slot from 0 to 15 */ ++ /* dev_fn 0&0x68 (AD29) is ifxmips itself */ ++ if ((bus->number != 0) || ((devfn & 0xf8) > 0x78) ++ || ((devfn & 0xf8) == 0) || ((devfn & 0xf8) == 0x68)) ++ return 1; ++ ++ spin_lock_irqsave(&ebu_lock, flags); ++ ++ cfg_base = lq_pci_mapped_cfg; ++ cfg_base |= (bus->number << LQ_PCI_CFG_BUSNUM_SHF) | (devfn << ++ LQ_PCI_CFG_FUNNUM_SHF) | (where & ~0x3); ++ ++ /* Perform access */ ++ if (access_type == PCI_ACCESS_WRITE) ++ { ++#ifdef CONFIG_SWAP_IO_SPACE ++ lq_w32(swab32(*data), ((u32*)cfg_base)); ++#else ++ lq_w32(*data, ((u32*)cfg_base)); ++#endif ++ } else { ++ *data = lq_r32(((u32*)(cfg_base))); ++#ifdef CONFIG_SWAP_IO_SPACE ++ *data = swab32(*data); ++#endif ++ } ++ wmb(); ++ ++ /* clean possible Master abort */ ++ cfg_base = (lq_pci_mapped_cfg | (0x0 << LQ_PCI_CFG_FUNNUM_SHF)) + 4; ++ temp = lq_r32(((u32*)(cfg_base))); ++#ifdef CONFIG_SWAP_IO_SPACE ++ temp = swab32 (temp); ++#endif ++ cfg_base = (lq_pci_mapped_cfg | (0x68 << LQ_PCI_CFG_FUNNUM_SHF)) + 4; ++ lq_w32(temp, ((u32*)cfg_base)); ++ ++ spin_unlock_irqrestore(&ebu_lock, flags); ++ ++ if (((*data) == 0xffffffff) && (access_type == PCI_ACCESS_READ)) ++ return 1; ++ ++ return 0; ++} ++ ++int ++lq_pci_read_config_dword(struct pci_bus *bus, unsigned int devfn, ++ int where, int size, u32 * val) ++{ ++ u32 data = 0; ++ ++ if (lq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) ++ return PCIBIOS_DEVICE_NOT_FOUND; ++ ++ if (size == 1) ++ *val = (data >> ((where & 3) << 3)) & 0xff; ++ else if (size == 2) ++ *val = (data >> ((where & 3) << 3)) & 0xffff; ++ else ++ *val = data; ++ ++ return PCIBIOS_SUCCESSFUL; ++} ++ ++int ++lq_pci_write_config_dword(struct pci_bus *bus, unsigned int devfn, ++ int where, int size, u32 val) ++{ ++ u32 data = 0; ++ ++ if (size == 4) ++ { ++ data = val; ++ } else { ++ if (lq_pci_config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) ++ return PCIBIOS_DEVICE_NOT_FOUND; ++ ++ if (size == 1) ++ data = (data & ~(0xff << ((where & 3) << 3))) | ++ (val << ((where & 3) << 3)); ++ else if (size == 2) ++ data = (data & ~(0xffff << ((where & 3) << 3))) | ++ (val << ((where & 3) << 3)); ++ } ++ ++ if (lq_pci_config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) ++ return PCIBIOS_DEVICE_NOT_FOUND; ++ ++ return PCIBIOS_SUCCESSFUL; ++} +--- /dev/null ++++ b/arch/mips/pci/pci-lantiq.c +@@ -0,0 +1,293 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++#include ++ ++#define LQ_PCI_CFG_BASE 0x17000000 ++#define LQ_PCI_CFG_SIZE 0x00008000 ++#define LQ_PCI_MEM_BASE 0x18000000 ++#define LQ_PCI_MEM_SIZE 0x02000000 ++#define LQ_PCI_IO_BASE 0x1AE00000 ++#define LQ_PCI_IO_SIZE 0x00200000 ++ ++#define PCI_CR_FCI_ADDR_MAP0 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C0)) ++#define PCI_CR_FCI_ADDR_MAP1 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C4)) ++#define PCI_CR_FCI_ADDR_MAP2 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00C8)) ++#define PCI_CR_FCI_ADDR_MAP3 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00CC)) ++#define PCI_CR_FCI_ADDR_MAP4 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D0)) ++#define PCI_CR_FCI_ADDR_MAP5 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D4)) ++#define PCI_CR_FCI_ADDR_MAP6 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00D8)) ++#define PCI_CR_FCI_ADDR_MAP7 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00DC)) ++#define PCI_CR_CLK_CTRL ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0000)) ++#define PCI_CR_PCI_MOD ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0030)) ++#define PCI_CR_PC_ARB ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0080)) ++#define PCI_CR_FCI_ADDR_MAP11hg ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00E4)) ++#define PCI_CR_BAR11MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0044)) ++#define PCI_CR_BAR12MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0048)) ++#define PCI_CR_BAR13MASK ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x004C)) ++#define PCI_CS_BASE_ADDR1 ((u32 *)(PCI_CS_PR_BASE_ADDR + 0x0010)) ++#define PCI_CR_PCI_ADDR_MAP11 ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x0064)) ++#define PCI_CR_FCI_BURST_LENGTH ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x00E8)) ++#define PCI_CR_PCI_EOI ((u32 *)(PCI_CR_PR_BASE_ADDR + 0x002C)) ++ ++ ++#define PCI_CS_STS_CMD ((u32 *)(PCI_CS_PR_BASE_ADDR + 0x0004)) ++ ++#define PCI_MASTER0_REQ_MASK_2BITS 8 ++#define PCI_MASTER1_REQ_MASK_2BITS 10 ++#define PCI_MASTER2_REQ_MASK_2BITS 12 ++#define INTERNAL_ARB_ENABLE_BIT 0 ++ ++#define LQ_CGU_IFCCR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0018)) ++#define LQ_CGU_PCICR ((u32 *)(LQ_CGU_BASE_ADDR + 0x0034)) ++ ++extern int lq_pci_read_config_dword(struct pci_bus *bus, ++ unsigned int devfn, int where, int size, u32 *val); ++extern int lq_pci_write_config_dword(struct pci_bus *bus, ++ unsigned int devfn, int where, int size, u32 val); ++ ++u32 lq_pci_mapped_cfg; ++ ++/* Since the PCI REQ pins can be reused for other functionality, make it possible ++ to exclude those from interpretation by the PCI controller */ ++static int lq_pci_req_mask = 0xf; ++ ++struct pci_ops lq_pci_ops = ++{ ++ .read = lq_pci_read_config_dword, ++ .write = lq_pci_write_config_dword ++}; ++ ++static struct resource pci_io_resource = ++{ ++ .name = "pci io space", ++ .start = LQ_PCI_IO_BASE, ++ .end = LQ_PCI_IO_BASE + LQ_PCI_IO_SIZE - 1, ++ .flags = IORESOURCE_IO ++}; ++ ++static struct resource pci_mem_resource = ++{ ++ .name = "pci memory space", ++ .start = LQ_PCI_MEM_BASE, ++ .end = LQ_PCI_MEM_BASE + LQ_PCI_MEM_SIZE - 1, ++ .flags = IORESOURCE_MEM ++}; ++ ++static struct pci_controller lq_pci_controller = ++{ ++ .pci_ops = &lq_pci_ops, ++ .mem_resource = &pci_mem_resource, ++ .mem_offset = 0x00000000UL, ++ .io_resource = &pci_io_resource, ++ .io_offset = 0x00000000UL, ++}; ++ ++int ++pcibios_plat_dev_init(struct pci_dev *dev) ++{ ++ u8 pin; ++ ++ pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); ++ switch(pin) ++ { ++ case 0: ++ break; ++ case 1: ++ //falling edge level triggered:0x4, low level:0xc, rising edge:0x2 ++ lq_w32(lq_r32(LQ_EBU_PCC_CON) | 0xc, LQ_EBU_PCC_CON); ++ lq_w32(lq_r32(LQ_EBU_PCC_IEN) | 0x10, LQ_EBU_PCC_IEN); ++ break; ++ case 2: ++ case 3: ++ case 4: ++ printk ("WARNING: interrupt pin %d not supported yet!\n", pin); ++ default: ++ printk ("WARNING: invalid interrupt pin %d\n", pin); ++ return 1; ++ } ++ return 0; ++} ++ ++static u32 ++lq_calc_bar11mask(void) ++{ ++ u32 mem, bar11mask; ++ ++ /* BAR11MASK value depends on available memory on system. */ ++ mem = num_physpages * PAGE_SIZE; ++ bar11mask = (0x0ffffff0 & ~((1 << (fls(mem) -1)) -1)) | 8; ++ ++ return bar11mask; ++} ++ ++static void ++lq_pci_setup_clk(int external_clock) ++{ ++ /* set clock to 33Mhz */ ++ lq_w32(lq_r32(LQ_CGU_IFCCR) & ~0xf00000, LQ_CGU_IFCCR); ++ lq_w32(lq_r32(LQ_CGU_IFCCR) | 0x800000, LQ_CGU_IFCCR); ++ if (external_clock) ++ { ++ lq_w32(lq_r32(LQ_CGU_IFCCR) & ~(1 << 16), LQ_CGU_IFCCR); ++ lq_w32((1 << 30), LQ_CGU_PCICR); ++ } else { ++ lq_w32(lq_r32(LQ_CGU_IFCCR) | (1 << 16), LQ_CGU_IFCCR); ++ lq_w32((1 << 31) | (1 << 30), LQ_CGU_PCICR); ++ } ++} ++ ++static void ++lq_pci_setup_gpio(void) ++{ ++ /* PCI reset line is gpio driven */ ++ lq_gpio_request(21, 0, 0, 1, "pci-reset"); ++ ++ /* PCI_REQ line */ ++ lq_gpio_request(29, 1, 0, 0, "pci-req"); ++ ++ /* PCI_GNT line */ ++ lq_gpio_request(30, 1, 0, 1, "pci-gnt"); ++} ++ ++static int __init ++lq_pci_startup(void) ++{ ++ u32 temp_buffer; ++ ++ /* setup pci clock and gpis used by pci */ ++ lq_pci_setup_gpio(); ++ ++ /* enable auto-switching between PCI and EBU */ ++ lq_w32(0xa, PCI_CR_CLK_CTRL); ++ ++ /* busy, i.e. configuration is not done, PCI access has to be retried */ ++ lq_w32(lq_r32(PCI_CR_PCI_MOD) & ~(1 << 24), PCI_CR_PCI_MOD); ++ wmb (); ++ /* BUS Master/IO/MEM access */ ++ lq_w32(lq_r32(PCI_CS_STS_CMD) | 7, PCI_CS_STS_CMD); ++ ++ /* enable external 2 PCI masters */ ++ temp_buffer = lq_r32(PCI_CR_PC_ARB); ++ temp_buffer &= (~(lq_pci_req_mask << 16)); ++ /* enable internal arbiter */ ++ temp_buffer |= (1 << INTERNAL_ARB_ENABLE_BIT); ++ /* enable internal PCI master reqest */ ++ temp_buffer &= (~(3 << PCI_MASTER0_REQ_MASK_2BITS)); ++ ++ /* enable EBU request */ ++ temp_buffer &= (~(3 << PCI_MASTER1_REQ_MASK_2BITS)); ++ ++ /* enable all external masters request */ ++ temp_buffer &= (~(3 << PCI_MASTER2_REQ_MASK_2BITS)); ++ lq_w32(temp_buffer, PCI_CR_PC_ARB); ++ wmb (); ++ ++ /* setup BAR memory regions */ ++ lq_w32(0x18000000, PCI_CR_FCI_ADDR_MAP0); ++ lq_w32(0x18400000, PCI_CR_FCI_ADDR_MAP1); ++ lq_w32(0x18800000, PCI_CR_FCI_ADDR_MAP2); ++ lq_w32(0x18c00000, PCI_CR_FCI_ADDR_MAP3); ++ lq_w32(0x19000000, PCI_CR_FCI_ADDR_MAP4); ++ lq_w32(0x19400000, PCI_CR_FCI_ADDR_MAP5); ++ lq_w32(0x19800000, PCI_CR_FCI_ADDR_MAP6); ++ lq_w32(0x19c00000, PCI_CR_FCI_ADDR_MAP7); ++ lq_w32(0x1ae00000, PCI_CR_FCI_ADDR_MAP11hg); ++ lq_w32(lq_calc_bar11mask(), PCI_CR_BAR11MASK); ++ lq_w32(0, PCI_CR_PCI_ADDR_MAP11); ++ lq_w32(0, PCI_CS_BASE_ADDR1); ++#ifdef CONFIG_SWAP_IO_SPACE ++ /* both TX and RX endian swap are enabled */ ++ lq_w32(lq_r32(PCI_CR_PCI_EOI) | 3, PCI_CR_PCI_EOI); ++ wmb (); ++#endif ++ /*TODO: disable BAR2 & BAR3 - why was this in the origianl infineon code */ ++ lq_w32(lq_r32(PCI_CR_BAR12MASK) | 0x80000000, PCI_CR_BAR12MASK); ++ lq_w32(lq_r32(PCI_CR_BAR13MASK) | 0x80000000, PCI_CR_BAR13MASK); ++ /*use 8 dw burst length */ ++ lq_w32(0x303, PCI_CR_FCI_BURST_LENGTH); ++ lq_w32(lq_r32(PCI_CR_PCI_MOD) | (1 << 24), PCI_CR_PCI_MOD); ++ wmb(); ++ ++ /* toggle reset pin */ ++ __gpio_set_value(21, 0); ++ wmb(); ++ mdelay(1); ++ __gpio_set_value(21, 1); ++ return 0; ++} ++ ++int __init ++pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin){ ++ switch(slot) ++ { ++ case 13: ++ /* IDSEL = AD29 --> USB Host Controller */ ++ return (INT_NUM_IM1_IRL0 + 17); ++ case 14: ++ /* IDSEL = AD30 --> mini PCI connector */ ++ return (INT_NUM_IM0_IRL0 + 22); ++ default: ++ printk("lq_pci: no IRQ found for slot %d, pin %d\n", slot, pin); ++ return 0; ++ } ++} ++ ++static int ++lq_pci_probe(struct platform_device *pdev) ++{ ++ struct lq_pci_data *lq_pci_data = (struct lq_pci_data*) pdev->dev.platform_data; ++ extern int pci_probe_only; ++ ++ pci_probe_only = 0; ++ lq_pci_req_mask = lq_pci_data->req_mask; ++ lq_pci_setup_clk(lq_pci_data->clock); ++ ++ lq_pci_startup(); ++ lq_pci_mapped_cfg = ++ (u32)ioremap_nocache(LQ_PCI_CFG_BASE, LQ_PCI_CFG_BASE); ++ lq_pci_controller.io_map_base = ++ (unsigned long)ioremap(LQ_PCI_IO_BASE, LQ_PCI_IO_SIZE - 1); ++ ++ register_pci_controller(&lq_pci_controller); ++ return 0; ++} ++ ++static struct platform_driver ++lq_pci_driver = { ++ .probe = lq_pci_probe, ++ .driver = { ++ .name = "lq_pci", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++int __init ++pcibios_init(void) ++{ ++ int ret = platform_driver_register(&lq_pci_driver); ++ if(ret) ++ printk(KERN_INFO "lq_pci: Error registering platfom driver!"); ++ return ret; ++} ++ ++arch_initcall(pcibios_init); diff --git a/target/linux/lantiq/patches/270-crypto.patch b/target/linux/lantiq/patches/270-crypto.patch new file mode 100644 index 0000000000..e6ee88585c --- /dev/null +++ b/target/linux/lantiq/patches/270-crypto.patch @@ -0,0 +1,6209 @@ +--- a/drivers/crypto/Kconfig ++++ b/drivers/crypto/Kconfig +@@ -243,4 +243,75 @@ + OMAP processors have SHA1/MD5 hw accelerator. Select this if you + want to use the OMAP module for SHA1/MD5 algorithms. + ++config CRYPTO_DEV_LANTIQ ++ bool "Support for Lantiq crypto engine" ++ select CRYPTO_ALGAPI ++ default y ++ help ++ Will support Lantiq crypto hardware ++ If you are unsure, say M. ++ ++menuconfig CRYPTO_DEV_LANTIQ_DES ++ bool "Lantiq crypto hardware for DES algorithm" ++ depends on CRYPTO_DEV_LANTIQ ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for DES/3DES algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_AES ++ bool "Lantiq crypto hardware for AES algorithm" ++ depends on CRYPTO_DEV_LANTIQ ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for AES algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_ARC4 ++ bool "Lantiq crypto hardware for ARC4 algorithm" ++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9) ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for ARC4 algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_MD5 ++ bool "Lantiq crypto hardware for MD5 algorithm" ++ depends on CRYPTO_DEV_LANTIQ ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for MD5 algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_SHA1 ++ bool "Lantiq crypto hardware for SHA1 algorithm" ++ depends on CRYPTO_DEV_LANTIQ ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for SHA1 algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_SHA1_HMAC ++ bool "Lantiq crypto hardware for SHA1_HMAC algorithm" ++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9) ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for SHA1_HMAC algorithm. ++ If unsure say N. ++ ++menuconfig CRYPTO_DEV_LANTIQ_MD5_HMAC ++ bool "Lantiq crypto hardware for MD5_HMAC algorithms" ++ depends on (CRYPTO_DEV_LANTIQ && IFXMIPS_AR9) ++ select CRYPTO_BLKCIPHER ++ default y ++ help ++ Use crypto hardware for MD5_HMAC algorithm. ++ If unsure say N. ++ + endif # CRYPTO_HW +--- /dev/null ++++ b/drivers/crypto/lantiq/Makefile +@@ -0,0 +1,11 @@ ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_falcon.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_danube.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ) += deu_ar9.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_DES) += des.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_AES) += aes.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) += arc4.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_SHA1) += sha1.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC) += sha1_hmac.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_MD5) += md5.o ++obj-$(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC) += md5_hmac.o +--- /dev/null ++++ b/drivers/crypto/lantiq/aes.c +@@ -0,0 +1,1029 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file aes.c ++ \ingroup LQ_DEU ++ \brief AES Encryption Driver main file ++*/ ++ ++/** ++ \defgroup LQ_AES_FUNCTIONS LQ_AES_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq AES driver Functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++# include "deu_dma.h" ++#endif ++ ++static spinlock_t cipher_lock; ++ ++/* Definition of constants */ ++ ++#define AES_MIN_KEY_SIZE 16 ++#define AES_MAX_KEY_SIZE 32 ++#define AES_BLOCK_SIZE 16 ++#define CTR_RFC3686_NONCE_SIZE 4 ++#define CTR_RFC3686_IV_SIZE 8 ++#define CTR_RFC3686_MAX_KEY_SIZE (AES_MAX_KEY_SIZE \ ++ + CTR_RFC3686_NONCE_SIZE) ++ ++struct aes_ctx { ++ int key_length; ++ u32 buf[AES_MAX_KEY_SIZE]; ++ u8 nonce[CTR_RFC3686_NONCE_SIZE]; ++}; ++ ++/** \fn int aes_set_key(struct crypto_tfm *tfm, const uint8_t *in_key, unsigned int key_len) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets the AES keys ++ * \param tfm linux crypto algo transform ++ * \param in_key input key ++ * \param key_len key lengths of 16, 24 and 32 bytes supported ++ * \return -EINVAL - bad key length, 0 - SUCCESS ++*/ ++static int aes_set_key(struct crypto_tfm *tfm, ++ const u8 *in_key, ++ unsigned int key_len) ++{ ++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm); ++ u32 *flags = &tfm->crt_flags; ++ ++ DPRINTF(0, "ctx @%p, key_len %d\n", ctx, key_len); ++ ++ if (key_len != 16 && key_len != 24 && key_len != 32) { ++ *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; ++ return -EINVAL; ++ } ++ ++ ctx->key_length = key_len; ++ memcpy((u8 *)(ctx->buf), in_key, key_len); ++ ++ return 0; ++} ++ ++#ifndef CONFIG_CRYPTO_DEV_DMA ++/** \fn void deu_aes(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, size_t nbytes, int encdec, int mode) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief main interface to AES hardware ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc, ctr ++ * ++*/ ++static void deu_aes(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ size_t nbytes, ++ int encdec, ++ int mode) ++#else ++ ++/** \fn void deu_aes_core(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, size_t nbytes, int encdec, int mode) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief main interface to AES hardware ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc, ctr ++ * ++*/ ++static void deu_aes_core(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ size_t nbytes, ++ int encdec, ++ int mode) ++#endif ++ ++{ ++ /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ ++ volatile struct deu_aes *aes = (volatile struct deu_aes *)AES_START; ++ struct aes_ctx *ctx = (struct aes_ctx *)ctx_arg; ++ u32 *in_key = ctx->buf; ++ ulong flag; ++ /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ ++ int key_len = ctx->key_length; ++ ++#ifndef CONFIG_CRYPTO_DEV_DMA ++ int i = 0; ++ int byte_cnt = nbytes; ++#else ++ volatile struct deu_dma *dma = (struct deu_dma *)LQ_DEU_DMA_CON; ++ struct dma_device_info *dma_device = lq_deu[0].dma_device; ++ /* struct deu_drv_priv *deu_priv = ++ * (struct deu_drv_priv *)dma_device->priv; */ ++ int wlen = 0; ++ u32 *outcopy = NULL; ++ u32 *dword_mem_aligned_in = NULL; ++ ++# ifdef CONFIG_CRYPTO_DEV_POLL_DMA ++ u32 timeout = 0; ++ u32 *out_dma = NULL; ++# endif ++#endif ++ ++ DPRINTF(0, "ctx @%p, mode %d, encdec %d\n", ctx, mode, encdec); ++ ++ CRTCL_SECT_START; ++ ++ /* 128, 192 or 256 bit key length */ ++ aes->ctrl.K = key_len / 8 - 2; ++ if (key_len == 128 / 8) { ++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0)); ++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1)); ++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2)); ++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3)); ++ } ++ else if (key_len == 192 / 8) { ++ aes->K5R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0)); ++ aes->K4R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1)); ++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2)); ++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3)); ++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 4)); ++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 5)); ++ } ++ else if (key_len == 256 / 8) { ++ aes->K7R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 0)); ++ aes->K6R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 1)); ++ aes->K5R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 2)); ++ aes->K4R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 3)); ++ aes->K3R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 4)); ++ aes->K2R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 5)); ++ aes->K1R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 6)); ++ aes->K0R = DEU_ENDIAN_SWAP(*((u32 *)in_key + 7)); ++ } ++ else { ++ CRTCL_SECT_END; ++ return; /* -EINVAL; */ ++ } ++ ++ /* let HW pre-process DEcryption key in any case (even if ++ ENcryption is used). Key Valid (KV) bit is then only ++ checked in decryption routine! */ ++ aes->ctrl.PNK = 1; ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++ while (aes->ctrl.BUS) { ++ /* this will not take long */ ++ } ++ AES_DMA_MISC_CONFIG(); ++#endif ++ ++ aes->ctrl.E_D = !encdec; /* encryption */ ++ aes->ctrl.O = mode; /* 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */ ++ aes->ctrl.SM = 1; /* start after writing input register */ ++ aes->ctrl.DAU = 0; /* Disable Automatic Update of init ++ vector */ ++ aes->ctrl.ARS = 1; /* Autostart Select - write to IHR */ ++ ++ /* aes->ctrl.F = 128; */ /* default; only for CFB and OFB modes; ++ change only for ++ customer-specific apps */ ++ if (mode > 0) { ++ aes->IV3R = DEU_ENDIAN_SWAP(*(u32 *)iv_arg); ++ aes->IV2R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 1)); ++ aes->IV1R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 2)); ++ aes->IV0R = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 3)); ++ }; ++ ++#ifndef CONFIG_CRYPTO_DEV_DMA ++ i = 0; ++ while (byte_cnt >= 16) { ++ aes->ID3R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 0)); ++ aes->ID2R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 1)); ++ aes->ID1R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 2)); ++ /* start crypto */ ++ aes->ID0R = INPUT_ENDIAN_SWAP(*((u32 *)in_arg + (i * 4) + 3)); ++ ++ while (aes->ctrl.BUS) { ++ /* this will not take long */ ++ } ++ ++ *((volatile u32 *)out_arg + (i * 4) + 0) = aes->OD3R; ++ *((volatile u32 *)out_arg + (i * 4) + 1) = aes->OD2R; ++ *((volatile u32 *)out_arg + (i * 4) + 2) = aes->OD1R; ++ *((volatile u32 *)out_arg + (i * 4) + 3) = aes->OD0R; ++ ++ i++; ++ byte_cnt -= 16; ++ } ++#else /* dma */ ++ /* Prepare Rx buf length used in dma psuedo interrupt */ ++ /* deu_priv->deu_rx_buf = out_arg; */ ++ /* deu_priv->deu_rx_len = nbytes; */ ++ ++ /* memory alignment issue */ ++ dword_mem_aligned_in = (u32 *)DEU_DWORD_REORDERING(in_arg, ++ aes_buff_in, ++ BUFFER_IN, nbytes); ++ ++ dma->ctrl.ALGO = 1; /* AES */ ++ dma->ctrl.BS = 0; ++ aes->ctrl.DAU = 0; ++ dma->ctrl.EN = 1; ++ ++ while (aes->ctrl.BUS) { ++ /* wait for AES to be ready */ ++ }; ++ ++ wlen = dma_device_write(dma_device, (u8 *)dword_mem_aligned_in, ++ nbytes, NULL); ++ if (wlen != nbytes) { ++ dma->ctrl.EN = 0; ++ CRTCL_SECT_END; ++ printk(KERN_ERR "[%s %s %d]: dma_device_write fail!\n", ++ __FILE__, __func__, __LINE__); ++ return; /* -EINVAL; */ ++ } ++ ++ WAIT_AES_DMA_READY(); ++ ++# ifdef CONFIG_CRYPTO_DEV_POLL_DMA ++ outcopy = (u32 *)DEU_DWORD_REORDERING(out_arg, aes_buff_out, ++ BUFFER_OUT, nbytes); ++ ++ /* polling DMA rx channel */ ++ while ((dma_device_read(dma_device, (u8 **)&out_dma, NULL)) == 0) { ++ timeout++; ++ ++ if (timeout >= 333000) { ++ dma->ctrl.EN = 0; ++ CRTCL_SECT_END; ++ printk (KERN_ERR "[%s %s %d]: timeout!!\n", ++ __FILE__, __func__, __LINE__); ++ return; /* -EINVAL; */ ++ } ++ } ++ ++ WAIT_AES_DMA_READY(); ++ ++ AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes); ++ ++# else /* not working at the moment.. */ ++ CRTCL_SECT_END; ++ ++ /* sleep and wait for Rx finished */ ++ DEU_WAIT_EVENT(deu_priv->deu_thread_wait, DEU_EVENT, ++ deu_priv->deu_event_flags); ++ ++ CRTCL_SECT_START; ++# endif ++ ++#endif /* dma */ ++ ++ /* tc.chen : copy iv_arg back */ ++ if (mode > 0) { ++ *((u32 *)iv_arg) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg)); ++ *((u32 *)iv_arg + 1) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 1)); ++ *((u32 *)iv_arg + 2) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 2)); ++ *((u32 *)iv_arg + 3) = DEU_ENDIAN_SWAP(*((u32 *)iv_arg + 3)); ++ } ++ ++ CRTCL_SECT_END; ++} ++ ++/** \fn int ctr_rfc3686_aes_set_key(struct crypto_tfm *tfm, const uint8_t *in_key, unsigned int key_len) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets RFC3686 key ++ * \param tfm linux crypto algo transform ++ * \param in_key input key ++ * \param key_len key lengths of 20, 28 and 36 bytes supported; last 4 bytes is nonce ++ * \return 0 - SUCCESS ++ * -EINVAL - bad key length ++*/ ++static int ctr_rfc3686_aes_set_key(struct crypto_tfm *tfm, ++ const uint8_t *in_key, ++ unsigned int key_len) ++{ ++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm); ++ u32 *flags = &tfm->crt_flags; ++ ++ memcpy(ctx->nonce, in_key + (key_len - CTR_RFC3686_NONCE_SIZE), ++ CTR_RFC3686_NONCE_SIZE); ++ ++ key_len -= CTR_RFC3686_NONCE_SIZE; /* remove 4 bytes of nonce */ ++ ++ if (key_len != 16 && key_len != 24 && key_len != 32) { ++ *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; ++ return -EINVAL; ++ } ++ ++ ctx->key_length = key_len; ++ ++ memcpy((u8 *)(ctx->buf), in_key, key_len); ++ ++ return 0; ++} ++ ++/** \fn void deu_aes(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief main interface with DEU hardware in DMA mode ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc, ctr ++*/ ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++static void deu_aes(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ u32 nbytes, ++ int encdec, ++ int mode) ++{ ++ u32 remain = nbytes; ++ u32 inc; ++ ++ while (remain > 0) { ++ if (remain >= DEU_MAX_PACKET_SIZE) ++ inc = DEU_MAX_PACKET_SIZE; ++ else ++ inc = remain; ++ ++ remain -= inc; ++ ++ deu_aes_core(ctx_arg, out_arg, in_arg, iv_arg, inc, encdec, ++ mode); ++ ++ out_arg += inc; ++ in_arg += inc; ++ } ++} ++#endif ++ ++/* definitions from linux/include/crypto.h: ++#define CRYPTO_TFM_MODE_ECB 0x00000001 ++#define CRYPTO_TFM_MODE_CBC 0x00000002 ++#define CRYPTO_TFM_MODE_CFB 0x00000004 ++#define CRYPTO_TFM_MODE_CTR 0x00000008 ++#define CRYPTO_TFM_MODE_OFB 0x00000010 ++but hardware definition: 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */ ++ ++/** \fn void deu_aes_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets AES hardware to ECB mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_aes_ecb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_aes(ctx, dst, src, NULL, nbytes, encdec, 0); ++} ++ ++/** \fn void deu_aes_cbc(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets AES hardware to CBC mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_aes_cbc(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 1); ++} ++ ++#if 0 ++/** \fn void deu_aes_ofb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets AES hardware to OFB mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_aes_ofb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 2); ++} ++ ++/** \fn void deu_aes_cfb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets AES hardware to CFB mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_aes_cfb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 3); ++} ++#endif ++ ++/** \fn void deu_aes_ctr(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief sets AES hardware to CTR mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_aes_ctr(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_aes(ctx, dst, src, iv, nbytes, encdec, 4); ++} ++ ++/** \fn void aes_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief encrypt AES_BLOCK_SIZE of data ++ * \param tfm linux crypto algo transform ++ * \param out output bytestream ++ * \param in input bytestream ++*/ ++static void aes_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++{ ++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm); ++ deu_aes(ctx, out, in, NULL, AES_BLOCK_SIZE, CRYPTO_DIR_ENCRYPT, 0); ++} ++ ++/** \fn void aes_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief decrypt AES_BLOCK_SIZE of data ++ * \param tfm linux crypto algo transform ++ * \param out output bytestream ++ * \param in input bytestream ++*/ ++static void aes_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++{ ++ struct aes_ctx *ctx = crypto_tfm_ctx(tfm); ++ deu_aes(ctx, out, in, NULL, AES_BLOCK_SIZE, CRYPTO_DIR_DECRYPT, 0); ++} ++ ++/* ++ * \brief AES function mappings ++*/ ++static struct crypto_alg aes_alg = { ++ .cra_name = "aes", ++ .cra_driver_name = "lq_deu-aes", ++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct aes_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), ++ .cra_u = { ++ .cipher = { ++ .cia_min_keysize = AES_MIN_KEY_SIZE, ++ .cia_max_keysize = AES_MAX_KEY_SIZE, ++ .cia_setkey = aes_set_key, ++ .cia_encrypt = aes_encrypt, ++ .cia_decrypt = aes_decrypt, ++ } ++ } ++}; ++ ++/** \fn int ecb_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief ECB AES encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ecb_aes_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int ecb_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief ECB AES decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ecb_aes_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief AES function mappings ++*/ ++static struct crypto_alg ecb_aes_alg = { ++ .cra_name = "ecb(aes)", ++ .cra_driver_name = "lq_deu-ecb(aes)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct aes_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = AES_MIN_KEY_SIZE, ++ .max_keysize = AES_MAX_KEY_SIZE, ++ .setkey = aes_set_key, ++ .encrypt = ecb_aes_encrypt, ++ .decrypt = ecb_aes_decrypt, ++ } ++ } ++}; ++ ++/** \fn int cbc_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief CBC AES encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int cbc_aes_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int cbc_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief CBC AES decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int cbc_aes_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief AES function mappings ++*/ ++static struct crypto_alg cbc_aes_alg = { ++ .cra_name = "cbc(aes)", ++ .cra_driver_name = "lq_deu-cbc(aes)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct aes_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = AES_MIN_KEY_SIZE, ++ .max_keysize = AES_MAX_KEY_SIZE, ++ .ivsize = AES_BLOCK_SIZE, ++ .setkey = aes_set_key, ++ .encrypt = cbc_aes_encrypt, ++ .decrypt = cbc_aes_decrypt, ++ } ++ } ++}; ++ ++/** \fn int ctr_basic_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief Counter mode AES encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ctr_basic_aes_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int ctr_basic_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief Counter mode AES decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ctr_basic_aes_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief AES function mappings ++*/ ++static struct crypto_alg ctr_basic_aes_alg = { ++ .cra_name = "ctr(aes)", ++ .cra_driver_name = "lq_deu-ctr(aes)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct aes_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ctr_basic_aes_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = AES_MIN_KEY_SIZE, ++ .max_keysize = AES_MAX_KEY_SIZE, ++ .ivsize = AES_BLOCK_SIZE, ++ .setkey = aes_set_key, ++ .encrypt = ctr_basic_aes_encrypt, ++ .decrypt = ctr_basic_aes_decrypt, ++ } ++ } ++}; ++ ++/** \fn int ctr_rfc3686_aes_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief Counter mode AES (rfc3686) encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ctr_rfc3686_aes_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ u8 rfc3686_iv[16]; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ /* set up counter block */ ++ memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); ++ memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, walk.iv, ++ CTR_RFC3686_IV_SIZE); ++ ++ /* initialize counter portion of counter block */ ++ *(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = ++ cpu_to_be32(1); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ rfc3686_iv, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int ctr_rfc3686_aes_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief Counter mode AES (rfc3686) decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ctr_rfc3686_aes_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ u8 rfc3686_iv[16]; ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ /* set up counter block */ ++ memcpy(rfc3686_iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); ++ memcpy(rfc3686_iv + CTR_RFC3686_NONCE_SIZE, walk.iv, ++ CTR_RFC3686_IV_SIZE); ++ ++ /* initialize counter portion of counter block */ ++ *(__be32 *)(rfc3686_iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = ++ cpu_to_be32(1); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % AES_BLOCK_SIZE); ++ deu_aes_ctr(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ rfc3686_iv, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= AES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief AES function mappings ++*/ ++static struct crypto_alg ctr_rfc3686_aes_alg = { ++ .cra_name = "rfc3686(ctr(aes))", ++ .cra_driver_name = "lq_deu-ctr-rfc3686(aes)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = AES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct aes_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ctr_rfc3686_aes_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = AES_MIN_KEY_SIZE, ++ .max_keysize = CTR_RFC3686_MAX_KEY_SIZE, ++ .ivsize = CTR_RFC3686_IV_SIZE, ++ .setkey = ctr_rfc3686_aes_set_key, ++ .encrypt = ctr_rfc3686_aes_encrypt, ++ .decrypt = ctr_rfc3686_aes_decrypt, ++ } ++ } ++}; ++ ++/** \fn int lq_deu_init_aes (void) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief function to initialize AES driver ++ * \return ret ++*/ ++int lq_deu_init_aes(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_alg(&aes_alg))) ++ goto aes_err; ++ ++ if ((ret = crypto_register_alg(&ecb_aes_alg))) ++ goto ecb_aes_err; ++ ++ if ((ret = crypto_register_alg(&cbc_aes_alg))) ++ goto cbc_aes_err; ++ ++ if ((ret = crypto_register_alg(&ctr_basic_aes_alg))) ++ goto ctr_basic_aes_err; ++ ++ if ((ret = crypto_register_alg(&ctr_rfc3686_aes_alg))) ++ goto ctr_rfc3686_aes_err; ++ ++ deu_aes_chip_init(); ++ ++ CRTCL_SECT_INIT; ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++ if (ALLOCATE_MEMORY(BUFFER_IN, AES_ALGO) < 0) { ++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n", ++ __FILE__, __func__, __LINE__); ++ goto ctr_rfc3686_aes_err; ++ } ++ if (ALLOCATE_MEMORY(BUFFER_OUT, AES_ALGO) < 0) { ++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n", ++ __FILE__, __func__, __LINE__); ++ goto ctr_rfc3686_aes_err; ++ } ++#endif ++ ++ printk(KERN_NOTICE "Lantiq DEU AES initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++ctr_rfc3686_aes_err: ++ crypto_unregister_alg(&ctr_rfc3686_aes_alg); ++ printk(KERN_ERR "Lantiq ctr_rfc3686_aes initialization failed!\n"); ++ return ret; ++ctr_basic_aes_err: ++ crypto_unregister_alg(&ctr_basic_aes_alg); ++ printk(KERN_ERR "Lantiq ctr_basic_aes initialization failed!\n"); ++ return ret; ++cbc_aes_err: ++ crypto_unregister_alg(&cbc_aes_alg); ++ printk(KERN_ERR "Lantiq cbc_aes initialization failed!\n"); ++ return ret; ++ecb_aes_err: ++ crypto_unregister_alg(&ecb_aes_alg); ++ printk(KERN_ERR "Lantiq aes initialization failed!\n"); ++ return ret; ++aes_err: ++ printk(KERN_ERR "Lantiq DEU AES initialization failed!\n"); ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_aes(void) ++ * \ingroup LQ_AES_FUNCTIONS ++ * \brief unregister aes driver ++*/ ++void lq_deu_fini_aes(void) ++{ ++ crypto_unregister_alg(&aes_alg); ++ crypto_unregister_alg(&ecb_aes_alg); ++ crypto_unregister_alg(&cbc_aes_alg); ++ crypto_unregister_alg(&ctr_basic_aes_alg); ++ crypto_unregister_alg(&ctr_rfc3686_aes_alg); ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++ FREE_MEMORY(aes_buff_in); ++ FREE_MEMORY(aes_buff_out); ++#endif ++} +--- /dev/null ++++ b/drivers/crypto/lantiq/arc4.c +@@ -0,0 +1,397 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file arc4.c ++ \ingroup LQ_DEU ++ \brief ARC4 encryption DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_ARC4_FUNCTIONS LQ_ARC4_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU driver functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#ifdef CONFIG_SOL_LANTIQ_XWAY ++ ++#include "deu.h" ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ ++static spinlock_t cipher_lock; ++ ++/* Preprocessor declerations */ ++#define ARC4_MIN_KEY_SIZE 1 ++/* #define ARC4_MAX_KEY_SIZE 256 */ ++#define ARC4_MAX_KEY_SIZE 16 ++#define ARC4_BLOCK_SIZE 1 ++ ++/* ++ * \brief arc4 private structure ++*/ ++struct arc4_ctx { ++ int key_length; ++ u8 buf[120]; ++}; ++ ++/** \fn static void deu_arc4(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief main interface to AES hardware ++ \param ctx_arg crypto algo context ++ \param out_arg output bytestream ++ \param in_arg input bytestream ++ \param iv_arg initialization vector ++ \param nbytes length of bytestream ++ \param encdec 1 for encrypt; 0 for decrypt ++ \param mode operation mode such as ebc, cbc, ctr ++*/ ++static void deu_arc4(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ u32 nbytes, ++ int encdec, ++ int mode) ++{ ++ volatile struct deu_arc4 *arc4 = (struct deu_arc4 *) ARC4_START; ++ int i = 0; ++ ulong flag; ++ ++#if 1 /* need to handle nbytes not multiple of 16 */ ++ volatile u32 tmp_array32[4]; ++ volatile u8 *tmp_ptr8; ++ int remaining_bytes, j; ++#endif ++ ++ CRTCL_SECT_START; ++ ++ arc4->IDLEN = nbytes; ++ ++#if 1 ++ while (i < nbytes) { ++ arc4->ID3R = *((u32 *) in_arg + (i>>2) + 0); ++ arc4->ID2R = *((u32 *) in_arg + (i>>2) + 1); ++ arc4->ID1R = *((u32 *) in_arg + (i>>2) + 2); ++ arc4->ID0R = *((u32 *) in_arg + (i>>2) + 3); ++ ++ arc4->ctrl.GO = 1; ++ ++ while (arc4->ctrl.BUS) { ++ /* this will not take long */ } ++ ++#if 1 ++ /* need to handle nbytes not multiple of 16 */ ++ tmp_array32[0] = arc4->OD3R; ++ tmp_array32[1] = arc4->OD2R; ++ tmp_array32[2] = arc4->OD1R; ++ tmp_array32[3] = arc4->OD0R; ++ ++ remaining_bytes = nbytes - i; ++ if (remaining_bytes > 16) ++ remaining_bytes = 16; ++ ++ tmp_ptr8 = (u8 *)&tmp_array32[0]; ++ for (j = 0; j < remaining_bytes; j++) ++ *out_arg++ = *tmp_ptr8++; ++#else ++ *((u32 *) out_arg + (i>>2) + 0) = arc4->OD3R; ++ *((u32 *) out_arg + (i>>2) + 1) = arc4->OD2R; ++ *((u32 *) out_arg + (i>>2) + 2) = arc4->OD1R; ++ *((u32 *) out_arg + (i>>2) + 3) = arc4->OD0R; ++#endif ++ ++ i += 16; ++ } ++#else /* dma */ ++ ++#endif /* dma */ ++ ++ CRTCL_SECT_END; ++} ++ ++/** \fn arc4_chip_init(void) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief initialize arc4 hardware ++*/ ++static void arc4_chip_init(void) ++{ ++ /* do nothing */ ++} ++ ++/** \fn static int arc4_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief sets ARC4 key ++ \param tfm linux crypto algo transform ++ \param in_key input key ++ \param key_len key lengths less than or equal to 16 bytes supported ++*/ ++static int arc4_set_key(struct crypto_tfm *tfm, ++ const u8 *inkey, ++ unsigned int key_len) ++{ ++ /* struct arc4_ctx *ctx = crypto_tfm_ctx(tfm); */ ++ volatile struct deu_arc4 *arc4 = (struct deu_arc4 *) ARC4_START; ++ ++ u32 *in_key = (u32 *)inkey; ++ ++ /* must program all bits at one go?!!! */ ++#if 1 ++ /* #ifndef CONFIG_CRYPTO_DEV_VR9_DMA */ ++ *LQ_ARC4_CON = ( (1<<31) | ((key_len - 1)<<27) | (1<<26) | (3<<16) ); ++ /* NDC=1,ENDI=1,GO=0,KSAE=1,SM=0 */ ++ ++ arc4->K3R = *((u32 *) in_key + 0); ++ arc4->K2R = *((u32 *) in_key + 1); ++ arc4->K1R = *((u32 *) in_key + 2); ++ arc4->K0R = *((u32 *) in_key + 3); ++#else /* dma */ ++ *AMAZONS_ARC4_CON = ( (1<<31) | ((key_len - 1)<<27) | (1<<26) | (3<<16) | (1<<4) ); ++ /* NDC=1,ENDI=1,GO=0,KSAE=1,SM=1 */ ++ ++ arc4->K3R = *((u32 *) in_key + 0); ++ arc4->K2R = *((u32 *) in_key + 1); ++ arc4->K1R = *((u32 *) in_key + 2); ++ arc4->K0R = *((u32 *) in_key + 3); ++ ++#if 0 ++ arc4->K3R = deu_endian_swap(*((u32 *) in_key + 0)); ++ arc4->K2R = deu_endian_swap(*((u32 *) in_key + 1)); ++ arc4->K1R = deu_endian_swap(*((u32 *) in_key + 2)); ++ arc4->K0R = deu_endian_swap(*((u32 *) in_key + 3)); ++#endif ++ ++#endif ++ ++#if 0 /* arc4 is a ugly state machine, KSAE can only be set once per session */ ++ ctx->key_length = key_len; ++ ++ memcpy((u8 *)(ctx->buf), in_key, key_len); ++#endif ++ ++ return 0; ++} ++ ++/** \fn static void deu_arc4_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief sets ARC4 hardware to ECB mode ++ \param ctx crypto algo context ++ \param dst output bytestream ++ \param src input bytestream ++ \param iv initialization vector ++ \param nbytes length of bytestream ++ \param encdec 1 for encrypt; 0 for decrypt ++ \param inplace not used ++*/ ++static void deu_arc4_ecb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ deu_arc4(ctx, dst, src, NULL, nbytes, encdec, 0); ++} ++ ++/** \fn static void arc4_crypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief encrypt/decrypt ARC4_BLOCK_SIZE of data ++ \param tfm linux crypto algo transform ++ \param out output bytestream ++ \param in input bytestream ++*/ ++static void arc4_crypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) ++{ ++ struct arc4_ctx *ctx = crypto_tfm_ctx(tfm); ++ ++ deu_arc4(ctx, out, in, NULL, ARC4_BLOCK_SIZE, ++ CRYPTO_DIR_DECRYPT, CRYPTO_TFM_MODE_ECB); ++} ++ ++/* ++ * \brief ARC4 function mappings ++*/ ++static struct crypto_alg arc4_alg = { ++ .cra_name = "arc4", ++ .cra_driver_name = "lq_deu-arc4", ++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER, ++ .cra_blocksize = ARC4_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct arc4_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(arc4_alg.cra_list), ++ .cra_u = { ++ .cipher = { ++ .cia_min_keysize = ARC4_MIN_KEY_SIZE, ++ .cia_max_keysize = ARC4_MAX_KEY_SIZE, ++ .cia_setkey = arc4_set_key, ++ .cia_encrypt = arc4_crypt, ++ .cia_decrypt = arc4_crypt, ++ } ++ } ++}; ++ ++/** \fn static int ecb_arc4_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief ECB ARC4 encrypt using linux crypto blkcipher ++ \param desc blkcipher descriptor ++ \param dst output scatterlist ++ \param src input scatterlist ++ \param nbytes data size in bytes ++*/ ++static int ecb_arc4_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct arc4_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(1, "\n"); ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ deu_arc4_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= ARC4_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn static int ecb_arc4_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief ECB ARC4 decrypt using linux crypto blkcipher ++ \param desc blkcipher descriptor ++ \param dst output scatterlist ++ \param src input scatterlist ++ \param nbytes data size in bytes ++*/ ++static int ecb_arc4_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct arc4_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(1, "\n"); ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ deu_arc4_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= ARC4_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief ARC4 function mappings ++*/ ++static struct crypto_alg ecb_arc4_alg = { ++ .cra_name = "ecb(arc4)", ++ .cra_driver_name = "lq_deu-ecb(arc4)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = ARC4_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct arc4_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ecb_arc4_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = ARC4_MIN_KEY_SIZE, ++ .max_keysize = ARC4_MAX_KEY_SIZE, ++ .setkey = arc4_set_key, ++ .encrypt = ecb_arc4_encrypt, ++ .decrypt = ecb_arc4_decrypt, ++ } ++ } ++}; ++ ++/** \fn int lq_deu_init_arc4(void) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief initialize arc4 driver ++*/ ++int lq_deu_init_arc4(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_alg(&arc4_alg))) ++ goto arc4_err; ++ ++ if ((ret = crypto_register_alg(&ecb_arc4_alg))) ++ goto ecb_arc4_err; ++ ++ arc4_chip_init(); ++ ++ CRTCL_SECT_INIT; ++ ++ printk(KERN_NOTICE "Lantiq DEU ARC4 initialized %s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++arc4_err: ++ crypto_unregister_alg(&arc4_alg); ++ printk(KERN_ERR "Lantiq arc4 initialization failed!\n"); ++ return ret; ++ecb_arc4_err: ++ crypto_unregister_alg(&ecb_arc4_alg); ++ printk(KERN_ERR "Lantiq ecb_arc4 initialization failed!\n"); ++ ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_arc4(void) ++ \ingroup LQ_ARC4_FUNCTIONS ++ \brief unregister arc4 driver ++*/ ++void lq_deu_fini_arc4(void) ++{ ++ crypto_unregister_alg(&arc4_alg); ++ crypto_unregister_alg(&ecb_arc4_alg); ++} ++ ++#endif ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/des.c +@@ -0,0 +1,929 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver ++*/ ++ ++/** ++ \file des.c ++ \ingroup LQ_DEU ++ \brief DES encryption DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_DES_FUNCTIONS LQ_DES_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DES Encryption functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#ifdef CONFIG_SOL_LANTIQ_XWAY ++ ++#include "deu.h" ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++# include "deu_dma.h" ++#endif ++ ++static spinlock_t cipher_lock; ++ ++/* Preprocessor declarations */ ++#define DES_KEY_SIZE 8 ++#define DES_EXPKEY_WORDS 32 ++#define DES_BLOCK_SIZE 8 ++#define DES3_EDE_KEY_SIZE (3 * DES_KEY_SIZE) ++#define DES3_EDE_EXPKEY_WORDS (3 * DES_EXPKEY_WORDS) ++#define DES3_EDE_BLOCK_SIZE DES_BLOCK_SIZE ++ ++struct des_ctx { ++ int controlr_M; ++ int key_length; ++ u8 iv[DES_BLOCK_SIZE]; ++ u32 expkey[DES3_EDE_EXPKEY_WORDS]; ++}; ++ ++/** \fn int des_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets DES key ++ * \param tfm linux crypto algo transform ++ * \param key input key ++ * \param key_len key length ++*/ ++static int des_setkey(struct crypto_tfm *tfm, ++ const u8 *key, ++ unsigned int key_len) ++{ ++ struct des_ctx *ctx = crypto_tfm_ctx(tfm); ++ ++ DPRINTF(0, "ctx @%p, key_len %d %d\n", ctx, key_len); ++ ++ ctx->controlr_M = 0; /* des */ ++ ctx->key_length = key_len; ++ ++ memcpy((u8 *)(ctx->expkey), key, key_len); ++ ++ return 0; ++} ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++/** \fn void deu_des(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief main interface to DES hardware ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc ++*/ ++ ++static void deu_des(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ u32 nbytes, ++ int encdec, ++ int mode) ++#else ++/** \fn void deu_des_core(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief main interface to DES hardware ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc ++*/ ++static void deu_des_core(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ u32 nbytes, ++ int encdec, ++ int mode) ++#endif ++{ ++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START; ++ struct des_ctx *dctx = ctx_arg; ++ u32 *key = dctx->expkey; ++ ulong flag; ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ int i = 0; ++ int nblocks = 0; ++#else ++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON; ++ struct dma_device_info *dma_device = lq_deu[0].dma_device; ++ /* struct deu_drv_priv *deu_priv = ++ * (struct deu_drv_priv *)dma_device->priv; */ ++ int wlen = 0; ++ u32 *outcopy = NULL; ++ u32 *dword_mem_aligned_in = NULL; ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_POLL_DMA ++ u32 timeout = 0; ++ u32 *out_dma = NULL; ++#endif ++ ++#endif ++ ++ DPRINTF(0, "ctx @%p, mode %d, encdec %d\n", dctx, mode, encdec); ++ ++ CRTCL_SECT_START; ++ ++ des->ctrl.E_D = !encdec; /* encryption */ ++ des->ctrl.O = mode; /* 0 ECB, 1 CBC, 2 OFB, 3 CFB, 4 CTR */ ++ des->ctrl.SM = 1; /* start after writing input register */ ++ des->ctrl.DAU = 0; /* Disable Automatic Update of init vect */ ++ des->ctrl.ARS = 1; /* Autostart Select - write to IHR */ ++ ++ des->ctrl.M = dctx->controlr_M; ++ /* write keys */ ++ if (dctx->controlr_M == 0) { ++ /* DES mode */ ++ des->K1HR = DEU_ENDIAN_SWAP(*((u32 *) key + 0)); ++ des->K1LR = DEU_ENDIAN_SWAP(*((u32 *) key + 1)); ++#ifdef CRYPTO_DEBUG ++ printk("key1: %x\n", (*((u32 *) key + 0))); ++ printk("key2: %x\n", (*((u32 *) key + 1))); ++#endif ++ } else { ++ /* 3DES mode (EDE-x) */ ++ switch (dctx->key_length) { ++ case 24: ++ des->K3HR = DEU_ENDIAN_SWAP(*((u32 *) key + 4)); ++ des->K3LR = DEU_ENDIAN_SWAP(*((u32 *) key + 5)); ++ /* no break; */ ++ case 16: ++ des->K2HR = DEU_ENDIAN_SWAP(*((u32 *) key + 2)); ++ des->K2LR = DEU_ENDIAN_SWAP(*((u32 *) key + 3)); ++ /* no break; */ ++ case 8: ++ des->K1HR = DEU_ENDIAN_SWAP(*((u32 *) key + 0)); ++ des->K1LR = DEU_ENDIAN_SWAP(*((u32 *) key + 1)); ++ break; ++ default: ++ CRTCL_SECT_END; ++ return; ++ } ++ } ++ ++ /* write init vector (not required for ECB mode) */ ++ if (mode > 0) { ++ des->IVHR = DEU_ENDIAN_SWAP(*(u32 *) iv_arg); ++ des->IVLR = DEU_ENDIAN_SWAP(*((u32 *) iv_arg + 1)); ++ } ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ nblocks = nbytes / 4; ++ ++ for (i = 0; i < nblocks; i += 2) { ++ /* wait for busy bit to clear */ ++ ++ /*--- Workaround --------------------------------------------- ++ do a dummy read to the busy flag because it is not raised ++ early enough in CFB/OFB 3DES modes */ ++#ifdef CRYPTO_DEBUG ++ printk("ihr: %x\n", (*((u32 *) in_arg + i))); ++ printk("ilr: %x\n", (*((u32 *) in_arg + 1 + i))); ++#endif ++ des->IHR = INPUT_ENDIAN_SWAP(*((u32 *) in_arg + i)); ++ /* start crypto */ ++ des->ILR = INPUT_ENDIAN_SWAP(*((u32 *) in_arg + 1 + i)); ++ ++ while (des->ctrl.BUS) { ++ /* this will not take long */ ++ } ++ ++ *((u32 *) out_arg + 0 + i) = des->OHR; ++ *((u32 *) out_arg + 1 + i) = des->OLR; ++ ++#ifdef CRYPTO_DEBUG ++ printk("ohr: %x\n", (*((u32 *) out_arg + i))); ++ printk("olr: %x\n", (*((u32 *) out_arg + 1 + i))); ++#endif ++ } ++ ++#else /* dma mode */ ++ ++ /* Prepare Rx buf length used in dma psuedo interrupt */ ++ /* deu_priv->deu_rx_buf = out_arg; */ ++ /* deu_priv->deu_rx_len = nbytes; */ ++ ++ /* memory alignment issue */ ++ dword_mem_aligned_in = (u32 *) DEU_DWORD_REORDERING(in_arg, des_buff_in, ++ BUFFER_IN, nbytes); ++ ++ dma->ctrl.ALGO = 0; /* DES */ ++ des->ctrl.DAU = 0; ++ dma->ctrl.BS = 0; ++ dma->ctrl.EN = 1; ++ ++ while (des->ctrl.BUS) { ++ /* wait for AES to be ready */ ++ }; ++ ++ wlen = dma_device_write(dma_device, (u8 *) dword_mem_aligned_in, nbytes, ++ NULL); ++ if (wlen != nbytes) { ++ dma->ctrl.EN = 0; ++ CRTCL_SECT_END; ++ printk(KERN_ERR "[%s %s %d]: dma_device_write fail!\n", ++ __FILE__, __func__, __LINE__); ++ return; /* -EINVAL; */ ++ } ++ ++ WAIT_DES_DMA_READY(); ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_POLL_DMA ++ outcopy = (u32 *) DEU_DWORD_REORDERING(out_arg, des_buff_out, ++ BUFFER_OUT, nbytes); ++ ++ /* polling DMA rx channel */ ++ while ((dma_device_read(dma_device, (u8 **) &out_dma, NULL)) == 0) { ++ timeout++; ++ ++ if (timeout >= 333000) { ++ dma->ctrl.EN = 0; ++ CRTCL_SECT_END; ++ printk(KERN_ERR "[%s %s %d]: timeout!!\n", ++ __FILE__, __func__, __LINE__); ++ return; /* -EINVAL; */ ++ } ++ } ++ ++ WAIT_DES_DMA_READY(); ++ ++ DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes); ++#else ++ CRTCL_SECT_END; /* Sleep and wait for Rx finished */ ++ DEU_WAIT_EVENT(deu_priv->deu_thread_wait, DEU_EVENT, ++ deu_priv->deu_event_flags); ++ CRTCL_SECT_START; ++#endif ++ ++#endif /* dma mode */ ++ ++ if (mode > 0) { ++ *(u32 *) iv_arg = DEU_ENDIAN_SWAP(des->IVHR); ++ *((u32 *) iv_arg + 1) = DEU_ENDIAN_SWAP(des->IVLR); ++ }; ++ ++ CRTCL_SECT_END; ++} ++ ++/* definitions from linux/include/crypto.h: ++#define CRYPTO_TFM_MODE_ECB 0x00000001 ++#define CRYPTO_TFM_MODE_CBC 0x00000002 ++#define CRYPTO_TFM_MODE_CFB 0x00000004 ++#define CRYPTO_TFM_MODE_CTR 0x00000008 ++#define CRYPTO_TFM_MODE_OFB 0x00000010 ++but hardware definition: 0 ECB 1 CBC 2 OFB 3 CFB 4 CTR */ ++ ++/** \fn void deu_des(void *ctx_arg, u8 *out_arg, const u8 *in_arg, u8 *iv_arg, u32 nbytes, int encdec, int mode) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief main interface to DES hardware ++ * \param ctx_arg crypto algo context ++ * \param out_arg output bytestream ++ * \param in_arg input bytestream ++ * \param iv_arg initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param mode operation mode such as ebc, cbc ++*/ ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++static void deu_des(void *ctx_arg, ++ u8 *out_arg, ++ const u8 *in_arg, ++ u8 *iv_arg, ++ u32 nbytes, ++ int encdec, ++ int mode) ++{ ++ u32 remain = nbytes; ++ u32 inc; ++ ++ DPRINTF(0, "\n"); ++ ++ while (remain > 0) { ++ if (remain >= DEU_MAX_PACKET_SIZE) ++ inc = DEU_MAX_PACKET_SIZE; ++ else ++ inc = remain; ++ ++ remain -= inc; ++ ++ deu_des_core(ctx_arg, out_arg, in_arg, iv_arg, inc, encdec, ++ mode); ++ ++ out_arg += inc; ++ in_arg += inc; ++ } ++} ++#endif ++ ++/** \fn void deu_des_ecb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets DES hardware to ECB mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++ ++static void deu_des_ecb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, dst, src, NULL, nbytes, encdec, 0); ++} ++ ++/** \fn void deu_des_cbc(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets DES hardware to CBC mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_des_cbc(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, dst, src, iv, nbytes, encdec, 1); ++} ++ ++#if 0 ++/** \fn void deu_des_ofb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets DES hardware to OFB mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_des_ofb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, dst, src, iv, nbytes, encdec, 2); ++} ++ ++/** \fn void deu_des_cfb(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ \ingroup LQ_DES_FUNCTIONS ++ \brief sets DES hardware to CFB mode ++ \param ctx crypto algo context ++ \param dst output bytestream ++ \param src input bytestream ++ \param iv initialization vector ++ \param nbytes length of bytestream ++ \param encdec 1 for encrypt; 0 for decrypt ++ \param inplace not used ++*/ ++static void deu_des_cfb(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, dst, src, iv, nbytes, encdec, 3); ++} ++ ++/** \fn void deu_des_ctr(void *ctx, uint8_t *dst, const uint8_t *src, uint8_t *iv, size_t nbytes, int encdec, int inplace) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets DES hardware to CTR mode ++ * \param ctx crypto algo context ++ * \param dst output bytestream ++ * \param src input bytestream ++ * \param iv initialization vector ++ * \param nbytes length of bytestream ++ * \param encdec 1 for encrypt; 0 for decrypt ++ * \param inplace not used ++*/ ++static void deu_des_ctr(void *ctx, ++ uint8_t *dst, ++ const uint8_t *src, ++ uint8_t *iv, ++ size_t nbytes, ++ int encdec, ++ int inplace) ++{ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, dst, src, iv, nbytes, encdec, 4); ++} ++#endif ++ ++/** \fn void des_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief encrypt DES_BLOCK_SIZE of data ++ * \param tfm linux crypto algo transform ++ * \param out output bytestream ++ * \param in input bytestream ++*/ ++static void des_encrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++{ ++ struct des_ctx *ctx = crypto_tfm_ctx(tfm); ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, out, in, NULL, DES_BLOCK_SIZE, CRYPTO_DIR_ENCRYPT, 0); ++} ++ ++/** \fn void des_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief encrypt DES_BLOCK_SIZE of data ++ * \param tfm linux crypto algo transform ++ * \param out output bytestream ++ * \param in input bytestream ++*/ ++static void des_decrypt(struct crypto_tfm *tfm, uint8_t *out, const uint8_t *in) ++{ ++ struct des_ctx *ctx = crypto_tfm_ctx(tfm); ++ DPRINTF(0, "ctx @%p\n", ctx); ++ deu_des(ctx, out, in, NULL, DES_BLOCK_SIZE, CRYPTO_DIR_DECRYPT, 0); ++} ++ ++/* ++ * \brief RFC2451: ++ * ++ * For DES-EDE3, there is no known need to reject weak or ++ * complementation keys. Any weakness is obviated by the use of ++ * multiple keys. ++ * ++ * However, if the first two or last two independent 64-bit keys are ++ * equal (k1 == k2 or k2 == k3), then the DES3 operation is simply the ++ * same as DES. Implementers MUST reject keys that exhibit this ++ * property. ++ * ++ */ ++ ++/** \fn int des3_ede_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief sets 3DES key ++ * \param tfm linux crypto algo transform ++ * \param key input key ++ * \param keylen key length ++*/ ++static int des3_ede_setkey(struct crypto_tfm *tfm, ++ const u8 *key, ++ unsigned int key_len) ++{ ++ struct des_ctx *ctx = crypto_tfm_ctx(tfm); ++ ++ DPRINTF(0, "ctx @%p, key_len %d\n", ctx, key_len); ++ ++ ctx->controlr_M = key_len / 8 + 1; /* 3DES EDE1 / EDE2 / EDE3 Mode */ ++ ctx->key_length = key_len; ++ ++ memcpy((u8 *)(ctx->expkey), key, key_len); ++ ++ return 0; ++} ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg des_alg = { ++ .cra_name = "des", ++ .cra_driver_name = "lq_deu-des", ++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER, ++ .cra_blocksize = DES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_alignmask = 3, ++ .cra_list = LIST_HEAD_INIT(des_alg.cra_list), ++ .cra_u = { ++ .cipher = { ++ .cia_min_keysize = DES_KEY_SIZE, ++ .cia_max_keysize = DES_KEY_SIZE, ++ .cia_setkey = des_setkey, ++ .cia_encrypt = des_encrypt, ++ .cia_decrypt = des_decrypt ++ } ++ } ++}; ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg des3_ede_alg = { ++ .cra_name = "des3_ede", ++ .cra_driver_name = "lq_deu-des3_ede", ++ .cra_flags = CRYPTO_ALG_TYPE_CIPHER, ++ .cra_blocksize = DES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_module = THIS_MODULE, ++ .cra_alignmask = 3, ++ .cra_list = LIST_HEAD_INIT(des3_ede_alg.cra_list), ++ .cra_u = { ++ .cipher = { ++ .cia_min_keysize = DES_KEY_SIZE, ++ .cia_max_keysize = DES_KEY_SIZE, ++ .cia_setkey = des3_ede_setkey, ++ .cia_encrypt = des_encrypt, ++ .cia_decrypt = des_decrypt ++ } ++ } ++}; ++ ++/** \fn int ecb_des_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief ECB DES encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++*/ ++static int ecb_des_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % DES_BLOCK_SIZE); ++ deu_des_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= DES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int ecb_des_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief ECB DES decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int ecb_des_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ nbytes -= (nbytes % DES_BLOCK_SIZE); ++ deu_des_ecb(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ NULL, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= DES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg ecb_des_alg = { ++ .cra_name = "ecb(des)", ++ .cra_driver_name = "lq_deu-ecb(des)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = DES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = DES_KEY_SIZE, ++ .max_keysize = DES_KEY_SIZE, ++ .setkey = des_setkey, ++ .encrypt = ecb_des_encrypt, ++ .decrypt = ecb_des_decrypt, ++ } ++ } ++}; ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg ecb_des3_ede_alg = { ++ .cra_name = "ecb(des3_ede)", ++ .cra_driver_name = "lq_deu-ecb(des3_ede)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = DES3_EDE_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(ecb_des3_ede_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = DES3_EDE_KEY_SIZE, ++ .max_keysize = DES3_EDE_KEY_SIZE, ++ .setkey = des3_ede_setkey, ++ .encrypt = ecb_des_encrypt, ++ .decrypt = ecb_des_decrypt, ++ } ++ } ++}; ++ ++/** \fn int cbc_des_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief CBC DES encrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int cbc_des_encrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ /* printk("iv = %08x\n", *(u32 *)iv); */ ++ nbytes -= (nbytes % DES_BLOCK_SIZE); ++ deu_des_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_ENCRYPT, 0); ++ nbytes &= DES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/** \fn int cbc_des_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief CBC DES decrypt using linux crypto blkcipher ++ * \param desc blkcipher descriptor ++ * \param dst output scatterlist ++ * \param src input scatterlist ++ * \param nbytes data size in bytes ++ * \return err ++*/ ++static int cbc_des_decrypt(struct blkcipher_desc *desc, ++ struct scatterlist *dst, ++ struct scatterlist *src, ++ unsigned int nbytes) ++{ ++ struct des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); ++ struct blkcipher_walk walk; ++ int err; ++ ++ DPRINTF(0, "ctx @%p\n", ctx); ++ ++ blkcipher_walk_init(&walk, dst, src, nbytes); ++ err = blkcipher_walk_virt(desc, &walk); ++ ++ while ((nbytes = walk.nbytes)) { ++ u8 *iv = walk.iv; ++ /* printk("iv = %08x\n", *(u32 *)iv); */ ++ nbytes -= (nbytes % DES_BLOCK_SIZE); ++ deu_des_cbc(ctx, walk.dst.virt.addr, walk.src.virt.addr, ++ iv, nbytes, CRYPTO_DIR_DECRYPT, 0); ++ nbytes &= DES_BLOCK_SIZE - 1; ++ err = blkcipher_walk_done(desc, &walk, nbytes); ++ } ++ ++ return err; ++} ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg cbc_des_alg = { ++ .cra_name = "cbc(des)", ++ .cra_driver_name = "lq_deu-cbc(des)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = DES_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = DES_KEY_SIZE, ++ .max_keysize = DES_KEY_SIZE, ++ .ivsize = DES_BLOCK_SIZE, ++ .setkey = des_setkey, ++ .encrypt = cbc_des_encrypt, ++ .decrypt = cbc_des_decrypt, ++ } ++ } ++}; ++ ++/* ++ * \brief DES function mappings ++*/ ++static struct crypto_alg cbc_des3_ede_alg = { ++ .cra_name = "cbc(des3_ede)", ++ .cra_driver_name = "lq_deu-cbc(des3_ede)", ++ .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, ++ .cra_blocksize = DES3_EDE_BLOCK_SIZE, ++ .cra_ctxsize = sizeof(struct des_ctx), ++ .cra_type = &crypto_blkcipher_type, ++ .cra_module = THIS_MODULE, ++ .cra_list = LIST_HEAD_INIT(cbc_des3_ede_alg.cra_list), ++ .cra_u = { ++ .blkcipher = { ++ .min_keysize = DES3_EDE_KEY_SIZE, ++ .max_keysize = DES3_EDE_KEY_SIZE, ++ .ivsize = DES_BLOCK_SIZE, ++ .setkey = des3_ede_setkey, ++ .encrypt = cbc_des_encrypt, ++ .decrypt = cbc_des_decrypt, ++ } ++ } ++}; ++ ++/** \fn int lq_deu_init_des(void) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief initialize des driver ++*/ ++int lq_deu_init_des(void) ++{ ++ int ret = 0; ++ ++ ret = crypto_register_alg(&des_alg); ++ if (ret < 0) ++ goto des_err; ++ ++ ret = crypto_register_alg(&ecb_des_alg); ++ if (ret < 0) ++ goto ecb_des_err; ++ ++ ret = crypto_register_alg(&cbc_des_alg); ++ if (ret < 0) ++ goto cbc_des_err; ++ ++ ret = crypto_register_alg(&des3_ede_alg); ++ if (ret < 0) ++ goto des3_ede_err; ++ ++ ret = crypto_register_alg(&ecb_des3_ede_alg); ++ if (ret < 0) ++ goto ecb_des3_ede_err; ++ ++ ret = crypto_register_alg(&cbc_des3_ede_alg); ++ if (ret < 0) ++ goto cbc_des3_ede_err; ++ ++ deu_des_chip_init(); ++ ++ CRTCL_SECT_INIT; ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ if (ALLOCATE_MEMORY(BUFFER_IN, DES_ALGO) < 0) { ++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n", ++ __FILE__, __func__, __LINE__); ++ goto cbc_des3_ede_err; ++ } ++ if (ALLOCATE_MEMORY(BUFFER_OUT, DES_ALGO) < 0) { ++ printk(KERN_ERR "[%s %s %d]: malloc memory fail!\n", ++ __FILE__, __func__, __LINE__); ++ goto cbc_des3_ede_err; ++ } ++#endif ++ ++ printk(KERN_NOTICE "Lantiq DEU DES initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++des_err: ++ crypto_unregister_alg(&des_alg); ++ printk(KERN_ERR "Lantiq des initialization failed!\n"); ++ ++ return ret; ++ ++ecb_des_err: ++ crypto_unregister_alg(&ecb_des_alg); ++ printk(KERN_ERR "Lantiq ecb_des initialization failed!\n"); ++ ++ return ret; ++ ++cbc_des_err: ++ crypto_unregister_alg(&cbc_des_alg); ++ printk(KERN_ERR "Lantiq cbc_des initialization failed!\n"); ++ ++ return ret; ++ ++des3_ede_err: ++ crypto_unregister_alg(&des3_ede_alg); ++ printk(KERN_ERR "Lantiq des3_ede initialization failed!\n"); ++ ++ return ret; ++ ++ecb_des3_ede_err: ++ crypto_unregister_alg(&ecb_des3_ede_alg); ++ printk(KERN_ERR "Lantiq ecb_des3_ede initialization failed!\n"); ++ ++ return ret; ++ ++cbc_des3_ede_err: ++ crypto_unregister_alg(&cbc_des3_ede_alg); ++ printk(KERN_ERR "Lantiq cbc_des3_ede initialization failed!\n"); ++ ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_des(void) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief unregister des driver ++*/ ++void lq_deu_fini_des(void) ++{ ++ crypto_unregister_alg(&des_alg); ++ crypto_unregister_alg(&ecb_des_alg); ++ crypto_unregister_alg(&cbc_des_alg); ++ crypto_unregister_alg(&des3_ede_alg); ++ crypto_unregister_alg(&ecb_des3_ede_alg); ++ crypto_unregister_alg(&cbc_des3_ede_alg); ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ FREE_MEMORY(des_buff_in); ++ FREE_MEMORY(des_buff_out); ++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA_DANUBE */ ++} ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/deu.c +@@ -0,0 +1,195 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu.c ++ \ingroup LQ_DEU ++ \brief main DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_DEU_FUNCTIONS LQ_DEU_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU functions ++*/ ++ ++#include ++#if defined(CONFIG_MODVERSIONS) ++#define MODVERSIONS ++#include ++#endif ++#include ++#include ++#include ++#include ++#include ++#include ++#include /* Stuff about file systems that we need */ ++#include ++ ++#if 0 ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++# include ++#endif ++#endif ++ ++#include "deu.h" ++ ++struct lq_crypto_priv lq_crypto_ops; ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++int disable_deudma = 0; ++#else ++int disable_deudma = 1; ++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */ ++ ++#ifdef CRYPTO_DEBUG ++char deu_debug_level = 3; ++#endif ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_MODULE ++# define STATIC static ++#else ++# define STATIC ++#endif ++ ++/** \fn static int lq_deu_init(void) ++ * \ingroup LQ_DEU_FUNCTIONS ++ * \brief link all modules that have been selected in kernel config for Lantiq HW crypto support ++ * \return ret ++*/ ++int lq_deu_init(void) ++{ ++ int ret = -ENOSYS; ++ u32 config; ++ ++ printk(KERN_INFO "Lantiq crypto hardware driver version %s\n", ++ LQ_DEU_DRV_VERSION); ++ ++ config = deu_chip_init(); ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ deu_dma_init(); ++#endif ++ ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_AES) ++ if(config & LQ_DEU_ID_AES) { ++ if ((ret = lq_deu_init_aes())) { ++ printk(KERN_ERR "Lantiq AES initialization failed!\n"); ++ } ++ } else { ++ printk(KERN_ERR "Lantiq AES not supported!\n"); ++ } ++#endif ++ ++#ifdef CONFIG_SOL_LANTIQ_XWAY ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DES) ++ if(config & LQ_DEU_ID_DES) { ++ if ((ret = lq_deu_init_des())) { ++ printk(KERN_ERR "Lantiq DES initialization failed!\n"); ++ } ++ } else { ++ printk(KERN_ERR "Lantiq DES not supported!\n"); ++ } ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) && defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA) ++ if ((ret = lq_deu_init_arc4())) { ++ printk(KERN_ERR "Lantiq ARC4 initialization failed!\n"); ++ } ++#endif ++#endif ++ ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1) ++ if(config & LQ_DEU_ID_HASH) { ++ if ((ret = lq_deu_init_sha1())) { ++ printk(KERN_ERR "Lantiq SHA1 initialization failed!\n"); ++ } ++ } else { ++ printk(KERN_ERR "Lantiq SHA1 not supported!\n"); ++ } ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5) ++ if(config & LQ_DEU_ID_HASH) { ++ if ((ret = lq_deu_init_md5())) { ++ printk(KERN_ERR "Lantiq MD5 initialization failed!\n"); ++ } ++ } else { ++ printk(KERN_ERR "Lantiq MD5 not supported!\n"); ++ } ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC) ++ if ((ret = lq_deu_init_sha1_hmac())) { ++ printk(KERN_ERR "Lantiq SHA1_HMAC initialization failed!\n"); ++ } ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC) ++ if ((ret = lq_deu_init_md5_hmac())) { ++ printk(KERN_ERR "Lantiq MD5_HMAC initialization failed!\n"); ++ } ++#endif ++ return ret; ++} ++ ++/** \fn static void lq_deu_fini(void) ++ * \ingroup LQ_DEU_FUNCTIONS ++ * \brief remove the loaded crypto algorithms ++*/ ++void lq_deu_exit(void) ++{ ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_AES) ++ lq_deu_fini_aes(); ++#endif ++#ifdef CONFIG_SOL_LANTIQ_XWAY ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DES) ++ lq_deu_fini_des(); ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_ARC4) \ ++ && defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA) ++ lq_deu_fini_arc4(); ++#endif ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1) ++ lq_deu_fini_sha1(); ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5) ++ lq_deu_fini_md5(); ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC) ++ lq_deu_fini_sha1_hmac(); ++#endif ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_MD5_HMAC) ++ lq_deu_fini_md5_hmac(); ++#endif ++ ++ printk("DEU has exited successfully\n"); ++ ++#if defined(CONFIG_CRYPTO_DEV_LANTIQ_DMA) ++ deu_dma_exit(); ++ printk("DMA has deregistered successfully\n"); ++#endif ++} ++ ++EXPORT_SYMBOL(lq_deu_init); ++EXPORT_SYMBOL(lq_deu_exit); +--- /dev/null ++++ b/drivers/crypto/lantiq/deu.h +@@ -0,0 +1,248 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu.h ++ \brief Main DEU driver header file ++*/ ++ ++/** ++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU definitions ++*/ ++ ++ ++#ifndef DEU_H ++#define DEU_H ++ ++#undef CRYPTO_DEBUG ++ ++#define LQ_DEU_DRV_VERSION "1.0.1" ++ ++#if defined(CONFIG_LANTIQ_DANUBE) ++# include "deu_danube.h" ++#elif defined(CONFIG_LANTIQ_AR9) ++# include "deu_ar9.h" ++#elif defined(CONFIG_SOC_LANTIQ_FALCON) ++# include "deu_falcon.h" ++#else ++//# error "Unknown platform" ++# include "deu_danube.h" ++#endif ++ ++struct lq_crypto_priv { ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ u32 *des_buff_in; ++ u32 *des_buff_out; ++ u32 *aes_buff_in; ++ u32 *aes_buff_out; ++ ++ int (*dma_init)(void); ++ void (*dma_exit)(void); ++ u32 (*dma_align)(const u8 *, u32 *, int, int); ++ void (*aes_dma_memcpy)(u32 *, u32 *, u8 *, int); ++ void (*des_dma_memcpy)(u32 *, u32 *, u8 *, int); ++ int (*aes_dma_malloc)(int); ++ int (*des_dma_malloc)(int); ++ void (*dma_free)(u32 *); ++#endif ++ ++ u32 (*endian_swap)(u32); ++ u32 (*input_swap)(u32); ++ void (*aes_chip_init)(void); ++ void (*des_chip_init)(void); ++ u32 (*chip_init)(void); ++}; ++ ++extern struct lq_crypto_priv lq_crypto_ops; ++ ++#define LQ_DEU_ALIGNMENT 16 ++ ++#define PFX "lq_deu: " ++ ++#define LQ_DEU_CRA_PRIORITY 300 ++#define LQ_DEU_COMPOSITE_PRIORITY 400 ++ ++#define CRYPTO_DIR_ENCRYPT 1 ++#define CRYPTO_DIR_DECRYPT 0 ++ ++#define CRTCL_SECT_INIT spin_lock_init(&cipher_lock) ++#define CRTCL_SECT_START spin_lock_irqsave(&cipher_lock, flag) ++#define CRTCL_SECT_END spin_unlock_irqrestore(&cipher_lock, flag) ++ ++#define LQ_DEU_ID_REV 0x00001F ++#define LQ_DEU_ID_ID 0x00FF00 ++#define LQ_DEU_ID_DMA 0x010000 ++#define LQ_DEU_ID_HASH 0x020000 ++#define LQ_DEU_ID_AES 0x040000 ++#define LQ_DEU_ID_3DES 0x080000 ++#define LQ_DEU_ID_DES 0x100000 ++ ++extern int disable_deudma; ++ ++int lq_deu_init(void); ++void lq_deu_exit(void); ++ ++int lq_deu_init_des(void); ++int lq_deu_init_aes(void); ++int lq_deu_init_arc4(void); ++int lq_deu_init_sha1(void); ++int lq_deu_init_md5(void); ++int lq_deu_init_sha1_hmac(void); ++int lq_deu_init_md5_hmac(void); ++ ++void lq_deu_fini_des(void); ++void lq_deu_fini_aes(void); ++void lq_deu_fini_arc4(void); ++void lq_deu_fini_sha1(void); ++void lq_deu_fini_md5(void); ++void lq_deu_fini_sha1_hmac(void); ++void lq_deu_fini_md5_hmac(void); ++ ++/* board specific functions */ ++/* { */ ++static inline u32 deu_chip_init(void) ++{ ++ return lq_crypto_ops.chip_init(); ++} ++ ++static inline void deu_des_chip_init(void) ++{ ++ lq_crypto_ops.des_chip_init(); ++} ++ ++static inline void deu_aes_chip_init(void) ++{ ++ lq_crypto_ops.aes_chip_init(); ++} ++ ++static inline u32 deu_input_swap(u32 input) ++{ ++ return lq_crypto_ops.input_swap(input); ++} ++ ++static inline u32 deu_endian_swap(u32 input) ++{ ++ return lq_crypto_ops.endian_swap(input); ++} ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++static inline int deu_aes_dma_malloc(int value) ++{ ++ return lq_crypto_ops.aes_dma_malloc(value); ++} ++ ++static inline int deu_des_dma_malloc(int value) ++{ ++ return lq_crypto_ops.des_dma_malloc(value); ++} ++ ++static inline u32 *deu_dma_align(const u8 *arg, ++ u32 *buff_alloc, ++ int in_out, ++ int nbytes) ++{ ++ return lq_crypto_ops.dma_align(arg, buff_alloc, in_out, nbytes); ++} ++ ++static inline void deu_aes_dma_memcpy(u32 *outcopy, ++ u32 *out_dma, ++ u8 *out_arg, ++ int nbytes) ++{ ++ lq_crypto_ops.aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes); ++} ++ ++static inline void deu_des_dma_memcpy(u32 *outcopy, ++ u32 *out_dma, ++ u8 *out_arg, ++ int nbytes) ++{ ++ lq_crypto_ops.des_dma_memcpy(outcopy, out_dma, out_arg, nbytes); ++} ++ ++static inline void deu_dma_free(u32 *addr) ++{ ++ lq_crypto_ops.dma_free(addr); ++} ++ ++static inline int deu_dma_init(void) ++{ ++ lq_crypto_ops.dma_init(); ++} ++ ++static inline void deu_dma_exit(void) ++{ ++ lq_crypto_ops.dma_exit(); ++} ++#endif ++ ++/* } */ ++ ++#define DEU_WAKELIST_INIT(queue) \ ++ init_waitqueue_head(&queue) ++ ++#define DEU_WAIT_EVENT_TIMEOUT(queue, event, flags, timeout) \ ++ do { \ ++ wait_event_interruptible_timeout((queue), \ ++ test_bit((event), \ ++ &(flags)), (timeout)); \ ++ clear_bit((event), &(flags)); \ ++ }while (0) ++ ++ ++#define DEU_WAKEUP_EVENT(queue, event, flags) \ ++ do { \ ++ set_bit((event), &(flags)); \ ++ wake_up_interruptible(&(queue)); \ ++ }while (0) ++ ++#define DEU_WAIT_EVENT(queue, event, flags) \ ++ do { \ ++ wait_event_interruptible(queue, \ ++ test_bit((event), &(flags))); \ ++ clear_bit((event), &(flags)); \ ++ }while (0) ++ ++struct deu_drv_priv { ++ wait_queue_head_t deu_thread_wait; ++#define DEU_EVENT 1 ++ volatile long deu_event_flags; ++ u8 *deu_rx_buf; ++ u32 deu_rx_len; ++}; ++ ++#ifdef CRYPTO_DEBUG ++extern char deu_debug_level; ++# define DPRINTF(level, format, args...) \ ++ if (level < deu_debug_level) \ ++ printk(KERN_INFO "[%s %s %d]: " format, \ ++ __FILE__, __func__, __LINE__, ##args) ++#else ++# define DPRINTF(level, format, args...) do { } while(0) ++#endif ++ ++#endif /* DEU_H */ +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_ar9.c +@@ -0,0 +1,327 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++#include ++#include ++#include ++#include ++#include /* dma_cache_inv */ ++#include ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++ ++#include "deu.h" ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu_ar9.c ++ \brief Lantiq DEU board specific driver file for ar9 ++*/ ++ ++/** ++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief board specific functions ++*/ ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++struct lq_deu_device lq_deu[1]; ++ ++static u8 *g_dma_page_ptr = NULL; ++static u8 *g_dma_block = NULL; ++static u8 *g_dma_block2 = NULL; ++ ++/** \fn int dma_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Initialize DMA for DEU usage. DMA specific registers are ++ * intialized here, including a pointer to the device, memory ++ * space for the device and DEU-DMA descriptors ++ * \return -1: fail, 0: SUCCESS ++*/ ++static int dma_init(void) ++{ ++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON; ++ struct dma_device_info *dma_device = NULL; ++ int i = 0; ++ ++ struct dma_device_info *deu_dma_device_ptr; ++ ++ /* get one free page and share between g_dma_block and g_dma_block2 */ ++ printk("PAGE_SIZE = %ld\n", PAGE_SIZE); ++ /* need 16-byte alignment memory block */ ++ g_dma_page_ptr = (u8 *)__get_free_page(GFP_KERNEL); ++ /* need 16-byte alignment memory block */ ++ g_dma_block = g_dma_page_ptr; ++ /* need 16-byte alignment memory block */ ++ g_dma_block2 = (u8 *)(g_dma_page_ptr + (PAGE_SIZE >> 1)); ++ ++ /* deu_dma_priv_init(); */ ++ ++ deu_dma_device_ptr = dma_device_reserve("DEU"); ++ if (!deu_dma_device_ptr) { ++ printk("DEU: reserve DMA fail!\n"); ++ return -1; ++ } ++ lq_deu[0].dma_device = deu_dma_device_ptr; ++ ++ dma_device = deu_dma_device_ptr; ++ /* dma_device->priv = &deu_dma_priv; */ ++ dma_device->buffer_alloc = &deu_dma_buffer_alloc; ++ dma_device->buffer_free = &deu_dma_buffer_free; ++ dma_device->intr_handler = &deu_dma_intr_handler; ++ ++ dma_device->tx_endianness_mode = LQ_DMA_ENDIAN_TYPE3; ++ dma_device->rx_endianness_mode = LQ_DMA_ENDIAN_TYPE3; ++ dma_device->port_num = 1; ++ dma_device->tx_burst_len = 2; ++ dma_device->rx_burst_len = 2; ++ dma_device->max_rx_chan_num = 1; ++ dma_device->max_tx_chan_num = 1; ++ dma_device->port_packet_drop_enable = 0; ++ ++ for (i = 0; i < dma_device->max_rx_chan_num; i++) { ++ dma_device->rx_chan[i]->packet_size = DEU_MAX_PACKET_SIZE; ++ dma_device->rx_chan[i]->desc_len = 1; ++ dma_device->rx_chan[i]->control = LQ_DMA_CH_ON; ++ dma_device->rx_chan[i]->byte_offset = 0; ++ dma_device->rx_chan[i]->chan_poll_enable = 1; ++ } ++ ++ for (i = 0; i < dma_device->max_tx_chan_num; i++) { ++ dma_device->tx_chan[i]->control = LQ_DMA_CH_ON; ++ dma_device->tx_chan[i]->desc_len = 1; ++ dma_device->tx_chan[i]->chan_poll_enable = 1; ++ } ++ ++ dma_device->current_tx_chan = 0; ++ dma_device->current_rx_chan = 0; ++ ++ i = dma_device_register(dma_device); ++ for (i = 0; i < dma_device->max_rx_chan_num; i++) { ++ (dma_device->rx_chan[i])->open(dma_device->rx_chan[i]); ++ } ++ ++ dma->ctrl.BS = 0; ++ dma->ctrl.RXCLS = 0; ++ dma->ctrl.EN = 1; ++ ++ return 0; ++} ++ ++/** \fn u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Not used for AR9 ++ * \param arg Pointer to the input / output memory address ++ * \param buffer_alloc A pointer to the buffer ++ * \param in_buff Input (if == 1) or Output (if == 0) buffer ++ * \param nbytes Number of bytes of data ++*/ ++static u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes) ++{ ++ return (u32 *) arg; ++} ++ ++/** \fn void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief copy the DMA data to the memory address space for AES ++ * \param outcopy Not used ++ * \param out_dma A pointer to the memory address that stores the DMA data ++ * \param out_arg The pointer to the memory address that needs to be copied to] ++ * \param nbytes Number of bytes of data ++*/ ++static void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++{ ++ memcpy(out_arg, out_dma, nbytes); ++} ++ ++/** \fn void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief copy the DMA data to the memory address space for DES ++ * \param outcopy Not used ++ * \param out_dma A pointer to the memory address that stores the DMA data ++ * \param out_arg The pointer to the memory address that needs to be copied to] ++ * \param nbytes Number of bytes of data ++*/ ++static void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++{ ++ memcpy(out_arg, out_dma, nbytes); ++} ++ ++/** \fn dma_exit(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief unregister dma devices after exit ++*/ ++static void dma_exit(void) ++{ ++ if (g_dma_page_ptr) ++ free_page((u32) g_dma_page_ptr); ++ dma_device_release(lq_deu[0].dma_device); ++ dma_device_unregister(lq_deu[0].dma_device); ++} ++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */ ++ ++/** \fn u32 endian_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Swap data given to the function ++ * \param input Data input to be swapped ++ * \return either the swapped data or the input data depending on whether it is in DMA mode or FPI mode ++*/ ++static u32 endian_swap(u32 input) ++{ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ u8 *ptr = (u8 *)&input; ++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]); ++#else ++ return input; ++#endif ++} ++ ++/** \fn u32 input_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Not used ++ * \return input ++*/ ++static u32 input_swap(u32 input) ++{ ++ return input; ++} ++ ++/** \fn void aes_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize AES hardware ++*/ ++static void aes_chip_init(void) ++{ ++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START; ++ ++ aes->ctrl.SM = 1; ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ aes->ctrl.ARS = 1; ++#else ++ aes->ctrl.NDC = 1; /* to write to ENDI */ ++ asm("sync"); ++ aes->ctrl.ENDI = 0; ++ asm("sync"); ++ aes->ctrl.ARS = 0; /* 0 for dma */ ++ asm("sync"); ++#endif ++} ++ ++/** \fn void des_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize DES hardware ++*/ ++static void des_chip_init(void) ++{ ++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START; ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ /* start crypto engine with write to ILR */ ++ des->ctrl.SM = 1; ++ asm("sync"); ++ des->ctrl.ARS = 1; ++#else ++ des->ctrl.SM = 1; ++ des->ctrl.NDC = 1; ++ asm("sync"); ++ des->ctrl.ENDI = 0; ++ asm("sync"); ++ des->ctrl.ARS = 0; /* 0 for dma */ ++ ++#endif ++} ++ ++static u32 chip_init(void) ++{ ++ volatile struct deu_clk_ctrl *clc = (struct deu_clk_ctrl *) LQ_DEU_CLK; ++ ++#if 0 ++ lq_pmu_enable(1<<20); ++#endif ++ ++ clc->FSOE = 0; ++ clc->SBWE = 0; ++ clc->SPEN = 0; ++ clc->SBWE = 0; ++ clc->DISS = 0; ++ clc->DISR = 0; ++ ++ return *LQ_DEU_ID; ++} ++ ++static int lq_crypto_probe(struct platform_device *pdev) ++{ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ lq_crypto_ops.dma_init = dma_init; ++ lq_crypto_ops.dma_exit = dma_exit; ++ lq_crypto_ops.aes_dma_memcpy = aes_dma_memcpy; ++ lq_crypto_ops.des_dma_memcpy = des_dma_memcpy; ++ lq_crypto_ops.aes_dma_malloc = aes_dma_malloc; ++ lq_crypto_ops.des_dma_malloc = des_dma_malloc; ++ lq_crypto_ops.dma_align = dma_align; ++ lq_crypto_ops.dma_free = dma_free; ++#endif ++ ++ lq_crypto_ops.endian_swap = endian_swap; ++ lq_crypto_ops.input_swap = input_swap; ++ lq_crypto_ops.aes_chip_init = aes_chip_init; ++ lq_crypto_ops.des_chip_init = des_chip_init; ++ lq_crypto_ops.chip_init = chip_init; ++ ++ printk("lq_ar9_deu: driver loaded!\n"); ++ ++ lq_deu_init(); ++ ++ return 0; ++} ++ ++static int lq_crypto_remove(struct platform_device *pdev) ++{ ++ lq_deu_exit(); ++ ++ return 0; ++} ++ ++static struct platform_driver lq_crypto = { ++ .probe = lq_crypto_probe, ++ .remove = lq_crypto_remove, ++ .driver = { ++ .owner = THIS_MODULE, ++ .name = "lq_ar9_deu" ++ } ++}; ++ ++static int __init lq_crypto_init(void) ++{ ++ return platform_driver_register(&lq_crypto); ++} ++module_init(lq_crypto_init); ++ ++static void __exit lq_crypto_exit(void) ++{ ++ platform_driver_unregister(&lq_crypto); ++} ++module_exit(lq_crypto_exit); ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_ar9.h +@@ -0,0 +1,291 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief DEU driver module ++*/ ++ ++/** ++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU definitions ++*/ ++ ++/** ++ \file deu_ar9.h ++ \brief DEU driver header file ++*/ ++ ++ ++#ifndef DEU_AR9_H ++#define DEU_AR9_H ++ ++#define LQ_DEU_BASE_ADDR (KSEG1 | 0x1E103100) ++#define LQ_DEU_CLK ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0000)) ++#define LQ_DEU_ID ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0008)) ++#define LQ_DES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0010)) ++#define LQ_AES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0050)) ++#define LQ_HASH_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x00B0)) ++#define LQ_ARC4_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0100)) ++ ++#define ARC4_START LQ_ARC4_CON ++#define DES_3DES_START LQ_DES_CON ++#define HASH_START LQ_HASH_CON ++#define AES_START LQ_AES_CON ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++# include "deu_dma.h" ++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \ ++ deu_dma_align(ptr, buffer, in_out, bytes) ++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define BUFFER_IN 1 ++# define BUFFER_OUT 0 ++# define AES_ALGO 1 ++# define DES_ALGO 0 ++# define ALLOCATE_MEMORY(val, type) 1 ++# define FREE_MEMORY(buff) ++extern struct lq_deu_device lq_deu[1]; ++#endif /* CONFIG_CRYPTO_DEV_DMA */ ++ ++/* SHA CONSTANTS */ ++#define HASH_CON_VALUE 0x0700002C ++ ++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input) ++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input) ++#define DELAY_PERIOD 10 ++#define FIND_DEU_CHIP_VERSION chip_version() ++ ++#define WAIT_AES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_aes *aes = \ ++ (volatile struct deu_aes *) AES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (aes->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define WAIT_DES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_des *des = \ ++ (struct deu_des *) DES_3DES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (des->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define AES_DMA_MISC_CONFIG() \ ++ do { \ ++ volatile struct deu_aes *aes = \ ++ (volatile struct deu_aes *) AES_START; \ ++ aes->ctrl.KRE = 1; \ ++ aes->ctrl.GO = 1; \ ++ } while(0) ++ ++#define SHA_HASH_INIT \ ++ do { \ ++ volatile struct deu_hash *hash = \ ++ (struct deu_hash *) HASH_START; \ ++ hash->ctrl.SM = 1; \ ++ hash->ctrl.ALGO = 0; \ ++ hash->ctrl.INIT = 1; \ ++ } while(0) ++ ++/* DEU Common Structures for AR9*/ ++ ++struct deu_clk_ctrl { ++ u32 Res:26; ++ u32 FSOE:1; ++ u32 SBWE:1; ++ u32 EDIS:1; ++ u32 SPEN:1; ++ u32 DISS:1; ++ u32 DISR:1; ++}; ++ ++struct deu_des { ++ struct deu_des_ctrl { /* 10h */ ++ u32 KRE:1; ++ u32 reserved1:5; ++ u32 GO:1; ++ u32 STP:1; ++ u32 Res2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 Res3:2; ++ u32 F:3; ++ u32 O:3; ++ u32 BUS:1; ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 M:3; ++ } ctrl; ++ ++ u32 IHR; /* 14h */ ++ u32 ILR; /* 18h */ ++ u32 K1HR; /* 1c */ ++ u32 K1LR; ++ u32 K2HR; ++ u32 K2LR; ++ u32 K3HR; ++ u32 K3LR; /* 30h */ ++ u32 IVHR; /* 34h */ ++ u32 IVLR; /* 38 */ ++ u32 OHR; /* 3c */ ++ u32 OLR; /* 40 */ ++}; ++ ++struct deu_aes { ++ struct deu_aes_ctrl { ++ u32 KRE:1; ++ u32 reserved1:4; ++ u32 PNK:1; ++ u32 GO:1; ++ u32 STP:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:2; ++ u32 F:3; /* fbs */ ++ u32 O:3; /* om */ ++ u32 BUS:1; /* bsy */ ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 KV:1; ++ u32 K:2; /* KL */ ++ } ctrl; ++ ++ u32 ID3R; /* 80h */ ++ u32 ID2R; /* 84h */ ++ u32 ID1R; /* 88h */ ++ u32 ID0R; /* 8Ch */ ++ u32 K7R; /* 90h */ ++ u32 K6R; /* 94h */ ++ u32 K5R; /* 98h */ ++ u32 K4R; /* 9Ch */ ++ u32 K3R; /* A0h */ ++ u32 K2R; /* A4h */ ++ u32 K1R; /* A8h */ ++ u32 K0R; /* ACh */ ++ u32 IV3R; /* B0h */ ++ u32 IV2R; /* B4h */ ++ u32 IV1R; /* B8h */ ++ u32 IV0R; /* BCh */ ++ u32 OD3R; /* D4h */ ++ u32 OD2R; /* D8h */ ++ u32 OD1R; /* DCh */ ++ u32 OD0R; /* E0h */ ++}; ++ ++struct deu_arc4 { ++ struct arc4_controlr { ++ u32 KRE:1; ++ u32 KLEN:4; ++ u32 KSAE:1; ++ u32 GO:1; ++ u32 STP:1; ++ u32 reserved1:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved2:8; ++ u32 BUS:1; /* bsy */ ++ u32 reserved3:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 reserved4:4; ++ } ctrl; ++ ++ u32 K3R; /* 104h */ ++ u32 K2R; /* 108h */ ++ u32 K1R; /* 10Ch */ ++ u32 K0R; /* 110h */ ++ u32 IDLEN; /* 114h */ ++ u32 ID3R; /* 118h */ ++ u32 ID2R; /* 11Ch */ ++ u32 ID1R; /* 120h */ ++ u32 ID0R; /* 124h */ ++ u32 OD3R; /* 128h */ ++ u32 OD2R; /* 12Ch */ ++ u32 OD1R; /* 130h */ ++ u32 OD0R; /* 134h */ ++}; ++ ++struct deu_hash { ++ struct deu_hash_ctrl { ++ u32 reserved1:5; ++ u32 KHS:1; ++ u32 GO:1; ++ u32 INIT:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:7; ++ u32 DGRY:1; ++ u32 BSY:1; ++ u32 reserved4:1; ++ u32 IRCL:1; ++ u32 SM:1; ++ u32 KYUE:1; ++ u32 HMEN:1; ++ u32 SSEN:1; ++ u32 ALGO:1; ++ } ctrl; ++ ++ u32 MR; /* B4h */ ++ u32 D1R; /* B8h */ ++ u32 D2R; /* BCh */ ++ u32 D3R; /* C0h */ ++ u32 D4R; /* C4h */ ++ u32 D5R; /* C8h */ ++ u32 dummy; /* CCh */ ++ u32 KIDX; /* D0h */ ++ u32 KEY; /* D4h */ ++ u32 DBN; /* D8h */ ++}; ++ ++struct deu_dma { ++ struct deu_dma_ctrl { ++ u32 reserved1:22; ++ u32 BS:2; ++ u32 BSY:1; ++ u32 reserved2:1; ++ u32 ALGO:2; ++ u32 RXCLS:2; ++ u32 reserved3:1; ++ u32 EN:1; ++ } ctrl; ++}; ++ ++#endif /* DEU_AR9_H */ +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_danube.c +@@ -0,0 +1,484 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++#include ++#include ++#include ++#include ++#include /* dma_cache_inv */ ++#include ++ ++#ifdef CONFIG_SOC_LANTIQ_XWAY ++ ++#include "deu.h" ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief DEU driver module ++*/ ++ ++/** ++ \file deu_danube.c ++ \ingroup LQ_DEU ++ \brief board specific DEU driver file for danube ++*/ ++ ++/** ++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief board specific DEU functions ++*/ ++ ++static int danube_pre_1_4; ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++u32 *des_buff_in = NULL; ++u32 *des_buff_out = NULL; ++u32 *aes_buff_in = NULL; ++u32 *aes_buff_out = NULL; ++ ++struct lq_deu_device lq_deu[1]; ++ ++static u8 *g_dma_page_ptr = NULL; ++static u8 *g_dma_block = NULL; ++static u8 *g_dma_block2 = NULL; ++ ++/** \fn int dma_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Initialize DMA for DEU usage. DMA specific registers are ++ * intialized here, including a pointer to the device, memory ++ * space for the device and DEU-DMA descriptors ++ * \return -1 if fail, otherwise return 0 ++*/ ++static int dma_init(void) ++{ ++ struct dma_device_info *dma_device = NULL; ++ int i = 0; ++ volatile struct deu_dma *dma = (struct deu_dma *) LQ_DEU_DMA_CON; ++ struct dma_device_info *deu_dma_device_ptr; ++ ++ /* get one free page and share between g_dma_block and g_dma_block2 */ ++ printk("PAGE_SIZE = %ld\n", PAGE_SIZE); ++ /* need 16-byte alignment memory block */ ++ g_dma_page_ptr = (u8 *)__get_free_page(GFP_KERNEL); ++ /* need 16-byte alignment memory block */ ++ g_dma_block = g_dma_page_ptr; ++ /* need 16-byte alignment memory block */ ++ g_dma_block2 = (u8 *)(g_dma_page_ptr + (PAGE_SIZE >> 1)); ++ ++ deu_dma_device_ptr = dma_device_reserve("DEU"); ++ if (!deu_dma_device_ptr) { ++ printk("DEU: reserve DMA fail!\n"); ++ return -1; ++ } ++ lq_deu[0].dma_device = deu_dma_device_ptr; ++ dma_device = deu_dma_device_ptr; ++ /* dma_device->priv = &deu_dma_priv; */ ++ dma_device->buffer_alloc = &deu_dma_buffer_alloc; ++ dma_device->buffer_free = &deu_dma_buffer_free; ++ dma_device->intr_handler = &deu_dma_intr_handler; ++ dma_device->tx_endianness_mode = LQ_DMA_ENDIAN_TYPE3; ++ dma_device->rx_endianness_mode = LQ_DMA_ENDIAN_TYPE3; ++ dma_device->port_num = 1; ++ dma_device->tx_burst_len = 4; ++ dma_device->max_rx_chan_num = 1; ++ dma_device->max_tx_chan_num = 1; ++ dma_device->port_packet_drop_enable = 0; ++ ++ for (i = 0; i < dma_device->max_rx_chan_num; i++) { ++ dma_device->rx_chan[i]->packet_size = DEU_MAX_PACKET_SIZE; ++ dma_device->rx_chan[i]->desc_len = 1; ++ dma_device->rx_chan[i]->control = LQ_DMA_CH_ON; ++ dma_device->rx_chan[i]->byte_offset = 0; ++ dma_device->rx_chan[i]->chan_poll_enable = 1; ++ ++ } ++ ++ for (i = 0; i < dma_device->max_tx_chan_num; i++) { ++ dma_device->tx_chan[i]->control = LQ_DMA_CH_ON; ++ dma_device->tx_chan[i]->desc_len = 1; ++ dma_device->tx_chan[i]->chan_poll_enable = 1; ++ } ++ ++ dma_device->current_tx_chan = 0; ++ dma_device->current_rx_chan = 0; ++ ++ dma_device_register(dma_device); ++ for (i = 0; i < dma_device->max_rx_chan_num; i++) { ++ (dma_device->rx_chan[i])->open(dma_device->rx_chan[i]); ++ } ++ ++ dma->ctrl.BS = 0; ++ dma->ctrl.RXCLS = 0; ++ dma->ctrl.EN = 1; ++ ++ ++ *LQ_DMA_PS = 1; ++ ++ /* DANUBE PRE 1.4 SOFTWARE FIX */ ++ if (danube_pre_1_4) ++ *LQ_DMA_PCTRL = 0x14; ++ else ++ *LQ_DMA_PCTRL = 0xF14; ++ ++ return 0; ++} ++ ++/** \fn u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief A fix to align mis-aligned address for Danube version 1.3 chips ++ * which has memory alignment issues. ++ * \param arg Pointer to the input / output memory address ++ * \param buffer_alloc A pointer to the buffer ++ * \param in_buff Input (if == 1) or Output (if == 0) buffer ++ * \param nbytes Number of bytes of data ++ * \return returns arg: if address is aligned, buffer_alloc: if memory address is not aligned ++*/ ++static u32 *dma_align(const u8 *arg, u32 *buffer_alloc, int in_buff, int nbytes) ++{ ++ if (danube_pre_1_4) { ++ /* for input buffer */ ++ if (in_buff) { ++ if (((u32) arg) & 0xF) { ++ memcpy(buffer_alloc, arg, nbytes); ++ return (u32 *) buffer_alloc; ++ } else { ++ return (u32 *) arg; ++ } ++ } ++ else { ++ /* for output buffer */ ++ if (((u32) arg) & 0x3) ++ return buffer_alloc; ++ else ++ return (u32 *) arg; ++ } ++ } ++ ++ return (u32 *) arg; ++} ++ ++/** \fn void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief copy the DMA data to the memory address space for AES. The swaping ++ * of the 4 bytes is done only for Danube version 1.3 (FIX). Otherwise, ++ * it is a direct memory copy to out_arg pointer ++ * \param outcopy Pointer to the address to store swapped copy ++ * \param out_dma A pointer to the memory address that stores the DMA data ++ * \param out_arg The pointer to the memory address that needs to be copied to ++ * \param nbytes Number of bytes of data ++*/ ++static void aes_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++{ ++ int i = 0; ++ int x = 0; ++ ++ /* DANUBE PRE 1.4 SOFTWARE FIX */ ++ if (danube_pre_1_4) { ++ for (i = 0; i < (nbytes / 4); i++) { ++ x = i ^ 0x3; ++ outcopy[i] = out_dma[x]; ++ ++ } ++ if (((u32) out_arg) & 0x3) { ++ memcpy((u8 *)out_arg, outcopy, nbytes); ++ } ++ } else { ++ memcpy(out_arg, out_dma, nbytes); ++ } ++} ++ ++/** \fn void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief copy the DMA data to the memory address space for DES. The swaping ++ * of the 4 bytes is done only for Danube version 1.3 (FIX). Otherwise, ++ * it is a direct memory copy to out_arg pointer ++ * \param outcopy Pointer to the address to store swapped copy ++ * \param out_dma A pointer to the memory address that stores the DMA data ++ * \param out_arg The pointer to the memory address that needs to be copied to ++ * \param nbytes Number of bytes of data ++*/ ++static void des_dma_memcpy(u32 *outcopy, u32 *out_dma, u8 *out_arg, int nbytes) ++{ ++ int i = 0; ++ int x = 0; ++ ++ /* DANUBE PRE 1.4 SOFTWARE FIX */ ++ if (danube_pre_1_4) { ++ for (i = 0; i < (nbytes / 4); i++) { ++ x = i ^ 1; ++ outcopy[i] = out_dma[x]; ++ ++ } ++ if (((u32) out_arg) & 0x3) { ++ memcpy((u8 *)out_arg, outcopy, nbytes); ++ } ++ } else { ++ memcpy(out_arg, out_dma, nbytes); ++ } ++} ++ ++/** \fn int des_dma_malloc(int value) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief allocates memory to the necessary memory input/output buffer ++ * location, used during the DES algorithm DMA transfer (memory ++ * alignment issues) ++ * \param value value determinds whether the calling of the function is for a ++ * input buffer or for an output buffer memory allocation ++*/ ++static int des_dma_malloc(int value) ++{ ++ if (danube_pre_1_4) { ++ if (value == BUFFER_IN) { ++ des_buff_in = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC); ++ if (!des_buff_in) ++ return -1; ++ else ++ return 0; ++ } ++ else { ++ des_buff_out = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC); ++ if (!des_buff_out) ++ return -1; ++ else ++ return 0; ++ } ++ } else { ++ return 0; ++ } ++} ++ ++/** \fn int aes_dma_malloc(int value) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief allocates memory to the necessary memory input/output buffer ++ * location, used during the AES algorithm DMA transfer (memory ++ * alignment issues) ++ * \param value value determinds whether the calling of the function is for a ++ * input buffer or for an output buffer memory allocation ++*/ ++static int aes_dma_malloc(int value) ++{ ++ if (danube_pre_1_4) { ++ if (value == BUFFER_IN) { ++ aes_buff_in = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC); ++ if (!aes_buff_in) ++ return -1; ++ else ++ return 0; ++ } ++ else { ++ aes_buff_out = kmalloc(DEU_MAX_PACKET_SIZE, GFP_ATOMIC); ++ if (!aes_buff_out) ++ return -1; ++ else ++ return 0; ++ } ++ } else { ++ return 0; ++ } ++} ++ ++/** \fn void dma_free(u32 *addr) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief frees previously allocated memory ++ * \param addr memory address of the buffer that needs to be freed ++*/ ++static void dma_free(u32 *addr) ++{ ++ if (addr) ++ kfree(addr); ++ return; ++} ++ ++/** \fn dma_exit(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief unregister dma devices after exit ++*/ ++static void dma_exit(void) ++{ ++ if (g_dma_page_ptr) ++ free_page((u32) g_dma_page_ptr); ++ dma_device_release(lq_deu[0].dma_device); ++ dma_device_unregister(lq_deu[0].dma_device); ++} ++#endif /* CONFIG_CRYPTO_DEV_LANTIQ_DMA */ ++ ++/** \fn u32 endian_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief function is not used ++ * \param input Data input to be swapped ++ * \return input ++*/ ++static u32 endian_swap(u32 input) ++{ ++ return input; ++} ++ ++/** \fn u32 input_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Swap the input data if the current chip is Danube version ++ * 1.4 and do nothing to the data if the current chip is ++ * Danube version 1.3 ++ * \param input data that needs to be swapped ++ * \return input or swapped input ++*/ ++static u32 input_swap(u32 input) ++{ ++ if (!danube_pre_1_4) { ++ u8 *ptr = (u8 *)&input; ++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]); ++ } else { ++ return input; ++ } ++} ++ ++/** \fn void aes_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize AES hardware ++*/ ++static void aes_chip_init(void) ++{ ++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START; ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ /* start crypto engine with write to ILR */ ++ aes->ctrl.SM = 1; ++ aes->ctrl.ARS = 1; ++#else ++ aes->ctrl.SM = 1; ++ aes->ctrl.ARS = 1; /* 0 for dma */ ++#endif ++} ++ ++/** \fn void des_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize DES hardware ++*/ ++static void des_chip_init(void) ++{ ++ volatile struct deu_des *des = (struct deu_des *) DES_3DES_START; ++ ++#ifndef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ /* start crypto engine with write to ILR */ ++ des->ctrl.SM = 1; ++ des->ctrl.ARS = 1; ++#else ++ des->ctrl.SM = 1; ++ des->ctrl.ARS = 1; /* 0 for dma */ ++#endif ++} ++ ++/** \fn void deu_chip_version(void) ++ * \ingroup LQ_DES_FUNCTIONS ++ * \brief To find the version of the chip by looking at the chip ID ++ * \param danube_pre_1_4 (sets to 1 if Chip is Danube less than v1.4) ++*/ ++static void deu_chip_version(void) ++{ ++ /* DANUBE PRE 1.4 SOFTWARE FIX */ ++ int chip_id = 0; ++ chip_id = *LQ_MPS_CHIPID; ++ chip_id >>= 28; ++ ++ if (chip_id >= 4) { ++ danube_pre_1_4 = 0; ++ printk("Danube Chip ver. 1.4 detected. \n"); ++ } ++ else { ++ danube_pre_1_4 = 1; ++ printk("Danube Chip ver. 1.3 or below detected. \n"); ++ } ++} ++ ++static u32 chip_init(void) ++{ ++ volatile struct deu_clk_ctrl *clc = (struct deu_clk_ctrl *) LQ_DEU_CLK; ++ ++#if 0 ++ lq_pmu_enable(1<<20); ++#endif ++ ++ deu_chip_version(); ++ ++ clc->FSOE = 0; ++ clc->SBWE = 0; ++ clc->SPEN = 0; ++ clc->SBWE = 0; ++ clc->DISS = 0; ++ clc->DISR = 0; ++ ++ return *LQ_DEU_ID; ++} ++ ++static int lq_crypto_probe(struct platform_device *pdev) ++{ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ lq_crypto_ops.dma_init = dma_init; ++ lq_crypto_ops.dma_exit = dma_exit; ++ lq_crypto_ops.aes_dma_memcpy = aes_dma_memcpy; ++ lq_crypto_ops.des_dma_memcpy = des_dma_memcpy; ++ lq_crypto_ops.aes_dma_malloc = aes_dma_malloc; ++ lq_crypto_ops.des_dma_malloc = des_dma_malloc; ++ lq_crypto_ops.dma_align = dma_align; ++ lq_crypto_ops.dma_free = dma_free; ++#endif ++ ++ lq_crypto_ops.endian_swap = endian_swap; ++ lq_crypto_ops.input_swap = input_swap; ++ lq_crypto_ops.aes_chip_init = aes_chip_init; ++ lq_crypto_ops.des_chip_init = des_chip_init; ++ lq_crypto_ops.chip_init = chip_init; ++ ++ printk("lq_danube_deu: driver loaded!\n"); ++ ++ lq_deu_init(); ++ ++ return 0; ++} ++ ++static int lq_crypto_remove(struct platform_device *pdev) ++{ ++ lq_deu_exit(); ++ ++ return 0; ++} ++ ++static struct platform_driver lq_crypto = { ++ .probe = lq_crypto_probe, ++ .remove = lq_crypto_remove, ++ .driver = { ++ .owner = THIS_MODULE, ++ .name = "lq_danube_deu" ++ } ++}; ++ ++static int __init lq_crypto_init(void) ++{ ++ return platform_driver_register(&lq_crypto); ++} ++module_init(lq_crypto_init); ++ ++static void __exit lq_crypto_exit(void) ++{ ++ platform_driver_unregister(&lq_crypto); ++} ++module_exit(lq_crypto_exit); ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_danube.h +@@ -0,0 +1,255 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief DEU driver module ++*/ ++ ++/** ++ \file deu_danube.h ++ \brief board specific driver header file for danube ++*/ ++ ++/** ++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief board specific DEU header files ++*/ ++ ++#ifndef DEU_DANUBE_H ++#define DEU_DANUBE_H ++ ++#define LQ_DEU_BASE_ADDR (KSEG1 | 0x1E103100) ++#define LQ_DEU_CLK ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0000)) ++#define LQ_DEU_ID ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0008)) ++#define LQ_DES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0010)) ++#define LQ_AES_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0050)) ++#define LQ_HASH_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x00B0)) ++#define LQ_ARC4_CON ((volatile u32 *)(LQ_DEU_BASE_ADDR + 0x0100)) ++ ++#define ARC4_START LQ_ARC4_CON ++#define DES_3DES_START LQ_DES_CON ++#define HASH_START LQ_HASH_CON ++#define AES_START LQ_AES_CON ++ ++#define LQ_MPS (KSEG1 | 0x1F107000) ++#define LQ_MPS_CHIPID ((volatile u32*)(LQ_MPS + 0x0344)) ++#define LQ_MPS_CHIPID_VERSION_GET(value) (((value) >> 28) & 0xF) ++#define LQ_MPS_CHIPID_VERSION_SET(value) (((value) & 0xF) << 28) ++#define LQ_MPS_CHIPID_PARTNUM_GET(value) (((value) >> 12) & 0xFFFF) ++#define LQ_MPS_CHIPID_PARTNUM_SET(value) (((value) & 0xFFFF) << 12) ++#define LQ_MPS_CHIPID_MANID_GET(value) (((value) >> 1) & 0x7FF) ++#define LQ_MPS_CHIPID_MANID_SET(value) (((value) & 0x7FF) << 1) ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \ ++ deu_dma_align(ptr, buffer, in_out, bytes) ++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define BUFFER_IN 1 ++# define BUFFER_OUT 0 ++# define DELAY_PERIOD 9 ++# define AES_ALGO 1 ++# define DES_ALGO 0 ++# define FREE_MEMORY(buff) deu_dma_free(buff) ++# define ALLOCATE_MEMORY(val, type) type ? \ ++ deu_aes_dma_malloc(val) : \ ++ deu_des_dma_malloc(val) ++#endif /* CONFIG_CRYPTO_DEV_DMA */ ++ ++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input) ++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input) ++#define AES_DMA_MISC_CONFIG() ++ ++#define WAIT_AES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_aes *aes = \ ++ (volatile struct deu_aes *) AES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (aes->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define WAIT_DES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_des *des = \ ++ (struct deu_des *) DES_3DES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (des->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define SHA_HASH_INIT \ ++ do { \ ++ volatile struct deu_hash *hash = \ ++ (struct deu_hash *) HASH_START; \ ++ hash->ctrl.SM = 1; \ ++ hash->ctrl.ALGO = 0; \ ++ hash->ctrl.INIT = 1; \ ++ } while(0) ++ ++/* DEU STRUCTURES */ ++ ++struct deu_clk_ctrl { ++ u32 Res:26; ++ u32 FSOE:1; ++ u32 SBWE:1; ++ u32 EDIS:1; ++ u32 SPEN:1; ++ u32 DISS:1; ++ u32 DISR:1; ++}; ++ ++struct deu_des { ++ struct deu_des_ctrl { ++ u32 KRE:1; ++ u32 reserved1:5; ++ u32 GO:1; ++ u32 STP:1; ++ u32 Res2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 Res3:2; ++ u32 F:3; ++ u32 O:3; ++ u32 BUS:1; ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 M:3; ++ } ctrl; ++ ++ u32 IHR; ++ u32 ILR; ++ u32 K1HR; ++ u32 K1LR; ++ u32 K2HR; ++ u32 K2LR; ++ u32 K3HR; ++ u32 K3LR; ++ u32 IVHR; ++ u32 IVLR; ++ u32 OHR; ++ u32 OLR; ++}; ++ ++struct deu_aes { ++ struct deu_aes_ctrl { ++ u32 KRE:1; ++ u32 reserved1:4; ++ u32 PNK:1; ++ u32 GO:1; ++ u32 STP:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:2; ++ u32 F:3; /* fbs */ ++ u32 O:3; /* om */ ++ u32 BUS:1; /* bsy */ ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 KV:1; ++ u32 K:2; /* KL */ ++ } ctrl; ++ ++ u32 ID3R; /* 80h */ ++ u32 ID2R; /* 84h */ ++ u32 ID1R; /* 88h */ ++ u32 ID0R; /* 8Ch */ ++ u32 K7R; /* 90h */ ++ u32 K6R; /* 94h */ ++ u32 K5R; /* 98h */ ++ u32 K4R; /* 9Ch */ ++ u32 K3R; /* A0h */ ++ u32 K2R; /* A4h */ ++ u32 K1R; /* A8h */ ++ u32 K0R; /* ACh */ ++ u32 IV3R; /* B0h */ ++ u32 IV2R; /* B4h */ ++ u32 IV1R; /* B8h */ ++ u32 IV0R; /* BCh */ ++ u32 OD3R; /* D4h */ ++ u32 OD2R; /* D8h */ ++ u32 OD1R; /* DCh */ ++ u32 OD0R; /* E0h */ ++}; ++ ++struct deu_hash { ++ struct deu_hash_ctrl { ++ u32 reserved1:5; ++ u32 KHS:1; ++ u32 GO:1; ++ u32 INIT:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:7; ++ u32 DGRY:1; ++ u32 BSY:1; ++ u32 reserved4:1; ++ u32 IRCL:1; ++ u32 SM:1; ++ u32 KYUE:1; ++ u32 HMEN:1; ++ u32 SSEN:1; ++ u32 ALGO:1; ++ } ctrl; ++ ++ u32 MR; /* B4h */ ++ u32 D1R; /* B8h */ ++ u32 D2R; /* BCh */ ++ u32 D3R; /* C0h */ ++ u32 D4R; /* C4h */ ++ u32 D5R; /* C8h */ ++ u32 dummy; /* CCh */ ++ u32 KIDX; /* D0h */ ++ u32 KEY; /* D4h */ ++ u32 DBN; /* D8h */ ++}; ++ ++struct deu_dma { ++ struct deu_dma_ctrl { ++ u32 reserved1:22; ++ u32 BS:2; ++ u32 BSY:1; ++ u32 reserved2:1; ++ u32 ALGO:2; ++ u32 RXCLS:2; ++ u32 reserved3:1; ++ u32 EN:1; ++ } ctrl; ++}; ++ ++#endif /* DEU_DANUBE_H */ +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_dma.c +@@ -0,0 +1,147 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup LQ_API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu_dma.c ++ \ingroup LQ_DEU ++ \brief DMA DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_DMA_FUNCTIONS LQ_DMA_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief DMA DEU driver functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++#include "deu_dma.h" ++ ++/* extern struct deu_drv_priv deu_dma_priv; */ ++ ++/** \fn int deu_dma_intr_handler(struct dma_device_info *dma_dev, int status) ++ * \ingroup LQ_DMA_FUNCTIONS ++ * \brief callback function for DEU DMA interrupt ++ * \param dma_dev dma device ++ * \param status not used ++*/ ++int deu_dma_intr_handler(struct dma_device_info *dma_dev, int status) ++{ ++#if 0 ++ int len = 0; ++ while (len <= 20000) { len++; } ++ u8 *buf; ++ int len = 0; ++ ++ struct deu_drv_priv *deu_priv = (struct deu_drv_priv *)dma_dev->priv; ++ /* printk("status:%d \n",status); */ ++ switch(status) { ++ case RCV_INT: ++ len = dma_device_read(dma_dev, (u8 **)&buf, NULL); ++ if ( len != deu_priv->deu_rx_len) { ++ printk(KERN_ERR "%s packet length %d is not " ++ "equal to expect %d\n", ++ __func__, len, deu_priv->deu_rx_len); ++ return -1; ++ } ++ memcpy(deu_priv->deu_rx_buf, buf, deu_priv->deu_rx_len); ++ /* Reset for next usage */ ++ deu_priv->deu_rx_buf = NULL; ++ deu_priv->deu_rx_len = 0; ++ DEU_WAKEUP_EVENT(deu_priv->deu_thread_wait, DEU_EVENT, ++ deu_priv->deu_event_flags); ++ break; ++ case TX_BUF_FULL_INT: ++ /* delay for buffer to be cleared */ ++ while (len <= 20000) { len++; } ++ break; ++ ++ case TRANSMIT_CPT_INT: ++ break; ++ default: ++ break; ++ } ++#endif ++ return 0; ++} ++ ++extern u8 *g_dma_block; ++extern u8 *g_dma_block2; ++ ++/** \fn u8 *deu_dma_buffer_alloc(int len, int *byte_offset, void **opt) ++ * \ingroup LQ_DMA_FUNCTIONS ++ * \brief callback function for allocating buffers for dma receive descriptors ++ * \param len not used ++ * \param byte_offset dma byte offset ++ * \param *opt not used ++ * ++*/ ++u8 *deu_dma_buffer_alloc(int len, int *byte_offset, void **opt) ++{ ++ u8 *swap = NULL; ++ ++ /* dma-core needs at least 2 blocks of memory */ ++ swap = g_dma_block; ++ g_dma_block = g_dma_block2; ++ g_dma_block2 = swap; ++ ++ /* dma_cache_wback_inv((unsigned long) g_dma_block,(PAGE_SIZE >> 1)); */ ++ *byte_offset = 0; ++ ++ return g_dma_block; ++} ++ ++/** \fn int deu_dma_buffer_free(u8 * dataptr, void *opt) ++ * \ingroup LQ_DMA_FUNCTIONS ++ * \brief callback function for freeing dma transmit descriptors ++ * \param dataptr data pointer to be freed ++ * \param opt not used ++*/ ++int deu_dma_buffer_free(u8 *dataptr, void *opt) ++{ ++#if 0 ++ printk("Trying to free memory buffer\n"); ++ if (dataptr == NULL && opt == NULL) ++ return 0; ++ else if (opt == NULL) { ++ kfree(dataptr); ++ return 1; ++ } ++ else if (dataptr == NULL) { ++ kfree(opt); ++ return 1; ++ } ++ else { ++ kfree(opt); ++ kfree(dataptr); ++ } ++#endif ++ return 0; ++} +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_dma.h +@@ -0,0 +1,78 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \addtogroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu_dma.h ++ \ingroup LQ_DEU ++ \brief DMA DEU driver header file ++*/ ++ ++#ifndef DEU_DMA_H ++#define DEU_DMA_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++#ifndef CONFIG_CRYPTO_DEV_POLL_DMA ++# define CONFIG_CRYPTO_DEV_POLL_DMA ++#endif ++ ++/* must match the size of memory block allocated for ++ * g_dma_block and g_dma_block2 */ ++#define DEU_MAX_PACKET_SIZE (PAGE_SIZE >> 1) ++ ++struct lq_deu_device { ++ struct dma_device_info *dma_device; ++ u8 *dst; ++ u8 *src; ++ int len; ++ int dst_count; ++ int src_count; ++ int recv_count; ++ int packet_size; ++ int packet_num; ++ wait_queue_t wait; ++}; ++ ++extern struct lq_deu_device lq_deu[1]; ++ ++extern int deu_dma_intr_handler(struct dma_device_info *, int); ++extern u8 *deu_dma_buffer_alloc(int, int *, void **); ++extern int deu_dma_buffer_free(u8 *, void *); ++extern void deu_dma_inactivate_poll(struct dma_device_info* dma_dev); ++extern void deu_dma_activate_poll(struct dma_device_info* dma_dev); ++extern struct dma_device_info* deu_dma_reserve(struct dma_device_info** ++ dma_device); ++extern int deu_dma_release(struct dma_device_info** dma_device); ++ ++#endif /* IFMIPS_DEU_DMA_H */ +--- /dev/null ++++ b/drivers/crypto/lantiq/md5.c +@@ -0,0 +1,285 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file md5.c ++ \ingroup LQ_DEU ++ \brief MD5 encryption DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_MD5_FUNCTIONS LQ_MD5_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU MD5 functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++ ++#define MD5_DIGEST_SIZE 16 ++#define MD5_HMAC_BLOCK_SIZE 64 ++#define MD5_BLOCK_WORDS 16 ++#define MD5_HASH_WORDS 4 ++ ++static spinlock_t cipher_lock; ++ ++struct md5_ctx { ++ u32 hash[MD5_HASH_WORDS]; ++ u32 block[MD5_BLOCK_WORDS]; ++ u64 byte_count; ++}; ++ ++/** \fn static u32 md5_endian_swap(u32 input) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief perform dword level endian swap ++ * \param input value of dword that requires to be swapped ++*/ ++static u32 md5_endian_swap(u32 input) ++{ ++ u8 *ptr = (u8 *)&input; ++ ++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]); ++} ++ ++/** \fn static void md5_transform(u32 *hash, u32 const *in) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief main interface to md5 hardware ++ * \param hash current hash value ++ * \param in 64-byte block of input ++*/ ++static void md5_transform(u32 *hash, u32 const *in) ++{ ++ int i; ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ ulong flag; ++ ++ CRTCL_SECT_START; ++ ++ for (i = 0; i < 16; i++) { ++ hashs->MR = md5_endian_swap(in[i]); ++ }; ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ CRTCL_SECT_END; ++} ++ ++/** \fn static inline void md5_transform_helper(struct md5_ctx *ctx) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief interfacing function for md5_transform() ++ * \param ctx crypto context ++*/ ++static inline void md5_transform_helper(struct md5_ctx *ctx) ++{ ++ /* le32_to_cpu_array(ctx->block, sizeof(ctx->block) / sizeof(u32)); */ ++ md5_transform(ctx->hash, ctx->block); ++} ++ ++/** \fn static void md5_init(struct crypto_tfm *tfm) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief initialize md5 hardware ++ * \param tfm linux crypto algo transform ++*/ ++static int md5_init(struct shash_desc *desc) ++{ ++ struct md5_ctx *mctx = shash_desc_ctx(desc); ++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START; ++ ++ hash->ctrl.SM = 1; ++ hash->ctrl.ALGO = 1; /* 1 = md5 0 = sha1 */ ++ hash->ctrl.INIT = 1; /* Initialize the hash operation by writing ++ a '1' to the INIT bit. */ ++ ++ mctx->byte_count = 0; ++ ++ return 0; ++} ++ ++/** \fn static void md5_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief on-the-fly md5 computation ++ * \param tfm linux crypto algo transform ++ * \param data input data ++ * \param len size of input data ++*/ ++static int md5_update(struct shash_desc *desc, const u8 *data, unsigned int len) ++{ ++ struct md5_ctx *mctx = shash_desc_ctx(desc); ++ const u32 avail = sizeof(mctx->block) - (mctx->byte_count & 0x3f); ++ ++ mctx->byte_count += len; ++ ++ if (avail > len) { ++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), ++ data, len); ++ return 0; ++ } ++ ++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), ++ data, avail); ++ ++ md5_transform_helper(mctx); ++ data += avail; ++ len -= avail; ++ ++ while (len >= sizeof(mctx->block)) { ++ memcpy(mctx->block, data, sizeof(mctx->block)); ++ md5_transform_helper(mctx); ++ data += sizeof(mctx->block); ++ len -= sizeof(mctx->block); ++ } ++ ++ memcpy(mctx->block, data, len); ++ ++ return 0; ++} ++ ++/** \fn static void md5_final(struct crypto_tfm *tfm, u8 *out) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief compute final md5 value ++ * \param tfm linux crypto algo transform ++ * \param out final md5 output value ++*/ ++static int md5_final(struct shash_desc *desc, u8 *out) ++{ ++ struct md5_ctx *mctx = shash_desc_ctx(desc); ++ const unsigned int offset = mctx->byte_count & 0x3f; ++ char *p = (char *)mctx->block + offset; ++ int padding = 56 - (offset + 1); ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ unsigned long flag; ++ ++ *p++ = 0x80; ++ if (padding < 0) { ++ memset(p, 0x00, padding + sizeof (u64)); ++ md5_transform_helper(mctx); ++ p = (char *)mctx->block; ++ padding = 56; ++ } ++ ++ memset(p, 0, padding); ++ mctx->block[14] = md5_endian_swap(mctx->byte_count << 3); ++ mctx->block[15] = md5_endian_swap(mctx->byte_count >> 29); ++ ++#if 0 ++ le32_to_cpu_array(mctx->block, (sizeof(mctx->block) - ++ sizeof(u64)) / sizeof(u32)); ++#endif ++ ++ md5_transform(mctx->hash, mctx->block); ++ ++ CRTCL_SECT_START; ++ ++ *((u32 *) out + 0) = md5_endian_swap(hashs->D1R); ++ *((u32 *) out + 1) = md5_endian_swap(hashs->D2R); ++ *((u32 *) out + 2) = md5_endian_swap(hashs->D3R); ++ *((u32 *) out + 3) = md5_endian_swap(hashs->D4R); ++ ++ CRTCL_SECT_END; ++ ++ /* Wipe context */ ++ memset(mctx, 0, sizeof(*mctx)); ++ ++ return 0; ++} ++ ++static int md5_export(struct shash_desc *desc, void *out) ++{ ++ struct md5_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(out, sctx, sizeof(*sctx)); ++ return 0; ++} ++ ++static int md5_import(struct shash_desc *desc, const void *in) ++{ ++ struct md5_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(sctx, in, sizeof(*sctx)); ++ return 0; ++} ++ ++/* ++ * \brief MD5 function mappings ++*/ ++static struct shash_alg md5_alg = { ++ .digestsize = MD5_DIGEST_SIZE, ++ .init = md5_init, ++ .update = md5_update, ++ .final = md5_final, ++ .export = md5_export, ++ .import = md5_import, ++ .descsize = sizeof(struct md5_ctx), ++ .statesize = sizeof(struct md5_ctx), ++ .base = { ++ .cra_name = "md5", ++ .cra_driver_name = "lq_deu-md5", ++ .cra_flags = CRYPTO_ALG_TYPE_SHASH, ++ .cra_blocksize = MD5_HMAC_BLOCK_SIZE, ++ .cra_module = THIS_MODULE, ++ } ++}; ++ ++/** \fn int lq_deu_init_md5(void) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief initialize md5 driver ++*/ ++int lq_deu_init_md5(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_shash(&md5_alg))) ++ goto md5_err; ++ ++ CRTCL_SECT_INIT; ++ ++ printk(KERN_NOTICE "Lantiq DEU MD5 initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++md5_err: ++ printk(KERN_ERR "Lantiq DEU MD5 initialization failed!\n"); ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_md5(void) ++ * \ingroup LQ_MD5_FUNCTIONS ++ * \brief unregister md5 driver ++*/ ++ ++void lq_deu_fini_md5(void) ++{ ++ crypto_unregister_shash(&md5_alg); ++} ++ +--- /dev/null ++++ b/drivers/crypto/lantiq/md5_hmac.c +@@ -0,0 +1,329 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file md5_hmac.c ++ \ingroup LQ_DEU ++ \brief MD5-HMAC encryption DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_MD5_HMAC_FUNCTIONS LQ_MD5_HMAC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq md5-hmac driver functions ++*/ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++ ++#define MD5_DIGEST_SIZE 16 ++#define MD5_HMAC_BLOCK_SIZE 64 ++#define MD5_BLOCK_WORDS 16 ++#define MD5_HASH_WORDS 4 ++#define MD5_HMAC_DBN_TEMP_SIZE 1024 /* size in dword, ++ needed for dbn workaround */ ++ ++static spinlock_t cipher_lock; ++ ++struct md5_hmac_ctx { ++ u32 hash[MD5_HASH_WORDS]; ++ u32 block[MD5_BLOCK_WORDS]; ++ u64 byte_count; ++ u32 dbn; ++ u32 temp[MD5_HMAC_DBN_TEMP_SIZE]; ++}; ++ ++/** \fn static u32 md5_endian_swap(u32 input) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief perform dword level endian swap ++ * \param input value of dword that requires to be swapped ++*/ ++static u32 md5_endian_swap(u32 input) ++{ ++ u8 *ptr = (u8 *)&input; ++ ++ return ((ptr[3] << 24) | (ptr[2] << 16) | (ptr[1] << 8) | ptr[0]); ++} ++ ++/** \fn static void md5_hmac_transform(struct crypto_tfm *tfm, u32 const *in) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief save input block to context ++ * \param tfm linux crypto algo transform ++ * \param in 64-byte block of input ++*/ ++static void md5_hmac_transform(struct shash_desc *desc, u32 const *in) ++{ ++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc); ++ ++ memcpy(&mctx->temp[mctx->dbn<<4], in, 64); /* dbn workaround */ ++ mctx->dbn += 1; ++ ++ if ( (mctx->dbn<<4) > MD5_HMAC_DBN_TEMP_SIZE ) ++ { ++ printk("MD5_HMAC_DBN_TEMP_SIZE exceeded\n"); ++ } ++} ++ ++/** \fn int md5_hmac_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief sets md5 hmac key ++ * \param tfm linux crypto algo transform ++ * \param key input key ++ * \param keylen key length greater than 64 bytes IS NOT SUPPORTED ++*/ ++static int md5_hmac_setkey(struct crypto_shash *tfm, ++ const u8 *key, ++ unsigned int keylen) ++{ ++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START; ++ int i, j; ++ u32 *in_key = (u32 *)key; ++ ++ hash->KIDX = 0x80000000; /* reset all 16 words of the key to '0' */ ++ asm("sync"); ++ ++ j = 0; ++ for (i = 0; i < keylen; i+=4) ++ { ++ hash->KIDX = j; ++ asm("sync"); ++ hash->KEY = *((u32 *) in_key + j); ++ j++; ++ } ++ ++ return 0; ++} ++ ++/** \fn void md5_hmac_init(struct crypto_tfm *tfm) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief initialize md5 hmac context ++ * \param tfm linux crypto algo transform ++*/ ++static int md5_hmac_init(struct shash_desc *desc) ++{ ++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc); ++ ++ memset(mctx, 0, sizeof(struct md5_hmac_ctx)); ++ mctx->dbn = 0; /* dbn workaround */ ++ return 0; ++} ++ ++/** \fn void md5_hmac_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief on-the-fly md5 hmac computation ++ * \param tfm linux crypto algo transform ++ * \param data input data ++ * \param len size of input data ++*/ ++static int md5_hmac_update(struct shash_desc *desc, ++ const u8 *data, ++ unsigned int len) ++{ ++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc); ++ const u32 avail = sizeof(mctx->block) - (mctx->byte_count & 0x3f); ++ ++ mctx->byte_count += len; ++ ++ if (avail > len) { ++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), ++ data, len); ++ return 0; ++ } ++ ++ memcpy((char *)mctx->block + (sizeof(mctx->block) - avail), ++ data, avail); ++ ++ md5_hmac_transform(desc, mctx->block); ++ data += avail; ++ len -= avail; ++ ++ while (len >= sizeof(mctx->block)) { ++ memcpy(mctx->block, data, sizeof(mctx->block)); ++ md5_hmac_transform(desc, mctx->block); ++ data += sizeof(mctx->block); ++ len -= sizeof(mctx->block); ++ } ++ ++ memcpy(mctx->block, data, len); ++ ++ return 0; ++} ++ ++/** \fn void md5_hmac_final(struct crypto_tfm *tfm, u8 *out) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief compute final md5 hmac value ++ * \param tfm linux crypto algo transform ++ * \param out final md5 hmac output value ++*/ ++static int md5_hmac_final(struct shash_desc *desc, u8 *out) ++{ ++ struct md5_hmac_ctx *mctx = shash_desc_ctx(desc); ++ const unsigned int offset = mctx->byte_count & 0x3f; ++ char *p = (char *)mctx->block + offset; ++ int padding = 56 - (offset + 1); ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ u32 flag; ++ int i = 0; ++ int dbn; ++ u32 *in = &mctx->temp[0]; ++ ++ *p++ = 0x80; ++ if (padding < 0) { ++ memset(p, 0x00, padding + sizeof (u64)); ++ md5_hmac_transform(desc, mctx->block); ++ p = (char *)mctx->block; ++ padding = 56; ++ } ++ ++ memset(p, 0, padding); ++ /* need to add 512 bit of the IPAD operation */ ++ mctx->block[14] = md5_endian_swap((mctx->byte_count + 64) << 3); ++ mctx->block[15] = 0x00000000; ++ ++ md5_hmac_transform(desc, mctx->block); ++ ++ CRTCL_SECT_START; ++ ++ printk("dbn = %d\n", mctx->dbn); ++ hashs->DBN = mctx->dbn; ++ ++ /* khs, go, init, ndc, endi, kyue, hmen, md5 */ ++ *LQ_HASH_CON = 0x0703002D; ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ for (dbn = 0; dbn < mctx->dbn; dbn++) ++ { ++ for (i = 0; i < 16; i++) { ++ hashs->MR = in[i]; ++ }; ++ ++ hashs->ctrl.GO = 1; ++ asm("sync"); ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ in += 16; ++ } ++ ++#if 1 ++ /* wait for digest ready */ ++ while (! hashs->ctrl.DGRY) { ++ /* this will not take long */ ++ } ++#endif ++ ++ *((u32 *) out + 0) = hashs->D1R; ++ *((u32 *) out + 1) = hashs->D2R; ++ *((u32 *) out + 2) = hashs->D3R; ++ *((u32 *) out + 3) = hashs->D4R; ++ *((u32 *) out + 4) = hashs->D5R; ++ ++ CRTCL_SECT_END; ++ ++ return 0; ++} ++ ++static int md5_hmac_export(struct shash_desc *desc, void *out) ++{ ++ struct md5_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(out, sctx, sizeof(*sctx)); ++ return 0; ++} ++ ++static int md5_hmac_import(struct shash_desc *desc, const void *in) ++{ ++ struct md5_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(sctx, in, sizeof(*sctx)); ++ return 0; ++} ++ ++/* ++ * \brief MD5_HMAC function mappings ++*/ ++static struct shash_alg md5_hmac_alg = { ++ .digestsize = MD5_DIGEST_SIZE, ++ .init = md5_hmac_init, ++ .update = md5_hmac_update, ++ .final = md5_hmac_final, ++ .setkey = md5_hmac_setkey, ++ .export = md5_hmac_export, ++ .import = md5_hmac_import, ++ .descsize = sizeof(struct md5_hmac_ctx), ++ .statesize = sizeof(struct md5_hmac_ctx), ++ .base = { ++ .cra_name = "hmac(md5)", ++ .cra_driver_name = "lq_deu-md5_hmac", ++ .cra_flags = CRYPTO_ALG_TYPE_SHASH, ++ .cra_blocksize = MD5_HMAC_BLOCK_SIZE, ++ .cra_module = THIS_MODULE, ++ } ++}; ++ ++/** \fn int lq_deu_init_md5_hmac(void) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief initialize md5 hmac driver ++*/ ++int lq_deu_init_md5_hmac(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_shash(&md5_hmac_alg))) ++ goto md5_hmac_err; ++ ++ CRTCL_SECT_INIT; ++ ++ printk(KERN_NOTICE "Lantiq DEU MD5_HMAC initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++md5_hmac_err: ++ printk(KERN_ERR "Lantiq DEU MD5_HMAC initialization failed!\n"); ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_md5_hmac(void) ++ * \ingroup LQ_MD5_HMAC_FUNCTIONS ++ * \brief unregister md5 hmac driver ++*/ ++void lq_deu_fini_md5_hmac(void) ++{ ++ crypto_unregister_shash(&md5_hmac_alg); ++} ++ +--- /dev/null ++++ b/drivers/crypto/lantiq/sha1.c +@@ -0,0 +1,262 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file sha1.c ++ \ingroup LQ_DEU ++ \brief SHA1 encryption DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_SHA1_FUNCTIONS LQ_SHA1_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU sha1 functions ++*/ ++ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++ ++#define SHA1_DIGEST_SIZE 20 ++#define SHA1_HMAC_BLOCK_SIZE 64 ++ ++static spinlock_t cipher_lock; ++ ++/* ++ * \brief SHA1 private structure ++*/ ++struct sha1_ctx { ++ u64 count; ++ u32 state[5]; ++ u8 buffer[64]; ++}; ++ ++/** \fn static void sha1_transform(u32 *state, const u32 *in) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief main interface to sha1 hardware ++ * \param state current state ++ * \param in 64-byte block of input ++*/ ++static void sha1_transform(u32 *state, const u32 *in) ++{ ++ int i = 0; ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ unsigned long flag; ++ ++ CRTCL_SECT_START; ++ ++ for (i = 0; i < 16; i++) { ++ hashs->MR = in[i]; ++ }; ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ CRTCL_SECT_END; ++} ++ ++/** \fn static void sha1_init(struct crypto_tfm *tfm) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief initialize sha1 hardware ++ * \param tfm linux crypto algo transform ++*/ ++static int sha1_init(struct shash_desc *desc) ++{ ++ struct sha1_ctx *sctx = shash_desc_ctx(desc); ++ ++ SHA_HASH_INIT; ++ ++ sctx->count = 0; ++ ++ return 0; ++} ++ ++/** \fn static void sha1_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief on-the-fly sha1 computation ++ * \param tfm linux crypto algo transform ++ * \param data input data ++ * \param len size of input data ++*/ ++static int sha1_update(struct shash_desc *desc, const u8 *data, unsigned int len) ++{ ++ struct sha1_ctx *sctx = shash_desc_ctx(desc); ++ unsigned int i, j; ++ ++ j = (sctx->count >> 3) & 0x3f; ++ sctx->count += len << 3; ++ ++ if ((j + len) > 63) { ++ memcpy(&sctx->buffer[j], data, (i = 64 - j)); ++ sha1_transform(sctx->state, (const u32 *)sctx->buffer); ++ for (; i + 63 < len; i += 64) { ++ sha1_transform(sctx->state, (const u32 *)&data[i]); ++ } ++ ++ j = 0; ++ } else { ++ i = 0; ++ } ++ ++ memcpy(&sctx->buffer[j], &data[i], len - i); ++ ++ return 0; ++} ++ ++/** \fn static void sha1_final(struct crypto_tfm *tfm, u8 *out) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief compute final sha1 value ++ * \param tfm linux crypto algo transform ++ * \param out final md5 output value ++*/ ++static int sha1_final(struct shash_desc *desc, u8 *out) ++{ ++ struct sha1_ctx *sctx = shash_desc_ctx(desc); ++ u32 index, padlen; ++ u64 t; ++ u8 bits[8] = { 0, }; ++ static const u8 padding[64] = { 0x80, }; ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ ulong flag; ++ ++ t = sctx->count; ++ bits[7] = 0xff & t; ++ t >>= 8; ++ bits[6] = 0xff & t; ++ t >>= 8; ++ bits[5] = 0xff & t; ++ t >>= 8; ++ bits[4] = 0xff & t; ++ t >>= 8; ++ bits[3] = 0xff & t; ++ t >>= 8; ++ bits[2] = 0xff & t; ++ t >>= 8; ++ bits[1] = 0xff & t; ++ t >>= 8; ++ bits[0] = 0xff & t; ++ ++ /* Pad out to 56 mod 64 */ ++ index = (sctx->count >> 3) & 0x3f; ++ padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); ++ sha1_update(desc, padding, padlen); ++ ++ /* Append length */ ++ sha1_update(desc, bits, sizeof bits); ++ ++ CRTCL_SECT_START; ++ ++ *((u32 *) out + 0) = hashs->D1R; ++ *((u32 *) out + 1) = hashs->D2R; ++ *((u32 *) out + 2) = hashs->D3R; ++ *((u32 *) out + 3) = hashs->D4R; ++ *((u32 *) out + 4) = hashs->D5R; ++ ++ CRTCL_SECT_END; ++ ++ /* Wipe context*/ ++ memset(sctx, 0, sizeof *sctx); ++ ++ return 0; ++} ++ ++static int sha1_export(struct shash_desc *desc, void *out) ++{ ++ struct sha1_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(out, sctx, sizeof(*sctx)); ++ return 0; ++} ++ ++static int sha1_import(struct shash_desc *desc, const void *in) ++{ ++ struct sha1_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(sctx, in, sizeof(*sctx)); ++ return 0; ++} ++ ++/* ++ * \brief SHA1 function mappings ++*/ ++static struct shash_alg deu_sha1_alg = { ++ .digestsize = SHA1_DIGEST_SIZE, ++ .init = sha1_init, ++ .update = sha1_update, ++ .final = sha1_final, ++ .export = sha1_export, ++ .import = sha1_import, ++ .descsize = sizeof(struct sha1_ctx), ++ .statesize = sizeof(struct sha1_ctx), ++ .base = { ++ .cra_name = "sha1", ++ .cra_driver_name = "lq_deu-sha1", ++ .cra_flags = CRYPTO_ALG_TYPE_SHASH, ++ .cra_blocksize = SHA1_HMAC_BLOCK_SIZE, ++ .cra_module = THIS_MODULE, ++ } ++}; ++ ++/** \fn int lq_deu_init_sha1(void) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief initialize sha1 driver ++*/ ++int lq_deu_init_sha1(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_shash(&deu_sha1_alg))) ++ goto sha1_err; ++ ++ CRTCL_SECT_INIT; ++ ++ printk(KERN_NOTICE "Lantiq DEU SHA1 initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++sha1_err: ++ printk(KERN_ERR "Lantiq DEU SHA1 initialization failed!\n"); ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_sha1(void) ++ * \ingroup LQ_SHA1_FUNCTIONS ++ * \brief unregister sha1 driver ++*/ ++void lq_deu_fini_sha1(void) ++{ ++ crypto_unregister_shash(&deu_sha1_alg); ++} +--- /dev/null ++++ b/drivers/crypto/lantiq/sha1_hmac.c +@@ -0,0 +1,325 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file sha1_hmac.c ++ \ingroup LQ_DEU ++ \brief SHA1-HMAC DEU driver file ++*/ ++ ++/** ++ \defgroup LQ_SHA1_HMAC_FUNCTIONS LQ_SHA1_HMAC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief Lantiq sha1 hmac functions ++*/ ++ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include "deu.h" ++ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_SHA1_HMAC ++ ++#define SHA1_DIGEST_SIZE 20 ++#define SHA1_HMAC_BLOCK_SIZE 64 ++/* size in dword, needed for dbn workaround */ ++#define SHA1_HMAC_DBN_TEMP_SIZE 1024 ++ ++static spinlock_t cipher_lock; ++ ++struct sha1_hmac_ctx { ++ u64 count; ++ u32 state[5]; ++ u8 buffer[64]; ++ u32 dbn; ++ u32 temp[SHA1_HMAC_DBN_TEMP_SIZE]; ++}; ++ ++/** \fn static void sha1_hmac_transform(struct crypto_tfm *tfm, u32 const *in) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief save input block to context ++ * \param tfm linux crypto algo transform ++ * \param in 64-byte block of input ++*/ ++static void sha1_hmac_transform(struct shash_desc *desc, u32 const *in) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(&sctx->temp[sctx->dbn<<4], in, 64); /* dbn workaround */ ++ sctx->dbn += 1; ++ ++ if ((sctx->dbn<<4) > SHA1_HMAC_DBN_TEMP_SIZE) { ++ printk("SHA1_HMAC_DBN_TEMP_SIZE exceeded\n"); ++ } ++} ++ ++/** \fn int sha1_hmac_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief sets sha1 hmac key ++ * \param tfm linux crypto algo transform ++ * \param key input key ++ * \param keylen key length greater than 64 bytes IS NOT SUPPORTED ++*/ ++static int sha1_hmac_setkey(struct crypto_shash *tfm, ++ const u8 *key, ++ unsigned int keylen) ++{ ++ volatile struct deu_hash *hash = (struct deu_hash *) HASH_START; ++ int i, j; ++ u32 *in_key = (u32 *)key; ++ ++ hash->KIDX = 0x80000000; /* reset all 16 words of the key to '0' */ ++ asm("sync"); ++ ++ j = 0; ++ for (i = 0; i < keylen; i+=4) ++ { ++ hash->KIDX = j; ++ asm("sync"); ++ hash->KEY = *((u32 *) in_key + j); ++ j++; ++ } ++ ++ return 0; ++} ++ ++static int sha1_hmac_export(struct shash_desc *desc, void *out) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(out, sctx, sizeof(*sctx)); ++ return 0; ++} ++ ++static int sha1_hmac_import(struct shash_desc *desc, const void *in) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memcpy(sctx, in, sizeof(*sctx)); ++ return 0; ++} ++ ++/** \fn void sha1_hmac_init(struct crypto_tfm *tfm) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief initialize sha1 hmac context ++ * \param tfm linux crypto algo transform ++*/ ++static int sha1_hmac_init(struct shash_desc *desc) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ ++ memset(sctx, 0, sizeof(struct sha1_hmac_ctx)); ++ sctx->dbn = 0; /* dbn workaround */ ++ ++ return 0; ++} ++ ++/** \fn static void sha1_hmac_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief on-the-fly sha1 hmac computation ++ * \param tfm linux crypto algo transform ++ * \param data input data ++ * \param len size of input data ++*/ ++static int sha1_hmac_update(struct shash_desc *desc, const u8 *data, ++ unsigned int len) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ unsigned int i, j; ++ ++ j = (sctx->count >> 3) & 0x3f; ++ sctx->count += len << 3; ++ /* printk("sctx->count = %d\n", (sctx->count >> 3)); */ ++ ++ if ((j + len) > 63) { ++ memcpy(&sctx->buffer[j], data, (i = 64 - j)); ++ sha1_hmac_transform(desc, (const u32 *)sctx->buffer); ++ for (; i + 63 < len; i += 64) { ++ sha1_hmac_transform(desc, (const u32 *)&data[i]); ++ } ++ ++ j = 0; ++ } else { ++ i = 0; ++ } ++ ++ memcpy(&sctx->buffer[j], &data[i], len - i); ++ ++ return 0; ++} ++ ++/** \fn static void sha1_hmac_final(struct crypto_tfm *tfm, u8 *out) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief ompute final sha1 hmac value ++ * \param tfm linux crypto algo transform ++ * \param out final sha1 hmac output value ++*/ ++static int sha1_hmac_final(struct shash_desc *desc, u8 *out) ++{ ++ struct sha1_hmac_ctx *sctx = shash_desc_ctx(desc); ++ u32 index, padlen; ++ u64 t; ++ u8 bits[8] = { 0, }; ++ static const u8 padding[64] = { 0x80, }; ++ volatile struct deu_hash *hashs = (struct deu_hash *) HASH_START; ++ ulong flag; ++ int i = 0; ++ int dbn; ++ u32 *in = &sctx->temp[0]; ++ ++ t = sctx->count + 512; /* need to add 512 bit of the IPAD operation */ ++ bits[7] = 0xff & t; ++ t >>= 8; ++ bits[6] = 0xff & t; ++ t >>= 8; ++ bits[5] = 0xff & t; ++ t >>= 8; ++ bits[4] = 0xff & t; ++ t >>= 8; ++ bits[3] = 0xff & t; ++ t >>= 8; ++ bits[2] = 0xff & t; ++ t >>= 8; ++ bits[1] = 0xff & t; ++ t >>= 8; ++ bits[0] = 0xff & t; ++ ++ /* Pad out to 56 mod 64 */ ++ index = (sctx->count >> 3) & 0x3f; ++ padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); ++ sha1_hmac_update(desc, padding, padlen); ++ ++ /* Append length */ ++ sha1_hmac_update(desc, bits, sizeof bits); ++ ++ CRTCL_SECT_START; ++ ++ hashs->DBN = sctx->dbn; ++ ++ /* for vr9 change, ENDI = 1 */ ++ *LQ_HASH_CON = HASH_CON_VALUE; ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ for (dbn = 0; dbn < sctx->dbn; dbn++) ++ { ++ for (i = 0; i < 16; i++) { ++ hashs->MR = in[i]; ++ }; ++ ++ hashs->ctrl.GO = 1; ++ asm("sync"); ++ ++ /* wait for processing */ ++ while (hashs->ctrl.BSY) { ++ /* this will not take long */ ++ } ++ ++ in += 16; ++ ++ return 0; ++ } ++ ++#if 1 ++ /* wait for digest ready */ ++ while (! hashs->ctrl.DGRY) { ++ /* this will not take long */ ++ } ++#endif ++ ++ *((u32 *) out + 0) = hashs->D1R; ++ *((u32 *) out + 1) = hashs->D2R; ++ *((u32 *) out + 2) = hashs->D3R; ++ *((u32 *) out + 3) = hashs->D4R; ++ *((u32 *) out + 4) = hashs->D5R; ++ ++ CRTCL_SECT_END; ++} ++ ++/* ++ * \brief SHA1-HMAC function mappings ++*/ ++static struct shash_alg sha1_hmac_alg = { ++ .digestsize = SHA1_DIGEST_SIZE, ++ .init = sha1_hmac_init, ++ .update = sha1_hmac_update, ++ .final = sha1_hmac_final, ++ .export = sha1_hmac_export, ++ .import = sha1_hmac_import, ++ .setkey = sha1_hmac_setkey, ++ .descsize = sizeof(struct sha1_hmac_ctx), ++ .statesize = sizeof(struct sha1_hmac_ctx), ++ .base = { ++ .cra_name = "hmac(sha1)", ++ .cra_driver_name = "lq_deu-sha1_hmac", ++ .cra_flags = CRYPTO_ALG_TYPE_SHASH, ++ .cra_blocksize = SHA1_HMAC_BLOCK_SIZE, ++ .cra_module = THIS_MODULE, ++ } ++}; ++ ++/** \fn int lq_deu_init_sha1_hmac(void) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief initialize sha1 hmac driver ++*/ ++int lq_deu_init_sha1_hmac(void) ++{ ++ int ret; ++ ++ if ((ret = crypto_register_shash(&sha1_hmac_alg))) ++ goto sha1_err; ++ ++ CRTCL_SECT_INIT; ++ ++ printk(KERN_NOTICE "Lantiq DEU SHA1_HMAC initialized%s.\n", ++ disable_deudma ? "" : " (DMA)"); ++ return ret; ++ ++sha1_err: ++ printk(KERN_ERR "Lantiq DEU SHA1_HMAC initialization failed!\n"); ++ return ret; ++} ++ ++/** \fn void lq_deu_fini_sha1_hmac(void) ++ * \ingroup LQ_SHA1_HMAC_FUNCTIONS ++ * \brief unregister sha1 hmac driver ++*/ ++void lq_deu_fini_sha1_hmac(void) ++{ ++ crypto_unregister_shash(&sha1_hmac_alg); ++} ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_falcon.c +@@ -0,0 +1,163 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus ++ */ ++ ++#include ++#include ++#include ++#include ++#include /* dma_cache_inv */ ++#include ++ ++#ifdef CONFIG_SOC_LANTIQ_FALCON ++ ++#include "deu.h" ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief Lantiq DEU driver module ++*/ ++ ++/** ++ \file deu_falcon.c ++ \brief Lantiq DEU board specific driver file for ar9 ++*/ ++ ++/** ++ \defgroup BOARD_SPECIFIC_FUNCTIONS LQ_BOARD_SPECIFIC_FUNCTIONS ++ \ingroup LQ_DEU ++ \brief board specific functions ++*/ ++ ++#include ++#include ++#include ++#include ++ ++#define reg_r32(reg) __raw_readl(reg) ++#define reg_w32(val, reg) __raw_writel(val, reg) ++#define reg_w32_mask(clear, set, reg) reg_w32((reg_r32(reg) & ~(clear)) | (set), reg) ++ ++static gpon_sys1_t * const sys1 = (gpon_sys1_t *)GPON_SYS1_BASE; ++static gpon_status_t * const status = (gpon_status_t *)GPON_STATUS_BASE; ++ ++/** \fn u32 endian_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Swap data given to the function ++ * \param input Data input to be swapped ++ * \return either the swapped data or the input data depending on whether it is in DMA mode or FPI mode ++*/ ++static u32 endian_swap(u32 input) ++{ ++ return input; ++} ++ ++/** \fn u32 input_swap(u32 input) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief Not used ++ * \return input ++*/ ++static u32 input_swap(u32 input) ++{ ++ return input; ++} ++ ++/** \fn void aes_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize AES hardware ++*/ ++static void aes_chip_init(void) ++{ ++ volatile struct deu_aes *aes = (struct deu_aes *) AES_START; ++ ++ aes->ctrl.SM = 1; ++ aes->ctrl.ARS = 1; ++} ++ ++/** \fn void des_chip_init(void) ++ * \ingroup BOARD_SPECIFIC_FUNCTIONS ++ * \brief initialize DES hardware ++*/ ++static void des_chip_init(void) ++{ ++} ++ ++static u32 chip_init(void) ++{ ++ sys1_hw_clk_enable(CLKEN_SHA1_SET | CLKEN_AES_SET); ++ sys1_hw_activate(ACT_SHA1_SET | ACT_AES_SET); ++ ++ return LQ_DEU_ID_AES | LQ_DEU_ID_HASH; ++} ++ ++static int lq_crypto_probe(struct platform_device *pdev) ++{ ++#ifdef CONFIG_CRYPTO_DEV_LANTIQ_DMA ++ lq_crypto_ops.dma_init = NULL; ++ lq_crypto_ops.dma_exit = NULL; ++ lq_crypto_ops.aes_dma_memcpy = NULL; ++ lq_crypto_ops.des_dma_memcpy = NULL; ++ lq_crypto_ops.aes_dma_malloc = NULL; ++ lq_crypto_ops.des_dma_malloc = NULL; ++ lq_crypto_ops.dma_align = NULL; ++ lq_crypto_ops.dma_free = NULL; ++#endif ++ ++ lq_crypto_ops.endian_swap = endian_swap; ++ lq_crypto_ops.input_swap = input_swap; ++ lq_crypto_ops.aes_chip_init = aes_chip_init; ++ lq_crypto_ops.des_chip_init = des_chip_init; ++ lq_crypto_ops.chip_init = chip_init; ++ ++ printk("lq_falcon_deu: driver loaded!\n"); ++ ++ lq_deu_init(); ++ ++ return 0; ++} ++ ++static int lq_crypto_remove(struct platform_device *pdev) ++{ ++ lq_deu_exit(); ++ ++ return 0; ++} ++ ++static struct platform_driver lq_crypto = { ++ .probe = lq_crypto_probe, ++ .remove = lq_crypto_remove, ++ .driver = { ++ .owner = THIS_MODULE, ++ .name = "lq_falcon_deu" ++ } ++}; ++ ++static int __init lq_crypto_init(void) ++{ ++ return platform_driver_register(&lq_crypto); ++} ++module_init(lq_crypto_init); ++ ++static void __exit lq_crypto_exit(void) ++{ ++ platform_driver_unregister(&lq_crypto); ++} ++module_exit(lq_crypto_exit); ++ ++#endif +--- /dev/null ++++ b/drivers/crypto/lantiq/deu_falcon.h +@@ -0,0 +1,281 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. ++ * ++ * Copyright (C) 2010 Ralph Hempel ++ * Copyright (C) 2009 Mohammad Firdaus / Infineon Technologies ++ */ ++ ++/** ++ \defgroup LQ_DEU LQ_DEU_DRIVERS ++ \ingroup API ++ \brief DEU driver module ++*/ ++ ++/** ++ \defgroup LQ_DEU_DEFINITIONS LQ_DEU_DEFINITIONS ++ \ingroup LQ_DEU ++ \brief Lantiq DEU definitions ++*/ ++ ++/** ++ \file deu_falcon.h ++ \brief DEU driver header file ++*/ ++ ++ ++#ifndef DEU_FALCON_H ++#define DEU_FALCON_H ++ ++#define HASH_START 0xbd008100 ++#define AES_START 0xbd008000 ++ ++#ifdef CONFIG_CRYPTO_DEV_DMA ++# include "deu_dma.h" ++# define DEU_DWORD_REORDERING(ptr, buffer, in_out, bytes) \ ++ deu_dma_align(ptr, buffer, in_out, bytes) ++# define AES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_aes_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define DES_MEMORY_COPY(outcopy, out_dma, out_arg, nbytes) \ ++ deu_des_dma_memcpy(outcopy, out_dma, out_arg, nbytes) ++# define BUFFER_IN 1 ++# define BUFFER_OUT 0 ++# define AES_ALGO 1 ++# define DES_ALGO 0 ++# define ALLOCATE_MEMORY(val, type) 1 ++# define FREE_MEMORY(buff) ++extern struct lq_deu_device lq_deu[1]; ++#endif /* CONFIG_CRYPTO_DEV_DMA */ ++ ++/* SHA CONSTANTS */ ++#define HASH_CON_VALUE 0x0700002C ++ ++#define INPUT_ENDIAN_SWAP(input) deu_input_swap(input) ++#define DEU_ENDIAN_SWAP(input) deu_endian_swap(input) ++#define DELAY_PERIOD 10 ++#define FIND_DEU_CHIP_VERSION chip_version() ++ ++#define WAIT_AES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_aes *aes = \ ++ (volatile struct deu_aes *) AES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (aes->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define WAIT_DES_DMA_READY() \ ++ do { \ ++ int i; \ ++ volatile struct deu_dma *dma = \ ++ (struct deu_dma *) LQ_DEU_DMA_CON; \ ++ volatile struct deu_des *des = \ ++ (struct deu_des *) DES_3DES_START; \ ++ for (i = 0; i < 10; i++) \ ++ udelay(DELAY_PERIOD); \ ++ while (dma->ctrl.BSY) {}; \ ++ while (des->ctrl.BUS) {}; \ ++ } while (0) ++ ++#define AES_DMA_MISC_CONFIG() \ ++ do { \ ++ volatile struct deu_aes *aes = \ ++ (volatile struct deu_aes *) AES_START; \ ++ aes->ctrl.KRE = 1; \ ++ aes->ctrl.GO = 1; \ ++ } while(0) ++ ++#define SHA_HASH_INIT \ ++ do { \ ++ volatile struct deu_hash *hash = \ ++ (struct deu_hash *) HASH_START; \ ++ hash->ctrl.SM = 1; \ ++ hash->ctrl.ALGO = 0; \ ++ hash->ctrl.INIT = 1; \ ++ } while(0) ++ ++/* DEU Common Structures for Falcon*/ ++ ++struct deu_clk_ctrl { ++ u32 Res:26; ++ u32 FSOE:1; ++ u32 SBWE:1; ++ u32 EDIS:1; ++ u32 SPEN:1; ++ u32 DISS:1; ++ u32 DISR:1; ++}; ++ ++struct deu_des { ++ struct deu_des_ctrl { /* 10h */ ++ u32 KRE:1; ++ u32 reserved1:5; ++ u32 GO:1; ++ u32 STP:1; ++ u32 Res2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 Res3:2; ++ u32 F:3; ++ u32 O:3; ++ u32 BUS:1; ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 M:3; ++ } ctrl; ++ ++ u32 IHR; /* 14h */ ++ u32 ILR; /* 18h */ ++ u32 K1HR; /* 1c */ ++ u32 K1LR; ++ u32 K2HR; ++ u32 K2LR; ++ u32 K3HR; ++ u32 K3LR; /* 30h */ ++ u32 IVHR; /* 34h */ ++ u32 IVLR; /* 38 */ ++ u32 OHR; /* 3c */ ++ u32 OLR; /* 40 */ ++}; ++ ++struct deu_aes { ++ struct deu_aes_ctrl { ++ u32 KRE:1; ++ u32 reserved1:4; ++ u32 PNK:1; ++ u32 GO:1; ++ u32 STP:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:2; ++ u32 F:3; /* fbs */ ++ u32 O:3; /* om */ ++ u32 BUS:1; /* bsy */ ++ u32 DAU:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 E_D:1; ++ u32 KV:1; ++ u32 K:2; /* KL */ ++ } ctrl; ++ ++ u32 ID3R; /* 80h */ ++ u32 ID2R; /* 84h */ ++ u32 ID1R; /* 88h */ ++ u32 ID0R; /* 8Ch */ ++ u32 K7R; /* 90h */ ++ u32 K6R; /* 94h */ ++ u32 K5R; /* 98h */ ++ u32 K4R; /* 9Ch */ ++ u32 K3R; /* A0h */ ++ u32 K2R; /* A4h */ ++ u32 K1R; /* A8h */ ++ u32 K0R; /* ACh */ ++ u32 IV3R; /* B0h */ ++ u32 IV2R; /* B4h */ ++ u32 IV1R; /* B8h */ ++ u32 IV0R; /* BCh */ ++ u32 OD3R; /* D4h */ ++ u32 OD2R; /* D8h */ ++ u32 OD1R; /* DCh */ ++ u32 OD0R; /* E0h */ ++}; ++ ++struct deu_arc4 { ++ struct arc4_controlr { ++ u32 KRE:1; ++ u32 KLEN:4; ++ u32 KSAE:1; ++ u32 GO:1; ++ u32 STP:1; ++ u32 reserved1:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved2:8; ++ u32 BUS:1; /* bsy */ ++ u32 reserved3:1; ++ u32 ARS:1; ++ u32 SM:1; ++ u32 reserved4:4; ++ } ctrl; ++ ++ u32 K3R; /* 104h */ ++ u32 K2R; /* 108h */ ++ u32 K1R; /* 10Ch */ ++ u32 K0R; /* 110h */ ++ u32 IDLEN; /* 114h */ ++ u32 ID3R; /* 118h */ ++ u32 ID2R; /* 11Ch */ ++ u32 ID1R; /* 120h */ ++ u32 ID0R; /* 124h */ ++ u32 OD3R; /* 128h */ ++ u32 OD2R; /* 12Ch */ ++ u32 OD1R; /* 130h */ ++ u32 OD0R; /* 134h */ ++}; ++ ++struct deu_hash { ++ struct deu_hash_ctrl { ++ u32 reserved1:5; ++ u32 KHS:1; ++ u32 GO:1; ++ u32 INIT:1; ++ u32 reserved2:6; ++ u32 NDC:1; ++ u32 ENDI:1; ++ u32 reserved3:7; ++ u32 DGRY:1; ++ u32 BSY:1; ++ u32 reserved4:1; ++ u32 IRCL:1; ++ u32 SM:1; ++ u32 KYUE:1; ++ u32 HMEN:1; ++ u32 SSEN:1; ++ u32 ALGO:1; ++ } ctrl; ++ ++ u32 MR; /* B4h */ ++ u32 D1R; /* B8h */ ++ u32 D2R; /* BCh */ ++ u32 D3R; /* C0h */ ++ u32 D4R; /* C4h */ ++ u32 D5R; /* C8h */ ++ u32 dummy; /* CCh */ ++ u32 KIDX; /* D0h */ ++ u32 KEY; /* D4h */ ++ u32 DBN; /* D8h */ ++}; ++ ++struct deu_dma { ++ struct deu_dma_ctrl { ++ u32 reserved1:22; ++ u32 BS:2; ++ u32 BSY:1; ++ u32 reserved2:1; ++ u32 ALGO:2; ++ u32 RXCLS:2; ++ u32 reserved3:1; ++ u32 EN:1; ++ } ctrl; ++}; ++ ++#endif /* DEU_FALCON_H */ +--- a/arch/mips/lantiq/xway/devices.c ++++ b/arch/mips/lantiq/xway/devices.c +@@ -277,3 +277,9 @@ + break; + } + } ++ ++void __init ++lq_register_crypto(const char *name) ++{ ++ platform_device_register_simple(name, 0, 0, 0); ++} +--- a/arch/mips/lantiq/xway/devices.h ++++ b/arch/mips/lantiq/xway/devices.h +@@ -21,5 +21,6 @@ + extern void __init lq_register_wdt(void); + extern void __init lq_register_ethernet(struct lq_eth_data *eth); + extern void __init lq_register_asc(int port); ++extern void __init lq_register_crypto(const char *name); + + #endif +--- a/arch/mips/lantiq/xway/mach-easy50712.c ++++ b/arch/mips/lantiq/xway/mach-easy50712.c +@@ -72,6 +72,7 @@ + lq_register_wdt(); + lq_register_pci(&lq_pci_data); + lq_register_ethernet(&lq_eth_data); ++ lq_register_crypto("lq_danube_deu"); + } + + MIPS_MACHINE(LANTIQ_MACH_EASY50712, +--- a/arch/mips/lantiq/xway/mach-easy50812.c ++++ b/arch/mips/lantiq/xway/mach-easy50812.c +@@ -71,6 +71,7 @@ + lq_register_wdt(); + lq_register_pci(&lq_pci_data); + lq_register_ethernet(&lq_eth_data); ++ lq_register_crypto("lq_ar9_deu"); + } + + MIPS_MACHINE(LANTIQ_MACH_EASY50812, diff --git a/target/linux/lantiq/patches/300-udp_redirect.patch b/target/linux/lantiq/patches/300-udp_redirect.patch new file mode 100644 index 0000000000..7425a3108f --- /dev/null +++ b/target/linux/lantiq/patches/300-udp_redirect.patch @@ -0,0 +1,346 @@ +--- /dev/null ++++ b/include/linux/udp_redirect.h +@@ -0,0 +1,57 @@ ++#ifndef _UDP_REDIRECT_H ++#define _UDP_REDIRECT_H ++ ++/****************************************************************************** ++ ++ Copyright (c) 2006 ++ Infineon Technologies AG ++ Am Campeon 1-12; 81726 Munich, Germany ++ ++ THE DELIVERY OF THIS SOFTWARE AS WELL AS THE HEREBY GRANTED NON-EXCLUSIVE, ++ WORLDWIDE LICENSE TO USE, COPY, MODIFY, DISTRIBUTE AND SUBLICENSE THIS ++ SOFTWARE IS FREE OF CHARGE. ++ ++ THE LICENSED SOFTWARE IS PROVIDED "AS IS" AND INFINEON EXPRESSLY DISCLAIMS ++ ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING ++ WITHOUT LIMITATION, WARRANTIES OR REPRESENTATIONS OF WORKMANSHIP, ++ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, DURABILITY, THAT THE ++ OPERATING OF THE LICENSED SOFTWARE WILL BE ERROR FREE OR FREE OF ANY THIRD ++ PARTY CLAIMS, INCLUDING WITHOUT LIMITATION CLAIMS OF THIRD PARTY INTELLECTUAL ++ PROPERTY INFRINGEMENT. ++ ++ EXCEPT FOR ANY LIABILITY DUE TO WILFUL ACTS OR GROSS NEGLIGENCE AND EXCEPT ++ FOR ANY PERSONAL INJURY INFINEON SHALL IN NO EVENT BE LIABLE FOR ANY CLAIM ++ OR DAMAGES OF ANY KIND, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ++ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER ++ DEALINGS IN THE SOFTWARE. ++ ++******************************************************************************/ ++ ++/* ============================= */ ++/* Includes */ ++/* ============================= */ ++#ifndef _LINUX_TYPES_H ++#include ++#endif ++ ++ ++/* ============================= */ ++/* Definitions */ ++/* ============================= */ ++#define UDP_REDIRECT_MAGIC (void*)0x55445052L ++ ++ ++/* ============================= */ ++/* Global variable declaration */ ++/* ============================= */ ++extern int (*udp_do_redirect_fn)(struct sock *sk, struct sk_buff *skb); ++extern int (*udpredirect_getfrag_fn)(void *p, char * to, ++ int offset, int fraglen, int odd, ++ struct sk_buff *skb); ++/* ============================= */ ++/* Global function declaration */ ++/* ============================= */ ++ ++extern int udpredirect_getfrag(void *p, char * to, int offset, ++ int fraglen, int odd, struct sk_buff *skb); ++#endif +--- /dev/null ++++ b/net/ipv4/udp_redirect_symb.c +@@ -0,0 +1,186 @@ ++/****************************************************************************** ++ ++ Copyright (c) 2006 ++ Infineon Technologies AG ++ Am Campeon 1-12; 81726 Munich, Germany ++ ++ THE DELIVERY OF THIS SOFTWARE AS WELL AS THE HEREBY GRANTED NON-EXCLUSIVE, ++ WORLDWIDE LICENSE TO USE, COPY, MODIFY, DISTRIBUTE AND SUBLICENSE THIS ++ SOFTWARE IS FREE OF CHARGE. ++ ++ THE LICENSED SOFTWARE IS PROVIDED "AS IS" AND INFINEON EXPRESSLY DISCLAIMS ++ ALL REPRESENTATIONS AND WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING ++ WITHOUT LIMITATION, WARRANTIES OR REPRESENTATIONS OF WORKMANSHIP, ++ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, DURABILITY, THAT THE ++ OPERATING OF THE LICENSED SOFTWARE WILL BE ERROR FREE OR FREE OF ANY THIRD ++ PARTY CLAIMS, INCLUDING WITHOUT LIMITATION CLAIMS OF THIRD PARTY INTELLECTUAL ++ PROPERTY INFRINGEMENT. ++ ++ EXCEPT FOR ANY LIABILITY DUE TO WILFUL ACTS OR GROSS NEGLIGENCE AND EXCEPT ++ FOR ANY PERSONAL INJURY INFINEON SHALL IN NO EVENT BE LIABLE FOR ANY CLAIM ++ OR DAMAGES OF ANY KIND, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ++ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER ++ DEALINGS IN THE SOFTWARE. ++ ++******************************************************************************/ ++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE) ++/* ============================= */ ++/* Includes */ ++/* ============================= */ ++#include ++#include ++#include ++#include ++#include ++ ++/* ============================= */ ++/* Global variable definition */ ++/* ============================= */ ++int (*udpredirect_getfrag_fn) (void *p, char * to, int offset, ++ int fraglen, int odd, struct sk_buff *skb) = NULL; ++int (*udp_do_redirect_fn)(struct sock *sk, struct sk_buff *skb) = NULL; ++ ++/* ============================= */ ++/* Local type definitions */ ++/* ============================= */ ++struct udpfakehdr ++{ ++ struct udphdr uh; ++ u32 saddr; ++ u32 daddr; ++ struct iovec *iov; ++ u32 wcheck; ++}; ++ ++/* ============================= */ ++/* Local function declaration */ ++/* ============================= */ ++static int udpredirect_csum_partial_copy_fromiovecend(unsigned char *kdata, ++ struct iovec *iov, int offset, unsigned int len, __wsum *csump); ++ ++static int udpredirect_memcpy_fromiovecend(unsigned char *kdata, struct iovec *iov, int offset, ++ int len); ++ ++/* ============================= */ ++/* Global function definition */ ++/* ============================= */ ++ ++/* ++ Copy of udp_getfrag() from udp.c ++ This function exists because no copy_from_user() is needed for udpredirect. ++*/ ++ ++int ++udpredirect_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) ++{ ++ struct iovec *iov = from; ++ ++ if (skb->ip_summed == CHECKSUM_PARTIAL) { ++ if (udpredirect_memcpy_fromiovecend(to, iov, offset, len) < 0) ++ return -EFAULT; ++ } else { ++ __wsum csum = 0; ++ if (udpredirect_csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0) ++ return -EFAULT; ++ skb->csum = csum_block_add(skb->csum, csum, odd); ++ } ++ return 0; ++} ++ ++static int udpredirect_memcpy_fromiovecend(unsigned char *kdata, struct iovec *iov, int offset, ++ int len) ++{ ++ /* Skip over the finished iovecs */ ++ while (offset >= iov->iov_len) { ++ offset -= iov->iov_len; ++ iov++; ++ } ++ ++ while (len > 0) { ++ u8 __user *base = iov->iov_base + offset; ++ int copy = min_t(unsigned int, len, iov->iov_len - offset); ++ ++ offset = 0; ++ memcpy(kdata, base, copy); ++ len -= copy; ++ kdata += copy; ++ iov++; ++ } ++ ++ return 0; ++} ++ ++/* ++ Copy of csum_partial_copy_fromiovecend() from iovec.c ++ This function exists because no copy_from_user() is needed for udpredirect. ++*/ ++ ++int udpredirect_csum_partial_copy_fromiovecend(unsigned char *kdata, struct iovec *iov, ++ int offset, unsigned int len, __wsum *csump) ++{ ++ __wsum csum = *csump; ++ int partial_cnt = 0, err = 0; ++ ++ /* Skip over the finished iovecs */ ++ while (offset >= iov->iov_len) { ++ offset -= iov->iov_len; ++ iov++; ++ } ++ ++ while (len > 0) { ++ u8 __user *base = iov->iov_base + offset; ++ int copy = min_t(unsigned int, len, iov->iov_len - offset); ++ ++ offset = 0; ++ ++ /* There is a remnant from previous iov. */ ++ if (partial_cnt) { ++ int par_len = 4 - partial_cnt; ++ ++ /* iov component is too short ... */ ++ if (par_len > copy) { ++ memcpy(kdata, base, copy); ++ kdata += copy; ++ base += copy; ++ partial_cnt += copy; ++ len -= copy; ++ iov++; ++ if (len) ++ continue; ++ *csump = csum_partial(kdata - partial_cnt, ++ partial_cnt, csum); ++ goto out; ++ } ++ memcpy(kdata, base, par_len); ++ csum = csum_partial(kdata - partial_cnt, 4, csum); ++ kdata += par_len; ++ base += par_len; ++ copy -= par_len; ++ len -= par_len; ++ partial_cnt = 0; ++ } ++ ++ if (len > copy) { ++ partial_cnt = copy % 4; ++ if (partial_cnt) { ++ copy -= partial_cnt; ++ memcpy(kdata + copy, base + copy, partial_cnt); ++ } ++ } ++ ++ if (copy) { ++ csum = csum_partial_copy_nocheck(base, kdata, copy, csum); ++ } ++ len -= copy + partial_cnt; ++ kdata += copy + partial_cnt; ++ iov++; ++ } ++ *csump = csum; ++out: ++ return err; ++} ++ ++EXPORT_SYMBOL(udpredirect_getfrag); ++EXPORT_SYMBOL(udp_do_redirect_fn); ++EXPORT_SYMBOL(udpredirect_getfrag_fn); ++#endif /* CONFIG_IFX_UDP_REDIRECT* */ +--- a/net/ipv4/Makefile ++++ b/net/ipv4/Makefile +@@ -14,6 +14,9 @@ obj-y := route.o inetpeer.o protocol + inet_fragment.o + + obj-$(CONFIG_SYSCTL) += sysctl_net_ipv4.o ++ifneq ($(CONFIG_IFX_UDP_REDIRECT),) ++obj-$(CONFIG_IFX_UDP_REDIRECT) += udp_redirect_symb.o ++endif + obj-$(CONFIG_IP_FIB_HASH) += fib_hash.o + obj-$(CONFIG_IP_FIB_TRIE) += fib_trie.o + obj-$(CONFIG_PROC_FS) += proc.o +--- a/net/ipv4/udp.c ++++ b/net/ipv4/udp.c +@@ -106,6 +106,10 @@ + #include + #include "udp_impl.h" + ++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE) ++#include ++#endif ++ + struct udp_table udp_table __read_mostly; + EXPORT_SYMBOL(udp_table); + +@@ -782,7 +786,7 @@ int udp_sendmsg(struct kiocb *iocb, stru + u8 tos; + int err, is_udplite = IS_UDPLITE(sk); + int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; +- int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); ++ int (*getfrag)(void *, char *, int, int, int, struct sk_buff *) = NULL; + + if (len > 0xFFFF) + return -EMSGSIZE; +@@ -944,6 +948,12 @@ back_from_confirm: + + do_append_data: + up->len += ulen; ++ /* UDPREDIRECT */ ++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE) ++ if(udpredirect_getfrag_fn && sk->sk_user_data == UDP_REDIRECT_MAGIC) ++ getfrag = udpredirect_getfrag_fn; ++ else ++#endif /* IFX_UDP_REDIRECT */ + getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; + err = ip_append_data(sk, getfrag, msg->msg_iov, ulen, + sizeof(struct udphdr), &ipc, &rt, +@@ -1518,6 +1528,7 @@ int __udp4_lib_rcv(struct sk_buff *skb, + struct rtable *rt = skb_rtable(skb); + __be32 saddr, daddr; + struct net *net = dev_net(skb->dev); ++ int ret = 0; + + /* + * Validate the packet. +@@ -1550,7 +1561,16 @@ int __udp4_lib_rcv(struct sk_buff *skb, + sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); + + if (sk != NULL) { +- int ret = udp_queue_rcv_skb(sk, skb); ++ /* UDPREDIRECT */ ++#if defined(CONFIG_IFX_UDP_REDIRECT) || defined(CONFIG_IFX_UDP_REDIRECT_MODULE) ++ if(udp_do_redirect_fn && sk->sk_user_data == UDP_REDIRECT_MAGIC) ++ { ++ udp_do_redirect_fn(sk,skb); ++ kfree_skb(skb); ++ return(0); ++ } ++#endif ++ ret = udp_queue_rcv_skb(sk, skb); + sock_put(sk); + + /* a return value > 0 means to resubmit the input, but +@@ -1845,7 +1865,7 @@ struct proto udp_prot = { + #endif + }; + EXPORT_SYMBOL(udp_prot); +- ++EXPORT_SYMBOL(udp_rcv); + /* ------------------------------------------------------------------------ */ + #ifdef CONFIG_PROC_FS + +--- a/net/Kconfig ++++ b/net/Kconfig +@@ -72,6 +72,12 @@ config INET + + Short answer: say Y. + ++config IFX_UDP_REDIRECT ++ bool "IFX Kernel Packet Interface for UDP redirection" ++ help ++ You can say Y here if you want to use hooks from kernel for ++ UDP redirection. ++ + if INET + source "net/ipv4/Kconfig" + source "net/ipv6/Kconfig" diff --git a/target/linux/lantiq/patches/310-atm_hack.patch b/target/linux/lantiq/patches/310-atm_hack.patch new file mode 100644 index 0000000000..55e75ce546 --- /dev/null +++ b/target/linux/lantiq/patches/310-atm_hack.patch @@ -0,0 +1,42 @@ +--- a/arch/mips/mm/cache.c ++++ b/arch/mips/mm/cache.c +@@ -52,6 +52,8 @@ + void (*_dma_cache_inv)(unsigned long start, unsigned long size); + + EXPORT_SYMBOL(_dma_cache_wback_inv); ++EXPORT_SYMBOL(_dma_cache_wback); ++EXPORT_SYMBOL(_dma_cache_inv); + + #endif /* CONFIG_DMA_NONCOHERENT */ + +--- a/net/atm/proc.c ++++ b/net/atm/proc.c +@@ -153,7 +153,7 @@ + static void pvc_info(struct seq_file *seq, struct atm_vcc *vcc) + { + static const char *const class_name[] = { +- "off", "UBR", "CBR", "VBR", "ABR"}; ++ "off","UBR","CBR","NTR-VBR","ABR","ANY","RT-VBR","UBR+","GFR"}; + static const char *const aal_name[] = { + "---", "1", "2", "3/4", /* 0- 3 */ + "???", "5", "???", "???", /* 4- 7 */ +--- a/net/atm/common.c ++++ b/net/atm/common.c +@@ -60,11 +60,17 @@ + write_unlock_irq(&vcc_sklist_lock); + } + ++struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL; ++EXPORT_SYMBOL(ifx_atm_alloc_tx); ++ + static struct sk_buff *alloc_tx(struct atm_vcc *vcc, unsigned int size) + { + struct sk_buff *skb; + struct sock *sk = sk_atm(vcc); + ++ if (ifx_atm_alloc_tx != NULL) ++ return ifx_atm_alloc_tx(vcc, size); ++ + if (sk_wmem_alloc_get(sk) && !atm_may_send(vcc, size)) { + pr_debug("Sorry: wmem_alloc = %d, size = %d, sndbuf = %d\n", + sk_wmem_alloc_get(sk), size, sk->sk_sndbuf); diff --git a/target/linux/lantiq/patches/400-mach-arv45xx.patch b/target/linux/lantiq/patches/400-mach-arv45xx.patch new file mode 100644 index 0000000000..643a0f7ae1 --- /dev/null +++ b/target/linux/lantiq/patches/400-mach-arv45xx.patch @@ -0,0 +1,211 @@ +--- a/arch/mips/include/asm/mach-lantiq/machine.h ++++ b/arch/mips/include/asm/mach-lantiq/machine.h +@@ -11,4 +11,7 @@ + LANTIQ_MACH_EASY4010, /* Twinpass evalkit */ + LANTIQ_MACH_EASY50712, /* Danube evalkit */ + LANTIQ_MACH_EASY50812, /* AR9 eval board */ ++ LANTIQ_MACH_ARV4518, /* Airties WAV-221, SMC-7908A-ISP */ ++ LANTIQ_MACH_ARV452, /* Airties WAV-281, Arcor EasyboxA800 */ ++ LANTIQ_MACH_ARV4525, /* Speedport W502V */ + }; +--- a/arch/mips/lantiq/xway/Kconfig ++++ b/arch/mips/lantiq/xway/Kconfig +@@ -14,6 +14,10 @@ + bool "Easy4010" + default y + ++config LANTIQ_MACH_ARV45XX ++ bool "ARV45XX" ++ default y ++ + endmenu + + endif +--- a/arch/mips/lantiq/xway/Makefile ++++ b/arch/mips/lantiq/xway/Makefile +@@ -3,3 +3,4 @@ + obj-$(CONFIG_LANTIQ_MACH_EASY50812) += mach-easy50812.o + obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o + obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o ++obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o +--- /dev/null ++++ b/arch/mips/lantiq/xway/mach-arv45xx.c +@@ -0,0 +1,178 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++ ++#include "devices.h" ++ ++#define ARV452_LATCH_SWITCH (1 << 10) ++ ++#ifdef CONFIG_MTD_PARTITIONS ++static struct mtd_partition arv45xx_partitions[] = ++{ ++ { ++ .name = "uboot", ++ .offset = 0x0, ++ .size = 0x20000, ++ }, ++ { ++ .name = "uboot_env", ++ .offset = 0x20000, ++ .size = 0x10000, ++ }, ++ { ++ .name = "linux", ++ .offset = 0x30000, ++ .size = 0x3c0000, ++ }, ++ { ++ .name = "board_config", ++ .offset = 0x3f0000, ++ .size = 0x10000, ++ }, ++}; ++#endif ++ ++static struct physmap_flash_data arv45xx_flash_data = { ++#ifdef CONFIG_MTD_PARTITIONS ++ .nr_parts = ARRAY_SIZE(arv45xx_partitions), ++ .parts = arv45xx_partitions, ++#endif ++}; ++ ++static struct lq_pci_data lq_pci_data = { ++ .clock = PCI_CLOCK_EXT, ++ .req_mask = 0xf, ++}; ++ ++static struct lq_eth_data lq_eth_data = { ++ .mii_mode = REV_MII_MODE, ++ .mac = "\xff\xff\xff\xff\xff\xff", ++}; ++ ++static struct gpio_led ++arv4518_leds_gpio[] __initdata = { ++ { .name = "soc:blue:power", .gpio = 3, .active_low = 1, }, ++ { .name = "soc:blue:adsl", .gpio = 4, .active_low = 1, }, ++ { .name = "soc:blue:internet", .gpio = 5, .active_low = 1, }, ++ { .name = "soc:red:power", .gpio = 6, .active_low = 1, }, ++ { .name = "soc:yello:wps", .gpio = 7, .active_low = 1, }, ++ { .name = "soc:red:wps", .gpio = 9, .active_low = 1, }, ++ { .name = "soc:blue:voip", .gpio = 32, .active_low = 1, }, ++ { .name = "soc:blue:fxs1", .gpio = 33, .active_low = 1, }, ++ { .name = "soc:blue:fxs2", .gpio = 34, .active_low = 1, }, ++ { .name = "soc:blue:fxo", .gpio = 35, .active_low = 1, }, ++ { .name = "soc:blue:voice", .gpio = 36, .active_low = 1, }, ++ { .name = "soc:blue:usb", .gpio = 37, .active_low = 1, }, ++ { .name = "soc:blue:wlan", .gpio = 38, .active_low = 1, }, ++}; ++ ++static struct gpio_led ++arv452_leds_gpio[] __initdata = { ++ { .name = "soc:blue:power", .gpio = 3, .active_low = 1, }, ++ { .name = "soc:blue:adsl", .gpio = 4, .active_low = 1, }, ++ { .name = "soc:blue:internet", .gpio = 5, .active_low = 1, }, ++ { .name = "soc:red:power", .gpio = 6, .active_low = 1, }, ++ { .name = "soc:yello:wps", .gpio = 7, .active_low = 1, }, ++ { .name = "soc:red:wps", .gpio = 9, .active_low = 1, }, ++ { .name = "soc:blue:voip", .gpio = 32, .active_low = 1, }, ++ { .name = "soc:blue:fxs1", .gpio = 33, .active_low = 1, }, ++ { .name = "soc:blue:fxs2", .gpio = 34, .active_low = 1, }, ++ { .name = "soc:blue:fxo", .gpio = 35, .active_low = 1, }, ++ { .name = "soc:blue:voice", .gpio = 36, .active_low = 1, }, ++ { .name = "soc:blue:usb", .gpio = 37, .active_low = 1, }, ++ { .name = "soc:blue:wlan", .gpio = 38, .active_low = 1, }, ++}; ++ ++static struct gpio_led arv4525_leds_gpio[] __initdata = { ++ { .name = "soc:green:festnetz", .gpio = 4, .active_low = 1, }, ++ { .name = "soc:green:internet", .gpio = 5, .active_low = 1, }, ++ { .name = "soc:green:dsl", .gpio = 6, .active_low = 1, }, ++ { .name = "soc:green:wlan", .gpio = 8, .active_low = 1, }, ++ { .name = "soc:green:online", .gpio = 9, .active_low = 1, }, ++}; ++ ++static void ++arv45xx_register_ethernet(void) ++{ ++#define ARV45XX_BRN_MAC 0x3f0016 ++ memcpy_fromio(lq_eth_data.mac, ++ (void *)KSEG1ADDR(LQ_FLASH_START + ARV45XX_BRN_MAC), 6); ++ lq_register_ethernet(&lq_eth_data); ++} ++ ++static void __init ++arv4518_init(void) ++{ ++ lq_register_gpio(); ++ lq_register_gpio_ebu(0); ++ lq_register_gpio_leds(arv4518_leds_gpio, ARRAY_SIZE(arv4518_leds_gpio)); ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_nor(&arv45xx_flash_data); ++ lq_register_pci(&lq_pci_data); ++ lq_register_wdt(); ++ arv45xx_register_ethernet(); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_ARV4518, ++ "ARV4518", ++ "ARV4518 - SMC7908A-ISP", ++ arv4518_init); ++ ++static void __init ++arv452_init(void) ++{ ++ lq_register_gpio(); ++ lq_register_gpio_ebu(ARV452_LATCH_SWITCH); ++ lq_register_gpio_leds(arv452_leds_gpio, ARRAY_SIZE(arv452_leds_gpio)); ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_nor(&arv45xx_flash_data); ++ lq_register_pci(&lq_pci_data); ++ lq_register_wdt(); ++ arv45xx_register_ethernet(); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_ARV452, ++ "ARV452", ++ "ARV452 - Airties WAV-281, Arcor A800", ++ arv452_init); ++ ++static void __init ++arv4525_init(void) ++{ ++ lq_register_gpio(); ++ lq_register_gpio_leds(arv4525_leds_gpio, ARRAY_SIZE(arv4525_leds_gpio)); ++ lq_register_asc(0); ++ lq_register_asc(1); ++ lq_register_nor(&arv45xx_flash_data); ++ lq_register_pci(&lq_pci_data); ++ lq_register_wdt(); ++ lq_eth_data.mii_mode = MII_MODE; ++ arv45xx_register_ethernet(); ++} ++ ++MIPS_MACHINE(LANTIQ_MACH_ARV4525, ++ "ARV4525", ++ "ARV4525 - Speedport W502V", ++ arv4525_init); diff --git a/target/linux/lantiq/patches/700-dwc_otg.patch b/target/linux/lantiq/patches/700-dwc_otg.patch new file mode 100644 index 0000000000..9176770426 --- /dev/null +++ b/target/linux/lantiq/patches/700-dwc_otg.patch @@ -0,0 +1,15693 @@ +--- a/drivers/usb/Kconfig ++++ b/drivers/usb/Kconfig +@@ -111,6 +111,8 @@ + + source "drivers/usb/host/Kconfig" + ++source "drivers/usb/dwc_otg/Kconfig" ++ + source "drivers/usb/musb/Kconfig" + + source "drivers/usb/class/Kconfig" +--- a/drivers/usb/Makefile ++++ b/drivers/usb/Makefile +@@ -27,6 +27,8 @@ + + obj-$(CONFIG_USB_WUSB) += wusbcore/ + ++obj-$(CONFIG_DWC_OTG) += dwc_otg/ ++ + obj-$(CONFIG_USB_ACM) += class/ + obj-$(CONFIG_USB_PRINTER) += class/ + obj-$(CONFIG_USB_WDM) += class/ +--- /dev/null ++++ b/drivers/usb/dwc_otg/Kconfig +@@ -0,0 +1,37 @@ ++config DWC_OTG ++ tristate "Synopsis DWC_OTG support" ++ depends on USB ++ help ++ This driver supports Synopsis DWC_OTG IP core ++ embebbed on many SOCs (ralink, infineon, etc) ++ ++choice ++ prompt "USB Operation Mode" ++ depends on DWC_OTG ++ default DWC_OTG_HOST_ONLY ++ ++config DWC_OTG_HOST_ONLY ++ bool "HOST ONLY MODE" ++ depends on DWC_OTG ++ ++config DWC_OTG_DEVICE_ONLY ++ bool "DEVICE ONLY MODE" ++ depends on DWC_OTG ++endchoice ++ ++choice ++ prompt "Platform" ++ depends on DWC_OTG ++ default DWC_OTG_LANTIQ ++ ++config DWC_OTG_LANTIQ ++ bool "Lantiq" ++ depends on LANTIQ ++ help ++ Danube USB Host Controller ++ platform support ++endchoice ++ ++config DWC_OTG_DEBUG ++ bool "Enable debug mode" ++ depends on DWC_OTG +--- /dev/null ++++ b/drivers/usb/dwc_otg/Makefile +@@ -0,0 +1,39 @@ ++# ++# Makefile for DWC_otg Highspeed USB controller driver ++# ++ ++ifeq ($(CONFIG_DWC_OTG_DEBUG),y) ++EXTRA_CFLAGS += -DDEBUG ++endif ++ ++# Use one of the following flags to compile the software in host-only or ++# device-only mode based on the configuration selected by the user ++ifeq ($(CONFIG_DWC_OTG_HOST_ONLY),y) ++ EXTRA_CFLAGS += -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY ++ EXTRA_CFLAGS += -DDWC_OTG_EN_ISOC -DDWC_EN_ISOC ++else ifeq ($(CONFIG_DWC_OTG_DEVICE_ONLY),y) ++ EXTRA_CFLAGS += -DDWC_OTG_DEVICE_ONLY ++else ++ EXTRA_CFLAGS += -DDWC_OTG_MODE ++endif ++ ++# EXTRA_CFLAGS += -DDWC_HS_ELECT_TST ++# EXTRA_CFLAGS += -DDWC_OTG_EXT_CHG_PUMP ++ ++ifeq ($(CONFIG_DWC_OTG_LANTIQ),y) ++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_OTG_HOST_ONLY -DDWC_HOST_ONLY -D__KERNEL__ ++endif ++ifeq ($(CONFIG_DWC_OTG_LANTIQ),m) ++ EXTRA_CFLAGS += -Dlinux -D__LINUX__ -DDWC_OTG_IFX -DDWC_HOST_ONLY -DMODULE -D__KERNEL__ -DDEBUG ++endif ++ ++obj-$(CONFIG_DWC_OTG) := dwc_otg.o ++dwc_otg-objs := dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o ++#dwc_otg-objs += dwc_otg_pcd.o dwc_otg_pcd_intr.o ++dwc_otg-objs += dwc_otg_attr.o ++dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o ++dwc_otg-objs += dwc_otg_ifx.o ++dwc_otg-objs += dwc_otg_driver.o ++ ++#obj-$(CONFIG_DWC_OTG_IFX) := dwc_otg_ifx.o ++#dwc_otg_ifx-objs := dwc_otg_ifx.o +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.c +@@ -0,0 +1,802 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. The Linux driver attributes ++ * feature will be used to provide the Linux Diagnostic ++ * Interface. These attributes are accessed through sysfs. ++ */ ++ ++/** @page "Linux Module Attributes" ++ * ++ * The Linux module attributes feature is used to provide the Linux ++ * Diagnostic Interface. These attributes are accessed through sysfs. ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. ++ ++ ++ The following table shows the attributes. ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Name Description Access
mode Returns the current mode: 0 for device mode, 1 for host mode Read
hnpcapable Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value. Read/Write
srpcapable Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value. Read/Write
hnp Initiates the Host Negotiation Protocol. Read returns the status. Read/Write
srp Initiates the Session Request Protocol. Read returns the status. Read/Write
buspower Gets or sets the Power State of the bus (0 - Off or 1 - On) Read/Write
bussuspend Suspends the USB bus. Read/Write
busconnected Gets the connection status of the bus Read
gotgctl Gets or sets the Core Control Status Register. Read/Write
gusbcfg Gets or sets the Core USB Configuration Register Read/Write
grxfsiz Gets or sets the Receive FIFO Size Register Read/Write
gnptxfsiz Gets or sets the non-periodic Transmit Size Register Read/Write
gpvndctl Gets or sets the PHY Vendor Control Register Read/Write
ggpio Gets the value in the lower 16-bits of the General Purpose IO Register ++ or sets the upper 16 bits. Read/Write
guid Gets or sets the value of the User ID Register Read/Write
gsnpsid Gets the value of the Synopsys ID Regester Read
devspeed Gets or sets the device speed setting in the DCFG register Read/Write
enumspeed Gets the device enumeration Speed. Read
hptxfsiz Gets the value of the Host Periodic Transmit FIFO Read
hprt0 Gets or sets the value in the Host Port Control and Status Register Read/Write
regoffset Sets the register offset for the next Register Access Read/Write
regvalue Gets or sets the value of the register at the offset in the regoffset attribute. Read/Write
remote_wakeup On read, shows the status of Remote Wakeup. On write, initiates a remote ++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote ++ Wakeup signalling bit in the Device Control Register is set for 1 ++ milli-second. Read/Write
regdump Dumps the contents of core registers. Read
hcddump Dumps the current HCD state. Read
hcd_frrem Shows the average value of the Frame Remaining ++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt ++ occurs. This can be used to determine the average interrupt latency. Also ++ shows the average Frame Remaining value for start_transfer and the "a" and ++ "b" sample points. The "a" and "b" sample points may be used during debugging ++ bto determine how long it takes to execute a section of the HCD code. Read
rd_reg_test Displays the time required to read the GNPTXFSIZ register many times ++ (the output shows the number of times the register is read). ++ Read
wr_reg_test Displays the time required to write the GNPTXFSIZ register many times ++ (the output shows the number of times the register is written). ++ Read
++ ++ Example usage: ++ To get the current mode: ++ cat /sys/devices/lm0/mode ++ ++ To power down the USB: ++ echo 0 > /sys/devices/lm0/buspower ++ */ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include /* permission constants */ ++ ++#include ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++// #include "dwc_otg_pcd.h" ++#include "dwc_otg_hcd.h" ++ ++// 20070316, winder added. ++#ifndef SZ_256K ++#define SZ_256K 0x00040000 ++#endif ++ ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++} ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, const char *buf, size_t count) \ ++{ \ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev);\ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++} ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++ ++/** @name Functions for Show/Store of Attributes */ ++/**@{*/ ++ ++/** ++ * Show the register offset of the Register Access. ++ */ ++static ssize_t regoffset_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset); ++} ++ ++/** ++ * Set the register offset for the next Register Access Read/Write ++ */ ++static ssize_t regoffset_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t offset = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x\n", offset); ++ if (offset < SZ_256K ) { ++ otg_dev->reg_offset = offset; ++ } ++ else { ++ dev_err( _dev, "invalid offset\n" ); ++ } ++ ++ return count; ++} ++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, regoffset_show, regoffset_store); ++ ++/** ++ * Show the value of the register at the offset in the reg_offset ++ * attribute. ++ */ ++static ssize_t regvalue_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t val; ++ volatile uint32_t *addr; ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ val = dwc_read_reg32( addr ); ++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1, ++ "Reg@0x%06x = 0x%08x\n", ++ otg_dev->reg_offset, val); ++ } ++ else { ++ dev_err(_dev, "Invalid offset (0x%0x)\n", ++ otg_dev->reg_offset); ++ return sprintf(buf, "invalid offset\n" ); ++ } ++} ++ ++/** ++ * Store the value in the register at the offset in the reg_offset ++ * attribute. ++ * ++ */ ++static ssize_t regvalue_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ volatile uint32_t * addr; ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val); ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ dwc_write_reg32( addr, val ); ++ } ++ else { ++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n", ++ otg_dev->reg_offset); ++ } ++ return count; ++} ++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store); ++ ++/* ++ * Attributes ++ */ ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode"); ++ ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID"); ++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0"); ++ ++ ++/** ++ * @todo Add code to initiate the HNP. ++ */ ++/** ++ * Show the HNP status bit ++ */ ++static ssize_t hnp_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); ++} ++ ++/** ++ * Set the HNP Request bit ++ */ ++static ssize_t hnp_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.hnpreq = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); ++ ++/** ++ * @todo Add code to initiate the SRP. ++ */ ++/** ++ * Show the SRP status bit ++ */ ++static ssize_t srp_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Set the SRP Request bit ++ */ ++static ssize_t srp_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_pcd_initiate_srp(otg_dev->pcd); ++#endif ++ return count; ++} ++DEVICE_ATTR(srp, 0644, srp_show, srp_store); ++ ++/** ++ * @todo Need to do more for power on/off? ++ */ ++/** ++ * Show the Bus Power status ++ */ ++static ssize_t buspower_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr); ++} ++ ++ ++/** ++ * Set the Bus Power status ++ */ ++static ssize_t buspower_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t on = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtpwr = on; ++ ++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ ++ return count; ++} ++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); ++ ++/** ++ * @todo Need to do more for suspend? ++ */ ++/** ++ * Show the Bus Suspend status ++ */ ++static ssize_t bussuspend_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); ++} ++ ++/** ++ * Set the Bus Suspend status ++ */ ++static ssize_t bussuspend_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtsusp = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); ++ ++/** ++ * Show the status of Remote Wakeup. ++ */ ++static ssize_t remote_wakeup_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dctl_data_t val; ++ val.d32 = dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl); ++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n", ++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++/** ++ * Initiate a remote wakeup of the host. The Device control register ++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable ++ * flag is set. ++ * ++ */ ++static ssize_t remote_wakeup_store( struct device *_dev, struct device_attribute *attr, const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ if (val&1) { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); ++ } ++ else { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); ++ } ++#endif ++ return count; ++} ++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show, ++ remote_wakeup_store); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t regdump_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifdef DEBUG ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ printk("%s otg_dev=0x%p\n", __FUNCTION__, otg_dev); ++ ++ dwc_otg_dump_global_registers( otg_dev->core_if); ++ if (dwc_otg_is_host_mode(otg_dev->core_if)) { ++ dwc_otg_dump_host_registers( otg_dev->core_if); ++ } else { ++ dwc_otg_dump_dev_registers( otg_dev->core_if); ++ } ++#endif ++ ++ return sprintf( buf, "Register Dump\n" ); ++} ++ ++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0); ++ ++/** ++ * Dump the current hcd state. ++ */ ++static ssize_t hcddump_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_dump_state(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump\n" ); ++} ++ ++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0); ++ ++/** ++ * Dump the average frame remaining at SOF. This can be used to ++ * determine average interrupt latency. Frame remaining is also shown for ++ * start transfer and two additional sample points. ++ */ ++static ssize_t hcd_frrem_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_dump_frrem(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump Frame Remaining\n" ); ++} ++ ++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0); ++ ++/** ++ * Displays the time required to read the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is read). ++ */ ++#define RW_REG_COUNT 10000000 ++#define MSEC_PER_JIFFIE 1000/HZ ++static ssize_t rd_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time ); ++} ++ ++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0); ++ ++/** ++ * Displays the time required to write the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is written). ++ */ ++static ssize_t wr_reg_test_show( struct device *_dev, struct device_attribute *attr, char *buf) ++{ ++ int i; ++ int time; ++ int start_jiffies; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ uint32_t reg_val; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0); ++/**@}*/ ++ ++/** ++ * Create the device files ++ */ ++void dwc_otg_attr_create (struct device *_dev) ++{ ++ int retval; ++ ++ retval = device_create_file(_dev, &dev_attr_regoffset); ++ retval += device_create_file(_dev, &dev_attr_regvalue); ++ retval += device_create_file(_dev, &dev_attr_mode); ++ retval += device_create_file(_dev, &dev_attr_hnpcapable); ++ retval += device_create_file(_dev, &dev_attr_srpcapable); ++ retval += device_create_file(_dev, &dev_attr_hnp); ++ retval += device_create_file(_dev, &dev_attr_srp); ++ retval += device_create_file(_dev, &dev_attr_buspower); ++ retval += device_create_file(_dev, &dev_attr_bussuspend); ++ retval += device_create_file(_dev, &dev_attr_busconnected); ++ retval += device_create_file(_dev, &dev_attr_gotgctl); ++ retval += device_create_file(_dev, &dev_attr_gusbcfg); ++ retval += device_create_file(_dev, &dev_attr_grxfsiz); ++ retval += device_create_file(_dev, &dev_attr_gnptxfsiz); ++ retval += device_create_file(_dev, &dev_attr_gpvndctl); ++ retval += device_create_file(_dev, &dev_attr_ggpio); ++ retval += device_create_file(_dev, &dev_attr_guid); ++ retval += device_create_file(_dev, &dev_attr_gsnpsid); ++ retval += device_create_file(_dev, &dev_attr_devspeed); ++ retval += device_create_file(_dev, &dev_attr_enumspeed); ++ retval += device_create_file(_dev, &dev_attr_hptxfsiz); ++ retval += device_create_file(_dev, &dev_attr_hprt0); ++ retval += device_create_file(_dev, &dev_attr_remote_wakeup); ++ retval += device_create_file(_dev, &dev_attr_regdump); ++ retval += device_create_file(_dev, &dev_attr_hcddump); ++ retval += device_create_file(_dev, &dev_attr_hcd_frrem); ++ retval += device_create_file(_dev, &dev_attr_rd_reg_test); ++ retval += device_create_file(_dev, &dev_attr_wr_reg_test); ++ ++ if(retval != 0) ++ { ++ DWC_PRINT("cannot create sysfs device files.\n"); ++ // DWC_PRINT("killing own sysfs device files!\n"); ++ dwc_otg_attr_remove(_dev); ++ } ++} ++ ++/** ++ * Remove the device files ++ */ ++void dwc_otg_attr_remove (struct device *_dev) ++{ ++ device_remove_file(_dev, &dev_attr_regoffset); ++ device_remove_file(_dev, &dev_attr_regvalue); ++ device_remove_file(_dev, &dev_attr_mode); ++ device_remove_file(_dev, &dev_attr_hnpcapable); ++ device_remove_file(_dev, &dev_attr_srpcapable); ++ device_remove_file(_dev, &dev_attr_hnp); ++ device_remove_file(_dev, &dev_attr_srp); ++ device_remove_file(_dev, &dev_attr_buspower); ++ device_remove_file(_dev, &dev_attr_bussuspend); ++ device_remove_file(_dev, &dev_attr_busconnected); ++ device_remove_file(_dev, &dev_attr_gotgctl); ++ device_remove_file(_dev, &dev_attr_gusbcfg); ++ device_remove_file(_dev, &dev_attr_grxfsiz); ++ device_remove_file(_dev, &dev_attr_gnptxfsiz); ++ device_remove_file(_dev, &dev_attr_gpvndctl); ++ device_remove_file(_dev, &dev_attr_ggpio); ++ device_remove_file(_dev, &dev_attr_guid); ++ device_remove_file(_dev, &dev_attr_gsnpsid); ++ device_remove_file(_dev, &dev_attr_devspeed); ++ device_remove_file(_dev, &dev_attr_enumspeed); ++ device_remove_file(_dev, &dev_attr_hptxfsiz); ++ device_remove_file(_dev, &dev_attr_hprt0); ++ device_remove_file(_dev, &dev_attr_remote_wakeup); ++ device_remove_file(_dev, &dev_attr_regdump); ++ device_remove_file(_dev, &dev_attr_hcddump); ++ device_remove_file(_dev, &dev_attr_hcd_frrem); ++ device_remove_file(_dev, &dev_attr_rd_reg_test); ++ device_remove_file(_dev, &dev_attr_wr_reg_test); ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_attr.h +@@ -0,0 +1,67 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_attr.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510275 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_ATTR_H__) ++#define __DWC_OTG_ATTR_H__ ++ ++/** @file ++ * This file contains the interface to the Linux device attributes. ++ */ ++extern struct device_attribute dev_attr_regoffset; ++extern struct device_attribute dev_attr_regvalue; ++ ++extern struct device_attribute dev_attr_mode; ++extern struct device_attribute dev_attr_hnpcapable; ++extern struct device_attribute dev_attr_srpcapable; ++extern struct device_attribute dev_attr_hnp; ++extern struct device_attribute dev_attr_srp; ++extern struct device_attribute dev_attr_buspower; ++extern struct device_attribute dev_attr_bussuspend; ++extern struct device_attribute dev_attr_busconnected; ++extern struct device_attribute dev_attr_gotgctl; ++extern struct device_attribute dev_attr_gusbcfg; ++extern struct device_attribute dev_attr_grxfsiz; ++extern struct device_attribute dev_attr_gnptxfsiz; ++extern struct device_attribute dev_attr_gpvndctl; ++extern struct device_attribute dev_attr_ggpio; ++extern struct device_attribute dev_attr_guid; ++extern struct device_attribute dev_attr_gsnpsid; ++extern struct device_attribute dev_attr_devspeed; ++extern struct device_attribute dev_attr_enumspeed; ++extern struct device_attribute dev_attr_hptxfsiz; ++extern struct device_attribute dev_attr_hprt0; ++ ++void dwc_otg_attr_create (struct device *_dev); ++void dwc_otg_attr_remove (struct device *_dev); ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.c +@@ -0,0 +1,3025 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * The CIL manages the memory map for the core so that the HCD and PCD ++ * don't have to do this separately. It also handles basic tasks like ++ * reading/writing the registers and data FIFOs in the controller. ++ * Some of the data access functions provide encapsulation of several ++ * operations required to perform a task, such as writing multiple ++ * registers to start a transfer. Finally, the CIL performs basic ++ * services that are not specific to either the host or device modes ++ * of operation. These services include management of the OTG Host ++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A ++ * Diagnostic API is also provided to allow testing of the controller ++ * hardware. ++ * ++ * The Core Interface Layer has the following requirements: ++ * - Provides basic controller operations. ++ * - Minimal use of OS services. ++ * - The OS services used will be abstracted by using inline functions ++ * or macros. ++ * ++ */ ++#include ++ ++#ifdef DEBUG ++#include ++#endif ++ ++#include "dwc_otg_plat.h" ++ ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++/** ++ * This function is called to initialize the DWC_otg CSR data ++ * structures. The register addresses in the device and host ++ * structures are initialized from the base address supplied by the ++ * caller. The calling function must make the OS calls to get the ++ * base address of the DWC_otg controller registers. The core_params ++ * argument holds the parameters that specify how the core should be ++ * configured. ++ * ++ * @param[in] _reg_base_addr Base address of DWC_otg core registers ++ * @param[in] _core_params Pointer to the core configuration parameters ++ * ++ */ ++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params) ++{ ++ dwc_otg_core_if_t *core_if = 0; ++ dwc_otg_dev_if_t *dev_if = 0; ++ dwc_otg_host_if_t *host_if = 0; ++ uint8_t *reg_base = (uint8_t *)_reg_base_addr; ++ int i = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr, _core_params); ++ ++ core_if = kmalloc( sizeof(dwc_otg_core_if_t), GFP_KERNEL); ++ if (core_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); ++ return 0; ++ } ++ memset(core_if, 0, sizeof(dwc_otg_core_if_t)); ++ ++ core_if->core_params = _core_params; ++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; ++ /* ++ * Allocate the Device Mode structures. ++ */ ++ dev_if = kmalloc( sizeof(dwc_otg_dev_if_t), GFP_KERNEL); ++ if (dev_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); ++ kfree( core_if ); ++ return 0; ++ } ++ ++ dev_if->dev_global_regs = ++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); ++ ++ for (i=0; iin_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) ++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ ++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) ++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", ++ i, &dev_if->in_ep_regs[i]->diepctl); ++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", ++ i, &dev_if->out_ep_regs[i]->doepctl); ++ } ++ dev_if->speed = 0; // unknown ++ //dev_if->num_eps = MAX_EPS_CHANNELS; ++ //dev_if->num_perio_eps = 0; ++ ++ core_if->dev_if = dev_if; ++ /* ++ * Allocate the Host Mode structures. ++ */ ++ host_if = kmalloc( sizeof(dwc_otg_host_if_t), GFP_KERNEL); ++ if (host_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); ++ kfree( dev_if ); ++ kfree( core_if ); ++ return 0; ++ } ++ ++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *) ++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); ++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); ++ for (i=0; ihc_regs[i] = (dwc_otg_hc_regs_t *) ++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + ++ (i * DWC_OTG_CHAN_REGS_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", ++ i, &host_if->hc_regs[i]->hcchar); ++ } ++ host_if->num_host_channels = MAX_EPS_CHANNELS; ++ core_if->host_if = host_if; ++ ++ for (i=0; idata_fifo[i] = ++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + ++ (i * DWC_OTG_DATA_FIFO_SIZE)); ++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", ++ i, (unsigned)core_if->data_fifo[i]); ++ } // for loop. ++ ++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); ++ ++ /* ++ * Store the contents of the hardware configuration registers here for ++ * easy access later. ++ */ ++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); ++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); ++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); ++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); ++ ++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); ++ ++ ++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); ++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); ++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); ++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); ++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); ++ ++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); ++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); ++ ++ /* ++ * Set the SRP sucess bit for FS-I2c ++ */ ++ core_if->srp_success = 0; ++ core_if->srp_timer_started = 0; ++ ++ return core_if; ++} ++/** ++ * This function frees the structures allocated by dwc_otg_cil_init(). ++ * ++ * @param[in] _core_if The core interface pointer returned from ++ * dwc_otg_cil_init(). ++ * ++ */ ++void dwc_otg_cil_remove( dwc_otg_core_if_t *_core_if ) ++{ ++ /* Disable all interrupts */ ++ dwc_modify_reg32( &_core_if->core_global_regs->gahbcfg, 1, 0); ++ dwc_write_reg32( &_core_if->core_global_regs->gintmsk, 0); ++ ++ if ( _core_if->dev_if ) { ++ kfree( _core_if->dev_if ); ++ } ++ if ( _core_if->host_if ) { ++ kfree( _core_if->host_if ); ++ } ++ kfree( _core_if ); ++} ++ ++/** ++ * This function enables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); ++} ++/** ++ * This function disables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); ++} ++ ++/** ++ * This function initializes the commmon interrupts, used in both ++ * device and host modes. ++ * ++ * @param[in] _core_if Programming view of the DWC_otg controller ++ * ++ */ ++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ /* Clear any pending OTG Interrupts */ ++ dwc_write_reg32( &global_regs->gotgint, 0xFFFFFFFF); ++ /* Clear any pending interrupts */ ++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); ++ /* ++ * Enable the interrupts in the GINTMSK. ++ */ ++ intr_mask.b.modemismatch = 1; ++ intr_mask.b.otgintr = 1; ++ if (!_core_if->dma_enable) { ++ intr_mask.b.rxstsqlvl = 1; ++ } ++ intr_mask.b.conidstschng = 1; ++ intr_mask.b.wkupintr = 1; ++ intr_mask.b.disconnect = 1; ++ intr_mask.b.usbsuspend = 1; ++ intr_mask.b.sessreqintr = 1; ++ dwc_write_reg32( &global_regs->gintmsk, intr_mask.d32); ++} ++ ++/** ++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY ++ * type. ++ */ ++static void init_fslspclksel(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t val; ++ hcfg_data_t hcfg; ++ ++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) || ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) ++ { ++ /* Full speed PHY */ ++ val = DWC_HCFG_48_MHZ; ++ } else { ++ /* High speed PHY running at full speed or high speed */ ++ val = DWC_HCFG_30_60_MHZ; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); ++ hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg); ++ hcfg.b.fslspclksel = val; ++ dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32); ++} ++ ++/** ++ * Initializes the DevSpd field of the DCFG register depending on the PHY type ++ * and the enumeration speed of the device. ++ */ ++static void init_devspd(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t val; ++ dcfg_data_t dcfg; ++ ++ if (((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) || ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) ++ { ++ /* Full speed PHY */ ++ val = 0x3; ++ } else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ /* High speed PHY running at full speed */ ++ val = 0x1; ++ } else { ++ /* High speed PHY running at high speed */ ++ val = 0x0; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); ++ dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg); ++ dcfg.b.devspd = val; ++ dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); ++} ++ ++/** ++ * This function calculates the number of IN EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param _pcd the pcd structure. ++ */ ++static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if) ++{ ++ uint32_t num_in_eps = 0; ++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; ++ uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps; ++ int i; ++ for (i = 0; i < num_eps; ++i) { ++ if (!(hwcfg1 & 0x1)) ++ num_in_eps++; ++ hwcfg1 >>= 2; ++ } ++ if (_core_if->hwcfg4.b.ded_fifo_en) { ++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; ++ } ++ return num_in_eps; ++} ++ ++ ++/** ++ * This function calculates the number of OUT EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param _pcd the pcd structure. ++ */ ++static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if) ++{ ++ uint32_t num_out_eps = 0; ++ uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2; ++ int i; ++ for (i = 0; i < num_eps; ++i) { ++ if (!(hwcfg1 & 0x2)) ++ num_out_eps++; ++ hwcfg1 >>= 2; ++ } ++ return num_out_eps; ++} ++/** ++ * This function initializes the DWC_otg controller registers and ++ * prepares the core for device mode or host mode operation. ++ * ++ * @param _core_if Programming view of the DWC_otg controller ++ * ++ */ ++void dwc_otg_core_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ int i = 0; ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ gusbcfg_data_t usbcfg = { .d32 = 0 }; ++ gi2cctl_data_t i2cctl = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n",_core_if); ++ ++ /* Common Initialization */ ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32); ++ ++ /* Program the ULPI External VBUS bit if needed */ ++ //usbcfg.b.ulpi_ext_vbus_drv = 1; ++ //usbcfg.b.ulpi_ext_vbus_drv = 0; ++ usbcfg.b.ulpi_ext_vbus_drv = ++ (_core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; ++ ++ /* Set external TS Dline pulsing */ ++ usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset the Controller */ ++ dwc_otg_core_reset( _core_if ); ++ ++ /* Initialize parameters from Hardware configuration registers. */ ++#if 0 ++ dev_if->num_eps = _core_if->hwcfg2.b.num_dev_ep; ++ dev_if->num_perio_eps = _core_if->hwcfg4.b.num_dev_perio_in_ep; ++#else ++ dev_if->num_in_eps = calc_num_in_eps(_core_if); ++ dev_if->num_out_eps = calc_num_out_eps(_core_if); ++#endif ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", ++ _core_if->hwcfg4.b.num_dev_perio_in_ep); ++ DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n", ++ _core_if->hwcfg4.b.power_optimiz ? "Yes" : "No"); ++ DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n", ++ _core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No"); ++ DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n", ++ _core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No"); ++ ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",_core_if->hwcfg4.b.num_dev_perio_in_ep); ++ for (i=0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ dev_if->perio_tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i, ++ dev_if->perio_tx_fifo_size[i]); ++ } ++ for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) { ++ dev_if->tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i, ++ dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ _core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth; ++ _core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz); ++ _core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", _core_if->nperio_tx_fifo_size); ++ ++ /* This programming sequence needs to happen in FS mode before any other ++ * programming occurs */ ++ if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && ++ (_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* If FS mode with FS PHY */ ++ ++ /* core_init() is now called on every switch so only call the ++ * following for the first time through. */ ++ if (!_core_if->phy_init_done) { ++ _core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.physel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after a PHY select */ ++ dwc_otg_core_reset( _core_if ); ++ } ++ ++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also ++ * do this on HNP Dev/Host mode switches (done in dev_init and ++ * host_init). */ ++ if (dwc_otg_is_host_mode(_core_if)) { ++ DWC_DEBUGPL(DBG_CIL, "host mode\n"); ++ init_fslspclksel(_core_if); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "device mode\n"); ++ init_devspd(_core_if); ++ } ++ ++ if (_core_if->core_params->i2c_enable) { ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); ++ /* Program GUSBCFG.OtgUtmifsSel to I2C */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.otgutmifssel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Program GI2CCTL.I2CEn */ ++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); ++ i2cctl.b.i2cdevaddr = 1; ++ i2cctl.b.i2cen = 0; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ i2cctl.b.i2cen = 1; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ } ++ ++ } /* endif speed == DWC_SPEED_PARAM_FULL */ ++ else { ++ /* High speed PHY. */ ++ if (!_core_if->phy_init_done) { ++ _core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "High spped PHY\n"); ++ /* HS PHY parameters. These parameters are preserved ++ * during soft reset so only program the first time. Do ++ * a soft reset immediately after setting phyif. */ ++ usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type; ++ if (usbcfg.b.ulpi_utmi_sel == 2) { // winder ++ DWC_DEBUGPL(DBG_CIL, "ULPI\n"); ++ /* ULPI interface */ ++ usbcfg.b.phyif = 0; ++ usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr; ++ } else { ++ /* UTMI+ interface */ ++ if (_core_if->core_params->phy_utmi_width == 16) { ++ usbcfg.b.phyif = 1; ++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n"); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n"); ++ usbcfg.b.phyif = 0; ++ } ++ } ++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after setting the PHY parameters */ ++ dwc_otg_core_reset( _core_if ); ++ } ++ } ++ ++ if ((_core_if->hwcfg2.b.hs_phy_type == 2) && ++ (_core_if->hwcfg2.b.fs_phy_type == 1) && ++ (_core_if->core_params->ulpi_fs_ls)) ++ { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 1; ++ usbcfg.b.ulpi_clk_sus_m = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } else { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 0; ++ usbcfg.b.ulpi_clk_sus_m = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ ++ /* Program the GAHBCFG Register.*/ ++ switch (_core_if->hwcfg2.b.architecture){ ++ ++ case DWC_SLAVE_ONLY_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); ++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ _core_if->dma_enable = 0; ++ break; ++ ++ case DWC_EXT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); ++ ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size; ++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); ++ break; ++ ++ case DWC_INT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); ++ //ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; ++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR4; ++ _core_if->dma_enable = (_core_if->core_params->dma_enable != 0); ++ break; ++ } ++ ahbcfg.b.dmaenable = _core_if->dma_enable; ++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); ++ _core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en; ++ ++ /* ++ * Program the GUSBCFG register. ++ */ ++ usbcfg.d32 = dwc_read_reg32( &global_regs->gusbcfg ); ++ ++ switch (_core_if->hwcfg2.b.op_mode) { ++ case DWC_MODE_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = (_core_if->core_params->otg_cap == ++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_SRP_ONLY_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (_core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ } ++ ++ dwc_write_reg32( &global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Enable common interrupts */ ++ dwc_otg_enable_common_interrupts( _core_if ); ++ ++ /* Do device or host intialization based on mode during PCD ++ * and HCD initialization */ ++ if (dwc_otg_is_host_mode( _core_if )) { ++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n" ); ++ _core_if->op_state = A_HOST; ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n" ); ++ _core_if->op_state = B_PERIPHERAL; ++#ifdef DWC_DEVICE_ONLY ++ dwc_otg_core_dev_init( _core_if ); ++#endif ++ } ++} ++ ++ ++/** ++ * This function enables the Device mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32( &global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32( &global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts( _core_if ); ++ ++ /* Enable interrupts */ ++ intr_mask.b.usbreset = 1; ++ intr_mask.b.enumdone = 1; ++ //intr_mask.b.epmismatch = 1; ++ intr_mask.b.inepintr = 1; ++ intr_mask.b.outepintr = 1; ++ intr_mask.b.erlysuspend = 1; ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.epmismatch = 1; ++ } ++ ++ /** @todo NGS: Should this be a module parameter? */ ++ intr_mask.b.isooutdrop = 1; ++ intr_mask.b.eopframe = 1; ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ ++ dwc_modify_reg32( &global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, ++ dwc_read_reg32( &global_regs->gintmsk)); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * device mode. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ dwc_otg_core_params_t *params = _core_if->core_params; ++ dcfg_data_t dcfg = {.d32 = 0}; ++ grstctl_t resetctl = { .d32=0 }; ++ int i; ++ uint32_t rx_fifo_size; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t txfifosize; ++ dthrctl_data_t dthrctl; ++ ++ fifosize_data_t ptxfifosize; ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(_core_if->pcgcctl, 0); ++ ++ /* Device configuration register */ ++ init_devspd(_core_if); ++ dcfg.d32 = dwc_read_reg32( &dev_if->dev_global_regs->dcfg); ++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; ++ dwc_write_reg32( &dev_if->dev_global_regs->dcfg, dcfg.d32 ); ++ ++ /* Configure data FIFO sizes */ ++ if ( _core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo ) { ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ rx_fifo_size = params->dev_rx_fifo_size; ++ dwc_write_reg32( &global_regs->grxfsiz, rx_fifo_size ); ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /** Set Periodic Tx FIFO Mask all bits 0 */ ++ _core_if->p_tx_msk = 0; ++ ++ /** Set Tx FIFO Mask all bits 0 */ ++ _core_if->tx_msk = 0; ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ dwc_write_reg32( &global_regs->gnptxfsiz, nptxfifosize.d32 ); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ ++ /**@todo NGS: Fix Periodic FIFO Sizing! */ ++ /* ++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_perio_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz array run from 0 to 14. ++ */ ++ /** @todo Finish debug of this */ ++ ptxfifosize.b.startaddr = ++ nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { ++ ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ ptxfifosize.b.startaddr += ptxfifosize.b.depth; ++ } ++ } else { ++ ++ /* ++ * Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz_dieptxf array run from 0 to 14. ++ */ ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) { ++ txfifosize.b.depth = params->dev_tx_fifo_size[i]; ++ DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n", ++ i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1])); ++ txfifosize.b.startaddr += txfifosize.b.depth; ++ } ++ } ++ } ++ /* Flush the FIFOs */ ++ dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(_core_if); ++ ++ /* Flush the Learning Queue. */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ /* Clear all pending Device Interrupts */ ++ dwc_write_reg32( &dev_if->dev_global_regs->diepmsk, 0 ); ++ dwc_write_reg32( &dev_if->dev_global_regs->doepmsk, 0 ); ++ dwc_write_reg32( &dev_if->dev_global_regs->daint, 0xFFFFFFFF ); ++ dwc_write_reg32( &dev_if->dev_global_regs->daintmsk, 0 ); ++ ++ for (i = 0; i <= dev_if->num_in_eps; i++) { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32( &dev_if->in_ep_regs[i]->diepctl, depctl.d32); ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); ++ } ++ for (i = 0; i <= dev_if->num_out_eps; i++) { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } else { ++ depctl.d32 = 0; ++ } ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepctl, depctl.d32); ++ ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doeptsiz, 0); ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepdma, 0); ++ //dwc_write_reg32( &dev_if->in_ep_regs[i]->diepint, 0xFF); ++ dwc_write_reg32( &dev_if->out_ep_regs[i]->doepint, 0xFF); ++ } ++ ++ if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) { ++ dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1; ++ dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1; ++ dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1; ++ dev_if->rx_thr_length = _core_if->core_params->rx_thr_length; ++ dev_if->tx_thr_length = _core_if->core_params->tx_thr_length; ++ dthrctl.d32 = 0; ++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; ++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; ++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length; ++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en; ++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length; ++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n" ++ "Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", ++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, ++ dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, ++ dthrctl.b.rx_thr_len); ++ } ++ dwc_otg_enable_device_interrupts( _core_if ); ++ { ++ diepmsk_data_t msk = {.d32 = 0}; ++ msk.b.txfifoundrn = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32); ++} ++} ++ ++/** ++ * This function enables the Host mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts. */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(_core_if); ++ ++ /* ++ * Enable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ ++ //dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ //dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++} ++ ++/** ++ * This function disables the Host Mode interrupts. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); ++ ++ /* ++ * Disable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ intr_mask.b.ptxfempty = 1; ++ intr_mask.b.nptxfempty = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++} ++ ++#if 1 ++/* currently not used, keep it here as if needed later */ ++static int phy_read(dwc_otg_core_if_t * _core_if, int addr) ++{ ++ u32 val; ++ int timeout = 10; ++ ++ dwc_write_reg32(&_core_if->core_global_regs->gpvndctl, ++ 0x02000000 | (addr << 16)); ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ while (((val & 0x08000000) == 0) && (timeout--)) { ++ udelay(1000); ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ } ++ val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl); ++ printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff); ++ ++ return 0; ++} ++#endif ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * host mode. ++ * ++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the ++ * request queues. Host channels are reset to ensure that they are ready for ++ * performing transfers. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = _core_if->host_if; ++ dwc_otg_core_params_t *params = _core_if->core_params; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t ptxfifosize; ++ int i; ++ hcchar_data_t hcchar; ++ hcfg_data_t hcfg; ++ dwc_otg_hc_regs_t *hc_regs; ++ int num_channels; ++ gotgctl_data_t gotgctl = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, _core_if); ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(_core_if->pcgcctl, 0); ++ ++ /* Initialize Host Configuration Register */ ++ init_fslspclksel(_core_if); ++ if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ hcfg.b.fslssupp = 1; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); ++ } ++ ++ /* Configure data FIFO sizes */ ++ if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", _core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->host_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /* Periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size; ++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ } ++ ++ /* Clear Host Set HNP Enable in the OTG Control Register */ ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, gotgctl.d32, 0); ++ ++ /* Make sure the FIFOs are flushed. */ ++ dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */); ++ dwc_otg_flush_rx_fifo(_core_if); ++ ++ /* Flush out any leftover queued requests. */ ++ num_channels = _core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ hc_regs = _core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ /* Halt all channels to put them into a known state. */ ++ for (i = 0; i < num_channels; i++) { ++ int count = 0; ++ hc_regs = _core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); ++ do { ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (++count > 200) { ++ DWC_ERROR("%s: Unable to clear halt on channel %d\n", ++ __func__, i); ++ break; ++ } ++ udelay(100); ++ } while (hcchar.b.chen); ++ } ++ ++ /* Turn on the vbus power. */ ++ DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state); ++ if (_core_if->op_state == A_HOST){ ++ hprt0.d32 = dwc_otg_read_hprt0(_core_if); ++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); ++ if (hprt0.b.prtpwr == 0 ) { ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(host_if->hprt0, hprt0.d32); ++ } ++ } ++ ++ dwc_otg_enable_host_interrupts( _core_if ); ++} ++ ++/** ++ * Prepares a host channel for transferring packets to/from a specific ++ * endpoint. The HCCHARn register is set up with the characteristics specified ++ * in _hc. Host channel interrupts that may need to be serviced while this ++ * transfer is in progress are enabled. ++ * ++ * @param _core_if Programming view of DWC_otg controller ++ * @param _hc Information needed to initialize the host channel ++ */ ++void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ uint32_t intr_enable; ++ hcintmsk_data_t hc_intr_mask; ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ ++ uint8_t hc_num = _hc->hc_num; ++ dwc_otg_host_if_t *host_if = _core_if->host_if; ++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; ++ ++ /* Clear old interrupt conditions for this host channel. */ ++ hc_intr_mask.d32 = 0xFFFFFFFF; ++ hc_intr_mask.b.reserved = 0; ++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); ++ ++ /* Enable channel interrupts required for this transfer. */ ++ hc_intr_mask.d32 = 0; ++ hc_intr_mask.b.chhltd = 1; ++ if (_core_if->dma_enable) { ++ hc_intr_mask.b.ahberr = 1; ++ if (_hc->error_state && !_hc->do_split && ++ _hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ hc_intr_mask.b.ack = 1; ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.datatglerr = 1; ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) { ++ hc_intr_mask.b.nak = 1; ++ } ++ } ++ } ++ } else { ++ switch (_hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } else { ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.nyet = 1; ++ if (_hc->do_ping) { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (_hc->do_split) { ++ hc_intr_mask.b.nak = 1; ++ if (_hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (_hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ break; ++ case DWC_OTG_EP_TYPE_INTR: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ if (_hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ if (_hc->do_split) { ++ if (_hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ break; ++ case DWC_OTG_EP_TYPE_ISOC: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ hc_intr_mask.b.ack = 1; ++ ++ if (_hc->ep_is_in) { ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.bblerr = 1; ++ } ++ break; ++ } ++ } ++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); ++ ++ /* Enable the top level host channel interrupt. */ ++ intr_enable = (1 << hc_num); ++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); ++ ++ /* Make sure host channel interrupts are enabled. */ ++ gintmsk.b.hcintr = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32); ++ ++ /* ++ * Program the HCCHARn register with the endpoint characteristics for ++ * the current transfer. ++ */ ++ hcchar.d32 = 0; ++ hcchar.b.devaddr = _hc->dev_addr; ++ hcchar.b.epnum = _hc->ep_num; ++ hcchar.b.epdir = _hc->ep_is_in; ++ hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW); ++ hcchar.b.eptype = _hc->ep_type; ++ hcchar.b.mps = _hc->max_packet; ++ ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); ++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); ++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); ++ ++ /* ++ * Program the HCSPLIT register for SPLITs ++ */ ++ hcsplt.d32 = 0; ++ if (_hc->do_split) { ++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", _hc->hc_num, ++ _hc->complete_split ? "CSPLIT" : "SSPLIT"); ++ hcsplt.b.compsplt = _hc->complete_split; ++ hcsplt.b.xactpos = _hc->xact_pos; ++ hcsplt.b.hubaddr = _hc->hub_addr; ++ hcsplt.b.prtaddr = _hc->port_addr; ++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split); ++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos); ++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr); ++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr); ++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len); ++ } ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); ++ ++} ++ ++/** ++ * Attempts to halt a host channel. This function should only be called in ++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under ++ * normal circumstances in DMA mode, the controller halts the channel when the ++ * transfer is complete or a condition occurs that requires application ++ * intervention. ++ * ++ * In slave mode, checks for a free request queue entry, then sets the Channel ++ * Enable and Channel Disable bits of the Host Channel Characteristics ++ * register of the specified channel to intiate the halt. If there is no free ++ * request queue entry, sets only the Channel Disable bit of the HCCHARn ++ * register to flush requests for this channel. In the latter case, sets a ++ * flag to indicate that the host channel needs to be halted when a request ++ * queue slot is open. ++ * ++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the ++ * HCCHARn register. The controller ensures there is space in the request ++ * queue before submitting the halt request. ++ * ++ * Some time may elapse before the core flushes any posted requests for this ++ * host channel and halts. The Channel Halted interrupt handler completes the ++ * deactivation of the host channel. ++ * ++ * @param _core_if Controller register interface. ++ * @param _hc Host channel to halt. ++ * @param _halt_status Reason for halting the channel. ++ */ ++void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ gnptxsts_data_t nptxsts; ++ hptxsts_data_t hptxsts; ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_core_global_regs_t *global_regs; ++ dwc_otg_host_global_regs_t *host_global_regs; ++ ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ global_regs = _core_if->core_global_regs; ++ host_global_regs = _core_if->host_if->host_global_regs; ++ ++ WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); ++ ++ if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ _halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Disable all channel interrupts except Ch Halted. The QTD ++ * and QH state associated with this transfer has been cleared ++ * (in the case of URB_DEQUEUE), so the channel needs to be ++ * shut down carefully to prevent crashes. ++ */ ++ hcintmsk_data_t hcintmsk; ++ hcintmsk.d32 = 0; ++ hcintmsk.b.chhltd = 1; ++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); ++ ++ /* ++ * Make sure no other interrupts besides halt are currently ++ * pending. Handling another interrupt could cause a crash due ++ * to the QTD and QH state. ++ */ ++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); ++ ++ /* ++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR ++ * even if the channel was already halted for some other ++ * reason. ++ */ ++ _hc->halt_status = _halt_status; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen == 0) { ++ /* ++ * The channel is either already halted or it hasn't ++ * started yet. In DMA mode, the transfer may halt if ++ * it finishes normally or a condition occurs that ++ * requires driver intervention. Don't want to halt ++ * the channel again. In either Slave or DMA mode, ++ * it's possible that the transfer has been assigned ++ * to a channel, but not started yet when an URB is ++ * dequeued. Don't want to halt a channel that hasn't ++ * started yet. ++ */ ++ return; ++ } ++ } ++ ++ if (_hc->halt_pending) { ++ /* ++ * A halt has already been issued for this channel. This might ++ * happen when a transfer is aborted by a higher level in ++ * the stack. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", ++ __func__, _hc->hc_num); ++ ++/* dwc_otg_dump_global_registers(_core_if); */ ++/* dwc_otg_dump_host_registers(_core_if); */ ++#endif ++ return; ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ ++ if (!_core_if->dma_enable) { ++ /* Check for space in the request queue to issue the halt. */ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (nptxsts.b.nptxqspcavail == 0) { ++ hcchar.b.chen = 0; ++ } ++ } else { ++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); ++ if ((hptxsts.b.ptxqspcavail == 0) || (_core_if->queuing_high_bandwidth)) { ++ hcchar.b.chen = 0; ++ } ++ } ++ } ++ ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ _hc->halt_status = _halt_status; ++ ++ if (hcchar.b.chen) { ++ _hc->halt_pending = 1; ++ _hc->halt_on_queue = 0; ++ } else { ++ _hc->halt_on_queue = 1; ++ } ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending); ++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue); ++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status); ++ ++ return; ++} ++ ++/** ++ * Clears the transfer state for a host channel. This function is normally ++ * called after a transfer is done and the host channel is being released. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Identifies the host channel to clean up. ++ */ ++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ dwc_otg_hc_regs_t *hc_regs; ++ ++ _hc->xfer_started = 0; ++ ++ /* ++ * Clear channel interrupt enables and any unhandled channel interrupt ++ * conditions. ++ */ ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ dwc_write_reg32(&hc_regs->hcintmsk, 0); ++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); ++ ++#ifdef DEBUG ++ del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); ++ { ++ hcchar_data_t hcchar; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, _hc->hc_num, hcchar.d32); ++ } ++ } ++#endif ++} ++ ++/** ++ * Sets the channel property that indicates in which frame a periodic transfer ++ * should occur. This is always set to the _next_ frame. This function has no ++ * effect on non-periodic transfers. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Identifies the host channel to set up and its properties. ++ * @param _hcchar Current value of the HCCHAR register for the specified host ++ * channel. ++ */ ++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ hcchar_data_t *_hcchar) ++{ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hfnum_data_t hfnum; ++ hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum); ++ /* 1 if _next_ frame is odd, 0 if it's even */ ++ _hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; ++#ifdef DEBUG ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split && !_hc->complete_split) { ++ switch (hfnum.b.frnum & 0x7) { ++ case 7: ++ _core_if->hfnum_7_samples++; ++ _core_if->hfnum_7_frrem_accum += hfnum.b.frrem; ++ break; ++ case 0: ++ _core_if->hfnum_0_samples++; ++ _core_if->hfnum_0_frrem_accum += hfnum.b.frrem; ++ break; ++ default: ++ _core_if->hfnum_other_samples++; ++ _core_if->hfnum_other_frrem_accum += hfnum.b.frrem; ++ break; ++ } ++ } ++#endif ++ } ++} ++ ++#ifdef DEBUG ++static void hc_xfer_timeout(unsigned long _ptr) ++{ ++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)_ptr; ++ int hc_num = xfer_info->hc->hc_num; ++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); ++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); ++} ++#endif ++ ++/* ++ * This function does the setup for a data transfer for a host channel and ++ * starts the transfer. May be called in either Slave mode or DMA mode. In ++ * Slave mode, the caller must ensure that there is sufficient space in the ++ * request queue and Tx Data FIFO. ++ * ++ * For an OUT transfer in Slave mode, it loads a data packet into the ++ * appropriate FIFO. If necessary, additional data packets will be loaded in ++ * the Host ISR. ++ * ++ * For an IN transfer in Slave mode, a data packet is requested. The data ++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, ++ * additional data packets are requested in the Host ISR. ++ * ++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ ++ * register along with a packet count of 1 and the channel is enabled. This ++ * causes a single PING transaction to occur. Other fields in HCTSIZ are ++ * simply set to 0 since no data transfer occurs in this case. ++ * ++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with ++ * all the information required to perform the subsequent data transfer. In ++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the ++ * controller performs the entire PING protocol, then starts the data ++ * transfer. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _hc Information needed to initialize the host channel. The xfer_len ++ * value may be reduced to accommodate the max widths of the XferSize and ++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed ++ * to reflect the final xfer_len value. ++ */ ++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ uint16_t num_packets; ++ uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size; ++ uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ hctsiz.d32 = 0; ++ ++ if (_hc->do_ping) { ++ if (!_core_if->dma_enable) { ++ dwc_otg_hc_do_ping(_core_if, _hc); ++ _hc->xfer_started = 1; ++ return; ++ } else { ++ hctsiz.b.dopng = 1; ++ } ++ } ++ ++ if (_hc->do_split) { ++ num_packets = 1; ++ ++ if (_hc->complete_split && !_hc->ep_is_in) { ++ /* For CSPLIT OUT Transfer, set the size to 0 so the ++ * core doesn't expect any data written to the FIFO */ ++ _hc->xfer_len = 0; ++ } else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) { ++ _hc->xfer_len = _hc->max_packet; ++ } else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) { ++ _hc->xfer_len = 188; ++ } ++ ++ hctsiz.b.xfersize = _hc->xfer_len; ++ } else { ++ /* ++ * Ensure that the transfer length and packet count will fit ++ * in the widths allocated for them in the HCTSIZn register. ++ */ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure the transfer size is no larger than one ++ * (micro)frame's worth of data. (A check was done ++ * when the periodic transfer was accepted to ensure ++ * that a (micro)frame's worth of data can be ++ * programmed into a channel.) ++ */ ++ uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet; ++ if (_hc->xfer_len > max_periodic_len) { ++ _hc->xfer_len = max_periodic_len; ++ } else { ++ } ++ } else if (_hc->xfer_len > max_hc_xfer_size) { ++ /* Make sure that xfer_len is a multiple of max packet size. */ ++ _hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1; ++ } ++ ++ if (_hc->xfer_len > 0) { ++ num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet; ++ if (num_packets > max_hc_pkt_count) { ++ num_packets = max_hc_pkt_count; ++ _hc->xfer_len = num_packets * _hc->max_packet; ++ } ++ } else { ++ /* Need 1 packet for transfer length of 0. */ ++ num_packets = 1; ++ } ++ ++ if (_hc->ep_is_in) { ++ /* Always program an integral # of max packets for IN transfers. */ ++ _hc->xfer_len = num_packets * _hc->max_packet; ++ } ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure that the multi_count field matches the ++ * actual transfer length. ++ */ ++ _hc->multi_count = num_packets; ++ ++ } ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* Set up the initial PID for the transfer. */ ++ if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) { ++ if (_hc->ep_is_in) { ++ if (_hc->multi_count == 1) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } else if (_hc->multi_count == 2) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA2; ++ } ++ } else { ++ if (_hc->multi_count == 1) { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_MDATA; ++ } ++ } ++ } else { ++ _hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ } ++ ++ hctsiz.b.xfersize = _hc->xfer_len; ++ } ++ ++ _hc->start_pkt_count = num_packets; ++ hctsiz.b.pktcnt = num_packets; ++ hctsiz.b.pid = _hc->data_pid_start; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); ++ ++ if (_core_if->dma_enable) { ++#ifdef DEBUG ++if(((uint32_t)_hc->xfer_buff)%4) ++printk("dwc_otg_hc_start_transfer _hc->xfer_buff not 4 byte alignment\n"); ++#endif ++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)_hc->xfer_buff); ++ } ++ ++ /* Start the split */ ++ if (_hc->do_split) { ++ hcsplt_data_t hcsplt; ++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); ++ hcsplt.b.spltena = 1; ++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.multicnt = _hc->multi_count; ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++#ifdef DEBUG ++ _core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32; ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, _hc->hc_num, hcchar.d32); ++ } ++#endif ++ ++ /* Set host channel enable after all other setup is complete. */ ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ _hc->xfer_started = 1; ++ _hc->requests++; ++ ++ if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) { ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(_core_if, _hc); ++ } ++ ++#ifdef DEBUG ++ /* Start a timer for this transfer. */ ++ _core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout; ++ _core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if; ++ _core_if->hc_xfer_info[_hc->hc_num].hc = _hc; ++ _core_if->hc_xfer_timer[_hc->hc_num].data = (unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]); ++ _core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ*10); ++ add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]); ++#endif ++} ++ ++/** ++ * This function continues a data transfer that was started by previous call ++ * to dwc_otg_hc_start_transfer. The caller must ensure there is ++ * sufficient space in the request queue and Tx Data FIFO. This function ++ * should only be called in Slave mode. In DMA mode, the controller acts ++ * autonomously to complete transfers programmed to a host channel. ++ * ++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO ++ * if there is any data remaining to be queued. For an IN transfer, another ++ * data packet is always requested. For the SETUP phase of a control transfer, ++ * this function does nothing. ++ * ++ * @return 1 if a new request is queued, 0 if no more requests are required ++ * for this transfer. ++ */ ++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ ++ if (_hc->do_split) { ++ /* SPLITs always queue just once per channel */ ++ return 0; ++ } else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ /* SETUPs are queued only once since they can't be NAKed. */ ++ return 0; ++ } else if (_hc->ep_is_in) { ++ /* ++ * Always queue another request for other IN transfers. If ++ * back-to-back INs are issued and NAKs are received for both, ++ * the driver may still be processing the first NAK when the ++ * second NAK is received. When the interrupt handler clears ++ * the NAK interrupt for the first NAK, the second NAK will ++ * not be seen. So we can't depend on the NAK interrupt ++ * handler to requeue a NAKed request. Instead, IN requests ++ * are issued each time this function is called. When the ++ * transfer completes, the extra requests for the channel will ++ * be flushed. ++ */ ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ _hc->requests++; ++ return 1; ++ } else { ++ /* OUT transfers. */ ++ if (_hc->xfer_count < _hc->xfer_len) { ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(_core_if, _hc, &hcchar); ++ } ++ ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(_core_if, _hc); ++ _hc->requests++; ++ return 1; ++ } else { ++ return 0; ++ } ++ } ++} ++ ++/** ++ * Starts a PING transfer. This function should only be called in Slave mode. ++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. ++ */ ++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ dwc_otg_hc_regs_t *hc_regs = _core_if->host_if->hc_regs[_hc->hc_num]; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num); ++ ++ hctsiz.d32 = 0; ++ hctsiz.b.dopng = 1; ++ hctsiz.b.pktcnt = 1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++} ++ ++/* ++ * This function writes a packet into the Tx FIFO associated with the Host ++ * Channel. For a channel associated with a non-periodic EP, the non-periodic ++ * Tx FIFO is written. For a channel associated with a periodic EP, the ++ * periodic Tx FIFO is written. This function should only be called in Slave ++ * mode. ++ * ++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by ++ * then number of bytes written to the Tx FIFO. ++ */ ++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ uint32_t i; ++ uint32_t remaining_count; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ ++ uint32_t *data_buff = (uint32_t *)(_hc->xfer_buff); ++ uint32_t *data_fifo = _core_if->data_fifo[_hc->hc_num]; ++ ++ remaining_count = _hc->xfer_len - _hc->xfer_count; ++ if (remaining_count > _hc->max_packet) { ++ byte_count = _hc->max_packet; ++ } else { ++ byte_count = remaining_count; ++ } ++ ++ dword_count = (byte_count + 3) / 4; ++ ++ if ((((unsigned long)data_buff) & 0x3) == 0) { ++ /* xfer_buff is DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) { ++ dwc_write_reg32(data_fifo, *data_buff); ++ } ++ } else { ++ /* xfer_buff is not DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) { ++ dwc_write_reg32(data_fifo, get_unaligned(data_buff)); ++ } ++ } ++ ++ _hc->xfer_count += byte_count; ++ _hc->xfer_buff += byte_count; ++} ++ ++/** ++ * Gets the current USB frame number. This is the frame number from the last ++ * SOF packet. ++ */ ++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if) ++{ ++ dsts_data_t dsts; ++ dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts); ++ ++ /* read current frame/microfreme number from DSTS register */ ++ return dsts.b.soffn; ++} ++ ++/** ++ * This function reads a setup packet from the Rx FIFO into the destination ++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) ++ * Interrupt routine when a SETUP packet has been received in Slave mode. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _dest Destination buffer for packet data. ++ */ ++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *_core_if, uint32_t *_dest) ++{ ++ /* Get the 8 bytes of a setup transaction data */ ++ ++ /* Pop 2 DWORDS off the receive data FIFO into memory */ ++ _dest[0] = dwc_read_reg32(_core_if->data_fifo[0]); ++ _dest[1] = dwc_read_reg32(_core_if->data_fifo[0]); ++ //_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]); ++ //_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]); ++} ++ ++ ++/** ++ * This function enables EP0 OUT to receive SETUP packets and configures EP0 ++ * IN for transmitting packets. It is normally called when the ++ * "Enumeration Done" interrupt occurs. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ dsts_data_t dsts; ++ depctl_data_t diepctl; ++ depctl_data_t doepctl; ++ dctl_data_t dctl ={.d32=0}; ++ ++ /* Read the Device Status and Endpoint 0 Control registers */ ++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); ++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); ++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); ++ ++ /* Set the MPS of the IN EP based on the enumeration speed */ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_64; ++ break; ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_8; ++ break; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); ++ ++ /* Enable OUT EP for receive */ ++ doepctl.b.epena = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++ dctl.b.cgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->dctl)); ++} ++ ++/** ++ * This function activates an EP. The Device EP control register for ++ * the EP is configured as defined in the ep structure. Note: This ++ * function is not used for EP0. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to activate. ++ */ ++void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ depctl_data_t depctl; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = {.d32=0}; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ /* Read DEPCTLn register */ ++ if (_ep->is_in == 1) { ++ addr = &dev_if->in_ep_regs[_ep->num]->diepctl; ++ daintmsk.ep.in = 1<<_ep->num; ++ } else { ++ addr = &dev_if->out_ep_regs[_ep->num]->doepctl; ++ daintmsk.ep.out = 1<<_ep->num; ++ } ++ ++ /* If the EP is already active don't change the EP Control ++ * register. */ ++ depctl.d32 = dwc_read_reg32(addr); ++ if (!depctl.b.usbactep) { ++ depctl.b.mps = _ep->maxpacket; ++ depctl.b.eptype = _ep->type; ++ depctl.b.txfnum = _ep->tx_fifo_num; ++ ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ depctl.b.setd0pid = 1; // ??? ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ depctl.b.usbactep = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL=%08x\n", dwc_read_reg32(addr)); ++ } ++ ++ ++ /* Enable the Interrupt for this EP */ ++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, ++ 0, daintmsk.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); ++ _ep->stall_clear_flag = 0; ++ return; ++} ++ ++/** ++ * This function deactivates an EP. This is done by clearing the USB Active ++ * EP bit in the Device EP control register. Note: This function is not used ++ * for EP0. EP0 cannot be deactivated. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to deactivate. ++ */ ++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl ={.d32 = 0}; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = {.d32=0}; ++ ++ /* Read DEPCTLn register */ ++ if (_ep->is_in == 1) { ++ addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl; ++ daintmsk.ep.in = 1<<_ep->num; ++ } else { ++ addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl; ++ daintmsk.ep.out = 1<<_ep->num; ++ } ++ ++ depctl.b.usbactep = 0; ++ dwc_write_reg32(addr, depctl.d32); ++ ++ /* Disable the Interrupt for this EP */ ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk, ++ daintmsk.d32, 0); ++ ++ return; ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to start the transfer on. ++ */ ++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ /** @todo Refactor this funciton to check the transfer size ++ * count value does not execed the number bits in the Transfer ++ * count register. */ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++#ifdef CHECK_PACKET_COUNTER_WIDTH ++ const uint32_t MAX_XFER_SIZE = ++ _core_if->core_params->max_transfer_size; ++ const uint32_t MAX_PKT_COUNT = ++ _core_if->core_params->max_packet_count; ++ uint32_t num_packets; ++ uint32_t transfer_len; ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ _core_if->dev_if->out_ep_regs[_ep->num]; ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ _core_if->dev_if->in_ep_regs[_ep->num]; ++ gnptxsts_data_t txstatus; ++ ++ int lvl = SET_DEBUG_LEVEL(DBG_PCD); ++ ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); ++ ++ transfer_len = _ep->xfer_len - _ep->xfer_count; ++ if (transfer_len > MAX_XFER_SIZE) { ++ transfer_len = MAX_XFER_SIZE; ++ } ++ if (transfer_len == 0) { ++ num_packets = 1; ++ /* OUT EP to recieve Zero-length packet set transfer ++ * size to maxpacket size. */ ++ if (!_ep->is_in) { ++ transfer_len = _ep->maxpacket; ++ } ++ } else { ++ num_packets = ++ (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket; ++ if (num_packets > MAX_PKT_COUNT) { ++ num_packets = MAX_PKT_COUNT; ++ } ++ } ++ DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len, ++ num_packets); ++ ++ deptsiz.b.xfersize = transfer_len; ++ deptsiz.b.pktcnt = num_packets; ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ } else {/* OUT endpoint */ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ txstatus.d32 = ++ dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (txstatus.b.nptxqspcavail == 0) { ++ DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n", ++ txstatus.d32); ++ return; ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff); ++ } else { ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0 && ++ _ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = (0x1 << _ep->num); ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> ++ dtknqr4_fifoemptymsk,0, fifoemptymsk); ++ } ++ } ++ } ++ } else { /* OUT endpoint */ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff); ++ } ++ } ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++ ++ SET_DEBUG_LEVEL(lvl); ++#endif ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff); ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num]; ++ gnptxsts_data_t gtxstatus; ++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (_core_if->en_multiple_tx_fifo == 0 && ++ gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); ++#endif ++ //return; ++ MDELAY(100); //james ++ } ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ /* Zero Length Packet? */ ++ if (_ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = _ep->xfer_len; ++ deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->dma_enable) { ++#if 1 // winder ++ dma_cache_wback_inv((unsigned long) _ep->xfer_buff, _ep->xfer_len); // winder ++ dwc_write_reg32 (&(in_regs->diepdma), ++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder ++#else ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)_ep->dma_addr); ++#endif ++ } else { ++ if (_ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32, 0); ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << _ep->num; ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs-> ++ dtknqr4_fifoemptymsk,0,fifoemptymsk); ++ } ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ if (_core_if->dma_enable) { ++ depctl.d32 = dwc_read_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = _ep->num; ++ dwc_write_reg32 (&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ } ++ } else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ /* Program the transfer size and packet count as follows: ++ * ++ * pktcnt = N ++ * xfersize = N * maxpacket ++ */ ++ if (_ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = _ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; ++ } ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", ++ _ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (_core_if->dma_enable) { ++#if 1 // winder ++ dwc_write_reg32 (&(out_regs->doepdma), ++ CPHYSADDR((uint32_t)_ep->xfer_buff)); // winder ++#else ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)_ep->dma_addr); ++#endif ++ } ++ ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /** @todo NGS: dpid is read-only. Use setd0pid ++ * or setd1pid. */ ++ if (_ep->even_odd_frame) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n", ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++ } ++} ++ ++ ++/** ++ * This function does the setup for a data transfer for EP0 and starts ++ * the transfer. For an IN transfer, the packets will be loaded into ++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are ++ * unloaded from the Rx FIFO in the ISR. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ volatile depctl_data_t depctl; ++ volatile deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p total_len=%d\n", ++ _ep->num, (_ep->is_in?"IN":"OUT"), _ep->xfer_len, ++ _ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff, ++ _ep->total_len); ++ _ep->total_len = _ep->xfer_len; ++ ++ /* IN endpoint */ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t gtxstatus; ++ gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ if (_core_if->en_multiple_tx_fifo == 0 && ++ gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", ++ dwc_read_reg32(&in_regs->diepctl)); ++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", ++ deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt); ++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32); ++#endif /* */ ++ printk("TX Queue or FIFO Full!!!!\n"); // test-only ++ //return; ++ MDELAY(100); //james ++ } ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Zero Length Packet? */ ++ if (_ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ if (_ep->xfer_len > _ep->maxpacket) { ++ _ep->xfer_len = _ep->maxpacket; ++ deptsiz.b.xfersize = _ep->maxpacket; ++ } ++ else { ++ deptsiz.b.xfersize = _ep->xfer_len; ++ } ++ deptsiz.b.pktcnt = 1; ++ ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!_core_if->dma_enable) { ++ if (_core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0); ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32, ++ intr_mask.d32); ++ } else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if (_ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << _ep->num; ++ dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ ++ } ++ } ++ } else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count as follows: ++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) ++ * pktcnt = N */ ++ if (_ep->xfer_len == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = _ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } else { ++ deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket; ++ } ++ ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", ++ _ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt); ++ ++ if (_core_if->dma_enable) { ++ dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); ++ } ++} ++ ++/** ++ * This function continues control IN transfers started by ++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a ++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one ++ * bit for the packet count. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP0 data. ++ */ ++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ if (_ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ _core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t tx_status = {.d32 = 0}; ++ ++ tx_status.d32 = dwc_read_reg32( &_core_if->core_global_regs->gnptxsts ); ++ /** @todo Should there be check for room in the Tx ++ * Status Queue. If not remove the code above this comment. */ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) > _ep->maxpacket ? _ep->maxpacket : ++ (_ep->total_len - _ep->xfer_count); ++ deptsiz.b.pktcnt = 1; ++ _ep->xfer_len += deptsiz.b.xfersize; ++ ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ _ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ dwc_write_reg32 (&(in_regs->diepdma), ++ CPHYSADDR((uint32_t)_ep->dma_addr)); // winder ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!_core_if->dma_enable) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->gintsts, ++ intr_mask.d32 ); ++ ++ dwc_modify_reg32( &_core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ ++ } ++ ++} ++ ++#ifdef DEBUG ++void dump_msg(const u8 *buf, unsigned int length) ++{ ++ unsigned int start, num, i; ++ char line[52], *p; ++ ++ if (length >= 512) ++ return; ++ start = 0; ++ while (length > 0) { ++ num = min(length, 16u); ++ p = line; ++ for (i = 0; i < num; ++i) { ++ if (i == 8) ++ *p++ = ' '; ++ sprintf(p, " %02x", buf[i]); ++ p += 3; ++ } ++ *p = 0; ++ DWC_PRINT( "%6x: %s\n", start, line); ++ buf += num; ++ start += num; ++ length -= num; ++ } ++} ++#else ++static inline void dump_msg(const u8 *buf, unsigned int length) ++{ ++} ++#endif ++ ++/** ++ * This function writes a packet into the Tx FIFO associated with the ++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For ++ * periodic EPs the periodic Tx FIFO associated with the EP is written ++ * with all packets for the next micro-frame. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to write packet for. ++ * @param _dma Indicates if DMA is being used. ++ */ ++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma) ++{ ++ /** ++ * The buffer is padded to DWORD on a per packet basis in ++ * slave/dma mode if the MPS is not DWORD aligned. The last ++ * packet, if short, is also padded to a multiple of DWORD. ++ * ++ * ep->xfer_buff always starts DWORD aligned in memory and is a ++ * multiple of DWORD in length ++ * ++ * ep->xfer_len can be any number of bytes ++ * ++ * ep->xfer_count is a multiple of ep->maxpacket until the last ++ * packet ++ * ++ * FIFO access is DWORD */ ++ ++ uint32_t i; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ uint32_t *fifo; ++ uint32_t *data_buff = (uint32_t *)_ep->xfer_buff; ++ ++ //DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep); ++ if (_ep->xfer_count >= _ep->xfer_len) { ++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, _ep->num); ++ return; ++ } ++ ++ /* Find the byte length of the packet either short packet or MPS */ ++ if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) { ++ byte_count = _ep->xfer_len - _ep->xfer_count; ++ } ++ else { ++ byte_count = _ep->maxpacket; ++ } ++ ++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS ++ * is not a multiple of DWORD */ ++ dword_count = (byte_count + 3) / 4; ++ ++#ifdef VERBOSE ++ dump_msg(_ep->xfer_buff, byte_count); ++#endif ++ if (_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /**@todo NGS Where are the Periodic Tx FIFO addresses ++ * intialized? What should this be? */ ++ fifo = _core_if->data_fifo[_ep->tx_fifo_num]; ++ } else { ++ fifo = _core_if->data_fifo[_ep->num]; ++ } ++ ++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", ++ fifo, data_buff, *data_buff, byte_count); ++ ++ ++ if (!_dma) { ++ for (i=0; ixfer_count += byte_count; ++ _ep->xfer_buff += byte_count; ++#if 1 // winder, why do we need this?? ++ _ep->dma_addr += byte_count; ++#endif ++} ++ ++/** ++ * Set the EP STALL. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to set the stall on. ++ */ ++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ if (_ep->is_in == 1) { ++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ ++ } else { ++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the stall bit */ ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * Clear the EP STALL. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _ep The EP to clear stall from. ++ */ ++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num, ++ (_ep->is_in?"IN":"OUT")); ++ ++ if (_ep->is_in == 1) { ++ depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl); ++ } else { ++ depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl); ++ } ++ ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* clear the stall bits */ ++ depctl.b.stall = 0; ++ ++ /* ++ * USB Spec 9.4.5: For endpoints using data toggle, regardless ++ * of whether an endpoint has the Halt feature set, a ++ * ClearFeature(ENDPOINT_HALT) request always results in the ++ * data toggle being reinitialized to DATA0. ++ */ ++ if (_ep->type == DWC_OTG_EP_TYPE_INTR || ++ _ep->type == DWC_OTG_EP_TYPE_BULK) { ++ depctl.b.setd0pid = 1; /* DATA0 */ ++ } ++ ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * This function reads a packet from the Rx FIFO into the destination ++ * buffer. To read SETUP data use dwc_otg_read_setup_packet. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _dest Destination buffer for the packet. ++ * @param _bytes Number of bytes to copy to the destination. ++ */ ++void dwc_otg_read_packet(dwc_otg_core_if_t *_core_if, ++ uint8_t *_dest, ++ uint16_t _bytes) ++{ ++ int i; ++ int word_count = (_bytes + 3) / 4; ++ ++ volatile uint32_t *fifo = _core_if->data_fifo[0]; ++ uint32_t *data_buff = (uint32_t *)_dest; ++ ++ /** ++ * @todo Account for the case where _dest is not dword aligned. This ++ * requires reading data from the FIFO into a uint32_t temp buffer, ++ * then moving it into the data buffer. ++ */ ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, ++ _core_if, _dest, _bytes); ++ ++ for (i=0; idev_if->dev_global_regs->dcfg; ++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dctl; ++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dsts; ++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->diepmsk; ++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->doepmsk; ++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->daint; ++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->dev_global_regs->dtknqr1; ++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 6) { ++ addr=&_core_if->dev_if->dev_global_regs->dtknqr2; ++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ addr=&_core_if->dev_if->dev_global_regs->dvbusdis; ++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ addr=&_core_if->dev_if->dev_global_regs->dvbuspulse; ++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 14) { ++ addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; ++ DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ if (_core_if->hwcfg2.b.dev_token_q_depth > 22) { ++ addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr, ++ dwc_read_reg32(addr)); ++ } ++ for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) { ++ DWC_PRINT("Device IN EP %d Registers\n", i); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepctl; ++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepint; ++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->dieptsiz; ++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->in_ep_regs[i]->diepdma; ++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts; ++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr, ++ dwc_read_reg32(addr)); ++ } ++ for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) { ++ DWC_PRINT("Device OUT EP %d Registers\n", i); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepctl; ++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepfn; ++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepint; ++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doeptsiz; ++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->dev_if->out_ep_regs[i]->doepdma; ++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ return; ++} ++ ++/** ++ * This function reads the host registers and prints them ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Host Global Registers\n"); ++ addr=&_core_if->host_if->host_global_regs->hcfg; ++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hfir; ++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hfnum; ++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->hptxsts; ++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->haint; ++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->host_global_regs->haintmsk; ++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=_core_if->host_if->hprt0; ++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<_core_if->core_params->host_channels; i++) { ++ DWC_PRINT("Host Channel %d Specific Registers\n", i); ++ addr=&_core_if->host_if->hc_regs[i]->hcchar; ++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcsplt; ++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcint; ++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcintmsk; ++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hctsiz; ++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->host_if->hc_regs[i]->hcdma; ++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ } ++ return; ++} ++ ++/** ++ * This function reads the core global registers and prints them ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Core Global Registers\n"); ++ addr=&_core_if->core_global_regs->gotgctl; ++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gotgint; ++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gahbcfg; ++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gusbcfg; ++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grstctl; ++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gintsts; ++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gintmsk; ++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grxstsr; ++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ //addr=&_core_if->core_global_regs->grxstsp; ++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->grxfsiz; ++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gnptxfsiz; ++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gnptxsts; ++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gi2cctl; ++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gpvndctl; ++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ggpio; ++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->guid; ++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->gsnpsid; ++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg1; ++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg2; ++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg3; ++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->ghwcfg4; ++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&_core_if->core_global_regs->hptxfsiz; ++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<_core_if->hwcfg4.b.num_dev_perio_in_ep; i++) { ++ addr=&_core_if->core_global_regs->dptxfsiz_dieptxf[i]; ++ DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n",i,(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++} ++#endif ++ ++/** ++ * Flush a Tx FIFO. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _num Tx FIFO to flush. ++ */ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", _num); ++ ++ greset.b.txfflsh = 1; ++ greset.b.txfnum = _num; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++ ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", ++ __func__, greset.d32, ++ dwc_read_reg32( &global_regs->gnptxsts)); ++ break; ++ } ++ ++ udelay(1); ++ } while (greset.b.txfflsh == 1); ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Flush Rx FIFO. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); ++ /* ++ * ++ */ ++ greset.b.rxfflsh = 1; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++ ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } while (greset.b.rxfflsh == 1); ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Do core a soft reset of the core. Be careful with this because it ++ * resets all the internal state machines of the core. ++ */ ++ ++void dwc_otg_core_reset(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = _core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); ++ /* Wait for AHB master IDLE state. */ ++ do { ++ UDELAY(10); ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 100000){ ++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x %x\n", __func__, ++ greset.d32, greset.b.ahbidle); ++ return; ++ } ++ } while (greset.b.ahbidle == 0); ++ ++// winder add. ++#if 1 ++ /* Note: Actually, I don't exactly why we need to put delay here. */ ++ MDELAY(100); ++#endif ++ /* Core Soft Reset */ ++ count = 0; ++ greset.b.csftrst = 1; ++ dwc_write_reg32( &global_regs->grstctl, greset.d32 ); ++// winder add. ++#if 1 ++ /* Note: Actually, I don't exactly why we need to put delay here. */ ++ MDELAY(100); ++#endif ++ do { ++ greset.d32 = dwc_read_reg32( &global_regs->grstctl); ++ if (++count > 10000){ ++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ udelay(1); ++ } while (greset.b.csftrst == 1); ++ /* Wait for 3 PHY Clocks*/ ++ //DWC_PRINT("100ms\n"); ++ MDELAY(100); ++} ++ ++ ++ ++/** ++ * Register HCD callbacks. The callbacks are used to start and stop ++ * the HCD for interrupt processing. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _cb the HCD callback structure. ++ * @param _p pointer to be passed to callback function (usb_hcd*). ++ */ ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p) ++{ ++ _core_if->hcd_cb = _cb; ++ _cb->p = _p; ++} ++ ++/** ++ * Register PCD callbacks. The callbacks are used to start and stop ++ * the PCD for interrupt processing. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ * @param _cb the PCD callback structure. ++ * @param _p pointer to be passed to callback function (pcd*). ++ */ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p) ++{ ++ _core_if->pcd_cb = _cb; ++ _cb->p = _p; ++} ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil.h +@@ -0,0 +1,911 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_CIL_H__) ++#define __DWC_CIL_H__ ++ ++#include "dwc_otg_plat.h" ++ ++#include "dwc_otg_regs.h" ++#ifdef DEBUG ++#include "linux/timer.h" ++#endif ++ ++/* the OTG capabilities. */ ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++/* the maximum speed of operation in host and device mode. */ ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++/* the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. */ ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++/* the type of PHY interface to use. */ ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++/* whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. */ ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++/* EP type. */ ++ ++/** ++ * @file ++ * This file contains the interface to the Core Interface Layer. ++ */ ++ ++/** ++ * The dwc_ep structure represents the state of a single ++ * endpoint when acting in device mode. It contains the data items ++ * needed for an endpoint to be activated and transfer packets. ++ */ ++typedef struct dwc_ep { ++ /** EP number used for register address lookup */ ++ uint8_t num; ++ /** EP direction 0 = OUT */ ++ unsigned is_in : 1; ++ /** EP active. */ ++ unsigned active : 1; ++ ++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO ++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/ ++ unsigned tx_fifo_num : 4; ++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ ++ unsigned type : 2; ++#define DWC_OTG_EP_TYPE_CONTROL 0 ++#define DWC_OTG_EP_TYPE_ISOC 1 ++#define DWC_OTG_EP_TYPE_BULK 2 ++#define DWC_OTG_EP_TYPE_INTR 3 ++ ++ /** DATA start PID for INTR and BULK EP */ ++ unsigned data_pid_start : 1; ++ /** Frame (even/odd) for ISOC EP */ ++ unsigned even_odd_frame : 1; ++ /** Max Packet bytes */ ++ unsigned maxpacket : 11; ++ ++ /** @name Transfer state */ ++ /** @{ */ ++ ++ /** ++ * Pointer to the beginning of the transfer buffer -- do not modify ++ * during transfer. ++ */ ++ ++ uint32_t dma_addr; ++ ++ uint8_t *start_xfer_buff; ++ /** pointer to the transfer buffer */ ++ uint8_t *xfer_buff; ++ /** Number of bytes to transfer */ ++ unsigned xfer_len : 19; ++ /** Number of bytes transferred. */ ++ unsigned xfer_count : 19; ++ /** Sent ZLP */ ++ unsigned sent_zlp : 1; ++ /** Total len for control transfer */ ++ unsigned total_len : 19; ++ ++ /** stall clear flag */ ++ unsigned stall_clear_flag : 1; ++ ++ /** @} */ ++} dwc_ep_t; ++ ++/* ++ * Reasons for halting a host channel. ++ */ ++typedef enum dwc_otg_halt_status { ++ DWC_OTG_HC_XFER_NO_HALT_STATUS, ++ DWC_OTG_HC_XFER_COMPLETE, ++ DWC_OTG_HC_XFER_URB_COMPLETE, ++ DWC_OTG_HC_XFER_ACK, ++ DWC_OTG_HC_XFER_NAK, ++ DWC_OTG_HC_XFER_NYET, ++ DWC_OTG_HC_XFER_STALL, ++ DWC_OTG_HC_XFER_XACT_ERR, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN, ++ DWC_OTG_HC_XFER_BABBLE_ERR, ++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, ++ DWC_OTG_HC_XFER_AHB_ERR, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, ++ DWC_OTG_HC_XFER_URB_DEQUEUE ++} dwc_otg_halt_status_e; ++ ++/** ++ * Host channel descriptor. This structure represents the state of a single ++ * host channel when acting in host mode. It contains the data items needed to ++ * transfer packets to an endpoint via a host channel. ++ */ ++typedef struct dwc_hc { ++ /** Host channel number used for register address lookup */ ++ uint8_t hc_num; ++ ++ /** Device to access */ ++ unsigned dev_addr : 7; ++ ++ /** EP to access */ ++ unsigned ep_num : 4; ++ ++ /** EP direction. 0: OUT, 1: IN */ ++ unsigned ep_is_in : 1; ++ ++ /** ++ * EP speed. ++ * One of the following values: ++ * - DWC_OTG_EP_SPEED_LOW ++ * - DWC_OTG_EP_SPEED_FULL ++ * - DWC_OTG_EP_SPEED_HIGH ++ */ ++ unsigned speed : 2; ++#define DWC_OTG_EP_SPEED_LOW 0 ++#define DWC_OTG_EP_SPEED_FULL 1 ++#define DWC_OTG_EP_SPEED_HIGH 2 ++ ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - DWC_OTG_EP_TYPE_CONTROL: 0 ++ * - DWC_OTG_EP_TYPE_ISOC: 1 ++ * - DWC_OTG_EP_TYPE_BULK: 2 ++ * - DWC_OTG_EP_TYPE_INTR: 3 ++ */ ++ unsigned ep_type : 2; ++ ++ /** Max packet size in bytes */ ++ unsigned max_packet : 11; ++ ++ /** ++ * PID for initial transaction. ++ * 0: DATA0,
++ * 1: DATA2,
++ * 2: DATA1,
++ * 3: MDATA (non-Control EP), ++ * SETUP (Control EP) ++ */ ++ unsigned data_pid_start : 2; ++#define DWC_OTG_HC_PID_DATA0 0 ++#define DWC_OTG_HC_PID_DATA2 1 ++#define DWC_OTG_HC_PID_DATA1 2 ++#define DWC_OTG_HC_PID_MDATA 3 ++#define DWC_OTG_HC_PID_SETUP 3 ++ ++ /** Number of periodic transactions per (micro)frame */ ++ unsigned multi_count: 2; ++ ++ /** @name Transfer State */ ++ /** @{ */ ++ ++ /** Pointer to the current transfer buffer position. */ ++ uint8_t *xfer_buff; ++ /** Total number of bytes to transfer. */ ++ uint32_t xfer_len; ++ /** Number of bytes transferred so far. */ ++ uint32_t xfer_count; ++ /** Packet count at start of transfer.*/ ++ uint16_t start_pkt_count; ++ ++ /** ++ * Flag to indicate whether the transfer has been started. Set to 1 if ++ * it has been started, 0 otherwise. ++ */ ++ uint8_t xfer_started; ++ ++ /** ++ * Set to 1 to indicate that a PING request should be issued on this ++ * channel. If 0, process normally. ++ */ ++ uint8_t do_ping; ++ ++ /** ++ * Set to 1 to indicate that the error count for this transaction is ++ * non-zero. Set to 0 if the error count is 0. ++ */ ++ uint8_t error_state; ++ ++ /** ++ * Set to 1 to indicate that this channel should be halted the next ++ * time a request is queued for the channel. This is necessary in ++ * slave mode if no request queue space is available when an attempt ++ * is made to halt the channel. ++ */ ++ uint8_t halt_on_queue; ++ ++ /** ++ * Set to 1 if the host channel has been halted, but the core is not ++ * finished flushing queued requests. Otherwise 0. ++ */ ++ uint8_t halt_pending; ++ ++ /** ++ * Reason for halting the host channel. ++ */ ++ dwc_otg_halt_status_e halt_status; ++ ++ /* ++ * Split settings for the host channel ++ */ ++ uint8_t do_split; /**< Enable split for the channel */ ++ uint8_t complete_split; /**< Enable complete split */ ++ uint8_t hub_addr; /**< Address of high speed hub */ ++ ++ uint8_t port_addr; /**< Port of the low/full speed device */ ++ /** Split transaction position ++ * One of the following values: ++ * - DWC_HCSPLIT_XACTPOS_MID ++ * - DWC_HCSPLIT_XACTPOS_BEGIN ++ * - DWC_HCSPLIT_XACTPOS_END ++ * - DWC_HCSPLIT_XACTPOS_ALL */ ++ uint8_t xact_pos; ++ ++ /** Set when the host channel does a short read. */ ++ uint8_t short_read; ++ ++ /** ++ * Number of requests issued for this channel since it was assigned to ++ * the current transfer (not counting PINGs). ++ */ ++ uint8_t requests; ++ ++ /** ++ * Queue Head for the transfer being processed by this channel. ++ */ ++ struct dwc_otg_qh *qh; ++ ++ /** @} */ ++ ++ /** Entry in list of host channels. */ ++ struct list_head hc_list_entry; ++} dwc_hc_t; ++ ++/** ++ * The following parameters may be specified when starting the module. These ++ * parameters define how the DWC_otg controller should be configured. ++ * Parameter values are passed to the CIL initialization function ++ * dwc_otg_cil_init. ++ */ ++ ++typedef struct dwc_otg_core_params ++{ ++ int32_t opt; ++//#define dwc_param_opt_default 1 ++ /** ++ * Specifies the OTG capabilities. The driver will automatically ++ * detect the value for this parameter if none is specified. ++ * 0 - HNP and SRP capable (default) ++ * 1 - SRP Only capable ++ * 2 - No HNP/SRP capable ++ */ ++ int32_t otg_cap; ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ++ /** ++ * Specifies whether to use slave or DMA mode for accessing the data ++ * FIFOs. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - Slave ++ * 1 - DMA (default, if available) ++ */ ++ int32_t dma_enable; ++//#define dwc_param_dma_enable_default 1 ++ /** The DMA Burst size (applicable only for External DMA ++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ */ ++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */ ++//#define dwc_param_dma_burst_size_default 32 ++ /** ++ * Specifies the maximum speed of operation in host and device mode. ++ * The actual speed depends on the speed of the attached device and ++ * the value of phy_type. The actual speed depends on the speed of the ++ * attached device. ++ * 0 - High Speed (default) ++ * 1 - Full Speed ++ */ ++ int32_t speed; ++//#define dwc_param_speed_default 0 ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++ ++ /** Specifies whether low power mode is supported when attached ++ * to a Full Speed or Low Speed device in host mode. ++ * 0 - Don't support low power mode (default) ++ * 1 - Support low power mode ++ */ ++ int32_t host_support_fs_ls_low_power; ++//#define dwc_param_host_support_fs_ls_low_power_default 0 ++ /** Specifies the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. This parameter is applicable only if ++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS ++ * then defaults to 6 MHZ otherwise 48 MHZ. ++ * ++ * 0 - 48 MHz ++ * 1 - 6 MHz ++ */ ++ int32_t host_ls_low_power_phy_clk; ++//#define dwc_param_host_ls_low_power_phy_clk_default 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++ /** ++ * 0 - Use cC FIFO size parameters ++ * 1 - Allow dynamic FIFO sizing (default) ++ */ ++ int32_t enable_dynamic_fifo; ++//#define dwc_param_enable_dynamic_fifo_default 1 ++ /** Total number of 4-byte words in the data FIFO memory. This ++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic ++ * Tx FIFOs. ++ * 32 to 32768 (default 8192) ++ * Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ */ ++ int32_t data_fifo_size; ++//#define dwc_param_data_fifo_size_default 8192 ++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1064) ++ */ ++ int32_t dev_rx_fifo_size; ++//#define dwc_param_dev_rx_fifo_size_default 1064 ++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode ++ * when dynamic FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t dev_nperio_tx_fifo_size; ++//#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++//#define dwc_param_dev_perio_tx_fifo_size_default 256 ++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_rx_fifo_size; ++//#define dwc_param_host_rx_fifo_size_default 1024 ++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode ++ * when Dynamic FIFO sizing is enabled in the core. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_nperio_tx_fifo_size; ++//#define dwc_param_host_nperio_tx_fifo_size_default 1024 ++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_perio_tx_fifo_size; ++//#define dwc_param_host_perio_tx_fifo_size_default 1024 ++ /** The maximum transfer size supported in bytes. ++ * 2047 to 65,535 (default 65,535) ++ */ ++ int32_t max_transfer_size; ++//#define dwc_param_max_transfer_size_default 65535 ++ /** The maximum number of packets in a transfer. ++ * 15 to 511 (default 511) ++ */ ++ int32_t max_packet_count; ++//#define dwc_param_max_packet_count_default 511 ++ /** The number of host channel registers to use. ++ * 1 to 16 (default 12) ++ * Note: The FPGA configuration supports a maximum of 12 host channels. ++ */ ++ int32_t host_channels; ++//#define dwc_param_host_channels_default 12 ++ /** The number of endpoints in addition to EP0 available for device ++ * mode operations. ++ * 1 to 15 (default 6 IN and OUT) ++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT ++ * endpoints in addition to EP0. ++ */ ++ int32_t dev_endpoints; ++//#define dwc_param_dev_endpoints_default 6 ++ /** ++ * Specifies the type of PHY interface to use. By default, the driver ++ * will automatically detect the phy_type. ++ * ++ * 0 - Full Speed PHY ++ * 1 - UTMI+ (default) ++ * 2 - ULPI ++ */ ++ int32_t phy_type; ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++//#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++ /** ++ * Specifies the UTMI+ Data Width. This parameter is ++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI ++ * PHY_TYPE, this parameter indicates the data width between ++ * the MAC and the ULPI Wrapper.) Also, this parameter is ++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set ++ * to "8 and 16 bits", meaning that the core has been ++ * configured to work at either data path width. ++ * ++ * 8 or 16 bits (default 16) ++ */ ++ int32_t phy_utmi_width; ++//#define dwc_param_phy_utmi_width_default 16 ++ /** ++ * Specifies whether the ULPI operates at double or single ++ * data rate. This parameter is only applicable if PHY_TYPE is ++ * ULPI. ++ * ++ * 0 - single data rate ULPI interface with 8 bit wide data ++ * bus (default) ++ * 1 - double data rate ULPI interface with 4 bit wide data ++ * bus ++ */ ++ int32_t phy_ulpi_ddr; ++//#define dwc_param_phy_ulpi_ddr_default 0 ++ /** ++ * Specifies whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. ++ */ ++ int32_t phy_ulpi_ext_vbus; ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++//#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++ /** ++ * Specifies whether to use the I2Cinterface for full speed PHY. This ++ * parameter is only applicable if PHY_TYPE is FS. ++ * 0 - No (default) ++ * 1 - Yes ++ */ ++ int32_t i2c_enable; ++//#define dwc_param_i2c_enable_default 0 ++ ++ int32_t ulpi_fs_ls; ++//#define dwc_param_ulpi_fs_ls_default 0 ++ ++ int32_t ts_dline; ++//#define dwc_param_ts_dline_default 0 ++ ++ /** ++ * Specifies whether dedicated transmit FIFOs are ++ * enabled for non periodic IN endpoints in device mode ++ * 0 - No ++ * 1 - Yes ++ */ ++ int32_t en_multiple_tx_fifo; ++#define dwc_param_en_multiple_tx_fifo_default 1 ++ ++ /** Number of 4-byte words in each of the Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS]; ++#define dwc_param_dev_tx_fifo_size_default 256 ++ ++ /** Thresholding enable flag- ++ * bit 0 - enable non-ISO Tx thresholding ++ * bit 1 - enable ISO Tx thresholding ++ * bit 2 - enable Rx thresholding ++ */ ++ uint32_t thr_ctl; ++#define dwc_param_thr_ctl_default 0 ++ ++ /** Thresholding length for Tx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t tx_thr_length; ++#define dwc_param_tx_thr_length_default 64 ++ ++ /** Thresholding length for Rx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t rx_thr_length; ++#define dwc_param_rx_thr_length_default 64 ++} dwc_otg_core_params_t; ++ ++#ifdef DEBUG ++struct dwc_otg_core_if; ++typedef struct hc_xfer_info ++{ ++ struct dwc_otg_core_if *core_if; ++ dwc_hc_t *hc; ++} hc_xfer_info_t; ++#endif ++ ++/** ++ * The dwc_otg_core_if structure contains information needed to manage ++ * the DWC_otg controller acting in either host or device mode. It ++ * represents the programming view of the controller as a whole. ++ */ ++typedef struct dwc_otg_core_if ++{ ++ /** Parameters that define how the core should be configured.*/ ++ dwc_otg_core_params_t *core_params; ++ ++ /** Core Global registers starting at offset 000h. */ ++ dwc_otg_core_global_regs_t *core_global_regs; ++ ++ /** Device-specific information */ ++ dwc_otg_dev_if_t *dev_if; ++ /** Host-specific information */ ++ dwc_otg_host_if_t *host_if; ++ ++ /* ++ * Set to 1 if the core PHY interface bits in USBCFG have been ++ * initialized. ++ */ ++ uint8_t phy_init_done; ++ ++ /* ++ * SRP Success flag, set by srp success interrupt in FS I2C mode ++ */ ++ uint8_t srp_success; ++ uint8_t srp_timer_started; ++ ++ /* Common configuration information */ ++ /** Power and Clock Gating Control Register */ ++ volatile uint32_t *pcgcctl; ++#define DWC_OTG_PCGCCTL_OFFSET 0xE00 ++ ++ /** Push/pop addresses for endpoints or host channels.*/ ++ uint32_t *data_fifo[MAX_EPS_CHANNELS]; ++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 ++#define DWC_OTG_DATA_FIFO_SIZE 0x1000 ++ ++ /** Total RAM for FIFOs (Bytes) */ ++ uint16_t total_fifo_size; ++ /** Size of Rx FIFO (Bytes) */ ++ uint16_t rx_fifo_size; ++ /** Size of Non-periodic Tx FIFO (Bytes) */ ++ uint16_t nperio_tx_fifo_size; ++ ++ /** 1 if DMA is enabled, 0 otherwise. */ ++ uint8_t dma_enable; ++ ++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */ ++ uint8_t en_multiple_tx_fifo; ++ ++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in ++ * process of being queued */ ++ uint8_t queuing_high_bandwidth; ++ ++ /** Hardware Configuration -- stored here for convenience.*/ ++ hwcfg1_data_t hwcfg1; ++ hwcfg2_data_t hwcfg2; ++ hwcfg3_data_t hwcfg3; ++ hwcfg4_data_t hwcfg4; ++ ++ /** The operational State, during transations ++ * (a_host>>a_peripherial and b_device=>b_host) this may not ++ * match the core but allows the software to determine ++ * transitions. ++ */ ++ uint8_t op_state; ++ ++ /** ++ * Set to 1 if the HCD needs to be restarted on a session request ++ * interrupt. This is required if no connector ID status change has ++ * occurred since the HCD was last disconnected. ++ */ ++ uint8_t restart_hcd_on_session_req; ++ ++ /** HCD callbacks */ ++ /** A-Device is a_host */ ++#define A_HOST (1) ++ /** A-Device is a_suspend */ ++#define A_SUSPEND (2) ++ /** A-Device is a_peripherial */ ++#define A_PERIPHERAL (3) ++ /** B-Device is operating as a Peripheral. */ ++#define B_PERIPHERAL (4) ++ /** B-Device is operating as a Host. */ ++#define B_HOST (5) ++ ++ /** HCD callbacks */ ++ struct dwc_otg_cil_callbacks *hcd_cb; ++ /** PCD callbacks */ ++ struct dwc_otg_cil_callbacks *pcd_cb; ++ ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t p_tx_msk; ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t tx_msk; ++ ++#ifdef DEBUG ++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; ++ ++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS]; ++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; ++ ++#if 1 // winder ++ uint32_t hfnum_7_samples; ++ uint32_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint32_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint32_t hfnum_other_frrem_accum; ++#else ++ uint32_t hfnum_7_samples; ++ uint64_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint64_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint64_t hfnum_other_frrem_accum; ++#endif ++ resource_size_t phys_addr; /* Added to support PLB DMA : phys-virt mapping */ ++#endif ++ ++} dwc_otg_core_if_t; ++ ++/* ++ * The following functions support initialization of the CIL driver component ++ * and the DWC_otg controller. ++ */ ++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params); ++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++ ++/** @name Device CIL Functions ++ * The following functions support managing the DWC_otg controller in device ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest); ++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma); ++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Host CIL Functions ++ * The following functions support managing the DWC_otg controller in host ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status); ++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if); ++ ++/** ++ * This function Reads HPRT0 in preparation to modify. It keeps the ++ * WC bits 0 so that if they are read as 1, they won't clear when you ++ * write it back ++ */ ++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if) ++{ ++ hprt0_data_t hprt0; ++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0); ++ hprt0.b.prtena = 0; ++ hprt0.b.prtconndet = 0; ++ hprt0.b.prtenchng = 0; ++ hprt0.b.prtovrcurrchng = 0; ++ return hprt0.d32; ++} ++ ++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Common CIL Functions ++ * The following functions support managing the DWC_otg controller in either ++ * device or host mode. ++ */ ++/**@{*/ ++ ++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes); ++ ++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if); ++ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ); ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if ); ++ ++#define NP_TXFIFO_EMPTY -1 ++#define MAX_NP_TXREQUEST_Q_SLOTS 8 ++/** ++ * This function returns the endpoint number of the request at ++ * the top of non-periodic TX FIFO, or -1 if the request FIFO is ++ * empty. ++ */ ++static inline int dwc_otg_top_nptxfifo_epnum(dwc_otg_core_if_t *_core_if) { ++ gnptxsts_data_t txstatus = {.d32 = 0}; ++ ++ txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts); ++ return (txstatus.b.nptxqspcavail == MAX_NP_TXREQUEST_Q_SLOTS ? ++ -1 : txstatus.b.nptxqtop_chnep); ++} ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) & ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++} ++ ++/** ++ * This function returns the OTG Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint)); ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the IN endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *_core_if) { ++ uint32_t v; ++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); ++ return (v & 0xffff); ++ ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the OUT endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *_core_if) { ++ uint32_t v; ++ v = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk); ++ return ((v & 0xffff0000) >> 16); ++} ++ ++/** ++ * This function returns the Device IN EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v, msk, emp; ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> _ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & msk; ++/* ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[_ep->num]->diepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++*/ ++ return v; ++} ++/** ++ * This function returns the Device OUT EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & ++ dwc_read_reg32(&dev_if->dev_global_regs->doepmsk); ++ return v; ++} ++ ++/** ++ * This function returns the Host All Channel Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint)); ++} ++ ++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint)); ++} ++ ++ ++/** ++ * This function returns the mode of the operation, host or device. ++ * ++ * @return 0 - Device Mode, 1 - Host Mode ++ */ ++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) { ++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1); ++} ++ ++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE); ++} ++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE); ++} ++ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ); ++ ++ ++/**@}*/ ++ ++/** ++ * DWC_otg CIL callback structure. This structure allows the HCD and ++ * PCD to register functions used for starting and stopping the PCD ++ * and HCD for role change on for a DRD. ++ */ ++typedef struct dwc_otg_cil_callbacks ++{ ++ /** Start function for role change */ ++ int (*start) (void *_p); ++ /** Stop Function for role change */ ++ int (*stop) (void *_p); ++ /** Disconnect Function for role change */ ++ int (*disconnect) (void *_p); ++ /** Resume/Remote wakeup Function */ ++ int (*resume_wakeup) (void *_p); ++ /** Suspend function */ ++ int (*suspend) (void *_p); ++ /** Session Start (SRP) */ ++ int (*session_start) (void *_p); ++ /** Pointer passed to start() and stop() */ ++ void *p; ++} dwc_otg_cil_callbacks_t; ++ ++ ++ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++ ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil_ifx.h +@@ -0,0 +1,58 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_cil_ifx.h ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 07 Sep. 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Default param value. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 April 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#if !defined(__DWC_OTG_CIL_IFX_H__) ++#define __DWC_OTG_CIL_IFX_H__ ++ ++/* ================ Default param value ================== */ ++#define dwc_param_opt_default 1 ++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE ++#define dwc_param_dma_enable_default 1 ++#define dwc_param_dma_burst_size_default 32 ++#define dwc_param_speed_default DWC_SPEED_PARAM_HIGH ++#define dwc_param_host_support_fs_ls_low_power_default 0 ++#define dwc_param_host_ls_low_power_phy_clk_default DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ ++#define dwc_param_enable_dynamic_fifo_default 1 ++#define dwc_param_data_fifo_size_default 2048 ++#define dwc_param_dev_rx_fifo_size_default 1024 ++#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++#define dwc_param_dev_perio_tx_fifo_size_default 768 ++#define dwc_param_host_rx_fifo_size_default 640 ++#define dwc_param_host_nperio_tx_fifo_size_default 640 ++#define dwc_param_host_perio_tx_fifo_size_default 768 ++#define dwc_param_max_transfer_size_default 65535 ++#define dwc_param_max_packet_count_default 511 ++#define dwc_param_host_channels_default 16 ++#define dwc_param_dev_endpoints_default 6 ++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++#define dwc_param_phy_utmi_width_default 16 ++#define dwc_param_phy_ulpi_ddr_default 0 ++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++#define dwc_param_i2c_enable_default 0 ++#define dwc_param_ulpi_fs_ls_default 0 ++#define dwc_param_ts_dline_default 0 ++ ++/* ======================================================= */ ++ ++#endif // __DWC_OTG_CIL_IFX_H__ ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_cil_intr.c +@@ -0,0 +1,708 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil_intr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 553126 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * This file contains the Common Interrupt handlers. ++ */ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_regs.h" ++#include "dwc_otg_cil.h" ++ ++#ifdef DEBUG ++inline const char *op_state_str( dwc_otg_core_if_t *_core_if ) ++{ ++ return (_core_if->op_state==A_HOST?"a_host": ++ (_core_if->op_state==A_SUSPEND?"a_suspend": ++ (_core_if->op_state==A_PERIPHERAL?"a_peripheral": ++ (_core_if->op_state==B_PERIPHERAL?"b_peripheral": ++ (_core_if->op_state==B_HOST?"b_host": ++ "unknown"))))); ++} ++#endif ++ ++/** This function will log a debug message ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", ++ dwc_otg_mode(_core_if) ? "Host" : "Device"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.modemismatch = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** Start the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->start) { ++ _core_if->hcd_cb->start( _core_if->hcd_cb->p ); ++ } ++} ++/** Stop the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_stop( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->stop) { ++ _core_if->hcd_cb->stop( _core_if->hcd_cb->p ); ++ } ++} ++/** Disconnect the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_disconnect( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->disconnect) { ++ _core_if->hcd_cb->disconnect( _core_if->hcd_cb->p ); ++ } ++} ++/** Inform the HCD the a New Session has begun. Helper function for ++ * using the HCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_session_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->hcd_cb && _core_if->hcd_cb->session_start) { ++ _core_if->hcd_cb->session_start( _core_if->hcd_cb->p ); ++ } ++} ++ ++/** Start the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_start( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->start ) { ++ _core_if->pcd_cb->start( _core_if->pcd_cb->p ); ++ } ++} ++/** Stop the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_stop( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->stop ) { ++ _core_if->pcd_cb->stop( _core_if->pcd_cb->p ); ++ } ++} ++/** Suspend the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_suspend( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->suspend ) { ++ _core_if->pcd_cb->suspend( _core_if->pcd_cb->p ); ++ } ++} ++/** Resume the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_resume( dwc_otg_core_if_t *_core_if ) ++{ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup ) { ++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p ); ++ } ++} ++ ++/** ++ * This function handles the OTG Interrupts. It reads the OTG ++ * Interrupt Register (GOTGINT) to determine what interrupt has ++ * occurred. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *_core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ _core_if->core_global_regs; ++ gotgint_data_t gotgint; ++ gotgctl_data_t gotgctl; ++ gintmsk_data_t gintmsk; ++ ++ gotgint.d32 = dwc_read_reg32( &global_regs->gotgint); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, ++ op_state_str(_core_if)); ++ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32 ); ++ ++ if (gotgint.b.sesenddet) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session End Detected++ (%s)\n", ++ op_state_str(_core_if)); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ ++ if (_core_if->op_state == B_HOST) { ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else { ++ /* If not B_HOST and Device HNP still set. HNP ++ * Did not succeed!*/ ++ if (gotgctl.b.devhnpen) { ++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); ++ DWC_ERROR( "Device Not Connected/Responding!\n" ); ++ } ++ ++ /* If Session End Detected the B-Cable has ++ * been disconnected. */ ++ /* Reset PCD and Gadget driver to a ++ * clean state. */ ++ pcd_stop(_core_if); ++ } ++ gotgctl.d32 = 0; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ if (gotgint.b.sesreqsucstschng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session Reqeust Success Status Change++\n"); ++ gotgctl.d32 = dwc_read_reg32( &global_regs->gotgctl); ++ if (gotgctl.b.sesreqscs) { ++ if ((_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (_core_if->core_params->i2c_enable)) { ++ _core_if->srp_success = 1; ++ } ++ else { ++ pcd_resume( _core_if ); ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ } ++ } ++ if (gotgint.b.hstnegsucstschng) { ++ /* Print statements during the HNP interrupt handling ++ * can cause it to fail.*/ ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.hstnegscs) { ++ if (dwc_otg_is_host_mode(_core_if) ) { ++ _core_if->op_state = B_HOST; ++ /* ++ * Need to disable SOF interrupt immediately. ++ * When switching from device to host, the PCD ++ * interrupt handler won't handle the ++ * interrupt if host mode is already set. The ++ * HCD interrupt handler won't get called if ++ * the HCD state is HALT. This means that the ++ * interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop(_core_if); ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ hcd_start( _core_if ); ++ _core_if->op_state = B_HOST; ++ } ++ } else { ++ gotgctl.d32 = 0; ++ gotgctl.b.hnpreq = 1; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32( &global_regs->gotgctl, ++ gotgctl.d32, 0); ++ DWC_DEBUGPL( DBG_ANY, "HNP Failed\n"); ++ DWC_ERROR( "Device Not Connected/Responding\n" ); ++ } ++ } ++ if (gotgint.b.hstnegdet) { ++ /* The disconnect interrupt is set at the same time as ++ * Host Negotiation Detected. During the mode ++ * switch all interrupts are cleared so the disconnect ++ * interrupt handler will not get executed. ++ */ ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Host Negotiation Detected++ (%s)\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device")); ++ if (dwc_otg_is_device_mode(_core_if)){ ++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",_core_if->op_state); ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = A_PERIPHERAL; ++ } else { ++ /* ++ * Need to disable SOF interrupt immediately. When ++ * switching from device to host, the PCD interrupt ++ * handler won't handle the interrupt if host mode is ++ * already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that ++ * the interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ pcd_stop( _core_if ); ++ hcd_start( _core_if ); ++ _core_if->op_state = A_HOST; ++ } ++ } ++ if (gotgint.b.adevtoutchng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "A-Device Timeout Change++\n"); ++ } ++ if (gotgint.b.debdone) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Debounce Done++\n"); ++ } ++ ++ /* Clear GOTGINT */ ++ dwc_write_reg32 (&_core_if->core_global_regs->gotgint, gotgint.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function handles the Connector ID Status Change Interrupt. It ++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this ++ * is a Device to Host Mode transition or a Host Mode to Device ++ * Transition. ++ * ++ * This only occurs when the cable is connected/removed from the PHY ++ * connector. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *_core_if) ++{ ++ uint32_t count = 0; ++ ++ gintsts_data_t gintsts = { .d32 = 0 }; ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ /* ++ * Need to disable SOF interrupt immediately. If switching from device ++ * to host, the PCD interrupt handler won't handle the interrupt if ++ * host mode is already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that the interrupt does ++ * not get handled and Linux complains loudly. ++ */ ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ ++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device")); ++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); ++ ++ /* B-Device connector (Device Mode) */ ++ if (gotgctl.b.conidsts) { ++ /* Wait for switch to device mode. */ ++ while (!dwc_otg_is_device_mode(_core_if) ){ ++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ _core_if->op_state = B_PERIPHERAL; ++ dwc_otg_core_init(_core_if); ++ dwc_otg_enable_global_interrupts(_core_if); ++ pcd_start( _core_if ); ++ } else { ++ /* A-Device connector (Host Mode) */ ++ while (!dwc_otg_is_host_mode(_core_if) ) { ++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ _core_if->op_state = A_HOST; ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ dwc_otg_core_init(_core_if); ++ dwc_otg_enable_global_interrupts(_core_if); ++ hcd_start( _core_if ); ++ } ++ ++ /* Set flag and clear interrupt */ ++ gintsts.b.conidstschng = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device is initiating the Session ++ * Request Protocol to request the host to turn on bus power so a new ++ * session can begin. The handler responds by turning on bus power. If ++ * the DWC_otg controller is in low power mode, the handler brings the ++ * controller out of low power mode before turning on bus power. ++ * ++ * @param _core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_session_req_intr( dwc_otg_core_if_t *_core_if ) ++{ ++#ifndef DWC_HOST_ONLY // winder ++ hprt0_data_t hprt0; ++#endif ++ gintsts_data_t gintsts; ++ ++#ifndef DWC_HOST_ONLY ++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(_core_if) ) { ++ DWC_PRINT("SRP: Device mode\n"); ++ } else { ++ DWC_PRINT("SRP: Host mode\n"); ++ ++ /* Turn on the port power bit. */ ++ hprt0.d32 = dwc_otg_read_hprt0( _core_if ); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Start the Connection timer. So a message can be displayed ++ * if connect does not occur within 10 seconds. */ ++ hcd_session_start( _core_if ); ++ } ++#endif ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sessreqintr = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that the DWC_otg controller has detected a ++ * resume or remote wakeup sequence. If the DWC_otg controller is in ++ * low power mode, the handler must brings the controller out of low ++ * power mode. The controller automatically begins resume ++ * signaling. The handler schedules a time to stop resume signaling. ++ */ ++int32_t dwc_otg_handle_wakeup_detected_intr( dwc_otg_core_if_t *_core_if ) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(_core_if) ) { ++ dctl_data_t dctl = {.d32=0}; ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", ++ dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts)); ++#ifdef PARTIAL_POWER_DOWN ++ if (_core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ ++ power.d32 = dwc_read_reg32( _core_if->pcgcctl ); ++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); ++ ++ power.b.stoppclk = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.pwrclmp = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 0; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ } ++#endif ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32( &_core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0 ); ++ ++ if (_core_if->pcd_cb && _core_if->pcd_cb->resume_wakeup) { ++ _core_if->pcd_cb->resume_wakeup( _core_if->pcd_cb->p ); ++ } ++ ++ } else { ++ /* ++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms ++ * so that OPT tests pass with all PHYs). ++ */ ++ hprt0_data_t hprt0 = {.d32=0}; ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(_core_if->pcgcctl, pcgcctl.d32, 0); ++ UDELAY(10); ++ ++ /* Now wait for 70 ms. */ ++ hprt0.d32 = dwc_otg_read_hprt0( _core_if ); ++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32); ++ MDELAY(70); ++ hprt0.b.prtres = 0; /* Resume */ ++ dwc_write_reg32(_core_if->host_if->hprt0, hprt0.d32); ++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(_core_if->host_if->hprt0)); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.wkupintr = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device has been disconnected from ++ * the root port. ++ */ ++int32_t dwc_otg_handle_disconnect_intr( dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", ++ (dwc_otg_is_host_mode(_core_if)?"Host":"Device"), ++ op_state_str(_core_if)); ++ ++/** @todo Consolidate this if statement. */ ++#ifndef DWC_HOST_ONLY ++ if (_core_if->op_state == B_HOST) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else if (dwc_otg_is_device_mode(_core_if)) { ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ gotgctl.d32 = dwc_read_reg32(&_core_if->core_global_regs->gotgctl); ++ if (gotgctl.b.hstsethnpen==1) { ++ /* Do nothing, if HNP in process the OTG ++ * interrupt "Host Negotiation Detected" ++ * interrupt will do the mode switch. ++ */ ++ } else if (gotgctl.b.devhnpen == 0) { ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect( _core_if ); ++ pcd_start( _core_if ); ++ _core_if->op_state = B_PERIPHERAL; ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n"); ++ } ++ } else { ++ if (_core_if->op_state == A_HOST) { ++ /* A-Cable still connected but device disconnected. */ ++ hcd_disconnect( _core_if ); ++ } ++ } ++#endif ++/* Without OTG, we should use the disconnect function!? winder added.*/ ++#if 1 // NO OTG, so host only!! ++ hcd_disconnect( _core_if ); ++#endif ++ ++ gintsts.d32 = 0; ++ gintsts.b.disconnect = 1; ++ dwc_write_reg32 (&_core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++/** ++ * This interrupt indicates that SUSPEND state has been detected on ++ * the USB. ++ * ++ * For HNP the USB Suspend interrupt signals the change from ++ * "a_peripheral" to "a_host". ++ * ++ * When power management is enabled the core will be put in low power ++ * mode. ++ */ ++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *_core_if ) ++{ ++ dsts_data_t dsts; ++ gintsts_data_t gintsts; ++ ++ //805141:.removed DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n"); ++ ++ if (dwc_otg_is_device_mode( _core_if ) ) { ++ /* Check the Device status register to determine if the Suspend ++ * state is active. */ ++ dsts.d32 = dwc_read_reg32( &_core_if->dev_if->dev_global_regs->dsts); ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); ++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " ++ "HWCFG4.power Optimize=%d\n", ++ dsts.b.suspsts, _core_if->hwcfg4.b.power_optimiz); ++ ++ ++#ifdef PARTIAL_POWER_DOWN ++/** @todo Add a module parameter for power management. */ ++ ++ if (dsts.b.suspsts && _core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ DWC_DEBUGPL(DBG_CIL, "suspend\n"); ++ ++ power.b.pwrclmp = 1; ++ dwc_write_reg32( _core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 1; ++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32); ++ ++ power.b.stoppclk = 1; ++ dwc_modify_reg32( _core_if->pcgcctl, 0, power.d32); ++ ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n"); ++ } ++#endif ++ /* PCD callback for suspend. */ ++ pcd_suspend(_core_if); ++ } else { ++ if (_core_if->op_state == A_PERIPHERAL) { ++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n"); ++ /* Clear the a_peripheral flag, back to a_host. */ ++ pcd_stop( _core_if ); ++ hcd_start( _core_if ); ++ _core_if->op_state = A_HOST; ++ } ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbsuspend = 1; ++ dwc_write_reg32( &_core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *_core_if) ++{ ++ gintsts_data_t gintsts; ++ gintmsk_data_t gintmsk; ++ gintmsk_data_t gintmsk_common = {.d32=0}; ++ gintmsk_common.b.wkupintr = 1; ++ gintmsk_common.b.sessreqintr = 1; ++ gintmsk_common.b.conidstschng = 1; ++ gintmsk_common.b.otgintr = 1; ++ gintmsk_common.b.modemismatch = 1; ++ gintmsk_common.b.disconnect = 1; ++ gintmsk_common.b.usbsuspend = 1; ++ /** @todo: The port interrupt occurs while in device ++ * mode. Added code to CIL to clear the interrupt for now! ++ */ ++ gintmsk_common.b.portintr = 1; ++ ++ gintsts.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintsts); ++ gintmsk.d32 = dwc_read_reg32(&_core_if->core_global_regs->gintmsk); ++#ifdef DEBUG ++ /* if any common interrupts set */ ++ if (gintsts.d32 & gintmsk_common.d32) { ++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", ++ gintsts.d32, gintmsk.d32); ++ } ++#endif ++ ++ return ((gintsts.d32 & gintmsk.d32 ) & gintmsk_common.d32); ++ ++} ++ ++/** ++ * Common interrupt handler. ++ * ++ * The common interrupts are those that occur in both Host and Device mode. ++ * This handler handles the following interrupts: ++ * - Mode Mismatch Interrupt ++ * - Disconnect Interrupt ++ * - OTG Interrupt ++ * - Connector ID Status Change Interrupt ++ * - Session Request Interrupt. ++ * - Resume / Remote Wakeup Detected Interrupt. ++ * ++ */ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ) ++{ ++ int retval = 0; ++ gintsts_data_t gintsts; ++ ++ gintsts.d32 = dwc_otg_read_common_intr(_core_if); ++ ++ if (gintsts.b.modemismatch) { ++ retval |= dwc_otg_handle_mode_mismatch_intr( _core_if ); ++ } ++ if (gintsts.b.otgintr) { ++ retval |= dwc_otg_handle_otg_intr( _core_if ); ++ } ++ if (gintsts.b.conidstschng) { ++ retval |= dwc_otg_handle_conn_id_status_change_intr( _core_if ); ++ } ++ if (gintsts.b.disconnect) { ++ retval |= dwc_otg_handle_disconnect_intr( _core_if ); ++ } ++ if (gintsts.b.sessreqintr) { ++ retval |= dwc_otg_handle_session_req_intr( _core_if ); ++ } ++ if (gintsts.b.wkupintr) { ++ retval |= dwc_otg_handle_wakeup_detected_intr( _core_if ); ++ } ++ if (gintsts.b.usbsuspend) { ++ retval |= dwc_otg_handle_usb_suspend_intr( _core_if ); ++ } ++ if (gintsts.b.portintr && dwc_otg_is_device_mode(_core_if)) { ++ /* The port interrupt occurs while in device mode with HPRT0 ++ * Port Enable/Disable. ++ */ ++ gintsts.d32 = 0; ++ gintsts.b.portintr = 1; ++ dwc_write_reg32(&_core_if->core_global_regs->gintsts, ++ gintsts.d32); ++ retval |= 1; ++ ++ } ++ return retval; ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.c +@@ -0,0 +1,1264 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * The dwc_otg_driver module provides the initialization and cleanup entry ++ * points for the DWC_otg driver. This module will be dynamically installed ++ * after Linux is booted using the insmod command. When the module is ++ * installed, the dwc_otg_init function is called. When the module is ++ * removed (using rmmod), the dwc_otg_cleanup function is called. ++ * ++ * This module also defines a data structure for the dwc_otg_driver, which is ++ * used in conjunction with the standard ARM lm_device structure. These ++ * structures allow the OTG driver to comply with the standard Linux driver ++ * model in which devices and drivers are registered with a bus driver. This ++ * has the benefit that Linux can expose attributes of the driver and device ++ * in its special sysfs file system. Users can then read or write files in ++ * this file system to perform diagnostics on the driver components or the ++ * device. ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++#include /* permission constants */ ++#include ++#include ++ ++#include "dwc_otg_plat.h" ++#include "dwc_otg_attr.h" ++#include "dwc_otg_driver.h" ++#include "dwc_otg_cil.h" ++#include "dwc_otg_cil_ifx.h" ++ ++// #include "dwc_otg_pcd.h" // device ++#include "dwc_otg_hcd.h" // host ++ ++#include "dwc_otg_ifx.h" // for Infineon platform specific. ++ ++#define DWC_DRIVER_VERSION "2.60a 22-NOV-2006" ++#define DWC_DRIVER_DESC "HS OTG USB Controller driver" ++ ++const char dwc_driver_name[] = "dwc_otg"; ++ ++static unsigned long dwc_iomem_base = IFX_USB_IOMEM_BASE; ++int dwc_irq = LQ_USB_INT; ++//int dwc_irq = 54; ++//int dwc_irq = IFXMIPS_USB_OC_INT; ++ ++extern int ifx_usb_hc_init(unsigned long base_addr, int irq); ++extern void ifx_usb_hc_remove(void); ++ ++/*-------------------------------------------------------------------------*/ ++/* Encapsulate the module parameter settings */ ++ ++static dwc_otg_core_params_t dwc_otg_module_params = { ++ .opt = -1, ++ .otg_cap = -1, ++ .dma_enable = -1, ++ .dma_burst_size = -1, ++ .speed = -1, ++ .host_support_fs_ls_low_power = -1, ++ .host_ls_low_power_phy_clk = -1, ++ .enable_dynamic_fifo = -1, ++ .data_fifo_size = -1, ++ .dev_rx_fifo_size = -1, ++ .dev_nperio_tx_fifo_size = -1, ++ .dev_perio_tx_fifo_size = /* dev_perio_tx_fifo_size_1 */ {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, /* 15 */ ++ .host_rx_fifo_size = -1, ++ .host_nperio_tx_fifo_size = -1, ++ .host_perio_tx_fifo_size = -1, ++ .max_transfer_size = -1, ++ .max_packet_count = -1, ++ .host_channels = -1, ++ .dev_endpoints = -1, ++ .phy_type = -1, ++ .phy_utmi_width = -1, ++ .phy_ulpi_ddr = -1, ++ .phy_ulpi_ext_vbus = -1, ++ .i2c_enable = -1, ++ .ulpi_fs_ls = -1, ++ .ts_dline = -1, ++ .en_multiple_tx_fifo = -1, ++ .dev_tx_fifo_size = { /* dev_tx_fifo_size */ ++ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ++ }, /* 15 */ ++ .thr_ctl = -1, ++ .tx_thr_length = -1, ++ .rx_thr_length = -1, ++}; ++ ++/** ++ * This function shows the Driver Version. ++ */ ++static ssize_t version_show(struct device_driver *dev, char *buf) ++{ ++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION)+2,"%s\n", ++ DWC_DRIVER_VERSION); ++} ++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL); ++ ++/** ++ * Global Debug Level Mask. ++ */ ++uint32_t g_dbg_lvl = 0xff; /* OFF */ ++ ++/** ++ * This function shows the driver Debug Level. ++ */ ++static ssize_t dbg_level_show(struct device_driver *_drv, char *_buf) ++{ ++ return sprintf(_buf, "0x%0x\n", g_dbg_lvl); ++} ++/** ++ * This function stores the driver Debug Level. ++ */ ++static ssize_t dbg_level_store(struct device_driver *_drv, const char *_buf, ++ size_t _count) ++{ ++ g_dbg_lvl = simple_strtoul(_buf, NULL, 16); ++ return _count; ++} ++static DRIVER_ATTR(debuglevel, S_IRUGO|S_IWUSR, dbg_level_show, dbg_level_store); ++ ++/** ++ * This function is called during module intialization to verify that ++ * the module parameters are in a valid state. ++ */ ++static int check_parameters(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ int retval = 0; ++ ++/* Checks if the parameter is outside of its valid range of values */ ++#define DWC_OTG_PARAM_TEST(_param_,_low_,_high_) \ ++ ((dwc_otg_module_params._param_ < (_low_)) || \ ++ (dwc_otg_module_params._param_ > (_high_))) ++ ++/* If the parameter has been set by the user, check that the parameter value is ++ * within the value range of values. If not, report a module error. */ ++#define DWC_OTG_PARAM_ERR(_param_,_low_,_high_,_string_) \ ++ do { \ ++ if (dwc_otg_module_params._param_ != -1) { \ ++ if (DWC_OTG_PARAM_TEST(_param_,(_low_),(_high_))) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \ ++ dwc_otg_module_params._param_, _string_); \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ retval ++; \ ++ } \ ++ } \ ++ } while (0) ++ ++ DWC_OTG_PARAM_ERR(opt,0,1,"opt"); ++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap"); ++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable"); ++ DWC_OTG_PARAM_ERR(speed,0,1,"speed"); ++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power"); ++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk"); ++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo"); ++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size"); ++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count"); ++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels"); ++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints"); ++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus"); ++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable"); ++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls"); ++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline"); ++ ++ if (dwc_otg_module_params.dma_burst_size != -1) { ++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) ++ { ++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n", ++ dwc_otg_module_params.dma_burst_size); ++ dwc_otg_module_params.dma_burst_size = 32; ++ retval ++; ++ } ++ } ++ ++ if (dwc_otg_module_params.phy_utmi_width != -1) { ++ if (DWC_OTG_PARAM_TEST(phy_utmi_width,8,8) && ++ DWC_OTG_PARAM_TEST(phy_utmi_width,16,16)) ++ { ++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n", ++ dwc_otg_module_params.phy_utmi_width); ++ //dwc_otg_module_params.phy_utmi_width = 16; ++ dwc_otg_module_params.phy_utmi_width = 8; ++ retval ++; ++ } ++ } ++ ++ for (i=0; i<15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i],4,768,"dev_perio_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i],4,768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i); ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ retval ++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo"); ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i],4,768,"dev_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_tx_fifo_size[i], ++ "dev_tx_fifo_size", i); ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_param_dev_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl"); ++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length"); ++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length"); ++ ++ /* At this point, all module parameters that have been set by the user ++ * are valid, and those that have not are left unset. Now set their ++ * default values and/or check the parameters against the hardware ++ * configurations of the OTG core. */ ++ ++ ++ ++/* This sets the parameter to the default value if it has not been set by the ++ * user */ ++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \ ++ ({ \ ++ int changed = 1; \ ++ if (dwc_otg_module_params._param_ == -1) { \ ++ changed = 0; \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ } \ ++ changed; \ ++ }) ++ ++/* This checks the macro agains the hardware configuration to see if it is ++ * valid. It is possible that the default value could be invalid. In this ++ * case, it will report a module error if the user touched the parameter. ++ * Otherwise it will adjust the value without any error. */ ++#define DWC_OTG_PARAM_CHECK_VALID(_param_,_str_,_is_valid_,_set_valid_) \ ++ ({ \ ++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \ ++ int error = 0; \ ++ if (!(_is_valid_)) { \ ++ if (changed) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_,_str_); \ ++ error = 1; \ ++ } \ ++ dwc_otg_module_params._param_ = (_set_valid_); \ ++ } \ ++ error; \ ++ }) ++ ++ /* OTG Cap */ ++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap,"otg_cap", ++ ({ ++ int valid; ++ valid = 1; ++ switch (dwc_otg_module_params.otg_cap) { ++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: ++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: ++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ++ { ++ valid = 0; ++ } ++ break; ++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: ++ /* always valid */ ++ break; ++ } ++ valid; ++ }), ++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ? ++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable,"dma_enable", ++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(opt,"opt", ++ 1, ++ 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power, ++ "host_support_fs_ls_low_power", ++ 1, 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo, ++ "enable_dynamic_fifo", ++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) || ++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); ++ ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, ++ "data_fifo_size", ++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth), ++ core_if->hwcfg3.b.dfifo_depth); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size, ++ "dev_rx_fifo_size", ++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, ++ "dev_nperio_tx_fifo_size", ++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size, ++ "host_rx_fifo_size", ++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size, ++ "host_nperio_tx_fifo_size", ++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size, ++ "host_perio_tx_fifo_size", ++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))), ++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size, ++ "max_transfer_size", ++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))), ++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count, ++ "max_packet_count", ++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))), ++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, ++ "host_channels", ++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)), ++ (core_if->hwcfg2.b.num_host_chan + 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, ++ "dev_endpoints", ++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)), ++ core_if->hwcfg2.b.num_dev_ep); ++ ++/* ++ * Define the following to disable the FS PHY Hardware checking. This is for ++ * internal testing only. ++ * ++ * #define NO_FS_PHY_HW_CHECKS ++ */ ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", ++ ({ ++ int valid = 0; ++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 1) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) ++ { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 2) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) ++ { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->hwcfg2.b.fs_phy_type == 1)) ++ { ++ valid = 1; ++ } ++ valid; ++ }), ++ ({ ++ int set = DWC_PHY_TYPE_PARAM_FS; ++ if (core_if->hwcfg2.b.hs_phy_type) { ++ if ((core_if->hwcfg2.b.hs_phy_type == 3) || ++ (core_if->hwcfg2.b.hs_phy_type == 1)) { ++ set = DWC_PHY_TYPE_PARAM_UTMI; ++ } ++ else { ++ set = DWC_PHY_TYPE_PARAM_ULPI; ++ } ++ } ++ set; ++ })); ++#endif ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(speed,"speed", ++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk, ++ "host_ls_low_power_phy_clk", ++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1), ++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width); ++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls); ++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline); ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", ++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, ++ 0); ++#endif ++ ++ for (i=0; i<16; i++) { ++ ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i],i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, ++ "en_multiple_tx_fifo", ++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && ++ (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, 0); ++ ++ for (i = 0; i < 16; i++) { ++ int changed = 1; ++ int error = 0; ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_param_dev_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= ++ (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'." ++ "Check HW configuration.\n",dwc_otg_module_params.dev_tx_fifo_size[i],i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_tx_fifo_size[i] = ++ dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ DWC_OTG_PARAM_SET_DEFAULT(thr_ctl); ++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length); ++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length); ++ return retval; ++} // check_parameters ++ ++ ++/** ++ * This function is the top level interrupt handler for the Common ++ * (Device and host modes) interrupts. ++ */ ++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev) ++{ ++ dwc_otg_device_t *otg_dev = _dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_handle_common_intr( otg_dev->core_if ); ++ ++ mask_and_ack_ifx_irq (_irq); ++ ++ return IRQ_RETVAL(retval); ++} ++ ++ ++/** ++ * This function is called when a DWC_OTG device is unregistered with the ++ * dwc_otg_driver. This happens, for example, when the rmmod command is ++ * executed. The device may or may not be electrically present. If it is ++ * present, the driver stops device processing. Any resources used on behalf ++ * of this device are freed. ++ * ++ * @return ++ */ ++static int ++dwc_otg_driver_remove(struct platform_device *_dev) ++{ ++ //dwc_otg_device_t *otg_dev = dev_get_drvdata(&_dev->dev); ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev); ++ ++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, _dev); ++ ++ if (otg_dev == NULL) { ++ /* Memory allocation for the dwc_otg_device failed. */ ++ return 0; ++ } ++ ++ /* ++ * Free the IRQ ++ */ ++ if (otg_dev->common_irq_installed) { ++ free_irq( otg_dev->irq, otg_dev ); ++ } ++ ++#ifndef DWC_DEVICE_ONLY ++ if (otg_dev->hcd != NULL) { ++ dwc_otg_hcd_remove(&_dev->dev); ++ } ++#endif ++ printk("after removehcd\n"); ++ ++// Note: Integrate HOST and DEVICE(Gadget) is not planned yet. ++#ifndef DWC_HOST_ONLY ++ if (otg_dev->pcd != NULL) { ++ dwc_otg_pcd_remove(otg_dev); ++ } ++#endif ++ if (otg_dev->core_if != NULL) { ++ dwc_otg_cil_remove( otg_dev->core_if ); ++ } ++ printk("after removecil\n"); ++ ++ /* ++ * Remove the device attributes ++ */ ++ dwc_otg_attr_remove(&_dev->dev); ++ printk("after removeattr\n"); ++ ++ /* ++ * Return the memory. ++ */ ++ if (otg_dev->base != NULL) { ++ iounmap(otg_dev->base); ++ } ++ if (otg_dev->phys_addr != 0) { ++ release_mem_region(otg_dev->phys_addr, otg_dev->base_len); ++ } ++ kfree(otg_dev); ++ ++ /* ++ * Clear the drvdata pointer. ++ */ ++ //dev_set_drvdata(&_dev->dev, 0); ++ platform_set_drvdata(_dev, 0); ++ return 0; ++} ++ ++/** ++ * This function is called when an DWC_OTG device is bound to a ++ * dwc_otg_driver. It creates the driver components required to ++ * control the device (CIL, HCD, and PCD) and it initializes the ++ * device. The driver components are stored in a dwc_otg_device ++ * structure. A reference to the dwc_otg_device is saved in the ++ * lm_device. This allows the driver to access the dwc_otg_device ++ * structure on subsequent calls to driver methods for this device. ++ * ++ * @return ++ */ ++static int __devinit ++dwc_otg_driver_probe(struct platform_device *_dev) ++{ ++ int retval = 0; ++ dwc_otg_device_t *dwc_otg_device; ++ int32_t snpsid; ++ struct resource *res; ++ gusbcfg_data_t usbcfg = {.d32 = 0}; ++ ++ dev_dbg(&_dev->dev, "dwc_otg_driver_probe (%p)\n", _dev); ++ ++ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL); ++ if (dwc_otg_device == 0) { ++ dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device)); ++ dwc_otg_device->reg_offset = 0xFFFFFFFF; ++ ++ /* ++ * Retrieve the memory and IRQ resources. ++ */ ++ dwc_otg_device->irq = platform_get_irq(_dev, 0); ++ if (dwc_otg_device->irq == 0) { ++ dev_err(&_dev->dev, "no device irq\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "OTG - device irq: %d\n", dwc_otg_device->irq); ++ res = platform_get_resource(_dev, IORESOURCE_MEM, 0); ++ if (res == NULL) { ++ dev_err(&_dev->dev, "no CSR address\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "OTG - ioresource_mem start0x%08x: end:0x%08x\n", ++ (unsigned)res->start, (unsigned)res->end); ++ dwc_otg_device->phys_addr = res->start; ++ dwc_otg_device->base_len = res->end - res->start + 1; ++ if (request_mem_region(dwc_otg_device->phys_addr, dwc_otg_device->base_len, ++ dwc_driver_name) == NULL) { ++ dev_err(&_dev->dev, "request_mem_region failed\n"); ++ retval = -EBUSY; ++ goto fail; ++ } ++ ++ /* ++ * Map the DWC_otg Core memory into virtual address space. ++ */ ++ dwc_otg_device->base = ioremap_nocache(dwc_otg_device->phys_addr, dwc_otg_device->base_len); ++ if (dwc_otg_device->base == NULL) { ++ dev_err(&_dev->dev, "ioremap() failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ dev_dbg(&_dev->dev, "mapped base=0x%08x\n", (unsigned)dwc_otg_device->base); ++ ++ /* ++ * Attempt to ensure this device is really a DWC_otg Controller. ++ * Read and verify the SNPSID register contents. The value should be ++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". ++ */ ++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40)); ++ if ((snpsid & 0xFFFFF000) != 0x4F542000) { ++ dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n", snpsid); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* ++ * Initialize driver data to point to the global DWC_otg ++ * Device structure. ++ */ ++ platform_set_drvdata(_dev, dwc_otg_device); ++ dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device); ++ dwc_otg_device->core_if = dwc_otg_cil_init( dwc_otg_device->base, &dwc_otg_module_params); ++ if (dwc_otg_device->core_if == 0) { ++ dev_err(&_dev->dev, "CIL initialization failed!\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ /* ++ * Validate parameter values. ++ */ ++ if (check_parameters(dwc_otg_device->core_if) != 0) { ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* Added for PLB DMA phys virt mapping */ ++ //dwc_otg_device->core_if->phys_addr = dwc_otg_device->phys_addr; ++ /* ++ * Create Device Attributes in sysfs ++ */ ++ dwc_otg_attr_create (&_dev->dev); ++ ++ /* ++ * Disable the global interrupt until all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_disable_global_interrupts( dwc_otg_device->core_if ); ++ /* ++ * Install the interrupt handler for the common interrupts before ++ * enabling common interrupts in core_init below. ++ */ ++ DWC_DEBUGPL( DBG_CIL, "registering (common) handler for irq%d\n", dwc_otg_device->irq); ++ ++ retval = request_irq((unsigned int)dwc_otg_device->irq, dwc_otg_common_irq, ++ //SA_INTERRUPT|SA_SHIRQ, "dwc_otg", (void *)dwc_otg_device ); ++ IRQF_SHARED, "dwc_otg", (void *)dwc_otg_device ); ++ //IRQF_DISABLED, "dwc_otg", (void *)dwc_otg_device ); ++ if (retval != 0) { ++ DWC_ERROR("request of irq%d failed retval: %d\n", dwc_otg_device->irq, retval); ++ retval = -EBUSY; ++ goto fail; ++ } else { ++ dwc_otg_device->common_irq_installed = 1; ++ } ++ ++ /* ++ * Initialize the DWC_otg core. ++ */ ++ dwc_otg_core_init( dwc_otg_device->core_if ); ++ ++ ++#ifndef DWC_HOST_ONLY // otg device mode. (gadget.) ++ /* ++ * Initialize the PCD ++ */ ++ retval = dwc_otg_pcd_init(dwc_otg_device); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_pcd_init failed\n"); ++ dwc_otg_device->pcd = NULL; ++ goto fail; ++ } ++#endif // DWC_HOST_ONLY ++ ++#ifndef DWC_DEVICE_ONLY // otg host mode. (HCD) ++ /* ++ * Initialize the HCD ++ */ ++#if 1 /*fscz*/ ++ /* force_host_mode */ ++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); ++ usbcfg.b.force_host_mode = 1; ++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); ++#endif ++ retval = dwc_otg_hcd_init(&_dev->dev, dwc_otg_device); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_hcd_init failed\n"); ++ dwc_otg_device->hcd = NULL; ++ goto fail; ++ } ++#endif // DWC_DEVICE_ONLY ++ ++ /* ++ * Enable the global interrupt after all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_enable_global_interrupts( dwc_otg_device->core_if ); ++#if 0 /*fscz*/ ++ usbcfg.d32 = dwc_read_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg); ++ usbcfg.b.force_host_mode = 0; ++ dwc_write_reg32(&dwc_otg_device->core_if->core_global_regs ->gusbcfg, usbcfg.d32); ++#endif ++ ++ ++ return 0; ++ ++fail: ++ dwc_otg_driver_remove(_dev); ++ return retval; ++} ++ ++/** ++ * This structure defines the methods to be called by a bus driver ++ * during the lifecycle of a device on that bus. Both drivers and ++ * devices are registered with a bus driver. The bus driver matches ++ * devices to drivers based on information in the device and driver ++ * structures. ++ * ++ * The probe function is called when the bus driver matches a device ++ * to this driver. The remove function is called when a device is ++ * unregistered with the bus driver. ++ */ ++struct platform_driver dwc_otg_driver = { ++ .probe = dwc_otg_driver_probe, ++ .remove = dwc_otg_driver_remove, ++// .suspend = dwc_otg_driver_suspend, ++// .resume = dwc_otg_driver_resume, ++ .driver = { ++ .name = dwc_driver_name, ++ .owner = THIS_MODULE, ++ }, ++}; ++EXPORT_SYMBOL(dwc_otg_driver); ++ ++/** ++ * This function is called when the dwc_otg_driver is installed with the ++ * insmod command. It registers the dwc_otg_driver structure with the ++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function ++ * to be called. In addition, the bus driver will automatically expose ++ * attributes defined for the device and driver in the special sysfs file ++ * system. ++ * ++ * @return ++ */ ++static int __init dwc_otg_init(void) ++{ ++ int retval = 0; ++ ++ printk(KERN_INFO "%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION); ++ ++ // ifxmips setup ++ retval = ifx_usb_hc_init(dwc_iomem_base, dwc_irq); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ return retval; ++ } ++ dwc_otg_power_on(); // ifx only!! ++ ++ ++ retval = platform_driver_register(&dwc_otg_driver); ++ ++ if (retval < 0) { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error1; ++ } ++ ++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_version); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error2; ++ } ++ retval = driver_create_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ if (retval < 0) ++ { ++ printk(KERN_ERR "%s retval=%d\n", __func__, retval); ++ goto error3; ++ } ++ return retval; ++ ++ ++error3: ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++error2: ++ driver_unregister(&dwc_otg_driver.driver); ++error1: ++ ifx_usb_hc_remove(); ++ return retval; ++} ++module_init(dwc_otg_init); ++ ++/** ++ * This function is called when the driver is removed from the kernel ++ * with the rmmod command. The driver unregisters itself with its bus ++ * driver. ++ * ++ */ ++static void __exit dwc_otg_cleanup(void) ++{ ++ printk(KERN_DEBUG "dwc_otg_cleanup()\n"); ++ ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel); ++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version); ++ ++ platform_driver_unregister(&dwc_otg_driver); ++ ifx_usb_hc_remove(); ++ ++ printk(KERN_INFO "%s module removed\n", dwc_driver_name); ++} ++module_exit(dwc_otg_cleanup); ++ ++MODULE_DESCRIPTION(DWC_DRIVER_DESC); ++MODULE_AUTHOR("Synopsys Inc."); ++MODULE_LICENSE("GPL"); ++ ++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); ++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); ++module_param_named(opt, dwc_otg_module_params.opt, int, 0444); ++MODULE_PARM_DESC(opt, "OPT Mode"); ++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); ++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); ++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444); ++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); ++module_param_named(speed, dwc_otg_module_params.speed, int, 0444); ++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); ++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444); ++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support"); ++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); ++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); ++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444); ++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); ++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444); ++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768"); ++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768"); ++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444); ++/** @todo Set the max to 512K, modify checks */ ++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535"); ++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444); ++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511"); ++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444); ++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16"); ++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444); ++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15"); ++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); ++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); ++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444); ++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); ++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double"); ++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal"); ++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); ++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); ++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); ++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); ++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); ++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); ++module_param_named(debug, g_dbg_lvl, int, 0444); ++MODULE_PARM_DESC(debug, "0"); ++module_param_named(en_multiple_tx_fifo, ++ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444); ++MODULE_PARM_DESC(en_multiple_tx_fifo, ++ "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled"); ++module_param_named(dev_tx_fifo_size_1, ++ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_2, ++ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_3, ++ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_4, ++ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_5, ++ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_6, ++ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_7, ++ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_8, ++ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_9, ++ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_10, ++ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_11, ++ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_12, ++ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_13, ++ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_14, ++ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_15, ++ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768"); ++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444); ++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit" ++ "0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled"); ++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444); ++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs"); ++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444); ++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs"); ++module_param_named (iomem_base, dwc_iomem_base, ulong, 0444); ++MODULE_PARM_DESC (dwc_iomem_base, "The base address of the DWC_OTG register."); ++module_param_named (irq, dwc_irq, int, 0444); ++MODULE_PARM_DESC (dwc_irq, "The interrupt number"); ++ ++/** @page "Module Parameters" ++ * ++ * The following parameters may be specified when starting the module. ++ * These parameters define how the DWC_otg controller should be ++ * configured. Parameter values are passed to the CIL initialization ++ * function dwc_otg_cil_init ++ * ++ * Example: modprobe dwc_otg speed=1 otg_cap=1 ++ * ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++*/ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_driver.h +@@ -0,0 +1,84 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_driver.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510275 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_DRIVER_H__) ++#define __DWC_OTG_DRIVER_H__ ++ ++/** @file ++ * This file contains the interface to the Linux driver. ++ */ ++#include "dwc_otg_cil.h" ++ ++/* Type declarations */ ++struct dwc_otg_pcd; ++struct dwc_otg_hcd; ++ ++/** ++ * This structure is a wrapper that encapsulates the driver components used to ++ * manage a single DWC_otg controller. ++ */ ++typedef struct dwc_otg_device ++{ ++ /** Base address returned from ioremap() */ ++ void *base; ++ ++ /** Pointer to the core interface structure. */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Register offset for Diagnostic API.*/ ++ uint32_t reg_offset; ++ ++ /** Pointer to the PCD structure. */ ++ struct dwc_otg_pcd *pcd; ++ ++ /** Pointer to the HCD structure. */ ++ struct dwc_otg_hcd *hcd; ++ ++ /** Flag to indicate whether the common IRQ handler is installed. */ ++ uint8_t common_irq_installed; ++ ++ /** Interrupt request number. */ ++ unsigned int irq; ++ ++ /** Physical address of Control and Status registers, used by ++ * release_mem_region(). ++ */ ++ resource_size_t phys_addr; ++ ++ /** Length of memory region, used by release_mem_region(). */ ++ unsigned long base_len; ++} dwc_otg_device_t; ++ ++//#define dev_dbg(fake, format, arg...) printk(KERN_CRIT __FILE__ ":%d: " format "\n" , __LINE__, ## arg) ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.c +@@ -0,0 +1,2870 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the implementation of the HCD. In Linux, the HCD ++ * implements the hc_driver API. ++ */ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include ++#include ++#include ++#include ++ ++#include ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++#include ++#include "dwc_otg_ifx.h" // for Infineon platform specific. ++extern atomic_t release_later; ++ ++static u64 dma_mask = DMA_BIT_MASK(32); ++ ++static const char dwc_otg_hcd_name [] = "dwc_otg_hcd"; ++static const struct hc_driver dwc_otg_hc_driver = ++{ ++ .description = dwc_otg_hcd_name, ++ .product_desc = "DWC OTG Controller", ++ .hcd_priv_size = sizeof(dwc_otg_hcd_t), ++ .irq = dwc_otg_hcd_irq, ++ .flags = HCD_MEMORY | HCD_USB2, ++ //.reset = ++ .start = dwc_otg_hcd_start, ++ //.suspend = ++ //.resume = ++ .stop = dwc_otg_hcd_stop, ++ .urb_enqueue = dwc_otg_hcd_urb_enqueue, ++ .urb_dequeue = dwc_otg_hcd_urb_dequeue, ++ .endpoint_disable = dwc_otg_hcd_endpoint_disable, ++ .get_frame_number = dwc_otg_hcd_get_frame_number, ++ .hub_status_data = dwc_otg_hcd_hub_status_data, ++ .hub_control = dwc_otg_hcd_hub_control, ++ //.hub_suspend = ++ //.hub_resume = ++}; ++ ++ ++/** ++ * Work queue function for starting the HCD when A-Cable is connected. ++ * The dwc_otg_hcd_start() must be called in a process context. ++ */ ++static void hcd_start_func(struct work_struct *work) ++{ ++ struct dwc_otg_hcd *priv = ++ container_of(work, struct dwc_otg_hcd, start_work); ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)priv->_p; ++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); ++ if (usb_hcd) { ++ dwc_otg_hcd_start(usb_hcd); ++ } ++} ++ ++ ++/** ++ * HCD Callback function for starting the HCD when A-Cable is ++ * connected. ++ * ++ * @param _p void pointer to the struct usb_hcd ++ */ ++static int32_t dwc_otg_hcd_start_cb(void *_p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ if (core_if->op_state == B_HOST) { ++ /* ++ * Reset the port. During a HNP mode switch the reset ++ * needs to occur within 1ms and have a duration of at ++ * least 50ms. ++ */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ((struct usb_hcd *)_p)->self.is_b_host = 1; ++ } else { ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ } ++ /* Need to start the HCD in a non-interrupt context. */ ++ INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++ dwc_otg_hcd->_p = _p; ++ schedule_work(&dwc_otg_hcd->start_work); ++ return 1; ++} ++ ++ ++/** ++ * HCD Callback function for stopping the HCD. ++ * ++ * @param _p void pointer to the struct usb_hcd ++ */ ++static int32_t dwc_otg_hcd_stop_cb( void *_p ) ++{ ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)_p; ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_stop( usb_hcd ); ++ return 1; ++} ++static void del_xfer_timers(dwc_otg_hcd_t *_hcd) ++{ ++#ifdef DEBUG ++ int i; ++ int num_channels = _hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ del_timer(&_hcd->core_if->hc_xfer_timer[i]); ++ } ++#endif /* */ ++} ++ ++static void del_timers(dwc_otg_hcd_t *_hcd) ++{ ++ del_xfer_timers(_hcd); ++ del_timer(&_hcd->conn_timer); ++} ++ ++/** ++ * Processes all the URBs in a single list of QHs. Completes them with ++ * -ETIMEDOUT and frees the QTD. ++ */ ++static void kill_urbs_in_qh_list(dwc_otg_hcd_t * _hcd, ++ struct list_head *_qh_list) ++{ ++ struct list_head *qh_item; ++ dwc_otg_qh_t *qh; ++ struct list_head *qtd_item; ++ dwc_otg_qtd_t *qtd; ++ ++ list_for_each(qh_item, _qh_list) { ++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry); ++ for (qtd_item = qh->qtd_list.next; qtd_item != &qh->qtd_list; ++ qtd_item = qh->qtd_list.next) { ++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry); ++ if (qtd->urb != NULL) { ++ dwc_otg_hcd_complete_urb(_hcd, qtd->urb,-ETIMEDOUT); ++ } ++ dwc_otg_hcd_qtd_remove_and_free(qtd); ++ } ++ } ++} ++ ++/** ++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic ++ * and periodic schedules. The QTD associated with each URB is removed from ++ * the schedule and freed. This function may be called when a disconnect is ++ * detected or when the HCD is being stopped. ++ */ ++static void kill_all_urbs(dwc_otg_hcd_t *_hcd) ++{ ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_deferred); ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_inactive); ++ kill_urbs_in_qh_list(_hcd, &_hcd->non_periodic_sched_active); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_inactive); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_ready); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_assigned); ++ kill_urbs_in_qh_list(_hcd, &_hcd->periodic_sched_queued); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param _p void pointer to the struct usb_hcd ++ */ ++static int32_t dwc_otg_hcd_disconnect_cb( void *_p ) ++{ ++ gintsts_data_t intr; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ ++ /* ++ * Set status flags for the hub driver. ++ */ ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 0; ++ ++ /* ++ * Shutdown any transfers in process by clearing the Tx FIFO Empty ++ * interrupt mask and status bits and disabling subsequent host ++ * channel interrupts. ++ */ ++ intr.d32 = 0; ++ intr.b.nptxfempty = 1; ++ intr.b.ptxfempty = 1; ++ intr.b.hcintr = 1; ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0); ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* ++ * Turn off the vbus power only if the core has transitioned to device ++ * mode. If still in host mode, need to keep power on to detect a ++ * reconnection. ++ */ ++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { ++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { ++ hprt0_data_t hprt0 = { .d32=0 }; ++ DWC_PRINT("Disconnect: PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ } ++ ++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if ); ++ } ++ ++ /* Respond with an error status to all URBs in the schedule. */ ++ kill_all_urbs(dwc_otg_hcd); ++ ++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { ++ /* Clean up any host channels that were in use. */ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ /* Flush out any channel requests in slave mode. */ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ } ++ } ++ } ++ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ /* Halt the channel. */ ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel); ++ list_add_tail(&channel->hc_list_entry, ++ &dwc_otg_hcd->free_hc_list); ++ } ++ } ++ } ++ ++ /* A disconnect will end the session so the B-Device is no ++ * longer a B-host. */ ++ ((struct usb_hcd *)_p)->self.is_b_host = 0; ++ ++ return 1; ++} ++ ++/** ++ * Connection timeout function. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. ++ */ ++void dwc_otg_hcd_connect_timeout( unsigned long _ptr ) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr); ++ DWC_PRINT( "Connect Timeout\n"); ++ DWC_ERROR( "Device Not Connected/Responding\n" ); ++} ++ ++/** ++ * Start the connection timer. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. The ++ * timer is deleted if a port connect interrupt occurs before the ++ * timer expires. ++ */ ++static void dwc_otg_hcd_start_connect_timer( dwc_otg_hcd_t *_hcd) ++{ ++ init_timer( &_hcd->conn_timer ); ++ _hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; ++ _hcd->conn_timer.data = (unsigned long)0; ++ _hcd->conn_timer.expires = jiffies + (HZ*10); ++ add_timer( &_hcd->conn_timer ); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param _p void pointer to the struct usb_hcd ++ */ ++static int32_t dwc_otg_hcd_session_start_cb( void *_p ) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_p); ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p); ++ dwc_otg_hcd_start_connect_timer( dwc_otg_hcd ); ++ return 1; ++} ++ ++/** ++ * HCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = { ++ .start = dwc_otg_hcd_start_cb, ++ .stop = dwc_otg_hcd_stop_cb, ++ .disconnect = dwc_otg_hcd_disconnect_cb, ++ .session_start = dwc_otg_hcd_session_start_cb, ++ .p = 0, ++}; ++ ++ ++/** ++ * Reset tasklet function ++ */ ++static void reset_tasklet_func (unsigned long data) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t*)data; ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); ++ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay (60); ++ ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ ++ return; ++} ++ ++static struct tasklet_struct reset_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = reset_tasklet_func, ++ .data = 0, ++}; ++ ++/** ++ * Initializes the HCD. This function allocates memory for and initializes the ++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the ++ * USB bus with the core and calls the hc_driver->start() function. It returns ++ * a negative error on failure. ++ */ ++int init_hcd_usecs(dwc_otg_hcd_t *_hcd); ++ ++int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device) ++{ ++ struct usb_hcd *hcd = NULL; ++ dwc_otg_hcd_t *dwc_otg_hcd = NULL; ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ int retval = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); ++ ++ /* ++ * Allocate memory for the base HCD plus the DWC OTG HCD. ++ * Initialize the base HCD. ++ */ ++ hcd = usb_create_hcd(&dwc_otg_hc_driver, _dev, dev_name(_dev)); ++ if (hcd == NULL) { ++ retval = -ENOMEM; ++ goto error1; ++ } ++ dev_set_drvdata(_dev, dwc_otg_device); /* fscz restore */ ++ hcd->regs = otg_dev->base; ++ hcd->rsrc_start = (int)otg_dev->base; ++ ++ hcd->self.otg_port = 1; ++ ++ /* Initialize the DWC OTG HCD. */ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_hcd->core_if = otg_dev->core_if; ++ otg_dev->hcd = dwc_otg_hcd; ++ ++ /* Register the HCD CIL Callbacks */ ++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, ++ &hcd_cil_callbacks, hcd); ++ ++ /* Initialize the non-periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_deferred); ++ ++ /* Initialize the periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); ++ ++ /* ++ * Create a host channel descriptor for each host channel implemented ++ * in the controller. Initialize the channel descriptor array. ++ */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL); ++ if (channel == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: host channel allocation failed\n", __func__); ++ goto error2; ++ } ++ memset(channel, 0, sizeof(dwc_hc_t)); ++ channel->hc_num = i; ++ dwc_otg_hcd->hc_ptr_array[i] = channel; ++#ifdef DEBUG ++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); ++#endif ++ ++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel); ++ } ++ ++ /* Initialize the Connection timeout timer. */ ++ init_timer( &dwc_otg_hcd->conn_timer ); ++ ++ /* Initialize reset tasklet. */ ++ reset_tasklet.data = (unsigned long) dwc_otg_hcd; ++ dwc_otg_hcd->reset_tasklet = &reset_tasklet; ++ ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ //_dev->dma_mask = (void *)~0; ++ //_dev->coherent_dma_mask = ~0; ++ _dev->dma_mask = &dma_mask; ++ _dev->coherent_dma_mask = DMA_BIT_MASK(32); ++ } else { ++ DWC_PRINT("Using Slave mode\n"); ++ _dev->dma_mask = (void *)0; ++ _dev->coherent_dma_mask = 0; ++ } ++ ++ init_hcd_usecs(dwc_otg_hcd); ++ /* ++ * Finish generic HCD initialization and start the HCD. This function ++ * allocates the DMA buffer pool, registers the USB bus, requests the ++ * IRQ line, and calls dwc_otg_hcd_start method. ++ */ ++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED); ++ if (retval < 0) { ++ goto error2; ++ } ++ ++ /* ++ * Allocate space for storing data on status transactions. Normally no ++ * data is sent, but this space acts as a bit bucket. This must be ++ * done after usb_add_hcd since that function allocates the DMA buffer ++ * pool. ++ */ ++ if (otg_dev->core_if->dma_enable) { ++ dwc_otg_hcd->status_buf = ++ dma_alloc_coherent(_dev, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ &dwc_otg_hcd->status_buf_dma, ++ GFP_KERNEL | GFP_DMA); ++ } else { ++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, ++ GFP_KERNEL); ++ } ++ if (dwc_otg_hcd->status_buf == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: status_buf allocation failed\n", __func__); ++ goto error3; ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, bus=%s, usbbus=%d\n", ++ dev_name(_dev), hcd->self.busnum); ++ ++ return 0; ++ ++ /* Error conditions */ ++error3: ++ usb_remove_hcd(hcd); ++error2: ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++error1: ++ return retval; ++} ++ ++/** ++ * Removes the HCD. ++ * Frees memory and resources associated with the HCD and deregisters the bus. ++ */ ++void dwc_otg_hcd_remove(struct device *_dev) ++{ ++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); ++ dwc_otg_hcd_t *dwc_otg_hcd = otg_dev->hcd; ++ struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); ++ ++ /* Turn off all interrupts */ ++ dwc_write_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); ++ dwc_modify_reg32 (&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0); ++ ++ usb_remove_hcd(hcd); ++ ++ dwc_otg_hcd_free(hcd); ++ ++ usb_put_hcd(hcd); ++ ++ return; ++} ++ ++ ++/* ========================================================================= ++ * Linux HC Driver Functions ++ * ========================================================================= */ ++ ++/** ++ * Initializes dynamic portions of the DWC_otg HCD state. ++ */ ++static void hcd_reinit(dwc_otg_hcd_t *_hcd) ++{ ++ struct list_head *item; ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ _hcd->flags.d32 = 0; ++ ++ _hcd->non_periodic_qh_ptr = &_hcd->non_periodic_sched_active; ++ _hcd->available_host_channels = _hcd->core_if->core_params->host_channels; ++ ++ /* ++ * Put all channels in the free channel list and clean up channel ++ * states. ++ */ ++ item = _hcd->free_hc_list.next; ++ while (item != &_hcd->free_hc_list) { ++ list_del(item); ++ item = _hcd->free_hc_list.next; ++ } ++ num_channels = _hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = _hcd->hc_ptr_array[i]; ++ list_add_tail(&channel->hc_list_entry, &_hcd->free_hc_list); ++ dwc_otg_hc_cleanup(_hcd->core_if, channel); ++ } ++ ++ /* Initialize the DWC core for host mode operation. */ ++ dwc_otg_core_host_init(_hcd->core_if); ++} ++ ++/** Initializes the DWC_otg controller and its root hub and prepares it for host ++ * mode operation. Activates the root port. Returns 0 on success and a negative ++ * error code on failure. */ ++int dwc_otg_hcd_start(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_core_if_t * core_if = dwc_otg_hcd->core_if; ++ struct usb_bus *bus; ++ ++ // int retval; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); ++ ++ bus = hcd_to_bus(_hcd); ++ ++ /* Initialize the bus state. If the core is in Device Mode ++ * HALT the USB bus and return. */ ++ if (dwc_otg_is_device_mode (core_if)) { ++ _hcd->state = HC_STATE_HALT; ++ return 0; ++ } ++ _hcd->state = HC_STATE_RUNNING; ++ ++ /* Initialize and connect root hub if one is not already attached */ ++ if (bus->root_hub) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n"); ++ /* Inform the HUB driver to resume. */ ++ usb_hcd_resume_root_hub(_hcd); ++ } ++ else { ++#if 0 ++ struct usb_device *udev; ++ udev = usb_alloc_dev(NULL, bus, 0); ++ if (!udev) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); ++ return -ENODEV; ++ } ++ udev->speed = USB_SPEED_HIGH; ++ /* Not needed - VJ ++ if ((retval = usb_hcd_register_root_hub(udev, _hcd)) != 0) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error registering %d\n", retval); ++ return -ENODEV; ++ } ++ */ ++#else ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Error udev alloc\n"); ++#endif ++ } ++ ++ hcd_reinit(dwc_otg_hcd); ++ ++ return 0; ++} ++ ++static void qh_list_free(dwc_otg_hcd_t *_hcd, struct list_head *_qh_list) ++{ ++ struct list_head *item; ++ dwc_otg_qh_t *qh; ++ ++ if (_qh_list->next == NULL) { ++ /* The list hasn't been initialized yet. */ ++ return; ++ } ++ ++ /* Ensure there are no QTDs or URBs left. */ ++ kill_urbs_in_qh_list(_hcd, _qh_list); ++ ++ for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) { ++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ dwc_otg_hcd_qh_remove_and_free(_hcd, qh); ++ } ++} ++ ++/** ++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are ++ * stopped. ++ */ ++void dwc_otg_hcd_stop(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ hprt0_data_t hprt0 = { .d32=0 }; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); ++ ++ /* Turn off all host-specific interrupts. */ ++ dwc_otg_disable_host_interrupts( dwc_otg_hcd->core_if ); ++ ++ /* ++ * The root hub should be disconnected before this function is called. ++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) ++ * and the QH lists (via ..._hcd_endpoint_disable). ++ */ ++ ++ /* Turn off the vbus power */ ++ DWC_PRINT("PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ ++ return; ++} ++ ++ ++/** Returns the current frame number. */ ++int dwc_otg_hcd_get_frame_number(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ hfnum_data_t hfnum; ++ ++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if-> ++ host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum); ++#endif ++ return hfnum.b.frnum; ++} ++ ++/** ++ * Frees secondary storage associated with the dwc_otg_hcd structure contained ++ * in the struct usb_hcd field. ++ */ ++void dwc_otg_hcd_free(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ int i; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* Free memory for QH/QTD lists */ ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_deferred); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); ++ ++ /* Free memory for the host channels. */ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i]; ++ if (hc != NULL) { ++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc); ++ kfree(hc); ++ } ++ } ++ ++ if (dwc_otg_hcd->core_if->dma_enable) { ++ if (dwc_otg_hcd->status_buf_dma) { ++ dma_free_coherent(_hcd->self.controller, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ dwc_otg_hcd->status_buf, ++ dwc_otg_hcd->status_buf_dma); ++ } ++ } else if (dwc_otg_hcd->status_buf != NULL) { ++ kfree(dwc_otg_hcd->status_buf); ++ } ++ ++ return; ++} ++ ++ ++#ifdef DEBUG ++static void dump_urb_info(struct urb *_urb, char* _fn_name) ++{ ++ DWC_PRINT("%s, urb %p\n", _fn_name, _urb); ++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(_urb->pipe)); ++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(_urb->pipe), ++ (usb_pipein(_urb->pipe) ? "IN" : "OUT")); ++ DWC_PRINT(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(_urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_PRINT(" Speed: %s\n", ++ ({char *speed; ++ switch (_urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(_urb->dev, _urb->pipe, usb_pipeout(_urb->pipe))); ++ DWC_PRINT(" Data buffer length: %d\n", _urb->transfer_buffer_length); ++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", ++ _urb->transfer_buffer, (void *)_urb->transfer_dma); ++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", ++ _urb->setup_packet, (void *)_urb->setup_dma); ++ DWC_PRINT(" Interval: %d\n", _urb->interval); ++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < _urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d:\n", i); ++ DWC_PRINT(" offset: %d, length %d\n", ++ _urb->iso_frame_desc[i].offset, ++ _urb->iso_frame_desc[i].length); ++ } ++ } ++} ++ ++static void dump_channel_info(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *qh) ++{ ++ if (qh->channel != NULL) { ++ dwc_hc_t *hc = qh->channel; ++ struct list_head *item; ++ dwc_otg_qh_t *qh_item; ++ int num_channels = _hcd->core_if->core_params->host_channels; ++ int i; ++ ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ ++ hc_regs = _hcd->core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_PRINT(" Assigned to channel %p:\n", hc); ++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ DWC_PRINT(" NP inactive sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_inactive) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" NP active sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_deferred) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" NP deferred sched:\n"); ++ list_for_each(item, &_hcd->non_periodic_sched_active) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } DWC_PRINT(" Channels: \n"); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = _hcd->hc_ptr_array[i]; ++ DWC_PRINT(" %2d: %p\n", i, hc); ++ } ++ } ++} ++#endif // DEBUG ++ ++/** Starts processing a USB transfer request specified by a USB Request Block ++ * (URB). mem_flags indicates the type of memory allocation to use while ++ * processing this URB. */ ++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *_hcd, ++ struct urb *_urb, ++ gfp_t _mem_flags) ++{ ++ unsigned long flags; ++ int retval; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_qtd_t *qtd; ++ ++ local_irq_save(flags); ++ retval = usb_hcd_link_urb_to_ep(_hcd, _urb); ++ if (retval) { ++ local_irq_restore(flags); ++ return retval; ++ } ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(_urb, "dwc_otg_hcd_urb_enqueue"); ++ } ++#endif // DEBUG ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* No longer connected. */ ++ local_irq_restore(flags); ++ return -ENODEV; ++ } ++ ++ qtd = dwc_otg_hcd_qtd_create (_urb); ++ if (qtd == NULL) { ++ local_irq_restore(flags); ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); ++ return -ENOMEM; ++ } ++ ++ retval = dwc_otg_hcd_qtd_add (qtd, dwc_otg_hcd); ++ if (retval < 0) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " ++ "Error status %d\n", retval); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ ++ local_irq_restore (flags); ++ return retval; ++} ++ ++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate ++ * success. */ ++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *_hcd, struct urb *_urb, int _status) ++{ ++ unsigned long flags; ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ dwc_otg_qtd_t *urb_qtd; ++ dwc_otg_qh_t *qh; ++ int retval; ++ //struct usb_host_endpoint *_ep = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); ++ ++ local_irq_save(flags); ++ ++ retval = usb_hcd_check_unlink_urb(_hcd, _urb, _status); ++ if (retval) { ++ local_irq_restore(flags); ++ return retval; ++ } ++ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ urb_qtd = (dwc_otg_qtd_t *)_urb->hcpriv; ++ if (urb_qtd == NULL) { ++ printk("urb_qtd is NULL for _urb %08x\n",(unsigned)_urb); ++ goto done; ++ } ++ qh = (dwc_otg_qh_t *) urb_qtd->qtd_qh_ptr; ++ if (qh == NULL) { ++ goto done; ++ } ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(_urb, "dwc_otg_hcd_urb_dequeue"); ++ if (urb_qtd == qh->qtd_in_process) { ++ dump_channel_info(dwc_otg_hcd, qh); ++ } ++ } ++#endif // DEBUG ++ ++ if (urb_qtd == qh->qtd_in_process) { ++ /* The QTD is in process (it has been assigned to a channel). */ ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * If still connected (i.e. in host mode), halt the ++ * channel so it can be used for other transfers. If ++ * no longer connected, the host registers can't be ++ * written to halt the channel since the core is in ++ * device mode. ++ */ ++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel, ++ DWC_OTG_HC_XFER_URB_DEQUEUE); ++ } ++ } ++ ++ /* ++ * Free the QTD and clean up the associated QH. Leave the QH in the ++ * schedule if it has any remaining QTDs. ++ */ ++ dwc_otg_hcd_qtd_remove_and_free(urb_qtd); ++ if (urb_qtd == qh->qtd_in_process) { ++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0); ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ } else if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh); ++ } ++ ++done: ++ local_irq_restore(flags); ++ _urb->hcpriv = NULL; ++ ++ /* Higher layer software sets URB status. */ ++ usb_hcd_unlink_urb_from_ep(_hcd, _urb); ++ usb_hcd_giveback_urb(_hcd, _urb, _status); ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("Called usb_hcd_giveback_urb()\n"); ++ DWC_PRINT(" urb->status = %d\n", _urb->status); ++ } ++ ++ return 0; ++} ++ ++ ++/** Frees resources in the DWC_otg controller related to a given endpoint. Also ++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint ++ * must already be dequeued. */ ++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *_hcd, ++ struct usb_host_endpoint *_ep) ++ ++{ ++ dwc_otg_qh_t *qh; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_hcd); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " ++ "endpoint=%d\n", _ep->desc.bEndpointAddress, ++ dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress)); ++ ++ qh = (dwc_otg_qh_t *)(_ep->hcpriv); ++ if (qh != NULL) { ++#ifdef DEBUG ++ /** Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ DWC_WARN("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } ++#endif // DEBUG ++ ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ _ep->hcpriv = NULL; ++ } ++ ++ return; ++} ++extern int dwc_irq; ++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if ++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid ++ * interrupt. ++ * ++ * This function is called by the USB core when an interrupt occurs */ ++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *_hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ ++ mask_and_ack_ifx_irq (dwc_irq); ++ return IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd)); ++} ++ ++/** Creates Status Change bitmap for the root hub and root port. The bitmap is ++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 ++ * is the status change indicator for the single root port. Returns 1 if either ++ * change indicator is 1, otherwise returns 0. */ ++int dwc_otg_hcd_hub_status_data(struct usb_hcd *_hcd, char *_buf) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ ++ _buf[0] = 0; ++ _buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || ++ dwc_otg_hcd->flags.b.port_reset_change || ++ dwc_otg_hcd->flags.b.port_enable_change || ++ dwc_otg_hcd->flags.b.port_suspend_change || ++ dwc_otg_hcd->flags.b.port_over_current_change) << 1; ++ ++#ifdef DEBUG ++ if (_buf[0]) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" ++ " Root port status changed\n"); ++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", ++ dwc_otg_hcd->flags.b.port_connect_status_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", ++ dwc_otg_hcd->flags.b.port_reset_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", ++ dwc_otg_hcd->flags.b.port_enable_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", ++ dwc_otg_hcd->flags.b.port_suspend_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", ++ dwc_otg_hcd->flags.b.port_over_current_change); ++ } ++#endif // DEBUG ++ return (_buf[0] != 0); ++} ++ ++#ifdef DWC_HS_ELECT_TST ++/* ++ * Quick and dirty hack to implement the HS Electrical Test ++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. ++ * ++ * This code was copied from our userspace app "hset". It sends a ++ * Get Device Descriptor control sequence in two parts, first the ++ * Setup packet by itself, followed some time later by the In and ++ * Ack packets. Rather than trying to figure out how to add this ++ * functionality to the normal driver code, we just hijack the ++ * hardware, using these two function to drive the hardware ++ * directly. ++ */ ++ ++dwc_otg_core_global_regs_t *global_regs; ++dwc_otg_host_global_regs_t *hc_global_regs; ++dwc_otg_hc_regs_t *hc_regs; ++uint32_t *data_fifo; ++ ++static void do_setup(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Send Setup packet (Get Device Descriptor) ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ // hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ /* Fill FIFO with Setup data for Get Device Descriptor */ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ dwc_write_reg32(data_fifo++, 0x01000680); ++ dwc_write_reg32(data_fifo++, 0x00080000); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++ ++static void do_in_ack(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ host_grxsts_data_t grxsts; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Receive Control In packet ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 1; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer */ ++ if (grxsts.b.bcnt > 0) { ++ int i; ++ int word_count = (grxsts.b.bcnt + 3) / 4; ++ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ for (i = 0; i < word_count; i++) { ++ (void)dwc_read_reg32(data_fifo++); ++ } ++ } ++ ++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt); ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ // usleep(100000); ++ // mdelay(100); ++ MDELAY(1); ++ ++ /* ++ * Send handshake packet ++ */ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ MDELAY(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 0; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++#endif /* DWC_HS_ELECT_TST */ ++ ++/** Handles hub class-specific requests.*/ ++int dwc_otg_hcd_hub_control(struct usb_hcd *_hcd, ++ u16 _typeReq, ++ u16 _wValue, ++ u16 _wIndex, ++ char *_buf, ++ u16 _wLength) ++{ ++ int retval = 0; ++ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd (_hcd); ++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd (_hcd)->core_if; ++ struct usb_hub_descriptor *desc; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ ++ uint32_t port_status; ++ ++ switch (_typeReq) { ++ case ClearHubFeature: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearHubFeature 0x%x\n", _wValue); ++ switch (_wValue) { ++ case C_HUB_LOCAL_POWER: ++ case C_HUB_OVER_CURRENT: ++ /* Nothing required here */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "ClearHubFeature request %xh unknown\n", _wValue); ++ } ++ break; ++ case ClearPortFeature: ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_ENABLE: ++ DWC_DEBUGPL (DBG_ANY, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtena = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Clear Resume bit */ ++ mdelay (100); ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); ++ /* Port inidicator not supported */ ++ break; ++ case USB_PORT_FEAT_C_CONNECTION: ++ /* Clears drivers internal connect status change ++ * flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 0; ++ break; ++ case USB_PORT_FEAT_C_RESET: ++ /* Clears the driver's internal Port Reset Change ++ * flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); ++ dwc_otg_hcd->flags.b.port_reset_change = 0; ++ break; ++ case USB_PORT_FEAT_C_ENABLE: ++ /* Clears the driver's internal Port ++ * Enable/Disable Change flag */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); ++ dwc_otg_hcd->flags.b.port_enable_change = 0; ++ break; ++ case USB_PORT_FEAT_C_SUSPEND: ++ /* Clears the driver's internal Port Suspend ++ * Change flag, which is set when resume signaling on ++ * the host port is complete */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); ++ dwc_otg_hcd->flags.b.port_suspend_change = 0; ++ break; ++ case USB_PORT_FEAT_C_OVER_CURRENT: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); ++ dwc_otg_hcd->flags.b.port_over_current_change = 0; ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "ClearPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ } ++ break; ++ case GetHubDescriptor: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubDescriptor\n"); ++ desc = (struct usb_hub_descriptor *)_buf; ++ desc->bDescLength = 9; ++ desc->bDescriptorType = 0x29; ++ desc->bNbrPorts = 1; ++ desc->wHubCharacteristics = 0x08; ++ desc->bPwrOn2PwrGood = 1; ++ desc->bHubContrCurrent = 0; ++ desc->bitmap[0] = 0; ++ desc->bitmap[1] = 0xff; ++ break; ++ case GetHubStatus: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubStatus\n"); ++ memset (_buf, 0, 4); ++ break; ++ case GetPortStatus: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetPortStatus\n"); ++ ++ if (!_wIndex || _wIndex > 1) ++ goto error; ++ ++ port_status = 0; ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status_change) ++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); ++ ++ if (dwc_otg_hcd->flags.b.port_enable_change) ++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE); ++ ++ if (dwc_otg_hcd->flags.b.port_suspend_change) ++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); ++ ++ if (dwc_otg_hcd->flags.b.port_reset_change) ++ port_status |= (1 << USB_PORT_FEAT_C_RESET); ++ ++ if (dwc_otg_hcd->flags.b.port_over_current_change) { ++ DWC_ERROR("Device Not Supported\n"); ++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); ++ } ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ printk("DISCONNECTED PORT\n"); ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return 0's for the remainder of the port status ++ * since the port register can't be read if the core ++ * is in device mode. ++ */ ++#if 1 // winder. ++ *((u32 *) _buf) = cpu_to_le32(port_status); ++#else ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++#endif ++ break; ++ } ++ ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); ++ ++ if (hprt0.b.prtconnsts) ++ port_status |= (1 << USB_PORT_FEAT_CONNECTION); ++ ++ if (hprt0.b.prtena) ++ port_status |= (1 << USB_PORT_FEAT_ENABLE); ++ ++ if (hprt0.b.prtsusp) ++ port_status |= (1 << USB_PORT_FEAT_SUSPEND); ++ ++ if (hprt0.b.prtovrcurract) ++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); ++ ++ if (hprt0.b.prtrst) ++ port_status |= (1 << USB_PORT_FEAT_RESET); ++ ++ if (hprt0.b.prtpwr) ++ port_status |= (1 << USB_PORT_FEAT_POWER); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) ++ port_status |= USB_PORT_STAT_HIGH_SPEED; ++ ++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ port_status |= (1 << USB_PORT_FEAT_LOWSPEED); ++ ++ if (hprt0.b.prttstctl) ++ port_status |= (1 << USB_PORT_FEAT_TEST); ++ ++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ ++#if 1 // winder. ++ *((u32 *) _buf) = cpu_to_le32(port_status); ++#else ++ *((__le32 *) _buf) = cpu_to_le32(port_status); ++#endif ++ ++ break; ++ case SetHubFeature: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetHubFeature\n"); ++ /* No HUB features supported */ ++ break; ++ case SetPortFeature: ++ if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1)) ++ goto error; ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return without doing anything since the port ++ * register can't be written if the core is in device ++ * mode. ++ */ ++ break; ++ } ++ ++ switch (_wValue) { ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); ++ if (_hcd->self.otg_port == _wIndex ++ && _hcd->self.b_hnp_enable) { ++ gotgctl_data_t gotgctl = {.d32=0}; ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&core_if->core_global_regs-> ++ gotgctl, 0, gotgctl.d32); ++ core_if->op_state = A_SUSPEND; ++ } ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ //DWC_PRINT( "SUSPEND: HPRT0=%0x\n", hprt0.d32); ++ /* Suspend the Phy Clock */ ++ { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ pcgcctl.b.stoppclk = 1; ++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); ++ } ++ ++ /* For HNP the bus must be suspended for at least 200ms.*/ ++ if (_hcd->self.b_hnp_enable) { ++ mdelay(200); ++ //DWC_PRINT( "SUSPEND: wait complete! (%d)\n", _hcd->state); ++ } ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_RESET: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_RESET\n"); ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ /* TODO: Is this for OTG protocol?? ++ * We shoudl remove OTG totally for Danube system. ++ * But, in the future, maybe we need this. ++ */ ++#if 1 // winder ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++#else ++ /* When B-Host the Port reset bit is set in ++ * the Start HCD Callback function, so that ++ * the reset is started within 1ms of the HNP ++ * success interrupt. */ ++ if (!_hcd->self.is_b_host) { ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } ++#endif ++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ ++ MDELAY (60); ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ ++#ifdef DWC_HS_ELECT_TST ++ case USB_PORT_FEAT_TEST: ++ { ++ uint32_t t; ++ gintmsk_data_t gintmsk; ++ ++ t = (_wIndex >> 8); /* MSB wIndex USB */ ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); ++ printk("USB_PORT_FEAT_TEST %d\n", t); ++ if (t < 6) { ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prttstctl = t; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } else { ++ /* Setup global vars with reg addresses (quick and ++ * dirty hack, should be cleaned up) ++ */ ++ global_regs = core_if->core_global_regs; ++ hc_global_regs = core_if->host_if->host_global_regs; ++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500); ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive suspend on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 1; ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive resume on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0 (core_if); ++ hprt0.b.prtsusp = 0; ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(100); ++ ++ /* Clear the resume bit */ ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Send the In and Ack packets */ ++ do_in_ack(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } ++ } ++ break; ++ } ++#endif /* DWC_HS_ELECT_TST */ ++ ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL (DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); ++ /* Not supported */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR ("DWC OTG HCD - " ++ "SetPortFeature request %xh " ++ "unknown or unsupported\n", _wValue); ++ break; ++ } ++ break; ++ default: ++error: ++ retval = -EINVAL; ++ DWC_WARN ("DWC OTG HCD - " ++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n", ++ _typeReq, _wIndex, _wValue); ++ break; ++ } ++ ++ return retval; ++} ++ ++ ++/** ++ * Assigns transactions from a QTD to a free host channel and initializes the ++ * host channel to perform the transactions. The host channel is removed from ++ * the free list. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _qh Transactions from the first QTD for this QH are selected and ++ * assigned to a free host channel. ++ */ ++static void assign_and_init_hc(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ dwc_hc_t *hc; ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, _hcd, _qh); ++ ++ hc = list_entry(_hcd->free_hc_list.next, dwc_hc_t, hc_list_entry); ++ ++ /* Remove the host channel from the free list. */ ++ list_del_init(&hc->hc_list_entry); ++ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ urb = qtd->urb; ++ _qh->channel = hc; ++ _qh->qtd_in_process = qtd; ++ ++ /* ++ * Use usb_pipedevice to determine device address. This address is ++ * 0 before the SET_ADDRESS command and the correct address afterward. ++ */ ++ hc->dev_addr = usb_pipedevice(urb->pipe); ++ hc->ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (urb->dev->speed == USB_SPEED_LOW) { ++ hc->speed = DWC_OTG_EP_SPEED_LOW; ++ } else if (urb->dev->speed == USB_SPEED_FULL) { ++ hc->speed = DWC_OTG_EP_SPEED_FULL; ++ } else { ++ hc->speed = DWC_OTG_EP_SPEED_HIGH; ++ } ++ hc->max_packet = dwc_max_packet(_qh->maxp); ++ ++ hc->xfer_started = 0; ++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; ++ hc->error_state = (qtd->error_count > 0); ++ hc->halt_on_queue = 0; ++ hc->halt_pending = 0; ++ hc->requests = 0; ++ ++ /* ++ * The following values may be modified in the transfer type section ++ * below. The xfer_len value may be reduced when the transfer is ++ * started to accommodate the max widths of the XferSize and PktCnt ++ * fields in the HCTSIZn register. ++ */ ++ hc->do_ping = _qh->ping_state; ++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0); ++ hc->data_pid_start = _qh->data_toggle; ++ hc->multi_count = 1; ++ ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma + urb->actual_length; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length; ++ } ++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; ++ hc->xfer_count = 0; ++ ++ /* ++ * Set the split attributes ++ */ ++ hc->do_split = 0; ++ if (_qh->do_split) { ++ hc->do_split = 1; ++ hc->xact_pos = qtd->isoc_split_pos; ++ hc->complete_split = qtd->complete_split; ++ hc->hub_addr = urb->dev->tt->hub->devnum; ++ hc->port_addr = urb->dev->ttport; ++ } ++ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); ++ hc->do_ping = 0; ++ hc->ep_is_in = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->setup_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->setup_packet; ++ } ++ hc->xfer_len = 8; ++ break; ++ case DWC_OTG_CONTROL_DATA: ++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); ++ hc->data_pid_start = qtd->data_toggle; ++ break; ++ case DWC_OTG_CONTROL_STATUS: ++ /* ++ * Direction is opposite of data direction or IN if no ++ * data. ++ */ ++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); ++ if (urb->transfer_buffer_length == 0) { ++ hc->ep_is_in = 1; ++ } else { ++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN); ++ } ++ if (hc->ep_is_in) { ++ hc->do_ping = 0; ++ } ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ hc->xfer_len = 0; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)_hcd->status_buf_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)_hcd->status_buf; ++ } ++ break; ++ } ++ break; ++ case PIPE_BULK: ++ hc->ep_type = DWC_OTG_EP_TYPE_BULK; ++ break; ++ case PIPE_INTERRUPT: ++ hc->ep_type = DWC_OTG_EP_TYPE_INTR; ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC; ++ if (_hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)(u32)urb->transfer_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer; ++ } ++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset; ++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset; ++ ++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ if (hc->xfer_len <= 188) { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ } ++ else { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN; ++ } ++ } ++ } ++ break; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This value may be modified when the transfer is started to ++ * reflect the actual transfer length. ++ */ ++ hc->multi_count = dwc_hb_mult(_qh->maxp); ++ } ++ ++ dwc_otg_hc_init(_hcd->core_if, hc); ++ hc->qh = _qh; ++} ++#define DEBUG_HOST_CHANNELS ++#ifdef DEBUG_HOST_CHANNELS ++static int last_sel_trans_num_per_scheduled = 0; ++module_param(last_sel_trans_num_per_scheduled, int, 0444); ++ ++static int last_sel_trans_num_nonper_scheduled = 0; ++module_param(last_sel_trans_num_nonper_scheduled, int, 0444); ++ ++static int last_sel_trans_num_avail_hc_at_start = 0; ++module_param(last_sel_trans_num_avail_hc_at_start, int, 0444); ++ ++static int last_sel_trans_num_avail_hc_at_end = 0; ++module_param(last_sel_trans_num_avail_hc_at_end, int, 0444); ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++/** ++ * This function selects transactions from the HCD transfer schedule and ++ * assigns them to available host channels. It is called from HCD interrupt ++ * handler functions. ++ * ++ * @param _hcd The HCD state structure. ++ * ++ * @return The types of new transactions that were assigned to host channels. ++ */ ++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd) ++{ ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int num_channels; ++ unsigned long flags; ++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE; ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); ++#endif /* */ ++ ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_per_scheduled = 0; ++ last_sel_trans_num_nonper_scheduled = 0; ++ last_sel_trans_num_avail_hc_at_start = _hcd->available_host_channels; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ /* Process entries in the periodic ready list. */ ++ num_channels = _hcd->core_if->core_params->host_channels; ++ qh_ptr = _hcd->periodic_sched_ready.next; ++ while (qh_ptr != &_hcd->periodic_sched_ready ++ && !list_empty(&_hcd->free_hc_list)) { ++ ++ // Make sure we leave one channel for non periodic transactions. ++ local_irq_save(flags); ++ if (_hcd->available_host_channels <= 1) { ++ local_irq_restore(flags); ++ break; ++ } ++ _hcd->available_host_channels--; ++ local_irq_restore(flags); ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_per_scheduled++; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(_hcd, qh); ++ ++ /* ++ * Move the QH from the periodic ready schedule to the ++ * periodic assigned schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_assigned); ++ local_irq_restore(flags); ++ ret_val = DWC_OTG_TRANSACTION_PERIODIC; ++ } ++ ++ /* ++ * Process entries in the deferred portion of the non-periodic list. ++ * A NAK put them here and, at the right time, they need to be ++ * placed on the sched_inactive list. ++ */ ++ qh_ptr = _hcd->non_periodic_sched_deferred.next; ++ while (qh_ptr != &_hcd->non_periodic_sched_deferred) { ++ uint16_t frame_number = ++ dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ qh_ptr = qh_ptr->next; ++ ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ // NAK did this ++ /* ++ * Move the QH from the non periodic deferred schedule to ++ * the non periodic inactive schedule. ++ */ ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, ++ &_hcd->non_periodic_sched_inactive); ++ local_irq_restore(flags); ++ } ++ } ++ ++ /* ++ * Process entries in the inactive portion of the non-periodic ++ * schedule. Some free host channels may not be used if they are ++ * reserved for periodic transfers. ++ */ ++ qh_ptr = _hcd->non_periodic_sched_inactive.next; ++ num_channels = _hcd->core_if->core_params->host_channels; ++ while (qh_ptr != &_hcd->non_periodic_sched_inactive ++ && !list_empty(&_hcd->free_hc_list)) { ++ ++ local_irq_save(flags); ++ if (_hcd->available_host_channels < 1) { ++ local_irq_restore(flags); ++ break; ++ } ++ _hcd->available_host_channels--; ++ local_irq_restore(flags); ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_nonper_scheduled++; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(_hcd, qh); ++ ++ /* ++ * Move the QH from the non-periodic inactive schedule to the ++ * non-periodic active schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ local_irq_save(flags); ++ list_move(&qh->qh_list_entry, &_hcd->non_periodic_sched_active); ++ local_irq_restore(flags); ++ ++ if (ret_val == DWC_OTG_TRANSACTION_NONE) { ++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; ++ } else { ++ ret_val = DWC_OTG_TRANSACTION_ALL; ++ } ++ ++ } ++#ifdef DEBUG_HOST_CHANNELS ++ last_sel_trans_num_avail_hc_at_end = _hcd->available_host_channels; ++#endif /* DEBUG_HOST_CHANNELS */ ++ ++ return ret_val; ++} ++ ++/** ++ * Attempts to queue a single transaction request for a host channel ++ * associated with either a periodic or non-periodic transfer. This function ++ * assumes that there is space available in the appropriate request queue. For ++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space ++ * is available in the appropriate Tx FIFO. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _hc Host channel descriptor associated with either a periodic or ++ * non-periodic transfer. ++ * @param _fifo_dwords_avail Number of DWORDs available in the periodic Tx ++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic ++ * transfers. ++ * ++ * @return 1 if a request is queued and more requests may be needed to ++ * complete the transfer, 0 if no more requests are required for this ++ * transfer, -1 if there is insufficient space in the Tx FIFO. ++ */ ++static int queue_transaction(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ uint16_t _fifo_dwords_avail) ++{ ++ int retval; ++ ++ if (_hcd->core_if->dma_enable) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ _hc->qh->ping_state = 0; ++ } ++ retval = 0; ++ } else if (_hc->halt_pending) { ++ /* Don't queue a request if the channel has been halted. */ ++ retval = 0; ++ } else if (_hc->halt_on_queue) { ++ dwc_otg_hc_halt(_hcd->core_if, _hc, _hc->halt_status); ++ retval = 0; ++ } else if (_hc->do_ping) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ } ++ retval = 0; ++ } else if (!_hc->ep_is_in || ++ _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ if ((_fifo_dwords_avail * 4) >= _hc->max_packet) { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); ++ } ++ } else { ++ retval = -1; ++ } ++ } else { ++ if (!_hc->xfer_started) { ++ dwc_otg_hc_start_transfer(_hcd->core_if, _hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(_hcd->core_if, _hc); ++ } ++ } ++ ++ return retval; ++} ++ ++/** ++ * Processes active non-periodic channels and queues transactions for these ++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx ++ * FIFO Empty interrupt is enabled if there are more transactions to queue as ++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx ++ * FIFO Empty interrupt is disabled. ++ */ ++static void process_non_periodic_channels(dwc_otg_hcd_t *_hcd) ++{ ++ gnptxsts_data_t tx_status; ++ struct list_head *orig_qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ int more_to_do = 0; ++ ++ dwc_otg_core_global_regs_t *global_regs = _hcd->core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ /* ++ * Keep track of the starting point. Skip over the start-of-list ++ * entry. ++ */ ++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ orig_qh_ptr = _hcd->non_periodic_qh_ptr; ++ ++ /* ++ * Process once through the active list or until no more space is ++ * available in the request queue or the Tx FIFO. ++ */ ++ do { ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (!_hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(_hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ status = queue_transaction(_hcd, qh->channel, tx_status.b.nptxfspcavail); ++ ++ if (status > 0) { ++ more_to_do = 1; ++ } else if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* Advance to next QH, skipping start-of-list entry. */ ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ if (_hcd->non_periodic_qh_ptr == &_hcd->non_periodic_sched_active) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ ++ } while (_hcd->non_periodic_qh_ptr != orig_qh_ptr); ++ ++ if (!_hcd->core_if->dma_enable) { ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ intr_mask.b.nptxfempty = 1; ++ ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ if (more_to_do || no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the non-periodic ++ * Tx FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Processes periodic channels for the next frame and queues transactions for ++ * these channels to the DWC_otg controller. After queueing transactions, the ++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions ++ * to queue as Periodic Tx FIFO or request queue space becomes available. ++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. ++ */ ++static void process_periodic_channels(dwc_otg_hcd_t *_hcd) ++{ ++ hptxsts_data_t tx_status; ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ ++ dwc_otg_host_global_regs_t *host_regs; ++ host_regs = _hcd->core_if->host_if->host_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ ++ qh_ptr = _hcd->periodic_sched_assigned.next; ++ while (qh_ptr != &_hcd->periodic_sched_assigned) { ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ if (tx_status.b.ptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ ++ /* ++ * Set a flag if we're queuing high-bandwidth in slave mode. ++ * The flag prevents any halts to get into the request queue in ++ * the middle of multiple high-bandwidth packets getting queued. ++ */ ++ if ((!_hcd->core_if->dma_enable) && ++ (qh->channel->multi_count > 1)) ++ { ++ _hcd->core_if->queuing_high_bandwidth = 1; ++ } ++ ++ status = queue_transaction(_hcd, qh->channel, tx_status.b.ptxfspcavail); ++ if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* ++ * In Slave mode, stay on the current transfer until there is ++ * nothing more to do or the high-bandwidth request count is ++ * reached. In DMA mode, only need to queue one request. The ++ * controller automatically handles multiple packets for ++ * high-bandwidth transfers. ++ */ ++ if (_hcd->core_if->dma_enable || ++ (status == 0 || ++ qh->channel->requests == qh->channel->multi_count)) { ++ qh_ptr = qh_ptr->next; ++ /* ++ * Move the QH from the periodic assigned schedule to ++ * the periodic queued schedule. ++ */ ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_queued); ++ ++ /* done queuing high bandwidth */ ++ _hcd->core_if->queuing_high_bandwidth = 0; ++ } ++ } ++ ++ if (!_hcd->core_if->dma_enable) { ++ dwc_otg_core_global_regs_t *global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ global_regs = _hcd->core_if->core_global_regs; ++ intr_mask.b.ptxfempty = 1; ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ if (!(list_empty(&_hcd->periodic_sched_assigned)) || ++ no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the periodic Tx ++ * FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * This function processes the currently active host channels and queues ++ * transactions for these channels to the DWC_otg controller. It is called ++ * from HCD interrupt handler functions. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _tr_type The type(s) of transactions to queue (non-periodic, ++ * periodic, or both). ++ */ ++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, ++ dwc_otg_transaction_type_e _tr_type) ++{ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); ++#endif ++ /* Process host channels associated with periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL) && ++ !list_empty(&_hcd->periodic_sched_assigned)) { ++ ++ process_periodic_channels(_hcd); ++ } ++ ++ /* Process host channels associated with non-periodic transfers. */ ++ if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || ++ _tr_type == DWC_OTG_TRANSACTION_ALL)) { ++ if (!list_empty(&_hcd->non_periodic_sched_active)) { ++ process_non_periodic_channels(_hcd); ++ } else { ++ /* ++ * Ensure NP Tx FIFO empty interrupt is disabled when ++ * there are no non-periodic transfers to process. ++ */ ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&_hcd->core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Sets the final status of an URB and returns it to the device driver. Any ++ * required cleanup of the URB is performed. ++ */ ++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t * _hcd, struct urb *_urb, ++ int _status) ++ __releases(_hcd->lock) ++__acquires(_hcd->lock) ++{ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", ++ __func__, _urb, usb_pipedevice(_urb->pipe), ++ usb_pipeendpoint(_urb->pipe), ++ usb_pipein(_urb->pipe) ? "IN" : "OUT", _status); ++ if (usb_pipetype(_urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < _urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d status: %d\n", ++ i, _urb->iso_frame_desc[i].status); ++ } ++ } ++ } ++#endif ++ ++ _urb->status = _status; ++ _urb->hcpriv = NULL; ++ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(_hcd), _urb); ++ spin_unlock(&_hcd->lock); ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(_hcd), _urb, _status); ++ spin_lock(&_hcd->lock); ++} ++ ++/* ++ * Returns the Queue Head for an URB. ++ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb) ++{ ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(_urb); ++ return (dwc_otg_qh_t *)ep->hcpriv; ++} ++ ++#ifdef DEBUG ++void dwc_print_setup_data (uint8_t *setup) ++{ ++ int i; ++ if (CHK_DEBUG_LEVEL(DBG_HCD)){ ++ DWC_PRINT("Setup Data = MSB "); ++ for (i=7; i>=0; i--) DWC_PRINT ("%02x ", setup[i]); ++ DWC_PRINT("\n"); ++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0]&0x80) ? "Device-to-Host" : "Host-to-Device"); ++ DWC_PRINT(" bmRequestType Type = "); ++ switch ((setup[0]&0x60) >> 5) { ++ case 0: DWC_PRINT("Standard\n"); break; ++ case 1: DWC_PRINT("Class\n"); break; ++ case 2: DWC_PRINT("Vendor\n"); break; ++ case 3: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bmRequestType Recipient = "); ++ switch (setup[0]&0x1f) { ++ case 0: DWC_PRINT("Device\n"); break; ++ case 1: DWC_PRINT("Interface\n"); break; ++ case 2: DWC_PRINT("Endpoint\n"); break; ++ case 3: DWC_PRINT("Other\n"); break; ++ default: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); ++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2])); ++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4])); ++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6])); ++ } ++} ++#endif ++ ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd) { ++#ifdef DEBUG ++#if 0 ++ DWC_PRINT("Frame remaining at SOF:\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->frrem_samples, _hcd->frrem_accum, ++ (_hcd->frrem_samples > 0) ? ++ _hcd->frrem_accum/_hcd->frrem_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_7_samples, _hcd->core_if->hfnum_7_frrem_accum, ++ (_hcd->core_if->hfnum_7_samples > 0) ? ++ _hcd->core_if->hfnum_7_frrem_accum/_hcd->core_if->hfnum_7_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_0_samples, _hcd->core_if->hfnum_0_frrem_accum, ++ (_hcd->core_if->hfnum_0_samples > 0) ? ++ _hcd->core_if->hfnum_0_frrem_accum/_hcd->core_if->hfnum_0_samples : 0); ++ DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %u, avg %u\n", ++ _hcd->core_if->hfnum_other_samples, _hcd->core_if->hfnum_other_frrem_accum, ++ (_hcd->core_if->hfnum_other_samples > 0) ? ++ _hcd->core_if->hfnum_other_frrem_accum/_hcd->core_if->hfnum_other_samples : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point A (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_7_samples_a, _hcd->hfnum_7_frrem_accum_a, ++ (_hcd->hfnum_7_samples_a > 0) ? ++ _hcd->hfnum_7_frrem_accum_a/_hcd->hfnum_7_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_0_samples_a, _hcd->hfnum_0_frrem_accum_a, ++ (_hcd->hfnum_0_samples_a > 0) ? ++ _hcd->hfnum_0_frrem_accum_a/_hcd->hfnum_0_samples_a : 0); ++ DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_other_samples_a, _hcd->hfnum_other_frrem_accum_a, ++ (_hcd->hfnum_other_samples_a > 0) ? ++ _hcd->hfnum_other_frrem_accum_a/_hcd->hfnum_other_samples_a : 0); ++ ++ DWC_PRINT("\n"); ++ DWC_PRINT("Frame remaining at sample point B (uframe 7):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_7_samples_b, _hcd->hfnum_7_frrem_accum_b, ++ (_hcd->hfnum_7_samples_b > 0) ? ++ _hcd->hfnum_7_frrem_accum_b/_hcd->hfnum_7_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 0):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_0_samples_b, _hcd->hfnum_0_frrem_accum_b, ++ (_hcd->hfnum_0_samples_b > 0) ? ++ _hcd->hfnum_0_frrem_accum_b/_hcd->hfnum_0_samples_b : 0); ++ DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n"); ++ DWC_PRINT(" samples %u, accum %llu, avg %llu\n", ++ _hcd->hfnum_other_samples_b, _hcd->hfnum_other_frrem_accum_b, ++ (_hcd->hfnum_other_samples_b > 0) ? ++ _hcd->hfnum_other_frrem_accum_b/_hcd->hfnum_other_samples_b : 0); ++#endif ++#endif ++} ++ ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd) ++{ ++#ifdef DEBUG ++ int num_channels; ++ int i; ++ gnptxsts_data_t np_tx_status; ++ hptxsts_data_t p_tx_status; ++ ++ num_channels = _hcd->core_if->core_params->host_channels; ++ DWC_PRINT("\n"); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("HCD State:\n"); ++ DWC_PRINT(" Num channels: %d\n", num_channels); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = _hcd->hc_ptr_array[i]; ++ DWC_PRINT(" Channel %d:\n", i); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" speed: %d\n", hc->speed); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" multi_count: %d\n", hc->multi_count); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); ++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" do_split: %d\n", hc->do_split); ++ DWC_PRINT(" complete_split: %d\n", hc->complete_split); ++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); ++ DWC_PRINT(" port_addr: %d\n", hc->port_addr); ++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); ++ DWC_PRINT(" requests: %d\n", hc->requests); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ if (hc->xfer_started) { ++ hfnum_data_t hfnum; ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); ++ hcchar.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hctsiz); ++ hcint.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hcd->core_if->host_if->hc_regs[i]->hcintmsk); ++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); ++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); ++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); ++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); ++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); ++ } ++ if (hc->xfer_started && (hc->qh != NULL) && (hc->qh->qtd_in_process != NULL)) { ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ qtd = hc->qh->qtd_in_process; ++ urb = qtd->urb; ++ DWC_PRINT(" URB Info:\n"); ++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); ++ if (urb != NULL) { ++ DWC_PRINT(" Dev: %d, EP: %d %s\n", ++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT"); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer); ++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma); ++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" actual_length: %d\n", urb->actual_length); ++ } ++ } ++ } ++ //DWC_PRINT(" non_periodic_channels: %d\n", _hcd->non_periodic_channels); ++ //DWC_PRINT(" periodic_channels: %d\n", _hcd->periodic_channels); ++ DWC_PRINT(" available_channels: %d\n", _hcd->available_host_channels); ++ DWC_PRINT(" periodic_usecs: %d\n", _hcd->periodic_usecs); ++ np_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->core_global_regs->gnptxsts); ++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail); ++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail); ++ p_tx_status.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hptxsts); ++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail); ++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); ++ dwc_otg_hcd_dump_frrem(_hcd); ++ dwc_otg_dump_global_registers(_hcd->core_if); ++ dwc_otg_dump_host_registers(_hcd->core_if); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("\n"); ++#endif ++} ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd.h +@@ -0,0 +1,676 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++#if !defined(__DWC_HCD_H__) ++#define __DWC_HCD_H__ ++ ++#include ++#include ++#include ++ ++struct lm_device; ++struct dwc_otg_device; ++ ++#include "dwc_otg_cil.h" ++//#include "dwc_otg_ifx.h" // winder ++ ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Host Contoller Driver (HCD). ++ * ++ * The Host Controller Driver (HCD) is responsible for translating requests ++ * from the USB Driver into the appropriate actions on the DWC_otg controller. ++ * It isolates the USBD from the specifics of the controller by providing an ++ * API to the USBD. ++ */ ++ ++/** ++ * Phases for control transfers. ++ */ ++typedef enum dwc_otg_control_phase { ++ DWC_OTG_CONTROL_SETUP, ++ DWC_OTG_CONTROL_DATA, ++ DWC_OTG_CONTROL_STATUS ++} dwc_otg_control_phase_e; ++ ++/** Transaction types. */ ++typedef enum dwc_otg_transaction_type { ++ DWC_OTG_TRANSACTION_NONE, ++ DWC_OTG_TRANSACTION_PERIODIC, ++ DWC_OTG_TRANSACTION_NON_PERIODIC, ++ DWC_OTG_TRANSACTION_ALL ++} dwc_otg_transaction_type_e; ++ ++/** ++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, ++ * interrupt, or isochronous transfer. A single QTD is created for each URB ++ * (of one of these types) submitted to the HCD. The transfer associated with ++ * a QTD may require one or multiple transactions. ++ * ++ * A QTD is linked to a Queue Head, which is entered in either the ++ * non-periodic or periodic schedule for execution. When a QTD is chosen for ++ * execution, some or all of its transactions may be executed. After ++ * execution, the state of the QTD is updated. The QTD may be retired if all ++ * its transactions are complete or if an error occurred. Otherwise, it ++ * remains in the schedule so more transactions can be executed later. ++ */ ++struct dwc_otg_qh; ++typedef struct dwc_otg_qtd { ++ /** ++ * Determines the PID of the next data packet for the data phase of ++ * control transfers. Ignored for other transfer types.
++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Current phase for control transfers (Setup, Data, or Status). */ ++ dwc_otg_control_phase_e control_phase; ++ ++ /** Keep track of the current split type ++ * for FS/LS endpoints on a HS Hub */ ++ uint8_t complete_split; ++ ++ /** How many bytes transferred during SSPLIT OUT */ ++ uint32_t ssplit_out_xfer_count; ++ ++ /** ++ * Holds the number of bus errors that have occurred for a transaction ++ * within this transfer. ++ */ ++ uint8_t error_count; ++ ++ /** ++ * Index of the next frame descriptor for an isochronous transfer. A ++ * frame descriptor describes the buffer position and length of the ++ * data to be transferred in the next scheduled (micro)frame of an ++ * isochronous transfer. It also holds status for that transaction. ++ * The frame index starts at 0. ++ */ ++ int isoc_frame_index; ++ ++ /** Position of the ISOC split on full/low speed */ ++ uint8_t isoc_split_pos; ++ ++ /** Position of the ISOC split in the buffer for the current frame */ ++ uint16_t isoc_split_offset; ++ ++ /** URB for this transfer */ ++ struct urb *urb; ++ ++ /** This list of QTDs */ ++ struct list_head qtd_list_entry; ++ ++ /* Field to track the qh pointer */ ++ struct dwc_otg_qh *qtd_qh_ptr; ++} dwc_otg_qtd_t; ++ ++/** ++ * A Queue Head (QH) holds the static characteristics of an endpoint and ++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may ++ * be entered in either the non-periodic or periodic schedule. ++ */ ++typedef struct dwc_otg_qh { ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - USB_ENDPOINT_XFER_CONTROL ++ * - USB_ENDPOINT_XFER_ISOC ++ * - USB_ENDPOINT_XFER_BULK ++ * - USB_ENDPOINT_XFER_INT ++ */ ++ uint8_t ep_type; ++ uint8_t ep_is_in; ++ ++ /** wMaxPacketSize Field of Endpoint Descriptor. */ ++ uint16_t maxp; ++ ++ /** ++ * Determines the PID of the next data packet for non-control ++ * transfers. Ignored for control transfers.
++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Ping state if 1. */ ++ uint8_t ping_state; ++ ++ /** ++ * List of QTDs for this QH. ++ */ ++ struct list_head qtd_list; ++ ++ /** Host channel currently processing transfers for this QH. */ ++ dwc_hc_t *channel; ++ ++ /** QTD currently assigned to a host channel for this QH. */ ++ dwc_otg_qtd_t *qtd_in_process; ++ ++ /** Full/low speed endpoint on high-speed hub requires split. */ ++ uint8_t do_split; ++ ++ /** @name Periodic schedule information */ ++ /** @{ */ ++ ++ /** Bandwidth in microseconds per (micro)frame. */ ++ uint8_t usecs; ++ ++ /** Interval between transfers in (micro)frames. */ ++ uint16_t interval; ++ ++ /** ++ * (micro)frame to initialize a periodic transfer. The transfer ++ * executes in the following (micro)frame. ++ */ ++ uint16_t sched_frame; ++ ++ /** (micro)frame at which last start split was initialized. */ ++ uint16_t start_split_frame; ++ ++ /** @} */ ++ ++ uint16_t speed; ++ uint16_t frame_usecs[8]; ++ /** Entry for QH in either the periodic or non-periodic schedule. */ ++ struct list_head qh_list_entry; ++} dwc_otg_qh_t; ++ ++/** ++ * This structure holds the state of the HCD, including the non-periodic and ++ * periodic schedules. ++ */ ++typedef struct dwc_otg_hcd { ++ spinlock_t lock; ++ ++ /** DWC OTG Core Interface Layer */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Internal DWC HCD Flags */ ++ volatile union dwc_otg_hcd_internal_flags { ++ uint32_t d32; ++ struct { ++ unsigned port_connect_status_change : 1; ++ unsigned port_connect_status : 1; ++ unsigned port_reset_change : 1; ++ unsigned port_enable_change : 1; ++ unsigned port_suspend_change : 1; ++ unsigned port_over_current_change : 1; ++ unsigned reserved : 27; ++ } b; ++ } flags; ++ ++ /** ++ * Inactive items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_inactive; ++ ++ /** ++ * Deferred items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ * When we get an NAK, the QH goes here. ++ */ ++ struct list_head non_periodic_sched_deferred; ++ ++ /** ++ * Active items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_active; ++ ++ /** ++ * Pointer to the next Queue Head to process in the active ++ * non-periodic schedule. ++ */ ++ struct list_head *non_periodic_qh_ptr; ++ ++ /** ++ * Inactive items in the periodic schedule. This is a list of QHs for ++ * periodic transfers that are _not_ scheduled for the next frame. ++ * Each QH in the list has an interval counter that determines when it ++ * needs to be scheduled for execution. This scheduling mechanism ++ * allows only a simple calculation for periodic bandwidth used (i.e. ++ * must assume that all periodic transfers may need to execute in the ++ * same frame). However, it greatly simplifies scheduling and should ++ * be sufficient for the vast majority of OTG hosts, which need to ++ * connect to a small number of peripherals at one time. ++ * ++ * Items move from this list to periodic_sched_ready when the QH ++ * interval counter is 0 at SOF. ++ */ ++ struct list_head periodic_sched_inactive; ++ ++ /** ++ * List of periodic QHs that are ready for execution in the next ++ * frame, but have not yet been assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_assigned as host ++ * channels become available during the current frame. ++ */ ++ struct list_head periodic_sched_ready; ++ ++ /** ++ * List of periodic QHs to be executed in the next frame that are ++ * assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_queued as the ++ * transactions for the QH are queued to the DWC_otg controller. ++ */ ++ struct list_head periodic_sched_assigned; ++ ++ /** ++ * List of periodic QHs that have been queued for execution. ++ * ++ * Items move from this list to either periodic_sched_inactive or ++ * periodic_sched_ready when the channel associated with the transfer ++ * is released. If the interval for the QH is 1, the item moves to ++ * periodic_sched_ready because it must be rescheduled for the next ++ * frame. Otherwise, the item moves to periodic_sched_inactive. ++ */ ++ struct list_head periodic_sched_queued; ++ ++ /** ++ * Total bandwidth claimed so far for periodic transfers. This value ++ * is in microseconds per (micro)frame. The assumption is that all ++ * periodic transfers may occur in the same (micro)frame. ++ */ ++ uint16_t periodic_usecs; ++ ++ /** ++ * Total bandwidth claimed so far for all periodic transfers ++ * in a frame. ++ * This will include a mixture of HS and FS transfers. ++ * Units are microseconds per (micro)frame. ++ * We have a budget per frame and have to schedule ++ * transactions accordingly. ++ * Watch out for the fact that things are actually scheduled for the ++ * "next frame". ++ */ ++ uint16_t frame_usecs[8]; ++ ++ /** ++ * Frame number read from the core at SOF. The value ranges from 0 to ++ * DWC_HFNUM_MAX_FRNUM. ++ */ ++ uint16_t frame_number; ++ ++ /** ++ * Free host channels in the controller. This is a list of ++ * dwc_hc_t items. ++ */ ++ struct list_head free_hc_list; ++ ++ /** ++ * Number of available host channels. ++ */ ++ int available_host_channels; ++ ++ /** ++ * Array of pointers to the host channel descriptors. Allows accessing ++ * a host channel descriptor given the host channel number. This is ++ * useful in interrupt handlers. ++ */ ++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; ++ ++ /** ++ * Buffer to use for any data received during the status phase of a ++ * control transfer. Normally no data is transferred during the status ++ * phase. This buffer is used as a bit bucket. ++ */ ++ uint8_t *status_buf; ++ ++ /** ++ * DMA address for status_buf. ++ */ ++ dma_addr_t status_buf_dma; ++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 ++ ++ /** ++ * Structure to allow starting the HCD in a non-interrupt context ++ * during an OTG role change. ++ */ ++ struct work_struct start_work; ++ struct usb_hcd *_p; ++ ++ /** ++ * Connection timer. An OTG host must display a message if the device ++ * does not connect. Started when the VBus power is turned on via ++ * sysfs attribute "buspower". ++ */ ++ struct timer_list conn_timer; ++ ++ /* Tasket to do a reset */ ++ struct tasklet_struct *reset_tasklet; ++ ++#ifdef DEBUG ++ uint32_t frrem_samples; ++ uint64_t frrem_accum; ++ ++ uint32_t hfnum_7_samples_a; ++ uint64_t hfnum_7_frrem_accum_a; ++ uint32_t hfnum_0_samples_a; ++ uint64_t hfnum_0_frrem_accum_a; ++ uint32_t hfnum_other_samples_a; ++ uint64_t hfnum_other_frrem_accum_a; ++ ++ uint32_t hfnum_7_samples_b; ++ uint64_t hfnum_7_frrem_accum_b; ++ uint32_t hfnum_0_samples_b; ++ uint64_t hfnum_0_frrem_accum_b; ++ uint32_t hfnum_other_samples_b; ++ uint64_t hfnum_other_frrem_accum_b; ++#endif ++ ++} dwc_otg_hcd_t; ++ ++/** Gets the dwc_otg_hcd from a struct usb_hcd */ ++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) ++{ ++ return (dwc_otg_hcd_t *)(hcd->hcd_priv); ++} ++ ++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ ++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); ++} ++ ++/** @name HCD Create/Destroy Functions */ ++/** @{ */ ++extern int __devinit dwc_otg_hcd_init(struct device *_dev, dwc_otg_device_t * dwc_otg_device); ++extern void dwc_otg_hcd_remove(struct device *_dev); ++/** @} */ ++ ++/** @name Linux HC Driver API Functions */ ++/** @{ */ ++ ++extern int dwc_otg_hcd_start(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_free(struct usb_hcd *hcd); ++ ++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ struct urb *urb, ++ gfp_t mem_flags); ++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, ++ int status); ++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); ++ ++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep); ++ ++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, ++ char *buf); ++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength); ++ ++/** @} */ ++ ++/** @name Transaction Execution Functions */ ++/** @{ */ ++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *_hcd); ++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *_hcd, ++ dwc_otg_transaction_type_e _tr_type); ++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *_urb, ++ int _status); ++/** @} */ ++ ++/** @name Interrupt Handler Functions */ ++/** @{ */ ++extern int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_disconnect_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num); ++extern int32_t dwc_otg_hcd_handle_session_req_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr (dwc_otg_hcd_t *_dwc_otg_hcd); ++/** @} */ ++ ++ ++/** @name Schedule Queue Functions */ ++/** @{ */ ++ ++/* Implemented in dwc_otg_hcd_queue.c */ ++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb); ++extern void dwc_otg_hcd_qh_init (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb); ++extern void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh); ++extern int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); ++extern void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh); ++extern void dwc_otg_hcd_qh_deactivate (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_csplit); ++extern int dwc_otg_hcd_qh_deferr (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int delay); ++ ++/** Remove and free a QH */ ++static inline void dwc_otg_hcd_qh_remove_and_free (dwc_otg_hcd_t *_hcd, ++ dwc_otg_qh_t *_qh) ++{ ++ dwc_otg_hcd_qh_remove (_hcd, _qh); ++ dwc_otg_hcd_qh_free (_qh); ++} ++ ++/** Allocates memory for a QH structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc (void) ++{ ++#ifdef _SC_BUILD_ ++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_ATOMIC); ++#else ++ return (dwc_otg_qh_t *) kmalloc (sizeof(dwc_otg_qh_t), GFP_KERNEL); ++#endif ++} ++ ++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb); ++extern void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb); ++extern int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); ++ ++/** Allocates memory for a QTD structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc (void) ++{ ++#ifdef _SC_BUILD_ ++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_ATOMIC); ++#else ++ return (dwc_otg_qtd_t *) kmalloc (sizeof(dwc_otg_qtd_t), GFP_KERNEL); ++#endif ++} ++ ++/** Frees the memory for a QTD structure. QTD should already be removed from ++ * list. ++ * @param[in] _qtd QTD to free.*/ ++static inline void dwc_otg_hcd_qtd_free (dwc_otg_qtd_t *_qtd) ++{ ++ kfree (_qtd); ++} ++ ++/** Removes a QTD from list. ++ * @param[in] _qtd QTD to remove from list. */ ++static inline void dwc_otg_hcd_qtd_remove (dwc_otg_qtd_t *_qtd) ++{ ++ unsigned long flags; ++ local_irq_save (flags); ++ list_del (&_qtd->qtd_list_entry); ++ local_irq_restore (flags); ++} ++ ++/** Remove and free a QTD */ ++static inline void dwc_otg_hcd_qtd_remove_and_free (dwc_otg_qtd_t *_qtd) ++{ ++ dwc_otg_hcd_qtd_remove (_qtd); ++ dwc_otg_hcd_qtd_free (_qtd); ++} ++ ++/** @} */ ++ ++ ++/** @name Internal Functions */ ++/** @{ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *_urb); ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *_hcd); ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *_hcd); ++/** @} */ ++ ++ ++/** Gets the usb_host_endpoint associated with an URB. */ ++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *_urb) ++{ ++ struct usb_device *dev = _urb->dev; ++ int ep_num = usb_pipeendpoint(_urb->pipe); ++ if (usb_pipein(_urb->pipe)) ++ return dev->ep_in[ep_num]; ++ else ++ return dev->ep_out[ep_num]; ++} ++ ++/** ++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is ++ * qualified with its direction (possible 32 endpoints per device). ++ */ ++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) \ ++ ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) ++ ++/** Gets the QH that contains the list_head */ ++#define dwc_list_to_qh(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qh_t,qh_list_entry)) ++ ++/** Gets the QTD that contains the list_head */ ++#define dwc_list_to_qtd(_list_head_ptr_) (container_of(_list_head_ptr_,dwc_otg_qtd_t,qtd_list_entry)) ++ ++/** Check if QH is non-periodic */ ++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ ++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) ++ ++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ ++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) ++ ++/** Packet size for any kind of endpoint descriptor */ ++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) ++ ++/** ++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is ++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the ++ * frame number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_le(uint16_t _frame1, uint16_t _frame2) ++{ ++ return ((_frame2 - _frame1) & DWC_HFNUM_MAX_FRNUM) <= ++ (DWC_HFNUM_MAX_FRNUM >> 1); ++} ++ ++/** ++ * Returns true if _frame1 is greater than _frame2. The comparison is done ++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame ++ * number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_gt(uint16_t _frame1, uint16_t _frame2) ++{ ++ return (_frame1 != _frame2) && ++ (((_frame1 - _frame2) & DWC_HFNUM_MAX_FRNUM) < ++ (DWC_HFNUM_MAX_FRNUM >> 1)); ++} ++ ++/** ++ * Increments _frame by the amount specified by _inc. The addition is done ++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. ++ */ ++static inline uint16_t dwc_frame_num_inc(uint16_t _frame, uint16_t _inc) ++{ ++ return (_frame + _inc) & DWC_HFNUM_MAX_FRNUM; ++} ++ ++static inline uint16_t dwc_full_frame_num (uint16_t _frame) ++{ ++ return ((_frame) & DWC_HFNUM_MAX_FRNUM) >> 3; ++} ++ ++static inline uint16_t dwc_micro_frame_num (uint16_t _frame) ++{ ++ return (_frame) & 0x7; ++} ++ ++#ifdef DEBUG ++/** ++ * Macro to sample the remaining PHY clocks left in the current frame. This ++ * may be used during debugging to determine the average time it takes to ++ * execute sections of code. There are two possible sample points, "a" and ++ * "b", so the _letter argument must be one of these values. ++ * ++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For ++ * example, "cat /sys/devices/lm0/hcd_frrem". ++ */ ++#define dwc_sample_frrem(_hcd, _qh, _letter) \ ++{ \ ++ hfnum_data_t hfnum; \ ++ dwc_otg_qtd_t *qtd; \ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ ++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ ++ switch (hfnum.b.frnum & 0x7) { \ ++ case 7: \ ++ _hcd->hfnum_7_samples_##_letter++; \ ++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ case 0: \ ++ _hcd->hfnum_0_samples_##_letter++; \ ++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ default: \ ++ _hcd->hfnum_other_samples_##_letter++; \ ++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ } \ ++ } \ ++} ++#else // DEBUG ++#define dwc_sample_frrem(_hcd, _qh, _letter) ++#endif // DEBUG ++#endif // __DWC_HCD_H__ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_intr.c +@@ -0,0 +1,1841 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_intr.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 553126 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++const int erratum_usb09_patched = 0; ++const int deferral_on = 1; ++const int nak_deferral_delay = 8; ++const int nyet_deferral_delay = 1; ++/** @file ++ * This file contains the implementation of the HCD Interrupt handlers. ++ */ ++ ++/** This function handles interrupts for the HCD. */ ++int32_t dwc_otg_hcd_handle_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int retval = 0; ++ ++ dwc_otg_core_if_t *core_if = _dwc_otg_hcd->core_if; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++#endif ++ ++ /* Check if HOST Mode */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ gintsts.d32 = dwc_otg_read_core_intr(core_if); ++ if (!gintsts.d32) { ++ return 0; ++ } ++ ++#ifdef DEBUG ++ /* Don't print debug message in the interrupt handler on SOF */ ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL (DBG_HCD, "\n"); ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); ++#endif ++ ++ if (gintsts.b.sofintr) { ++ retval |= dwc_otg_hcd_handle_sof_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.rxstsqlvl) { ++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.nptxfempty) { ++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.i2cintr) { ++ /** @todo Implement i2cintr handler. */ ++ } ++ if (gintsts.b.portintr) { ++ retval |= dwc_otg_hcd_handle_port_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.hcintr) { ++ retval |= dwc_otg_hcd_handle_hc_intr (_dwc_otg_hcd); ++ } ++ if (gintsts.b.ptxfempty) { ++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (_dwc_otg_hcd); ++ } ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintmsk)); ++ } ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL (DBG_HCD, "\n"); ++#endif ++ ++ } ++ ++ return retval; ++} ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++#warning Compiling code to track missed SOFs ++#define FRAME_NUM_ARRAY_SIZE 1000 ++/** ++ * This function is for debug only. ++ */ ++static inline void track_missed_sofs(uint16_t _curr_frame_number) { ++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static int frame_num_idx = 0; ++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; ++ static int dumped_frame_num_array = 0; ++ ++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { ++ if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != _curr_frame_number)) { ++ frame_num_array[frame_num_idx] = _curr_frame_number; ++ last_frame_num_array[frame_num_idx++] = last_frame_num; ++ } ++ } else if (!dumped_frame_num_array) { ++ int i; ++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); ++ printk(KERN_EMERG USB_DWC "----- ----------\n"); ++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { ++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", ++ frame_num_array[i], last_frame_num_array[i]); ++ } ++ dumped_frame_num_array = 1; ++ } ++ last_frame_num = _curr_frame_number; ++} ++#endif ++ ++/** ++ * Handles the start-of-frame interrupt in host mode. Non-periodic ++ * transactions may be queued to the DWC_otg controller for the current ++ * (micro)frame. Periodic transactions may be queued to the controller for the ++ * next (micro)frame. ++ */ ++int32_t dwc_otg_hcd_handle_sof_intr (dwc_otg_hcd_t *_hcd) ++{ ++ hfnum_data_t hfnum; ++ struct list_head *qh_entry; ++ dwc_otg_qh_t *qh; ++ dwc_otg_transaction_type_e tr_type; ++ gintsts_data_t gintsts = {.d32 = 0}; ++ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); ++#endif ++ ++ _hcd->frame_number = hfnum.b.frnum; ++ ++#ifdef DEBUG ++ _hcd->frrem_accum += hfnum.b.frrem; ++ _hcd->frrem_samples++; ++#endif ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++ track_missed_sofs(_hcd->frame_number); ++#endif ++ ++ /* Determine whether any periodic QHs should be executed. */ ++ qh_entry = _hcd->periodic_sched_inactive.next; ++ while (qh_entry != &_hcd->periodic_sched_inactive) { ++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); ++ qh_entry = qh_entry->next; ++ if (dwc_frame_num_le(qh->sched_frame, _hcd->frame_number)) { ++ /* ++ * Move QH to the ready list to be executed next ++ * (micro)frame. ++ */ ++ list_move(&qh->qh_list_entry, &_hcd->periodic_sched_ready); ++ } ++ } ++ ++ tr_type = dwc_otg_hcd_select_transactions(_hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(_hcd, tr_type); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32(&_hcd->core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at ++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to ++ * memory if the DWC_otg controller is operating in Slave mode. */ ++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ host_grxsts_data_t grxsts; ++ dwc_hc_t *hc = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); ++ ++ grxsts.d32 = dwc_read_reg32(&_dwc_otg_hcd->core_if->core_global_regs->grxstsp); ++ ++ hc = _dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; ++ ++ /* Packet Status */ ++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); ++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); ++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); ++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer. */ ++ if (grxsts.b.bcnt > 0) { ++ dwc_otg_read_packet(_dwc_otg_hcd->core_if, ++ hc->xfer_buff, ++ grxsts.b.bcnt); ++ ++ /* Update the HC fields for the next packet received. */ ++ hc->xfer_count += grxsts.b.bcnt; ++ hc->xfer_buff += grxsts.b.bcnt; ++ } ++ ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: ++ case DWC_GRXSTS_PKTSTS_CH_HALTED: ++ /* Handled in interrupt, just ignore data */ ++ break; ++ default: ++ DWC_ERROR ("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); ++ break; ++ } ++ ++ return 1; ++} ++ ++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More ++ * data packets may be written to the FIFO for OUT transfers. More requests ++ * may be written to the non-periodic request queue for IN transfers. This ++ * interrupt is enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_NON_PERIODIC); ++ return 1; ++} ++ ++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data ++ * packets may be written to the FIFO for OUT transfers. More requests may be ++ * written to the periodic request queue for IN transfers. This interrupt is ++ * enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(_dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_PERIODIC); ++ return 1; ++} ++ ++/** There are multiple conditions that can cause a port interrupt. This function ++ * determines which interrupt conditions have occurred and handles them ++ * appropriately. */ ++int32_t dwc_otg_hcd_handle_port_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int retval = 0; ++ hprt0_data_t hprt0; ++ hprt0_data_t hprt0_modify; ++ ++ hprt0.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); ++ hprt0_modify.d32 = dwc_read_reg32(_dwc_otg_hcd->core_if->host_if->hprt0); ++ ++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in ++ * GINTSTS */ ++ ++ hprt0_modify.b.prtena = 0; ++ hprt0_modify.b.prtconndet = 0; ++ hprt0_modify.b.prtenchng = 0; ++ hprt0_modify.b.prtovrcurrchng = 0; ++ ++ /* Port Connect Detected ++ * Set flag and clear if detected */ ++ if (hprt0.b.prtconndet) { ++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " ++ "Port Connect Detected--\n", hprt0.d32); ++ _dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ _dwc_otg_hcd->flags.b.port_connect_status = 1; ++ hprt0_modify.b.prtconndet = 1; ++ ++ /* B-Device has connected, Delete the connection timer. */ ++ del_timer( &_dwc_otg_hcd->conn_timer ); ++ ++ /* The Hub driver asserts a reset when it sees port connect ++ * status change flag */ ++ retval |= 1; ++ } ++ ++ /* Port Enable Changed ++ * Clear if detected - Set internal flag if disabled */ ++ if (hprt0.b.prtenchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Enable Changed--\n", hprt0.d32); ++ hprt0_modify.b.prtenchng = 1; ++ if (hprt0.b.prtena == 1) { ++ int do_reset = 0; ++ dwc_otg_core_params_t *params = _dwc_otg_hcd->core_if->core_params; ++ dwc_otg_core_global_regs_t *global_regs = _dwc_otg_hcd->core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = _dwc_otg_hcd->core_if->host_if; ++ ++ /* Check if we need to adjust the PHY clock speed for ++ * low power and adjust it */ ++ if (params->host_support_fs_ls_low_power) ++ { ++ gusbcfg_data_t usbcfg; ++ ++ usbcfg.d32 = dwc_read_reg32 (&global_regs->gusbcfg); ++ ++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) || ++ (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) ++ { ++ /* ++ * Low power ++ */ ++ hcfg_data_t hcfg; ++ if (usbcfg.b.phylpwrclksel == 0) { ++ /* Set PHY low power clock select for FS/LS devices */ ++ usbcfg.b.phylpwrclksel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ ++ if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) && ++ (params->host_ls_low_power_phy_clk == ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) ++ { ++ /* 6 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ else { ++ /* 48 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ } ++ else { ++ /* ++ * Not low power ++ */ ++ if (usbcfg.b.phylpwrclksel == 1) { ++ usbcfg.b.phylpwrclksel = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ } ++ ++ if (do_reset) { ++ tasklet_schedule(_dwc_otg_hcd->reset_tasklet); ++ } ++ } ++ ++ if (!do_reset) { ++ /* Port has been enabled set the reset change flag */ ++ _dwc_otg_hcd->flags.b.port_reset_change = 1; ++ } ++ ++ } else { ++ _dwc_otg_hcd->flags.b.port_enable_change = 1; ++ } ++ retval |= 1; ++ } ++ ++ /** Overcurrent Change Interrupt */ ++ if (hprt0.b.prtovrcurrchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Overcurrent Changed--\n", hprt0.d32); ++ _dwc_otg_hcd->flags.b.port_over_current_change = 1; ++ hprt0_modify.b.prtovrcurrchng = 1; ++ retval |= 1; ++ } ++ ++ /* Clear Port Interrupts */ ++ dwc_write_reg32(_dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); ++ ++ return retval; ++} ++ ++ ++/** This interrupt indicates that one or more host channels has a pending ++ * interrupt. There are multiple conditions that can cause each host channel ++ * interrupt. This function determines which conditions have occurred for each ++ * host channel interrupt and handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_hc_intr (dwc_otg_hcd_t *_dwc_otg_hcd) ++{ ++ int i; ++ int retval = 0; ++ haint_data_t haint; ++ ++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in ++ * GINTSTS */ ++ ++ haint.d32 = dwc_otg_read_host_all_channels_intr(_dwc_otg_hcd->core_if); ++ ++ for (i=0; i<_dwc_otg_hcd->core_if->core_params->host_channels; i++) { ++ if (haint.b2.chint & (1 << i)) { ++ retval |= dwc_otg_hcd_handle_hc_n_intr (_dwc_otg_hcd, i); ++ } ++ } ++ ++ return retval; ++} ++ ++/* Macro used to clear one channel interrupt */ ++#define clear_hc_int(_hc_regs_,_intr_) \ ++do { \ ++ hcint_data_t hcint_clear = {.d32 = 0}; \ ++ hcint_clear.b._intr_ = 1; \ ++ dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \ ++} while (0) ++ ++/* ++ * Macro used to disable one channel interrupt. Channel interrupts are ++ * disabled when the channel is halted or released by the interrupt handler. ++ * There is no need to handle further interrupts of that type until the ++ * channel is re-assigned. In fact, subsequent handling may cause crashes ++ * because the channel structures are cleaned up when the channel is released. ++ */ ++#define disable_hc_int(_hc_regs_,_intr_) \ ++do { \ ++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \ ++ hcintmsk.b._intr_ = 1; \ ++ dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \ ++} while (0) ++ ++/** ++ * Gets the actual length of a transfer after the transfer halts. _halt_status ++ * holds the reason for the halt. ++ * ++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE, ++ * *_short_read is set to 1 upon return if less than the requested ++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon ++ * return. _short_read may also be NULL on entry, in which case it remains ++ * unchanged. ++ */ ++static uint32_t get_actual_xfer_length(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, ++ int *_short_read) ++{ ++ hctsiz_data_t hctsiz; ++ uint32_t length; ++ ++ if (_short_read != NULL) { ++ *_short_read = 0; ++ } ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ ++ if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) { ++ if (_hc->ep_is_in) { ++ length = _hc->xfer_len - hctsiz.b.xfersize; ++ if (_short_read != NULL) { ++ *_short_read = (hctsiz.b.xfersize != 0); ++ } ++ } else if (_hc->qh->do_split) { ++ length = _qtd->ssplit_out_xfer_count; ++ } else { ++ length = _hc->xfer_len; ++ } ++ } else { ++ /* ++ * Must use the hctsiz.pktcnt field to determine how much data ++ * has been transferred. This field reflects the number of ++ * packets that have been transferred via the USB. This is ++ * always an integral number of packets if the transfer was ++ * halted before its normal completion. (Can't use the ++ * hctsiz.xfersize field because that reflects the number of ++ * bytes transferred via the AHB, not the USB). ++ */ ++ length = (_hc->start_pkt_count - hctsiz.b.pktcnt) * _hc->max_packet; ++ } ++ ++ return length; ++} ++ ++/** ++ * Updates the state of the URB after a Transfer Complete interrupt on the ++ * host channel. Updates the actual_length field of the URB based on the ++ * number of bytes transferred via the host channel. Sets the URB status ++ * if the data transfer is finished. ++ * ++ * @return 1 if the data transfer specified by the URB is completely finished, ++ * 0 otherwise. ++ */ ++static int update_urb_state_xfer_comp(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t * _hc_regs, struct urb *_urb, ++ dwc_otg_qtd_t * _qtd, int *status) ++{ ++ int xfer_done = 0; ++ int short_read = 0; ++ ++ _urb->actual_length += get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_COMPLETE, ++ &short_read); ++ ++ if (short_read || (_urb->actual_length == _urb->transfer_buffer_length)) { ++ xfer_done = 1; ++ if (short_read && (_urb->transfer_flags & URB_SHORT_NOT_OK)) { ++ *status = -EREMOTEIO; ++ } else { ++ *status = 0; ++ } ++ } ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", _hc->xfer_len); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ _urb->transfer_buffer_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", _urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", ++ short_read, xfer_done); ++ } ++#endif ++ ++ return xfer_done; ++} ++ ++/* ++ * Save the starting data toggle for the next transfer. The data toggle is ++ * saved in the QH for non-control transfers and it's saved in the QTD for ++ * control transfers. ++ */ ++static void save_data_toggle(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd) ++{ ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { ++ dwc_otg_qh_t *qh = _hc->qh; ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } else { ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } ++} ++ ++/** ++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic ++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are ++ * still linked to the QH, the QH is added to the end of the inactive ++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic ++ * schedule if no more QTDs are linked to the QH. ++ */ ++static void deactivate_qh(dwc_otg_hcd_t *_hcd, ++ dwc_otg_qh_t *_qh, ++ int free_qtd) ++{ ++ int continue_split = 0; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, _hcd, _qh, free_qtd); ++ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ if (qtd->complete_split) { ++ continue_split = 1; ++ } ++ else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) || ++ (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) ++ { ++ continue_split = 1; ++ } ++ ++ if (free_qtd) { ++ /* ++ * Note that this was previously a call to ++ * dwc_otg_hcd_qtd_remove_and_free(qtd), which frees the qtd. ++ * However, that call frees the qtd memory, and we continue in the ++ * interrupt logic to access it many more times, including writing ++ * to it. With slub debugging on, it is clear that we were writing ++ * to memory we had freed. ++ * Call this instead, and now I have moved the freeing of the memory to ++ * the end of processing this interrupt. ++ */ ++ //dwc_otg_hcd_qtd_remove_and_free(qtd); ++ dwc_otg_hcd_qtd_remove(qtd); ++ ++ continue_split = 0; ++ } ++ ++ _qh->channel = NULL; ++ _qh->qtd_in_process = NULL; ++ dwc_otg_hcd_qh_deactivate(_hcd, _qh, continue_split); ++} ++ ++/** ++ * Updates the state of an Isochronous URB when the transfer is stopped for ++ * any reason. The fields of the current entry in the frame descriptor array ++ * are set based on the transfer state and the input _halt_status. Completes ++ * the Isochronous URB if all the URB frames have been completed. ++ * ++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be ++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. ++ */ ++static dwc_otg_halt_status_e ++update_isoc_urb_state(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ struct urb *urb = _qtd->urb; ++ dwc_otg_halt_status_e ret_val = _halt_status; ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &urb->iso_frame_desc[_qtd->isoc_frame_index]; ++ switch (_halt_status) { ++ case DWC_OTG_HC_XFER_COMPLETE: ++ frame_desc->status = 0; ++ frame_desc->actual_length = ++ get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ break; ++ case DWC_OTG_HC_XFER_FRAME_OVERRUN: ++ urb->error_count++; ++ if (_hc->ep_is_in) { ++ frame_desc->status = -ENOSR; ++ } else { ++ frame_desc->status = -ECOMM; ++ } ++ frame_desc->actual_length = 0; ++ break; ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ urb->error_count++; ++ frame_desc->status = -EOVERFLOW; ++ /* Don't need to update actual_length in this case. */ ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ urb->error_count++; ++ frame_desc->status = -EPROTO; ++ frame_desc->actual_length = ++ get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ default: ++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, ++ _halt_status); ++ BUG(); ++ break; ++ } ++ ++ if (++_qtd->isoc_frame_index == urb->number_of_packets) { ++ /* ++ * urb->status is not used for isoc transfers. ++ * The individual frame_desc statuses are used instead. ++ */ ++ dwc_otg_hcd_complete_urb(_hcd, urb, 0); ++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ ret_val = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Releases a host channel for use by other transfers. Attempts to select and ++ * queue more transactions since at least one host channel is available. ++ * ++ * @param _hcd The HCD state structure. ++ * @param _hc The host channel to release. ++ * @param _qtd The QTD associated with the host channel. This QTD may be freed ++ * if the transfer is complete or an error has occurred. ++ * @param _halt_status Reason the channel is being released. This status ++ * determines the actions taken by this function. ++ */ ++static void release_channel(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, ++ int *must_free) ++{ ++ dwc_otg_transaction_type_e tr_type; ++ int free_qtd; ++ dwc_otg_qh_t * _qh; ++ int deact = 1; ++ int retry_delay = 1; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", __func__, ++ _hc->hc_num, _halt_status); ++ ++ switch (_halt_status) { ++ case DWC_OTG_HC_XFER_NYET: ++ case DWC_OTG_HC_XFER_NAK: ++ if (_halt_status == DWC_OTG_HC_XFER_NYET) { ++ retry_delay = nyet_deferral_delay; ++ } else { ++ retry_delay = nak_deferral_delay; ++ } ++ free_qtd = 0; ++ if (deferral_on && _hc->do_split) { ++ _qh = _hc->qh; ++ if (_qh) { ++ deact = dwc_otg_hcd_qh_deferr(_hcd, _qh , retry_delay); ++ } ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_COMPLETE: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_AHB_ERR: ++ case DWC_OTG_HC_XFER_STALL: ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ if (_qtd->error_count >= 3) { ++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); ++ free_qtd = 1; ++ //_qtd->urb->status = -EPROTO; ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPROTO); ++ } else { ++ free_qtd = 0; ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_DEQUEUE: ++ /* ++ * The QTD has already been removed and the QH has been ++ * deactivated. Don't want to do anything except release the ++ * host channel and try to queue more transfers. ++ */ ++ goto cleanup; ++ case DWC_OTG_HC_XFER_NO_HALT_STATUS: ++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, _hc->hc_num); ++ free_qtd = 0; ++ break; ++ default: ++ free_qtd = 0; ++ break; ++ } ++ if (free_qtd) { ++ /* Only change must_free to true (do not set to zero here -- it is ++ * pre-initialized to zero). ++ */ ++ *must_free = 1; ++ } ++ if (deact) { ++ deactivate_qh(_hcd, _hc->qh, free_qtd); ++ } ++ cleanup: ++ /* ++ * Release the host channel for use by other transfers. The cleanup ++ * function clears the channel interrupt enables and conditions, so ++ * there's no need to clear the Channel Halted interrupt separately. ++ */ ++ dwc_otg_hc_cleanup(_hcd->core_if, _hc); ++ list_add_tail(&_hc->hc_list_entry, &_hcd->free_hc_list); ++ ++ local_irq_save(flags); ++ _hcd->available_host_channels++; ++ local_irq_restore(flags); ++ /* Try to queue more transfers now that there's a free channel, */ ++ /* unless erratum_usb09_patched is set */ ++ if (!erratum_usb09_patched) { ++ tr_type = dwc_otg_hcd_select_transactions(_hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(_hcd, tr_type); ++ } ++ } ++} ++ ++/** ++ * Halts a host channel. If the channel cannot be halted immediately because ++ * the request queue is full, this function ensures that the FIFO empty ++ * interrupt for the appropriate queue is enabled so that the halt request can ++ * be queued when there is space in the request queue. ++ * ++ * This function may also be called in DMA mode. In that case, the channel is ++ * simply released since the core always halts the channel automatically in ++ * DMA mode. ++ */ ++static void halt_channel(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ if (_hcd->core_if->dma_enable) { ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ return; ++ } ++ ++ /* Slave mode processing... */ ++ dwc_otg_hc_halt(_hcd->core_if, _hc, _halt_status); ++ ++ if (_hc->halt_on_queue) { ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs; ++ global_regs = _hcd->core_if->core_global_regs; ++ ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ _hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ /* ++ * Make sure the Non-periodic Tx FIFO empty interrupt ++ * is enabled so that the non-periodic schedule will ++ * be processed. ++ */ ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } else { ++ /* ++ * Move the QH from the periodic queued schedule to ++ * the periodic assigned schedule. This allows the ++ * halt to be queued when the periodic schedule is ++ * processed. ++ */ ++ list_move(&_hc->qh->qh_list_entry, ++ &_hcd->periodic_sched_assigned); ++ ++ /* ++ * Make sure the Periodic Tx FIFO Empty interrupt is ++ * enabled so that the periodic schedule will be ++ * processed. ++ */ ++ gintmsk.b.ptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } ++ } ++} ++ ++/** ++ * Performs common cleanup for non-periodic transfers after a Transfer ++ * Complete interrupt. This function should be called after any endpoint type ++ * specific handling is finished to release the host channel. ++ */ ++static void complete_non_periodic_xfer(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ hcint_data_t hcint; ++ ++ _qtd->error_count = 0; ++ ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ if (hcint.b.nyet) { ++ /* ++ * Got a NYET on the last transaction of the transfer. This ++ * means that the endpoint should be in the PING state at the ++ * beginning of the next transfer. ++ */ ++ _hc->qh->ping_state = 1; ++ clear_hc_int(_hc_regs,nyet); ++ } ++ ++ /* ++ * Always halt and release the host channel to make it available for ++ * more transfers. There may still be more phases for a control ++ * transfer or more data packets for a bulk transfer at this point, ++ * but the host channel is still halted. A channel will be reassigned ++ * to the transfer when the non-periodic schedule is processed after ++ * the channel is released. This allows transactions to be queued ++ * properly via dwc_otg_hcd_queue_transactions, which also enables the ++ * Tx FIFO Empty interrupt if necessary. ++ */ ++ if (_hc->ep_is_in) { ++ /* ++ * IN transfers in Slave mode require an explicit disable to ++ * halt the channel. (In DMA mode, this call simply releases ++ * the channel.) ++ */ ++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } else { ++ /* ++ * The channel is automatically disabled by the core for OUT ++ * transfers in Slave mode. ++ */ ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } ++} ++ ++/** ++ * Performs common cleanup for periodic transfers after a Transfer Complete ++ * interrupt. This function should be called after any endpoint type specific ++ * handling is finished to release the host channel. ++ */ ++static void complete_periodic_xfer(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status, int *must_free) ++{ ++ hctsiz_data_t hctsiz; ++ _qtd->error_count = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ if (!_hc->ep_is_in || hctsiz.b.pktcnt == 0) { ++ /* Core halts channel in these cases. */ ++ release_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } else { ++ /* Flush any outstanding requests from the Tx queue. */ ++ halt_channel(_hcd, _hc, _qtd, _halt_status, must_free); ++ } ++} ++ ++/** ++ * Handles a host channel Transfer Complete interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ int urb_xfer_done; ++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ struct urb *urb = _qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ int status = -EINPROGRESS; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transfer Complete--\n", _hc->hc_num); ++ ++ /* ++ * Handle xfer complete on CSPLIT. ++ */ ++ if (_hc->qh->do_split) { ++ _qtd->complete_split = 0; ++ } ++ ++ /* Update the QTD and URB states. */ ++ switch (pipe_type) { ++ case PIPE_CONTROL: ++ switch (_qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ if (urb->transfer_buffer_length > 0) { ++ _qtd->control_phase = DWC_OTG_CONTROL_DATA; ++ } else { ++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ } ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ case DWC_OTG_CONTROL_DATA: { ++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs,urb, _qtd, &status); ++ if (urb_xfer_done) { ++ _qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); ++ } else { ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ } ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ } ++ case DWC_OTG_CONTROL_STATUS: ++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); ++ if (status == -EINPROGRESS) { ++ status = 0; ++ } ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ break; ++ } ++ ++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, ++ halt_status, must_free); ++ break; ++ case PIPE_BULK: ++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); ++ urb_xfer_done = update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); ++ if (urb_xfer_done) { ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ complete_non_periodic_xfer(_hcd, _hc, _hc_regs, _qtd,halt_status, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); ++ update_urb_state_xfer_comp(_hc, _hc_regs, urb, _qtd, &status); ++ ++ /* ++ * Interrupt URB is done on the first transfer complete ++ * interrupt. ++ */ ++ dwc_otg_hcd_complete_urb(_hcd, urb, status); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_URB_COMPLETE, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); ++ if (_qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) ++ { ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_COMPLETE); ++ } ++ complete_periodic_xfer(_hcd, _hc, _hc_regs, _qtd, halt_status, must_free); ++ break; ++ } ++ ++ disable_hc_int(_hc_regs,xfercompl); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel STALL interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ struct urb *urb = _qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "STALL Received--\n", _hc->hc_num); ++ ++ if (pipe_type == PIPE_CONTROL) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); ++ } ++ ++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EPIPE); ++ /* ++ * USB protocol requires resetting the data toggle for bulk ++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) ++ * setup command is issued to the endpoint. Anticipate the ++ * CLEAR_FEATURE command since a STALL has occurred and reset ++ * the data toggle now. ++ */ ++ _hc->qh->data_toggle = 0; ++ } ++ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_STALL, must_free); ++ disable_hc_int(_hc_regs,stall); ++ ++ return 1; ++} ++ ++/* ++ * Updates the state of the URB when a transfer has been stopped due to an ++ * abnormal condition before the transfer completes. Modifies the ++ * actual_length field of the URB to reflect the number of bytes that have ++ * actually been transferred via the host channel. ++ */ ++static void update_urb_state_xfer_intr(dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ struct urb *_urb, ++ dwc_otg_qtd_t *_qtd, ++ dwc_otg_halt_status_e _halt_status) ++{ ++ uint32_t bytes_transferred = get_actual_xfer_length(_hc, _hc_regs, _qtd, ++ _halt_status, NULL); ++ _urb->actual_length += bytes_transferred; ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (_hc->ep_is_in ? "IN" : "OUT"), _hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " _hc->start_pkt_count %d\n", _hc->start_pkt_count); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " _hc->max_packet %d\n", _hc->max_packet); ++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); ++ DWC_DEBUGPL(DBG_HCDV, " _urb->actual_length %d\n", _urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " _urb->transfer_buffer_length %d\n", ++ _urb->transfer_buffer_length); ++ } ++#endif ++} ++ ++/** ++ * Handles a host channel NAK interrupt. This handler may be called in either ++ * DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NAK Received--\n", _hc->hc_num); ++ ++ /* ++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and ++ * interrupt. Re-start the SSPLIT transfer. ++ */ ++ if (_hc->do_split) { ++ if (_hc->complete_split) { ++ _qtd->error_count = 0; ++ } ++ _qtd->complete_split = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ goto handle_nak_done; ++ } ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ if (_hcd->core_if->dma_enable && _hc->ep_is_in) { ++ /* ++ * NAK interrupts are enabled on bulk/control IN ++ * transfers in DMA mode for the sole purpose of ++ * resetting the error count after a transaction error ++ * occurs. The core will continue transferring data. ++ */ ++ _qtd->error_count = 0; ++ goto handle_nak_done; ++ } ++ ++ /* ++ * NAK interrupts normally occur during OUT transfers in DMA ++ * or Slave mode. For IN transfers, more requests will be ++ * queued as request queue space is available. ++ */ ++ _qtd->error_count = 0; ++ ++ if (!_hc->qh->ping_state) { ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, ++ _qtd, DWC_OTG_HC_XFER_NAK); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ if (_qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ _hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will ++ * start/continue. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ _qtd->error_count = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NAK, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ /* Should never get called for isochronous transfers. */ ++ BUG(); ++ break; ++ } ++ ++ handle_nak_done: ++ disable_hc_int(_hc_regs,nak); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel ACK interrupt. This interrupt is enabled when ++ * performing the PING protocol in Slave mode, when errors occur during ++ * either Slave mode or DMA mode, and during Start Split transactions. ++ */ ++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "ACK Received--\n", _hc->hc_num); ++ ++ if (_hc->do_split) { ++ /* ++ * Handle ACK on SSPLIT. ++ * ACK should not occur in CSPLIT. ++ */ ++ if ((!_hc->ep_is_in) && (_hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) { ++ _qtd->ssplit_out_xfer_count = _hc->xfer_len; ++ } ++ if (!(_hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !_hc->ep_is_in)) { ++ /* Don't need complete for isochronous out transfers. */ ++ _qtd->complete_split = 1; ++ } ++ ++ /* ISOC OUT */ ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !_hc->ep_is_in) { ++ switch (_hc->xact_pos) { ++ case DWC_HCSPLIT_XACTPOS_ALL: ++ break; ++ case DWC_HCSPLIT_XACTPOS_END: ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ _qtd->isoc_split_offset = 0; ++ break; ++ case DWC_HCSPLIT_XACTPOS_BEGIN: ++ case DWC_HCSPLIT_XACTPOS_MID: ++ /* ++ * For BEGIN or MID, calculate the length for ++ * the next microframe to determine the correct ++ * SSPLIT token, either MID or END. ++ */ ++ do { ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &_qtd->urb->iso_frame_desc[_qtd->isoc_frame_index]; ++ _qtd->isoc_split_offset += 188; ++ ++ if ((frame_desc->length - _qtd->isoc_split_offset) <= 188) { ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; ++ } ++ else { ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; ++ } ++ ++ } while(0); ++ break; ++ } ++ } else { ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); ++ } ++ } else { ++ _qtd->error_count = 0; ++ ++ if (_hc->qh->ping_state) { ++ _hc->qh->ping_state = 0; ++ /* ++ * Halt the channel so the transfer can be re-started ++ * from the appropriate point. This only happens in ++ * Slave mode. In DMA mode, the ping_state is cleared ++ * when the transfer is started because the core ++ * automatically executes the PING, then the transfer. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_ACK, must_free); ++ } else { ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ } ++ ++ /* ++ * If the ACK occurred when _not_ in the PING state, let the channel ++ * continue transferring data after clearing the error count. ++ */ ++ ++ disable_hc_int(_hc_regs,ack); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel NYET interrupt. This interrupt should only occur on ++ * Bulk and Control OUT endpoints and for complete split transactions. If a ++ * NYET occurs at the same time as a Transfer Complete interrupt, it is ++ * handled in the xfercomp interrupt handler, not here. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NYET Received--\n", _hc->hc_num); ++ ++ /* ++ * NYET on CSPLIT ++ * re-do the CSPLIT immediately on non-periodic ++ */ ++ if ((_hc->do_split) && (_hc->complete_split)) { ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_INTR) || ++ (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) { ++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ ++ if (dwc_full_frame_num(frnum) != ++ dwc_full_frame_num(_hc->qh->sched_frame)) { ++ /* ++ * No longer in the same full speed frame. ++ * Treat this as a transaction error. ++ */ ++#if 0 ++ /** @todo Fix system performance so this can ++ * be treated as an error. Right now complete ++ * splits cannot be scheduled precisely enough ++ * due to other system activity, so this error ++ * occurs regularly in Slave mode. ++ */ ++ _qtd->error_count++; ++#endif ++ _qtd->complete_split = 0; ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ /** @todo add support for isoc release */ ++ goto handle_nyet_done; ++ } ++ } ++ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); ++ goto handle_nyet_done; ++ } ++ ++ _hc->qh->ping_state = 1; ++ _qtd->error_count = 0; ++ ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, _qtd, ++ DWC_OTG_HC_XFER_NYET); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ ++ /* ++ * Halt the channel and re-start the transfer so the PING ++ * protocol will start. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_NYET, must_free); ++ ++handle_nyet_done: ++ disable_hc_int(_hc_regs,nyet); ++ clear_hc_int(_hc_regs, nyet); ++ return 1; ++} ++ ++/** ++ * Handles a host channel babble interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Babble Error--\n", _hc->hc_num); ++ if (_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_hcd_complete_urb(_hcd, _qtd->urb, -EOVERFLOW); ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_BABBLE_ERR, must_free); ++ } else { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_BABBLE_ERR); ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ disable_hc_int(_hc_regs,bblerr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel AHB error interrupt. This handler is only called in ++ * DMA mode. ++ */ ++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t *_hc, ++ dwc_otg_hc_regs_t *_hc_regs, ++ dwc_otg_qtd_t *_qtd) ++{ ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ struct urb *urb = _qtd->urb; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "AHB Error--\n", _hc->hc_num); ++ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&_hc_regs->hcdma); ++ ++ DWC_ERROR("AHB ERROR, Channel %d\n", _hc->hc_num); ++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); ++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_ERROR(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_ERROR(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_ERROR(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)(u32)urb->transfer_dma); ++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)(u32)urb->setup_dma); ++ DWC_ERROR(" Interval: %d\n", urb->interval); ++ ++ dwc_otg_hcd_complete_urb(_hcd, urb, -EIO); ++ ++ /* ++ * Force a channel halt. Don't call halt_channel because that won't ++ * write to the HCCHARn register in DMA mode to force the halt. ++ */ ++ dwc_otg_hc_halt(_hcd->core_if, _hc, DWC_OTG_HC_XFER_AHB_ERR); ++ ++ disable_hc_int(_hc_regs,ahberr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel transaction error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transaction Error--\n", _hc->hc_num); ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ _qtd->error_count++; ++ if (!_hc->qh->ping_state) { ++ update_urb_state_xfer_intr(_hc, _hc_regs, _qtd->urb, ++ _qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ save_data_toggle(_hc, _hc_regs, _qtd); ++ if (!_hc->ep_is_in && _qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ _hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will start. ++ */ ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ break; ++ case PIPE_INTERRUPT: ++ _qtd->error_count++; ++ if ((_hc->do_split) && (_hc->complete_split)) { ++ _qtd->complete_split = 0; ++ } ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_XACT_ERR, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ break; ++ } ++ ++ ++ disable_hc_int(_hc_regs,xacterr); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel frame overrun interrupt. This handler may be called ++ * in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Frame Overrun--\n", _hc->hc_num); ++ ++ switch (usb_pipetype(_qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ break; ++ case PIPE_INTERRUPT: ++ halt_channel(_hcd, _hc, _qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN, must_free); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(_hcd, _hc, _hc_regs, _qtd, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ ++ halt_channel(_hcd, _hc, _qtd, halt_status, must_free); ++ } ++ break; ++ } ++ ++ disable_hc_int(_hc_regs,frmovrun); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel data toggle error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Data Toggle Error--\n", _hc->hc_num); ++ ++ if (_hc->ep_is_in) { ++ _qtd->error_count = 0; ++ } else { ++ DWC_ERROR("Data Toggle Error on OUT transfer," ++ "channel %d\n", _hc->hc_num); ++ } ++ ++ disable_hc_int(_hc_regs,datatglerr); ++ ++ return 1; ++} ++ ++#ifdef DEBUG ++/** ++ * This function is for debug only. It checks that a valid halt status is set ++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is ++ * taken and a warning is issued. ++ * @return 1 if halt status is ok, 0 otherwise. ++ */ ++static inline int halt_status_ok(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hcsplt_data_t hcsplt; ++ ++ if (_hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { ++ /* ++ * This code is here only as a check. This condition should ++ * never happen. Ignore the halt if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&_hc_regs->hctsiz); ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); ++ hcsplt.d32 = dwc_read_reg32(&_hc_regs->hcsplt); ++ DWC_WARN("%s: _hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " ++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " ++ "hcint 0x%08x, hcintmsk 0x%08x, " ++ "hcsplt 0x%08x, qtd->complete_split %d\n", ++ __func__, _hc->hc_num, hcchar.d32, hctsiz.d32, ++ hcint.d32, hcintmsk.d32, ++ hcsplt.d32, _qtd->complete_split); ++ ++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", ++ __func__, _hc->hc_num); ++ DWC_WARN("\n"); ++ clear_hc_int(_hc_regs,chhltd); ++ return 0; ++ } ++ ++ /* ++ * This code is here only as a check. hcchar.chdis should ++ * never be set when the halt interrupt occurs. Halt the ++ * channel again if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&_hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: hcchar.chdis set unexpectedly, " ++ "hcchar 0x%08x, trying to halt again\n", ++ __func__, hcchar.d32); ++ clear_hc_int(_hc_regs,chhltd); ++ _hc->halt_pending = 0; ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ return 0; ++ } ++ ++ return 1; ++} ++#endif ++ ++/** ++ * Handles a host Channel Halted interrupt in DMA mode. This handler ++ * determines the reason the channel halted and proceeds accordingly. ++ */ ++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ ++ if (_hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ _hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Just release the channel. A dequeue can happen on a ++ * transfer timeout. In the case of an AHB Error, the channel ++ * was forced to halt because there's no way to gracefully ++ * recover. ++ */ ++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ return; ++ } ++ ++ /* Read the HCINTn register to determine the cause for the halt. */ ++ hcint.d32 = dwc_read_reg32(&_hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&_hc_regs->hcintmsk); ++ ++ if (hcint.b.xfercomp) { ++ /** @todo This is here because of a possible hardware bug. Spec ++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT ++ * interrupt w/ACK bit set should occur, but I only see the ++ * XFERCOMP bit, even with it masked out. This is a workaround ++ * for that behavior. Should fix this when hardware is fixed. ++ */ ++ if ((_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!_hc->ep_is_in)) { ++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } ++ handle_hc_xfercomp_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.stall) { ++ handle_hc_stall_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.xacterr) { ++ /* ++ * Must handle xacterr before nak or ack. Could get a xacterr ++ * at the same time as either of these on a BULK/CONTROL OUT ++ * that started with a PING. The xacterr takes precedence. ++ */ ++ handle_hc_xacterr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.nyet) { ++ /* ++ * Must handle nyet before nak or ack. Could get a nyet at the ++ * same time as either of those on a BULK/CONTROL OUT that ++ * started with a PING. The nyet takes precedence. ++ */ ++ handle_hc_nyet_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.bblerr) { ++ handle_hc_babble_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.frmovrun) { ++ handle_hc_frmovrun_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.datatglerr) { ++ handle_hc_datatglerr_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ _hc->qh->data_toggle = 0; ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } else if (hcint.b.nak && !hcintmsk.b.nak) { ++ /* ++ * If nak is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the nak is handled by ++ * the nak interrupt handler, not here. Handle nak here for ++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow ++ * rewinding the buffer pointer. ++ */ ++ handle_hc_nak_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else if (hcint.b.ack && !hcintmsk.b.ack) { ++ /* ++ * If ack is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the ack is handled by ++ * the ack interrupt handler, not here. Handle ack here for ++ * split transfers. Start splits halt on ACK. ++ */ ++ handle_hc_ack_intr(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else { ++ if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * A periodic transfer halted with no other channel ++ * interrupts set. Assume it was halted by the core ++ * because it could not be completed in its scheduled ++ * (micro)frame. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", ++ __func__, _hc->hc_num); ++#endif /* */ ++ halt_channel(_hcd, _hc, _qtd, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, must_free); ++ } else { ++#ifdef DEBUG ++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " ++ "for halting is unknown, nyet %d, hcint 0x%08x, intsts 0x%08x\n", ++ __func__, _hc->hc_num, hcint.b.nyet, hcint.d32, ++ dwc_read_reg32(&_hcd->core_if->core_global_regs->gintsts)); ++#endif ++ halt_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ } ++} ++ ++/** ++ * Handles a host channel Channel Halted interrupt. ++ * ++ * In slave mode, this handler is called only when the driver specifically ++ * requests a halt. This occurs during handling other host channel interrupts ++ * (e.g. nak, xacterr, stall, nyet, etc.). ++ * ++ * In DMA mode, this is the interrupt that occurs when the core has finished ++ * processing a transfer on a channel. Other host channel interrupts (except ++ * ahberr) are disabled in DMA mode. ++ */ ++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *_hcd, ++ dwc_hc_t * _hc, dwc_otg_hc_regs_t * _hc_regs, dwc_otg_qtd_t * _qtd, int *must_free) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Channel Halted--\n", _hc->hc_num); ++ ++ if (_hcd->core_if->dma_enable) { ++ handle_hc_chhltd_intr_dma(_hcd, _hc, _hc_regs, _qtd, must_free); ++ } else { ++#ifdef DEBUG ++ if (!halt_status_ok(_hcd, _hc, _hc_regs, _qtd, must_free)) { ++ return 1; ++ } ++#endif /* */ ++ release_channel(_hcd, _hc, _qtd, _hc->halt_status, must_free); ++ } ++ ++ return 1; ++} ++ ++/** Handles interrupt for a specific Host Channel */ ++int32_t dwc_otg_hcd_handle_hc_n_intr (dwc_otg_hcd_t *_dwc_otg_hcd, uint32_t _num) ++{ ++ int must_free = 0; ++ int retval = 0; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ dwc_hc_t *hc; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num); ++ ++ hc = _dwc_otg_hcd->hc_ptr_array[_num]; ++ hc_regs = _dwc_otg_hcd->core_if->host_if->hc_regs[_num]; ++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", ++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); ++ hcint.d32 = hcint.d32 & hcintmsk.d32; ++ ++ if (!_dwc_otg_hcd->core_if->dma_enable) { ++ if ((hcint.b.chhltd) && (hcint.d32 != 0x2)) { ++ hcint.b.chhltd = 0; ++ } ++ } ++ ++ if (hcint.b.xfercomp) { ++ retval |= handle_hc_xfercomp_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ /* ++ * If NYET occurred at same time as Xfer Complete, the NYET is ++ * handled by the Xfer Complete interrupt handler. Don't want ++ * to call the NYET interrupt handler in this case. ++ */ ++ hcint.b.nyet = 0; ++ } ++ if (hcint.b.chhltd) { ++ retval |= handle_hc_chhltd_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.ahberr) { ++ retval |= handle_hc_ahberr_intr(_dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.stall) { ++ retval |= handle_hc_stall_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.nak) { ++ retval |= handle_hc_nak_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.ack) { ++ retval |= handle_hc_ack_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.nyet) { ++ retval |= handle_hc_nyet_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.xacterr) { ++ retval |= handle_hc_xacterr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.bblerr) { ++ retval |= handle_hc_babble_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.frmovrun) { ++ retval |= handle_hc_frmovrun_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ if (hcint.b.datatglerr) { ++ retval |= handle_hc_datatglerr_intr(_dwc_otg_hcd, hc, hc_regs, qtd, &must_free); ++ } ++ ++ /* ++ * Logic to free the qtd here, at the end of the hc intr ++ * processing, if the handling of this interrupt determined ++ * that it needs to be freed. ++ */ ++ if (must_free) { ++ /* Free the qtd here now that we are done using it. */ ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_hcd_queue.c +@@ -0,0 +1,794 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_hcd_queue.c $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 537387 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the functions to manage Queue Heads and Queue ++ * Transfer Descriptors. ++ */ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "dwc_otg_driver.h" ++#include "dwc_otg_hcd.h" ++#include "dwc_otg_regs.h" ++ ++/** ++ * This function allocates and initializes a QH. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] _urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. ++ * ++ * @return Returns pointer to the newly allocated QH, or NULL on error. */ ++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *_hcd, struct urb *_urb) ++{ ++ dwc_otg_qh_t *qh; ++ ++ /* Allocate memory */ ++ /** @todo add memflags argument */ ++ qh = dwc_otg_hcd_qh_alloc (); ++ if (qh == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qh_init (_hcd, qh, _urb); ++ return qh; ++} ++ ++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be ++ * removed from a list. QTD list should already be empty if called from URB ++ * Dequeue. ++ * ++ * @param[in] _qh The QH to free. ++ */ ++void dwc_otg_hcd_qh_free (dwc_otg_qh_t *_qh) ++{ ++ dwc_otg_qtd_t *qtd; ++ struct list_head *pos; ++ unsigned long flags; ++ ++ /* Free each QTD in the QTD list */ ++ local_irq_save (flags); ++ for (pos = _qh->qtd_list.next; ++ pos != &_qh->qtd_list; ++ pos = _qh->qtd_list.next) ++ { ++ list_del (pos); ++ qtd = dwc_list_to_qtd (pos); ++ dwc_otg_hcd_qtd_free (qtd); ++ } ++ local_irq_restore (flags); ++ ++ kfree (_qh); ++ return; ++} ++ ++/** Initializes a QH structure. ++ * ++ * @param[in] _hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] _qh The QH to init. ++ * @param[in] _urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. */ ++#define SCHEDULE_SLOP 10 ++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, struct urb *_urb) ++{ ++ memset (_qh, 0, sizeof (dwc_otg_qh_t)); ++ ++ /* Initialize QH */ ++ switch (usb_pipetype(_urb->pipe)) { ++ case PIPE_CONTROL: ++ _qh->ep_type = USB_ENDPOINT_XFER_CONTROL; ++ break; ++ case PIPE_BULK: ++ _qh->ep_type = USB_ENDPOINT_XFER_BULK; ++ break; ++ case PIPE_ISOCHRONOUS: ++ _qh->ep_type = USB_ENDPOINT_XFER_ISOC; ++ break; ++ case PIPE_INTERRUPT: ++ _qh->ep_type = USB_ENDPOINT_XFER_INT; ++ break; ++ } ++ ++ _qh->ep_is_in = usb_pipein(_urb->pipe) ? 1 : 0; ++ ++ _qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ _qh->maxp = usb_maxpacket(_urb->dev, _urb->pipe, !(usb_pipein(_urb->pipe))); ++ INIT_LIST_HEAD(&_qh->qtd_list); ++ INIT_LIST_HEAD(&_qh->qh_list_entry); ++ _qh->channel = NULL; ++ ++ /* FS/LS Enpoint on HS Hub ++ * NOT virtual root hub */ ++ _qh->do_split = 0; ++ _qh->speed = _urb->dev->speed; ++ if (((_urb->dev->speed == USB_SPEED_LOW) || ++ (_urb->dev->speed == USB_SPEED_FULL)) && ++ (_urb->dev->tt) && (_urb->dev->tt->hub) && (_urb->dev->tt->hub->devnum != 1)) { ++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", ++ usb_pipeendpoint(_urb->pipe), _urb->dev->tt->hub->devnum, ++ _urb->dev->ttport); ++ _qh->do_split = 1; ++ } ++ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT || ++ _qh->ep_type == USB_ENDPOINT_XFER_ISOC) { ++ /* Compute scheduling parameters once and save them. */ ++ hprt0_data_t hprt; ++ ++ /** @todo Account for split transfers in the bus time. */ ++ int bytecount = dwc_hb_mult(_qh->maxp) * dwc_max_packet(_qh->maxp); ++ _qh->usecs = NS_TO_US(usb_calc_bus_time(_urb->dev->speed, ++ usb_pipein(_urb->pipe), ++ (_qh->ep_type == USB_ENDPOINT_XFER_ISOC),bytecount)); ++ ++ /* Start in a slightly future (micro)frame. */ ++ _qh->sched_frame = dwc_frame_num_inc(_hcd->frame_number, SCHEDULE_SLOP); ++ _qh->interval = _urb->interval; ++#if 0 ++ /* Increase interrupt polling rate for debugging. */ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ _qh->interval = 8; ++ } ++#endif ++ hprt.d32 = dwc_read_reg32(_hcd->core_if->host_if->hprt0); ++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ++ ((_urb->dev->speed == USB_SPEED_LOW) || ++ (_urb->dev->speed == USB_SPEED_FULL))) ++ { ++ _qh->interval *= 8; ++ _qh->sched_frame |= 0x7; ++ _qh->start_split_frame = _qh->sched_frame; ++ } ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", _qh); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", ++ _urb->dev->devnum); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", ++ usb_pipeendpoint(_urb->pipe), ++ usb_pipein(_urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", ++ ({ char *speed; switch (_urb->dev->speed) { ++ case USB_SPEED_LOW: speed = "low"; break; ++ case USB_SPEED_FULL: speed = "full"; break; ++ case USB_SPEED_HIGH: speed = "high"; break; ++ default: speed = "?"; break; ++ }; speed;})); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", ++ ({ char *type; switch (_qh->ep_type) { ++ case USB_ENDPOINT_XFER_ISOC: type = "isochronous"; break; ++ case USB_ENDPOINT_XFER_INT: type = "interrupt"; break; ++ case USB_ENDPOINT_XFER_CONTROL: type = "control"; break; ++ case USB_ENDPOINT_XFER_BULK: type = "bulk"; break; ++ default: type = "?"; break; ++ }; type;})); ++#ifdef DEBUG ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", ++ _qh->usecs); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", ++ _qh->interval); ++ } ++#endif ++ ++ return; ++} ++ ++/** ++ * Microframe scheduler ++ * track the total use in hcd->frame_usecs ++ * keep each qh use in qh->frame_usecs ++ * when surrendering the qh then donate the time back ++ */ ++const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 }; ++ ++/* ++ * called from dwc_otg_hcd.c:dwc_otg_hcd_init ++ */ ++int init_hcd_usecs(dwc_otg_hcd_t *_hcd) ++{ ++ int i; ++ for (i=0; i<8; i++) { ++ _hcd->frame_usecs[i] = max_uframe_usecs[i]; ++ } ++ return 0; ++} ++ ++static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int i; ++ unsigned short utime; ++ int t_left; ++ int ret; ++ int done; ++ ++ ret = -1; ++ utime = _qh->usecs; ++ t_left = utime; ++ i = 0; ++ done = 0; ++ while (done == 0) { ++ /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */ ++ if (utime <= _hcd->frame_usecs[i]) { ++ _hcd->frame_usecs[i] -= utime; ++ _qh->frame_usecs[i] += utime; ++ t_left -= utime; ++ ret = i; ++ done = 1; ++ return ret; ++ } else { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ } ++ } ++ return ret; ++} ++ ++/* ++ * use this for FS apps that can span multiple uframes ++ */ ++static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int i; ++ int j; ++ unsigned short utime; ++ int t_left; ++ int ret; ++ int done; ++ unsigned short xtime; ++ ++ ret = -1; ++ utime = _qh->usecs; ++ t_left = utime; ++ i = 0; ++ done = 0; ++loop: ++ while (done == 0) { ++ if(_hcd->frame_usecs[i] <= 0) { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ goto loop; ++ } ++ ++ /* ++ * we need n consequtive slots ++ * so use j as a start slot j plus j+1 must be enough time (for now) ++ */ ++ xtime= _hcd->frame_usecs[i]; ++ for (j = i+1 ; j < 8 ; j++ ) { ++ /* ++ * if we add this frame remaining time to xtime we may ++ * be OK, if not we need to test j for a complete frame ++ */ ++ if ((xtime+_hcd->frame_usecs[j]) < utime) { ++ if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) { ++ j = 8; ++ ret = -1; ++ continue; ++ } ++ } ++ if (xtime >= utime) { ++ ret = i; ++ j = 8; /* stop loop with a good value ret */ ++ continue; ++ } ++ /* add the frame time to x time */ ++ xtime += _hcd->frame_usecs[j]; ++ /* we must have a fully available next frame or break */ ++ if ((xtime < utime) ++ && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) { ++ ret = -1; ++ j = 8; /* stop loop with a bad value ret */ ++ continue; ++ } ++ } ++ if (ret >= 0) { ++ t_left = utime; ++ for (j = i; (t_left>0) && (j < 8); j++ ) { ++ t_left -= _hcd->frame_usecs[j]; ++ if ( t_left <= 0 ) { ++ _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left; ++ _hcd->frame_usecs[j]= -t_left; ++ ret = i; ++ done = 1; ++ } else { ++ _qh->frame_usecs[j] += _hcd->frame_usecs[j]; ++ _hcd->frame_usecs[j] = 0; ++ } ++ } ++ } else { ++ i++; ++ if (i == 8) { ++ done = 1; ++ ret = -1; ++ } ++ } ++ } ++ return ret; ++} ++ ++static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ int ret; ++ ret = -1; ++ ++ if (_qh->speed == USB_SPEED_HIGH) { ++ /* if this is a hs transaction we need a full frame */ ++ ret = find_single_uframe(_hcd, _qh); ++ } else { ++ /* if this is a fs transaction we may need a sequence of frames */ ++ ret = find_multi_uframe(_hcd, _qh); ++ } ++ return ret; ++} ++ ++/** ++ * Checks that the max transfer size allowed in a host channel is large enough ++ * to handle the maximum data transfer in a single (micro)frame for a periodic ++ * transfer. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for a periodic endpoint. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_max_xfer_size(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int status; ++ uint32_t max_xfer_size; ++ uint32_t max_channel_xfer_size; ++ ++ status = 0; ++ ++ max_xfer_size = dwc_max_packet(_qh->maxp) * dwc_hb_mult(_qh->maxp); ++ max_channel_xfer_size = _hcd->core_if->core_params->max_transfer_size; ++ ++ if (max_xfer_size > max_channel_xfer_size) { ++ DWC_NOTICE("%s: Periodic xfer length %d > " ++ "max xfer length for channel %d\n", ++ __func__, max_xfer_size, max_channel_xfer_size); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Schedules an interrupt or isochronous transfer in the periodic schedule. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for the periodic transfer. The QH should already contain the ++ * scheduling information. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int schedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int status = 0; ++ ++ int frame; ++ status = find_uframe(_hcd, _qh); ++ frame = -1; ++ if (status == 0) { ++ frame = 7; ++ } else { ++ if (status > 0 ) ++ frame = status-1; ++ } ++ ++ /* Set the new frame up */ ++ if (frame > -1) { ++ _qh->sched_frame &= ~0x7; ++ _qh->sched_frame |= (frame & 7); ++ } ++ ++ if (status != -1 ) ++ status = 0; ++ if (status) { ++ DWC_NOTICE("%s: Insufficient periodic bandwidth for " ++ "periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_max_xfer_size(_hcd, _qh); ++ if (status) { ++ DWC_NOTICE("%s: Channel max transfer size too small " ++ "for periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&_qh->qh_list_entry, &_hcd->periodic_sched_inactive); ++ ++ ++ /* Update claimed usecs per (micro)frame. */ ++ _hcd->periodic_usecs += _qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated += _qh->usecs / _qh->interval; ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to either the non periodic or periodic schedule if ++ * it is not already in the schedule. If the QH is already in the schedule, no ++ * action is taken. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ unsigned long flags; ++ int status = 0; ++ ++ local_irq_save(flags); ++ ++ if (!list_empty(&_qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the appropriate schedule */ ++ if (dwc_qh_is_non_per(_qh)) { ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&_qh->qh_list_entry, &_hcd->non_periodic_sched_inactive); ++ } else { ++ status = schedule_periodic(_hcd, _qh); ++ } ++ ++ done: ++ local_irq_restore(flags); ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to the non periodic deferred schedule. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add_deferred(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh) ++{ ++ unsigned long flags; ++ local_irq_save(flags); ++ if (!list_empty(&_qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the non periodic deferred schedule */ ++ if (dwc_qh_is_non_per(_qh)) { ++ list_add_tail(&_qh->qh_list_entry, ++ &_hcd->non_periodic_sched_deferred); ++ } ++done: ++ local_irq_restore(flags); ++ return 0; ++} ++ ++/** ++ * Removes an interrupt or isochronous transfer from the periodic schedule. ++ * ++ * @param _hcd The HCD state structure for the DWC OTG controller. ++ * @param _qh QH for the periodic transfer. ++ */ ++static void deschedule_periodic(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ int i; ++ list_del_init(&_qh->qh_list_entry); ++ ++ ++ /* Update claimed usecs per (micro)frame. */ ++ _hcd->periodic_usecs -= _qh->usecs; ++ ++ for (i = 0; i < 8; i++) { ++ _hcd->frame_usecs[i] += _qh->frame_usecs[i]; ++ _qh->frame_usecs[i] = 0; ++ } ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_allocated -= _qh->usecs / _qh->interval; ++ ++ if (_qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_int_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(_hcd))->bandwidth_isoc_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n", ++ _qh, _qh->usecs, _qh->interval); ++ } ++} ++ ++/** ++ * Removes a QH from either the non-periodic or periodic schedule. Memory is ++ * not freed. ++ * ++ * @param[in] _hcd The HCD state structure. ++ * @param[in] _qh QH to remove from schedule. */ ++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh) ++{ ++ unsigned long flags; ++ ++ local_irq_save(flags); ++ ++ if (list_empty(&_qh->qh_list_entry)) { ++ /* QH is not in a schedule. */ ++ goto done; ++ } ++ ++ if (dwc_qh_is_non_per(_qh)) { ++ if (_hcd->non_periodic_qh_ptr == &_qh->qh_list_entry) { ++ _hcd->non_periodic_qh_ptr = _hcd->non_periodic_qh_ptr->next; ++ } ++ list_del_init(&_qh->qh_list_entry); ++ } else { ++ deschedule_periodic(_hcd, _qh); ++ } ++ ++ done: ++ local_irq_restore(flags); ++} ++ ++/** ++ * Defers a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the deferred non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ */ ++int dwc_otg_hcd_qh_deferr(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh, int delay) ++{ ++ int deact = 1; ++ unsigned long flags; ++ local_irq_save(flags); ++ if (dwc_qh_is_non_per(_qh)) { ++ _qh->sched_frame = ++ dwc_frame_num_inc(_hcd->frame_number, ++ delay); ++ _qh->channel = NULL; ++ _qh->qtd_in_process = NULL; ++ deact = 0; ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ if (!list_empty(&_qh->qtd_list)) { ++ /* Add back to deferred non-periodic schedule. */ ++ dwc_otg_hcd_qh_add_deferred(_hcd, _qh); ++ } ++ } ++ local_irq_restore(flags); ++ return deact; ++} ++ ++/** ++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the inactive non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ * ++ * For periodic QHs, the QH is removed from the periodic queued schedule. If ++ * there are any QTDs still attached to the QH, the QH is added to either the ++ * periodic inactive schedule or the periodic ready schedule and its next ++ * scheduled frame is calculated. The QH is placed in the ready schedule if ++ * the scheduled frame has been reached already. Otherwise it's placed in the ++ * inactive schedule. If there are no QTDs attached to the QH, the QH is ++ * completely removed from the periodic schedule. ++ */ ++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *_hcd, dwc_otg_qh_t *_qh, int sched_next_periodic_split) ++{ ++ unsigned long flags; ++ local_irq_save(flags); ++ ++ if (dwc_qh_is_non_per(_qh)) { ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ if (!list_empty(&_qh->qtd_list)) { ++ /* Add back to inactive non-periodic schedule. */ ++ dwc_otg_hcd_qh_add(_hcd, _qh); ++ } ++ } else { ++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(_hcd)); ++ ++ if (_qh->do_split) { ++ /* Schedule the next continuing periodic split transfer */ ++ if (sched_next_periodic_split) { ++ ++ _qh->sched_frame = frame_number; ++ if (dwc_frame_num_le(frame_number, ++ dwc_frame_num_inc(_qh->start_split_frame, 1))) { ++ /* ++ * Allow one frame to elapse after start ++ * split microframe before scheduling ++ * complete split, but DONT if we are ++ * doing the next start split in the ++ * same frame for an ISOC out. ++ */ ++ if ((_qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (_qh->ep_is_in != 0)) { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, 1); ++ } ++ } ++ } else { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->start_split_frame, ++ _qh->interval); ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ _qh->sched_frame = frame_number; ++ } ++ _qh->sched_frame |= 0x7; ++ _qh->start_split_frame = _qh->sched_frame; ++ } ++ } else { ++ _qh->sched_frame = dwc_frame_num_inc(_qh->sched_frame, _qh->interval); ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ _qh->sched_frame = frame_number; ++ } ++ } ++ ++ if (list_empty(&_qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(_hcd, _qh); ++ } else { ++ /* ++ * Remove from periodic_sched_queued and move to ++ * appropriate queue. ++ */ ++ if (dwc_frame_num_le(_qh->sched_frame, frame_number)) { ++ list_move(&_qh->qh_list_entry, ++ &_hcd->periodic_sched_ready); ++ } else { ++ list_move(&_qh->qh_list_entry, ++ &_hcd->periodic_sched_inactive); ++ } ++ } ++ } ++ ++ local_irq_restore(flags); ++} ++ ++/** ++ * This function allocates and initializes a QTD. ++ * ++ * @param[in] _urb The URB to create a QTD from. Each URB-QTD pair will end up ++ * pointing to each other so each pair should have a unique correlation. ++ * ++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */ ++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *_urb) ++{ ++ dwc_otg_qtd_t *qtd; ++ ++ qtd = dwc_otg_hcd_qtd_alloc (); ++ if (qtd == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qtd_init (qtd, _urb); ++ return qtd; ++} ++ ++/** ++ * Initializes a QTD structure. ++ * ++ * @param[in] _qtd The QTD to initialize. ++ * @param[in] _urb The URB to use for initialization. */ ++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *_qtd, struct urb *_urb) ++{ ++ memset (_qtd, 0, sizeof (dwc_otg_qtd_t)); ++ _qtd->urb = _urb; ++ if (usb_pipecontrol(_urb->pipe)) { ++ /* ++ * The only time the QTD data toggle is used is on the data ++ * phase of control transfers. This phase always starts with ++ * DATA1. ++ */ ++ _qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ _qtd->control_phase = DWC_OTG_CONTROL_SETUP; ++ } ++ ++ /* start split */ ++ _qtd->complete_split = 0; ++ _qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ _qtd->isoc_split_offset = 0; ++ ++ /* Store the qtd ptr in the urb to reference what QTD. */ ++ _urb->hcpriv = _qtd; ++ return; ++} ++ ++/** ++ * This function adds a QTD to the QTD-list of a QH. It will find the correct ++ * QH to place the QTD into. If it does not find a QH, then it will create a ++ * new QH. If the QH to which the QTD is added is not currently scheduled, it ++ * is placed into the proper schedule based on its EP type. ++ * ++ * @param[in] _qtd The QTD to add ++ * @param[in] _dwc_otg_hcd The DWC HCD structure ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * _qtd, dwc_otg_hcd_t * _dwc_otg_hcd) ++{ ++ struct usb_host_endpoint *ep; ++ dwc_otg_qh_t *qh; ++ unsigned long flags; ++ int retval = 0; ++ struct urb *urb = _qtd->urb; ++ ++ local_irq_save(flags); ++ ++ /* ++ * Get the QH which holds the QTD-list to insert to. Create QH if it ++ * doesn't exist. ++ */ ++ ep = dwc_urb_to_endpoint(urb); ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ if (qh == NULL) { ++ qh = dwc_otg_hcd_qh_create (_dwc_otg_hcd, urb); ++ if (qh == NULL) { ++ retval = -1; ++ goto done; ++ } ++ ep->hcpriv = qh; ++ } ++ ++ _qtd->qtd_qh_ptr = qh; ++ retval = dwc_otg_hcd_qh_add(_dwc_otg_hcd, qh); ++ if (retval == 0) { ++ list_add_tail(&_qtd->qtd_list_entry, &qh->qtd_list); ++ } ++ ++ done: ++ local_irq_restore(flags); ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.c +@@ -0,0 +1,176 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_ifx.c ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 12 Auguest 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Platform specific initialization. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 Auguest 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#include "dwc_otg_ifx.h" ++ ++#include ++#include ++#include ++#include ++ ++#include ++//#include ++#include ++ ++#define IFXMIPS_GPIO_BASE_ADDR (0xBE100B00) ++ ++#define IFXMIPS_GPIO_P0_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0010)) ++#define IFXMIPS_GPIO_P1_OUT ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0040)) ++#define IFXMIPS_GPIO_P0_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0014)) ++#define IFXMIPS_GPIO_P1_IN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0044)) ++#define IFXMIPS_GPIO_P0_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0018)) ++#define IFXMIPS_GPIO_P1_DIR ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0048)) ++#define IFXMIPS_GPIO_P0_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x001C)) ++#define IFXMIPS_GPIO_P1_ALTSEL0 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x004C)) ++#define IFXMIPS_GPIO_P0_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0020)) ++#define IFXMIPS_GPIO_P1_ALTSEL1 ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0050)) ++#define IFXMIPS_GPIO_P0_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0024)) ++#define IFXMIPS_GPIO_P1_OD ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0054)) ++#define IFXMIPS_GPIO_P0_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0028)) ++#define IFXMIPS_GPIO_P1_STOFF ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0058)) ++#define IFXMIPS_GPIO_P0_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x002C)) ++#define IFXMIPS_GPIO_P1_PUDSEL ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x005C)) ++#define IFXMIPS_GPIO_P0_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0030)) ++#define IFXMIPS_GPIO_P1_PUDEN ((u32 *)(IFXMIPS_GPIO_BASE_ADDR + 0x0060)) ++ ++ ++extern void lq_enable_irq(unsigned int irq_nr); ++#define writel lq_w32 ++#define readl lq_r32 ++void dwc_otg_power_on (void) ++{ ++ // GPIOs ++ gpio_request(28, "USB_POWER"); ++ gpio_direction_output(28, 1); ++ /* ++ writel(readl(IFXMIPS_GPIO_P0_DIR) | (0x4000), IFXMIPS_GPIO_P0_DIR); ++ writel(readl(IFXMIPS_GPIO_P0_OD) | (0x4000), IFXMIPS_GPIO_P0_OD); ++ writel(readl(IFXMIPS_GPIO_P0_ALTSEL0) & ~(0x4000), IFXMIPS_GPIO_P0_ALTSEL0); ++ writel(readl(IFXMIPS_GPIO_P0_ALTSEL1) & ~(0x4000), IFXMIPS_GPIO_P0_ALTSEL1); ++ writel(readl(IFXMIPS_GPIO_P0_OUT) | (0x4000), IFXMIPS_GPIO_P0_OUT); ++*/ ++/* writel(readl(IFXMIPS_GPIO_P1_DIR) | (0x1000), IFXMIPS_GPIO_P1_DIR); ++ writel(readl(IFXMIPS_GPIO_P1_OD) | (0x1000), IFXMIPS_GPIO_P1_OD); ++ writel(readl(IFXMIPS_GPIO_P1_ALTSEL0) & ~(0x1000), IFXMIPS_GPIO_P1_ALTSEL0); ++ writel(readl(IFXMIPS_GPIO_P1_ALTSEL1) & ~(0x1000), IFXMIPS_GPIO_P1_ALTSEL1); ++ writel(readl(IFXMIPS_GPIO_P1_OUT) | (0x1000), IFXMIPS_GPIO_P1_OUT); ++*/ ++ // clear power ++ //set_bit (0, DANUBE_PMU_PWDCR); ++ //set_bit (6, DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) | 0x41, DANUBE_PMU_PWDCR); ++ ++ // set clock gating ++ //set_bit (4, (volatile unsigned long *)DANUBE_CGU_IFCCR); ++ //set_bit (5, (volatile unsigned long *)DANUBE_CGU_IFCCR); ++ writel(readl(DANUBE_CGU_IFCCR) | 0x30, DANUBE_CGU_IFCCR); ++ ++ // set power ++ //clear_bit (0, (volatile unsigned long *)DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x1, DANUBE_PMU_PWDCR); ++ //clear_bit (6, (volatile unsigned long *)DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x40, DANUBE_PMU_PWDCR); ++ //clear_bit (15, (volatile unsigned long *)DANUBE_PMU_PWDCR); ++ writel(readl(DANUBE_PMU_PWDCR) & ~0x8000, DANUBE_PMU_PWDCR); ++ //writel(readl(DANUBE_PMU_PWDCR) & ~0x8041, DANUBE_PMU_PWDCR); ++ ++#if 1//defined (DWC_HOST_ONLY) ++ // make the hardware be a host controller (default) ++ //clear_bit (DANUBE_USBCFG_HDSEL_BIT, (volatile unsigned long *)DANUBE_RCU_UBSCFG); ++ writel(readl(DANUBE_RCU_UBSCFG) & ~(1<parent = NULL; ++} ++ ++static struct resource resources[] = ++{ ++ [0] = { ++ .name = "dwc_otg_membase", ++ .start = IFX_USB_IOMEM_BASE, ++ .end = IFX_USB_IOMEM_BASE + IFX_USB_IOMEM_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .name = "dwc_otg_irq", ++ .start = IFX_USB_IRQ, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 dwc_dmamask = (u32)0x1fffffff; ++ ++static struct platform_device platform_dev = { ++ .dev = { ++ .release = release_platform_dev, ++ .dma_mask = &dwc_dmamask, ++ }, ++ .resource = resources, ++ .num_resources = ARRAY_SIZE(resources), ++}; ++ ++extern const char dwc_driver_name[]; ++int ifx_usb_hc_init(unsigned long base_addr, int irq) ++{ ++ if (platform_dev.dev.parent) ++ return -EBUSY; ++ ++ /* finish seting up the platform device */ ++ //resources[0].start = base_addr; ++ //resources[0].end = base_addr + SZ_256K; ++ ++ //resources[1].start = irq; ++ ++ /* The driver core will probe for us. We know sl811-hcd has been ++ * initialized already because of the link order dependency. ++ */ ++ platform_dev.name = dwc_driver_name; ++ lq_enable_irq(resources[1].start); ++ ++ return platform_device_register(&platform_dev); ++} ++ ++void ifx_usb_hc_remove(void) ++{ ++ platform_device_unregister(&platform_dev); ++} +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_ifx.h +@@ -0,0 +1,79 @@ ++/****************************************************************************** ++** ++** FILE NAME : dwc_otg_ifx.h ++** PROJECT : Twinpass/Danube ++** MODULES : DWC OTG USB ++** ++** DATE : 12 April 2007 ++** AUTHOR : Sung Winder ++** DESCRIPTION : Platform specific initialization. ++** COPYRIGHT : Copyright (c) 2007 ++** Infineon Technologies AG ++** 2F, No.2, Li-Hsin Rd., Hsinchu Science Park, ++** Hsin-chu City, 300 Taiwan. ++** ++** This program is free software; you can redistribute it and/or modify ++** it under the terms of the GNU General Public License as published by ++** the Free Software Foundation; either version 2 of the License, or ++** (at your option) any later version. ++** ++** HISTORY ++** $Date $Author $Comment ++** 12 April 2007 Sung Winder Initiate Version ++*******************************************************************************/ ++#if !defined(__DWC_OTG_IFX_H__) ++#define __DWC_OTG_IFX_H__ ++ ++#include ++ ++// 20070316, winder added. ++#ifndef SZ_256K ++#define SZ_256K 0x00040000 ++#endif ++ ++extern void dwc_otg_power_on (void); ++ ++/* FIXME: The current Linux-2.6 do not have these header files, but anyway, we need these. */ ++// #include ++// #include ++ ++/* winder, I used the Danube parameter as default. * ++ * We could change this through module param. */ ++#define IFX_USB_IOMEM_BASE 0x1e101000 ++#define IFX_USB_IOMEM_SIZE SZ_256K ++#define IFX_USB_IRQ LQ_USB_INT ++ ++/** ++ * This function is called to set correct clock gating and power. ++ * For Twinpass/Danube board. ++ */ ++#ifndef DANUBE_RCU_BASE_ADDR ++#define DANUBE_RCU_BASE_ADDR (0xBF203000) ++#endif ++ ++#ifndef DANUBE_CGU ++#define DANUBE_CGU (0xBF103000) ++#endif ++#ifndef DANUBE_CGU_IFCCR ++/***CGU Interface Clock Control Register***/ ++#define DANUBE_CGU_IFCCR ((volatile u32*)(DANUBE_CGU+ 0x0018)) ++#endif ++ ++#ifndef DANUBE_PMU ++#define DANUBE_PMU (KSEG1+0x1F102000) ++#endif ++#ifndef DANUBE_PMU_PWDCR ++/* PMU Power down Control Register */ ++#define DANUBE_PMU_PWDCR ((volatile u32*)(DANUBE_PMU+0x001C)) ++#endif ++ ++ ++#define DANUBE_RCU_UBSCFG ((volatile u32*)(DANUBE_RCU_BASE_ADDR + 0x18)) ++#define DANUBE_USBCFG_HDSEL_BIT 11 // 0:host, 1:device ++#define DANUBE_USBCFG_HOST_END_BIT 10 // 0:little_end, 1:big_end ++#define DANUBE_USBCFG_SLV_END_BIT 9 // 0:little_end, 1:big_end ++ ++extern void lq_mask_and_ack_irq (unsigned int irq_nr); ++#define mask_and_ack_ifx_irq lq_mask_and_ack_irq ++ ++#endif //__DWC_OTG_IFX_H__ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_plat.h +@@ -0,0 +1,269 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/platform/dwc_otg_plat.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 510301 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_PLAT_H__) ++#define __DWC_OTG_PLAT_H__ ++ ++#include ++#include ++#include ++#include ++#include ++ ++/** ++ * @file ++ * ++ * This file contains the Platform Specific constants, interfaces ++ * (functions and macros) for Linux. ++ * ++ */ ++/*#if !defined(__LINUX__) ++#error "The contents of this file is Linux specific!!!" ++#endif ++*/ ++#include ++#define writel lq_w32 ++#define readl lq_r32 ++ ++/** ++ * Reads the content of a register. ++ * ++ * @param _reg address of register to read. ++ * @return contents of the register. ++ * ++ ++ * Usage:
++ * uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl); ++ */ ++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *_reg) ++{ ++ return readl(_reg); ++}; ++ ++/** ++ * Writes a register with a 32 bit value. ++ * ++ * @param _reg address of register to read. ++ * @param _value to write to _reg. ++ * ++ * Usage:
++ * dwc_write_reg32(&dev_regs->dctl, 0); ++ */ ++static __inline__ void dwc_write_reg32( volatile uint32_t *_reg, const uint32_t _value) ++{ ++ writel( _value, _reg ); ++}; ++ ++/** ++ * This function modifies bit values in a register. Using the ++ * algorithm: (reg_contents & ~clear_mask) | set_mask. ++ * ++ * @param _reg address of register to read. ++ * @param _clear_mask bit mask to be cleared. ++ * @param _set_mask bit mask to be set. ++ * ++ * Usage:
++ * // Clear the SOF Interrupt Mask bit and
++ * // set the OTG Interrupt mask bit, leaving all others as they were. ++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);
++ */ ++static __inline__ ++ void dwc_modify_reg32( volatile uint32_t *_reg, const uint32_t _clear_mask, const uint32_t _set_mask) ++{ ++ writel( (readl(_reg) & ~_clear_mask) | _set_mask, _reg ); ++}; ++ ++ ++/** ++ * Wrapper for the OS micro-second delay function. ++ * @param[in] _usecs Microseconds of delay ++ */ ++static __inline__ void UDELAY( const uint32_t _usecs ) ++{ ++ udelay( _usecs ); ++} ++ ++/** ++ * Wrapper for the OS milli-second delay function. ++ * @param[in] _msecs milliseconds of delay ++ */ ++static __inline__ void MDELAY( const uint32_t _msecs ) ++{ ++ mdelay( _msecs ); ++} ++ ++/** ++ * Wrapper for the Linux spin_lock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param _lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_LOCK( spinlock_t *_lock ) ++{ ++ spin_lock(_lock); ++} ++ ++/** ++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param _lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_UNLOCK( spinlock_t *_lock ) ++{ ++ spin_unlock(_lock); ++} ++ ++/** ++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param _l Pointer to the spinlock. ++ * @param _f unsigned long for irq flags storage. ++ */ ++#define SPIN_LOCK_IRQSAVE( _l, _f ) { \ ++ spin_lock_irqsave(_l,_f); \ ++ } ++ ++/** ++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param _l Pointer to the spinlock. ++ * @param _f unsigned long for irq flags storage. ++ */ ++#define SPIN_UNLOCK_IRQRESTORE( _l,_f ) {\ ++ spin_unlock_irqrestore(_l,_f); \ ++ } ++ ++ ++/* ++ * Debugging support vanishes in non-debug builds. ++ */ ++ ++ ++/** ++ * The Debug Level bit-mask variable. ++ */ ++extern uint32_t g_dbg_lvl; ++/** ++ * Set the Debug Level variable. ++ */ ++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t _new ) ++{ ++ uint32_t old = g_dbg_lvl; ++ g_dbg_lvl = _new; ++ return old; ++} ++ ++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ ++#define DBG_CIL (0x2) ++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug ++ * messages */ ++#define DBG_CILV (0x20) ++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug ++ * messages */ ++#define DBG_PCD (0x4) ++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug ++ * messages */ ++#define DBG_PCDV (0x40) ++/** When debug level has the DBG_HCD bit set, display Host debug messages */ ++#define DBG_HCD (0x8) ++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug ++ * messages */ ++#define DBG_HCDV (0x80) ++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host ++ * mode. */ ++#define DBG_HCD_URB (0x800) ++ ++/** When debug level has any bit set, display debug messages */ ++#define DBG_ANY (0xFF) ++ ++/** All debug messages off */ ++#define DBG_OFF 0 ++ ++/** Prefix string for DWC_DEBUG print macros. */ ++#define USB_DWC "DWC_otg: " ++ ++/** ++ * Print a debug message when the Global debug level variable contains ++ * the bit defined in lvl. ++ * ++ * @param[in] lvl - Debug level, use one of the DBG_ constants above. ++ * @param[in] x - like printf ++ * ++ * Example:

++ * ++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); ++ * ++ *
++ * results in:
++ * ++ * usb-DWC_otg: dwc_otg_cil_init(ca867000) ++ * ++ */ ++#ifdef DEBUG ++ ++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0) ++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x ) ++ ++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) ++ ++#else ++ ++# define DWC_DEBUGPL(lvl, x...) do{}while(0) ++# define DWC_DEBUGP(x...) ++ ++# define CHK_DEBUG_LEVEL(level) (0) ++ ++#endif /*DEBUG*/ ++ ++/** ++ * Print an Error message. ++ */ ++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x ) ++/** ++ * Print a Warning message. ++ */ ++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x ) ++/** ++ * Print a notice (normal but significant message). ++ */ ++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x ) ++/** ++ * Basic message printing. ++ */ ++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x ) ++ ++#endif ++ +--- /dev/null ++++ b/drivers/usb/dwc_otg/dwc_otg_regs.h +@@ -0,0 +1,1797 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_regs.h $ ++ * $Revision: 1.1.1.1 $ ++ * $Date: 2009-04-17 06:15:34 $ ++ * $Change: 631780 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_REGS_H__ ++#define __DWC_OTG_REGS_H__ ++ ++/** ++ * @file ++ * ++ * This file contains the data structures for accessing the DWC_otg core registers. ++ * ++ * The application interfaces with the HS OTG core by reading from and ++ * writing to the Control and Status Register (CSR) space through the ++ * AHB Slave interface. These registers are 32 bits wide, and the ++ * addresses are 32-bit-block aligned. ++ * CSRs are classified as follows: ++ * - Core Global Registers ++ * - Device Mode Registers ++ * - Device Global Registers ++ * - Device Endpoint Specific Registers ++ * - Host Mode Registers ++ * - Host Global Registers ++ * - Host Port CSRs ++ * - Host Channel Specific Registers ++ * ++ * Only the Core Global registers can be accessed in both Device and ++ * Host modes. When the HS OTG core is operating in one mode, either ++ * Device or Host, the application must not access registers from the ++ * other mode. When the core switches from one mode to another, the ++ * registers in the new mode of operation must be reprogrammed as they ++ * would be after a power-on reset. ++ */ ++ ++/****************************************************************************/ ++/** DWC_otg Core registers . ++ * The dwc_otg_core_global_regs structure defines the size ++ * and relative field offsets for the Core Global registers. ++ */ ++typedef struct dwc_otg_core_global_regs ++{ ++ /** OTG Control and Status Register. Offset: 000h */ ++ volatile uint32_t gotgctl; ++ /** OTG Interrupt Register. Offset: 004h */ ++ volatile uint32_t gotgint; ++ /**Core AHB Configuration Register. Offset: 008h */ ++ volatile uint32_t gahbcfg; ++#define DWC_GLBINTRMASK 0x0001 ++#define DWC_DMAENABLE 0x0020 ++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 ++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 ++#define DWC_PTXEMPTYLVL_EMPTY 0x0100 ++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 ++ ++ ++ /**Core USB Configuration Register. Offset: 00Ch */ ++ volatile uint32_t gusbcfg; ++ /**Core Reset Register. Offset: 010h */ ++ volatile uint32_t grstctl; ++ /**Core Interrupt Register. Offset: 014h */ ++ volatile uint32_t gintsts; ++ /**Core Interrupt Mask Register. Offset: 018h */ ++ volatile uint32_t gintmsk; ++ /**Receive Status Queue Read Register (Read Only). Offset: 01Ch */ ++ volatile uint32_t grxstsr; ++ /**Receive Status Queue Read & POP Register (Read Only). Offset: 020h*/ ++ volatile uint32_t grxstsp; ++ /**Receive FIFO Size Register. Offset: 024h */ ++ volatile uint32_t grxfsiz; ++ /**Non Periodic Transmit FIFO Size Register. Offset: 028h */ ++ volatile uint32_t gnptxfsiz; ++ /**Non Periodic Transmit FIFO/Queue Status Register (Read ++ * Only). Offset: 02Ch */ ++ volatile uint32_t gnptxsts; ++ /**I2C Access Register. Offset: 030h */ ++ volatile uint32_t gi2cctl; ++ /**PHY Vendor Control Register. Offset: 034h */ ++ volatile uint32_t gpvndctl; ++ /**General Purpose Input/Output Register. Offset: 038h */ ++ volatile uint32_t ggpio; ++ /**User ID Register. Offset: 03Ch */ ++ volatile uint32_t guid; ++ /**Synopsys ID Register (Read Only). Offset: 040h */ ++ volatile uint32_t gsnpsid; ++ /**User HW Config1 Register (Read Only). Offset: 044h */ ++ volatile uint32_t ghwcfg1; ++ /**User HW Config2 Register (Read Only). Offset: 048h */ ++ volatile uint32_t ghwcfg2; ++#define DWC_SLAVE_ONLY_ARCH 0 ++#define DWC_EXT_DMA_ARCH 1 ++#define DWC_INT_DMA_ARCH 2 ++ ++#define DWC_MODE_HNP_SRP_CAPABLE 0 ++#define DWC_MODE_SRP_ONLY_CAPABLE 1 ++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 ++#define DWC_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ /**User HW Config3 Register (Read Only). Offset: 04Ch */ ++ volatile uint32_t ghwcfg3; ++ /**User HW Config4 Register (Read Only). Offset: 050h*/ ++ volatile uint32_t ghwcfg4; ++ /** Reserved Offset: 054h-0FFh */ ++ uint32_t reserved[43]; ++ /** Host Periodic Transmit FIFO Size Register. Offset: 100h */ ++ volatile uint32_t hptxfsiz; ++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled, ++ otherwise Device Transmit FIFO#n Register. ++ * Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15). */ ++ //volatile uint32_t dptxfsiz[15]; ++ volatile uint32_t dptxfsiz_dieptxf[15]; ++} dwc_otg_core_global_regs_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Control ++ * and Status Register (GOTGCTL). Set the bits using the bit ++ * fields then write the d32 value to the register. ++ */ ++typedef union gotgctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned reserved31_21 : 11; ++ unsigned currmod : 1; ++ unsigned bsesvld : 1; ++ unsigned asesvld : 1; ++ unsigned reserved17 : 1; ++ unsigned conidsts : 1; ++ unsigned reserved15_12 : 4; ++ unsigned devhnpen : 1; ++ unsigned hstsethnpen : 1; ++ unsigned hnpreq : 1; ++ unsigned hstnegscs : 1; ++ unsigned reserved7_2 : 6; ++ unsigned sesreq : 1; ++ unsigned sesreqscs : 1; ++ } b; ++} gotgctl_data_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Interrupt Register ++ * (GOTGINT). Set/clear the bits using the bit fields then write the d32 ++ * value to the register. ++ */ ++typedef union gotgint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Current Mode */ ++ unsigned reserved31_20 : 12; ++ /** Debounce Done */ ++ unsigned debdone : 1; ++ /** A-Device Timeout Change */ ++ unsigned adevtoutchng : 1; ++ /** Host Negotiation Detected */ ++ unsigned hstnegdet : 1; ++ unsigned reserver16_10 : 7; ++ /** Host Negotiation Success Status Change */ ++ unsigned hstnegsucstschng : 1; ++ /** Session Request Success Status Change */ ++ unsigned sesreqsucstschng : 1; ++ unsigned reserved3_7 : 5; ++ /** Session End Detected */ ++ unsigned sesenddet : 1; ++ /** Current Mode */ ++ unsigned reserved1_0 : 2; ++ } b; ++} gotgint_data_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core AHB Configuration ++ * Register (GAHBCFG). Set/clear the bits using the bit fields then ++ * write the d32 value to the register. ++ */ ++typedef union gahbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 ++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 ++ unsigned reserved9_31 : 23; ++ unsigned ptxfemplvl : 1; ++ unsigned nptxfemplvl_txfemplvl : 1; ++#define DWC_GAHBCFG_DMAENABLE 1 ++ unsigned reserved : 1; ++ unsigned dmaenable : 1; ++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 ++ unsigned hburstlen : 4; ++ unsigned glblintrmsk : 1; ++#define DWC_GAHBCFG_GLBINT_ENABLE 1 ++ ++ } b; ++} gahbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core USB Configuration ++ * Register (GUSBCFG). Set the bits using the bit fields then write ++ * the d32 value to the register. ++ */ ++typedef union gusbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned corrupt_tx_packet: 1; /*fscz*/ ++ unsigned force_device_mode: 1; ++ unsigned force_host_mode: 1; ++ unsigned reserved23_28 : 6; ++ unsigned term_sel_dl_pulse : 1; ++ unsigned ulpi_int_vbus_indicator : 1; ++ unsigned ulpi_ext_vbus_drv : 1; ++ unsigned ulpi_clk_sus_m : 1; ++ unsigned ulpi_auto_res : 1; ++ unsigned ulpi_fsls : 1; ++ unsigned otgutmifssel : 1; ++ unsigned phylpwrclksel : 1; ++ unsigned nptxfrwnden : 1; ++ unsigned usbtrdtim : 4; ++ unsigned hnpcap : 1; ++ unsigned srpcap : 1; ++ unsigned ddrsel : 1; ++ unsigned physel : 1; ++ unsigned fsintf : 1; ++ unsigned ulpi_utmi_sel : 1; ++ unsigned phyif : 1; ++ unsigned toutcal : 3; ++ } b; ++} gusbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core Reset Register ++ * (GRSTCTL). Set/clear the bits using the bit fields then write the ++ * d32 value to the register. ++ */ ++typedef union grstctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** AHB Master Idle. Indicates the AHB Master State ++ * Machine is in IDLE condition. */ ++ unsigned ahbidle : 1; ++ /** DMA Request Signal. Indicated DMA request is in ++ * probress. Used for debug purpose. */ ++ unsigned dmareq : 1; ++ /** Reserved */ ++ unsigned reserved29_11 : 19; ++ /** TxFIFO Number (TxFNum) (Device and Host). ++ * ++ * This is the FIFO number which needs to be flushed, ++ * using the TxFIFO Flush bit. This field should not ++ * be changed until the TxFIFO Flush bit is cleared by ++ * the core. ++ * - 0x0 : Non Periodic TxFIFO Flush ++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode ++ * or Periodic TxFIFO in host mode ++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode. ++ * - ... ++ * - 0xF : Periodic TxFIFO #15 Flush in device mode ++ * - 0x10: Flush all the Transmit NonPeriodic and ++ * Transmit Periodic FIFOs in the core ++ */ ++ unsigned txfnum : 5; ++ /** TxFIFO Flush (TxFFlsh) (Device and Host). ++ * ++ * This bit is used to selectively flush a single or ++ * all transmit FIFOs. The application must first ++ * ensure that the core is not in the middle of a ++ * transaction.

The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is writing into the TxFIFO nor the MAC ++ * is reading the data out of the FIFO.

The ++ * application should wait until the core clears this ++ * bit, before performing any operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned txfflsh : 1; ++ /** RxFIFO Flush (RxFFlsh) (Device and Host) ++ * ++ * The application can flush the entire Receive FIFO ++ * using this bit.

The application must first ++ * ensure that the core is not in the middle of a ++ * transaction.

The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is reading from the RxFIFO nor the MAC ++ * is writing the data in to the FIFO.

The ++ * application should wait until the bit is cleared ++ * before performing any other operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned rxfflsh : 1; ++ /** In Token Sequence Learning Queue Flush ++ * (INTknQFlsh) (Device Only) ++ */ ++ unsigned intknqflsh : 1; ++ /** Host Frame Counter Reset (Host Only)
++ * ++ * The application can reset the (micro)frame number ++ * counter inside the core, using this bit. When the ++ * (micro)frame counter is reset, the subsequent SOF ++ * sent out by the core, will have a (micro)frame ++ * number of 0. ++ */ ++ unsigned hstfrm : 1; ++ /** Hclk Soft Reset ++ * ++ * The application uses this bit to reset the control logic in ++ * the AHB clock domain. Only AHB clock domain pipelines are ++ * reset. ++ */ ++ unsigned hsftrst : 1; ++ /** Core Soft Reset (CSftRst) (Device and Host) ++ * ++ * The application can flush the control logic in the ++ * entire core using this bit. This bit resets the ++ * pipelines in the AHB Clock domain as well as the ++ * PHY Clock domain. ++ * ++ * The state machines are reset to an IDLE state, the ++ * control bits in the CSRs are cleared, all the ++ * transmit FIFOs and the receive FIFO are flushed. ++ * ++ * The status mask bits that control the generation of ++ * the interrupt, are cleared, to clear the ++ * interrupt. The interrupt status bits are not ++ * cleared, so the application can get the status of ++ * any events that occurred in the core after it has ++ * set this bit. ++ * ++ * Any transactions on the AHB are terminated as soon ++ * as possible following the protocol. Any ++ * transactions on the USB are terminated immediately. ++ * ++ * The configuration settings in the CSRs are ++ * unchanged, so the software doesn't have to ++ * reprogram these registers (Device ++ * Configuration/Host Configuration/Core System ++ * Configuration/Core PHY Configuration). ++ * ++ * The application can write to this bit, any time it ++ * wants to reset the core. This is a self clearing ++ * bit and the core clears this bit after all the ++ * necessary logic is reset in the core, which may ++ * take several clocks, depending on the current state ++ * of the core. ++ */ ++ unsigned csftrst : 1; ++ } b; ++} grstctl_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core Interrupt Mask ++ * Register (GINTMSK). Set/clear the bits using the bit fields then ++ * write the d32 value to the register. ++ */ ++typedef union gintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned wkupintr : 1; ++ unsigned sessreqintr : 1; ++ unsigned disconnect : 1; ++ unsigned conidstschng : 1; ++ unsigned reserved27 : 1; ++ unsigned ptxfempty : 1; ++ unsigned hcintr : 1; ++ unsigned portintr : 1; ++ unsigned reserved22_23 : 2; ++ unsigned incomplisoout : 1; ++ unsigned incomplisoin : 1; ++ unsigned outepintr : 1; ++ unsigned inepintr : 1; ++ unsigned epmismatch : 1; ++ unsigned reserved16 : 1; ++ unsigned eopframe : 1; ++ unsigned isooutdrop : 1; ++ unsigned enumdone : 1; ++ unsigned usbreset : 1; ++ unsigned usbsuspend : 1; ++ unsigned erlysuspend : 1; ++ unsigned i2cintr : 1; ++ unsigned reserved8 : 1; ++ unsigned goutnakeff : 1; ++ unsigned ginnakeff : 1; ++ unsigned nptxfempty : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned sofintr : 1; ++ unsigned otgintr : 1; ++ unsigned modemismatch : 1; ++ unsigned reserved0 : 1; ++ } b; ++} gintmsk_data_t; ++/** ++ * This union represents the bit fields of the Core Interrupt Register ++ * (GINTSTS). Set/clear the bits using the bit fields then write the ++ * d32 value to the register. ++ */ ++typedef union gintsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++#define DWC_SOF_INTR_MASK 0x0008 ++ /** register bits */ ++ struct ++ { ++#define DWC_HOST_MODE 1 ++ unsigned wkupintr : 1; ++ unsigned sessreqintr : 1; ++ unsigned disconnect : 1; ++ unsigned conidstschng : 1; ++ unsigned reserved27 : 1; ++ unsigned ptxfempty : 1; ++ unsigned hcintr : 1; ++ unsigned portintr : 1; ++ unsigned reserved22_23 : 2; ++ unsigned incomplisoout : 1; ++ unsigned incomplisoin : 1; ++ unsigned outepintr : 1; ++ unsigned inepint: 1; ++ unsigned epmismatch : 1; ++ unsigned intokenrx : 1; ++ unsigned eopframe : 1; ++ unsigned isooutdrop : 1; ++ unsigned enumdone : 1; ++ unsigned usbreset : 1; ++ unsigned usbsuspend : 1; ++ unsigned erlysuspend : 1; ++ unsigned i2cintr : 1; ++ unsigned reserved8 : 1; ++ unsigned goutnakeff : 1; ++ unsigned ginnakeff : 1; ++ unsigned nptxfempty : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned sofintr : 1; ++ unsigned otgintr : 1; ++ unsigned modemismatch : 1; ++ unsigned curmode : 1; ++ } b; ++} gintsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 ++ * element then read out the bits using the bit elements. ++ */ ++typedef union device_grxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 7; ++ unsigned fn : 4; ++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet ++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete ++ ++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK ++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete ++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet ++ unsigned pktsts : 4; ++ unsigned dpid : 2; ++ unsigned bcnt : 11; ++ unsigned epnum : 4; ++ } b; ++} device_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32 ++ * element then read out the bits using the bit elements. ++ */ ++typedef union host_grxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31_21 : 11; ++#define DWC_GRXSTS_PKTSTS_IN 0x2 ++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 ++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 ++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 ++ unsigned pktsts : 4; ++ unsigned dpid : 2; ++ unsigned bcnt : 11; ++ unsigned chnum : 4; ++ } b; ++} host_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, ++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then ++ * read out the bits using the bit elements. ++ */ ++typedef union fifosize_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned depth : 16; ++ unsigned startaddr : 16; ++ } b; ++} fifosize_data_t; ++ ++/** ++ * This union represents the bit fields in the Non-Periodic Transmit ++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the ++ * d32 element then read out the bits using the bit ++ * elements. ++ */ ++typedef union gnptxsts_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 1; ++ /** Top of the Non-Periodic Transmit Request Queue ++ * - bits 30:27 - Channel/EP Number ++ * - bits 26:25 - Token Type ++ * - bit 24 - Terminate (Last entry for the selected ++ * channel/EP) ++ * - 2'b00 - IN/OUT ++ * - 2'b01 - Zero Length OUT ++ * - 2'b10 - PING/Complete Split ++ * - 2'b11 - Channel Halt ++ ++ */ ++ unsigned nptxqtop_chnep : 4; ++ unsigned nptxqtop_token : 2; ++ unsigned nptxqtop_terminate : 1; ++ unsigned nptxqspcavail : 8; ++ unsigned nptxfspcavail : 16; ++ } b; ++} gnptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Transmit ++ * FIFO Status Register (DTXFSTS). Read the register into the ++ * d32 element then read out the bits using the bit ++ * elements. ++ */ ++typedef union dtxfsts_data /* fscz */ //* ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned txfspcavail : 16; ++ } b; ++} dtxfsts_data_t; ++ ++/** ++ * This union represents the bit fields in the I2C Control Register ++ * (I2CCTL). Read the register into the d32 element then read out the ++ * bits using the bit elements. ++ */ ++typedef union gi2cctl_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned bsydne : 1; ++ unsigned rw : 1; ++ unsigned reserved : 2; ++ unsigned i2cdevaddr : 2; ++ unsigned i2csuspctl : 1; ++ unsigned ack : 1; ++ unsigned i2cen : 1; ++ unsigned addr : 7; ++ unsigned regaddr : 8; ++ unsigned rwdata : 8; ++ } b; ++} gi2cctl_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config1 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++typedef union hwcfg1_data { ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned ep_dir15 : 2; ++ unsigned ep_dir14 : 2; ++ unsigned ep_dir13 : 2; ++ unsigned ep_dir12 : 2; ++ unsigned ep_dir11 : 2; ++ unsigned ep_dir10 : 2; ++ unsigned ep_dir9 : 2; ++ unsigned ep_dir8 : 2; ++ unsigned ep_dir7 : 2; ++ unsigned ep_dir6 : 2; ++ unsigned ep_dir5 : 2; ++ unsigned ep_dir4 : 2; ++ unsigned ep_dir3 : 2; ++ unsigned ep_dir2 : 2; ++ unsigned ep_dir1 : 2; ++ unsigned ep_dir0 : 2; ++ } b; ++} hwcfg1_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config2 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++typedef union hwcfg2_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /* GHWCFG2 */ ++ unsigned reserved31 : 1; ++ unsigned dev_token_q_depth : 5; ++ unsigned host_perio_tx_q_depth : 2; ++ unsigned nonperio_tx_q_depth : 2; ++ unsigned rx_status_q_depth : 2; ++ unsigned dynamic_fifo : 1; ++ unsigned perio_ep_supported : 1; ++ unsigned num_host_chan : 4; ++ unsigned num_dev_ep : 4; ++ unsigned fs_phy_type : 2; ++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 ++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 ++ unsigned hs_phy_type : 2; ++ unsigned point2point : 1; ++ unsigned architecture : 2; ++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 ++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 ++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 ++ unsigned op_mode : 3; ++ } b; ++} hwcfg2_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config3 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++typedef union hwcfg3_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /* GHWCFG3 */ ++ unsigned dfifo_depth : 16; ++ unsigned reserved15_13 : 3; ++ unsigned ahb_phy_clock_synch : 1; ++ unsigned synch_reset_type : 1; ++ unsigned optional_features : 1; ++ unsigned vendor_ctrl_if : 1; ++ unsigned i2c : 1; ++ unsigned otg_func : 1; ++ unsigned packet_size_cntr_width : 3; ++ unsigned xfer_size_cntr_width : 4; ++ } b; ++} hwcfg3_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config4 ++ * Register. Read the register into the d32 element then read ++ * out the bits using the bit elements. ++ */ ++typedef union hwcfg4_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++unsigned reserved31_30 : 2; /* fscz */ ++ unsigned num_in_eps : 4; ++ unsigned ded_fifo_en : 1; ++ ++ unsigned session_end_filt_en : 1; ++ unsigned b_valid_filt_en : 1; ++ unsigned a_valid_filt_en : 1; ++ unsigned vbus_valid_filt_en : 1; ++ unsigned iddig_filt_en : 1; ++ unsigned num_dev_mode_ctrl_ep : 4; ++ unsigned utmi_phy_data_width : 2; ++ unsigned min_ahb_freq : 9; ++ unsigned power_optimiz : 1; ++ unsigned num_dev_perio_in_ep : 4; ++ } b; ++} hwcfg4_data_t; ++ ++//////////////////////////////////////////// ++// Device Registers ++/** ++ * Device Global Registers. Offsets 800h-BFFh ++ * ++ * The following structures define the size and relative field offsets ++ * for the Device Mode Registers. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++typedef struct dwc_otg_dev_global_regs ++{ ++ /** Device Configuration Register. Offset 800h */ ++ volatile uint32_t dcfg; ++ /** Device Control Register. Offset: 804h */ ++ volatile uint32_t dctl; ++ /** Device Status Register (Read Only). Offset: 808h */ ++ volatile uint32_t dsts; ++ /** Reserved. Offset: 80Ch */ ++ uint32_t unused; ++ /** Device IN Endpoint Common Interrupt Mask ++ * Register. Offset: 810h */ ++ volatile uint32_t diepmsk; ++ /** Device OUT Endpoint Common Interrupt Mask ++ * Register. Offset: 814h */ ++ volatile uint32_t doepmsk; ++ /** Device All Endpoints Interrupt Register. Offset: 818h */ ++ volatile uint32_t daint; ++ /** Device All Endpoints Interrupt Mask Register. Offset: ++ * 81Ch */ ++ volatile uint32_t daintmsk; ++ /** Device IN Token Queue Read Register-1 (Read Only). ++ * Offset: 820h */ ++ volatile uint32_t dtknqr1; ++ /** Device IN Token Queue Read Register-2 (Read Only). ++ * Offset: 824h */ ++ volatile uint32_t dtknqr2; ++ /** Device VBUS discharge Register. Offset: 828h */ ++ volatile uint32_t dvbusdis; ++ /** Device VBUS Pulse Register. Offset: 82Ch */ ++ volatile uint32_t dvbuspulse; ++ /** Device IN Token Queue Read Register-3 (Read Only). ++ * Device Thresholding control register (Read/Write) ++ * Offset: 830h */ ++ volatile uint32_t dtknqr3_dthrctl; ++ /** Device IN Token Queue Read Register-4 (Read Only). / ++ * Device IN EPs empty Inr. Mask Register (Read/Write) ++ * Offset: 834h */ ++ volatile uint32_t dtknqr4_fifoemptymsk; ++} dwc_otg_device_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device Configuration ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. Write the ++ * d32 member to the dcfg register. ++ */ ++typedef union dcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31_23 : 9; ++ /** In Endpoint Mis-match count */ ++ unsigned epmscnt : 5; ++ unsigned reserved13_17 : 5; ++ /** Periodic Frame Interval */ ++#define DWC_DCFG_FRAME_INTERVAL_80 0 ++#define DWC_DCFG_FRAME_INTERVAL_85 1 ++#define DWC_DCFG_FRAME_INTERVAL_90 2 ++#define DWC_DCFG_FRAME_INTERVAL_95 3 ++ unsigned perfrint : 2; ++ /** Device Addresses */ ++ unsigned devaddr : 7; ++ unsigned reserved3 : 1; ++ /** Non Zero Length Status OUT Handshake */ ++#define DWC_DCFG_SEND_STALL 1 ++ unsigned nzstsouthshk : 1; ++ /** Device Speed */ ++ unsigned devspd : 2; ++ } b; ++} dcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Control ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++typedef union dctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 20; ++ /** Power-On Programming Done */ ++ unsigned pwronprgdone : 1; ++ /** Clear Global OUT NAK */ ++ unsigned cgoutnak : 1; ++ /** Set Global OUT NAK */ ++ unsigned sgoutnak : 1; ++ /** Clear Global Non-Periodic IN NAK */ ++ unsigned cgnpinnak : 1; ++ /** Set Global Non-Periodic IN NAK */ ++ unsigned sgnpinnak : 1; ++ /** Test Control */ ++ unsigned tstctl : 3; ++ /** Global OUT NAK Status */ ++ unsigned goutnaksts : 1; ++ /** Global Non-Periodic IN NAK Status */ ++ unsigned gnpinnaksts : 1; ++ /** Soft Disconnect */ ++ unsigned sftdiscon : 1; ++ /** Remote Wakeup */ ++ unsigned rmtwkupsig : 1; ++ } b; ++} dctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Status ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++typedef union dsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved22_31 : 10; ++ /** Frame or Microframe Number of the received SOF */ ++ unsigned soffn : 14; ++ unsigned reserved4_7: 4; ++ /** Erratic Error */ ++ unsigned errticerr : 1; ++ /** Enumerated Speed */ ++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 ++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 ++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 ++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 ++ unsigned enumspd : 2; ++ /** Suspend Status */ ++ unsigned suspsts : 1; ++ } b; ++} dsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device IN EP Interrupt ++ * Register and the Device IN EP Common Mask Register. ++ * ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++typedef union diepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved07_31 : 23; ++ unsigned txfifoundrn : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned emptyintr : 1; ++ /** IN Endpoint NAK Effective mask */ ++ unsigned inepnakeff : 1; ++ /** IN Token Received with EP mismatch mask */ ++ unsigned intknepmis : 1; ++ /** IN Token received with TxF Empty mask */ ++ unsigned intktxfemp : 1; ++ /** TimeOUT Handshake mask (non-ISOC EPs) */ ++ unsigned timeout : 1; ++ /** AHB Error mask */ ++ unsigned ahberr : 1; ++ /** Endpoint disable mask */ ++ unsigned epdisabled : 1; ++ /** Transfer complete mask */ ++ unsigned xfercompl : 1; ++ } b; ++} diepint_data_t; ++/** ++ * This union represents the bit fields in the Device IN EP Common ++ * Interrupt Mask Register. ++ */ ++typedef union diepint_data diepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP Interrupt ++ * Registerand Device OUT EP Common Interrupt Mask Register. ++ * ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++typedef union doepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved04_31 : 27; ++ /** OUT Token Received when Endpoint Disabled */ ++ unsigned outtknepdis : 1; ++ /** Setup Phase Done (contorl EPs) */ ++ unsigned setup : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Endpoint disable */ ++ unsigned epdisabled : 1; ++ /** Transfer complete */ ++ unsigned xfercompl : 1; ++ } b; ++} doepint_data_t; ++/** ++ * This union represents the bit fields in the Device OUT EP Common ++ * Interrupt Mask Register. ++ */ ++typedef union doepint_data doepmsk_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device All EP Interrupt ++ * and Mask Registers. ++ * - Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++typedef union daint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** OUT Endpoint bits */ ++ unsigned out : 16; ++ /** IN Endpoint bits */ ++ unsigned in : 16; ++ } ep; ++ struct { ++ /** OUT Endpoint bits */ ++ unsigned outep15 : 1; ++ unsigned outep14 : 1; ++ unsigned outep13 : 1; ++ unsigned outep12 : 1; ++ unsigned outep11 : 1; ++ unsigned outep10 : 1; ++ unsigned outep9 : 1; ++ unsigned outep8 : 1; ++ unsigned outep7 : 1; ++ unsigned outep6 : 1; ++ unsigned outep5 : 1; ++ unsigned outep4 : 1; ++ unsigned outep3 : 1; ++ unsigned outep2 : 1; ++ unsigned outep1 : 1; ++ unsigned outep0 : 1; ++ /** IN Endpoint bits */ ++ unsigned inep15 : 1; ++ unsigned inep14 : 1; ++ unsigned inep13 : 1; ++ unsigned inep12 : 1; ++ unsigned inep11 : 1; ++ unsigned inep10 : 1; ++ unsigned inep9 : 1; ++ unsigned inep8 : 1; ++ unsigned inep7 : 1; ++ unsigned inep6 : 1; ++ unsigned inep5 : 1; ++ unsigned inep4 : 1; ++ unsigned inep3 : 1; ++ unsigned inep2 : 1; ++ unsigned inep1 : 1; ++ unsigned inep0 : 1; ++ } b; ++} daint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN Token Queue ++ * Read Registers. ++ * - Read the register into the d32 member. ++ * - READ-ONLY Register ++ */ ++typedef union dtknq1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** EP Numbers of IN Tokens 0 ... 4 */ ++ unsigned epnums0_5 : 24; ++ /** write pointer has wrapped. */ ++ unsigned wrap_bit : 1; ++ /** Reserved */ ++ unsigned reserved05_06 : 2; ++ /** In Token Queue Write Pointer */ ++ unsigned intknwptr : 5; ++ }b; ++} dtknq1_data_t; ++ ++/** ++ * This union represents Threshold control Register ++ * - Read and write the register into the d32 member. ++ * - READ-WRITABLE Register ++ */ ++typedef union dthrctl_data //* /*fscz */ ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ unsigned reserved26_31 : 6; ++ /** Rx Thr. Length */ ++ unsigned rx_thr_len : 9; ++ /** Rx Thr. Enable */ ++ unsigned rx_thr_en : 1; ++ /** Reserved */ ++ unsigned reserved11_15 : 5; ++ /** Tx Thr. Length */ ++ unsigned tx_thr_len : 9; ++ /** ISO Tx Thr. Enable */ ++ unsigned iso_thr_en : 1; ++ /** non ISO Tx Thr. Enable */ ++ unsigned non_iso_thr_en : 1; ++ ++ }b; ++} dthrctl_data_t; ++ ++/** ++ * Device Logical IN Endpoint-Specific Registers. Offsets ++ * 900h-AFCh ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++typedef struct dwc_otg_dev_in_ep_regs ++{ ++ /** Device IN Endpoint Control Register. Offset:900h + ++ * (ep_num * 20h) + 00h */ ++ volatile uint32_t diepctl; ++ /** Reserved. Offset:900h + (ep_num * 20h) + 04h */ ++ uint32_t reserved04; ++ /** Device IN Endpoint Interrupt Register. Offset:900h + ++ * (ep_num * 20h) + 08h */ ++ volatile uint32_t diepint; ++ /** Reserved. Offset:900h + (ep_num * 20h) + 0Ch */ ++ uint32_t reserved0C; ++ /** Device IN Endpoint Transfer Size ++ * Register. Offset:900h + (ep_num * 20h) + 10h */ ++ volatile uint32_t dieptsiz; ++ /** Device IN Endpoint DMA Address Register. Offset:900h + ++ * (ep_num * 20h) + 14h */ ++ volatile uint32_t diepdma; ++ /** Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h + ++ * (ep_num * 20h) + 1Ch*/ ++ volatile uint32_t dtxfsts; ++ /** Reserved. Offset:900h + (ep_num * 20h) + 1Ch - 900h + ++ * (ep_num * 20h) + 1Ch*/ ++ uint32_t reserved18; ++} dwc_otg_dev_in_ep_regs_t; ++ ++/** ++ * Device Logical OUT Endpoint-Specific Registers. Offsets: ++ * B00h-CFCh ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown. ++ */ ++typedef struct dwc_otg_dev_out_ep_regs ++{ ++ /** Device OUT Endpoint Control Register. Offset:B00h + ++ * (ep_num * 20h) + 00h */ ++ volatile uint32_t doepctl; ++ /** Device OUT Endpoint Frame number Register. Offset: ++ * B00h + (ep_num * 20h) + 04h */ ++ volatile uint32_t doepfn; ++ /** Device OUT Endpoint Interrupt Register. Offset:B00h + ++ * (ep_num * 20h) + 08h */ ++ volatile uint32_t doepint; ++ /** Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */ ++ uint32_t reserved0C; ++ /** Device OUT Endpoint Transfer Size Register. Offset: ++ * B00h + (ep_num * 20h) + 10h */ ++ volatile uint32_t doeptsiz; ++ /** Device OUT Endpoint DMA Address Register. Offset:B00h ++ * + (ep_num * 20h) + 14h */ ++ volatile uint32_t doepdma; ++ /** Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h + ++ * (ep_num * 20h) + 1Ch */ ++ uint32_t unused[2]; ++} dwc_otg_dev_out_ep_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Control ++ * Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++typedef union depctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Endpoint Enable */ ++ unsigned epena : 1; ++ /** Endpoint Disable */ ++ unsigned epdis : 1; ++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA1 Set Odd ++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to odd (micro) frame. ++ */ ++ unsigned setd1pid : 1; ++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA0. Set Even ++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to even (micro) ++ * frame. ++ */ ++ unsigned setd0pid : 1; ++ /** Set NAK */ ++ unsigned snak : 1; ++ /** Clear NAK */ ++ unsigned cnak : 1; ++ /** Tx Fifo Number ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned txfnum : 4; ++ /** Stall Handshake */ ++ unsigned stall : 1; ++ /** Snoop Mode ++ * OUT EPn/OUT EP0 ++ * IN EPn/IN EP0 - reserved */ ++ unsigned snp : 1; ++ /** Endpoint Type ++ * 2'b00: Control ++ * 2'b01: Isochronous ++ * 2'b10: Bulk ++ * 2'b11: Interrupt */ ++ unsigned eptype : 2; ++ /** NAK Status */ ++ unsigned naksts : 1; ++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) ++ * This field contains the PID of the packet going to ++ * be received or transmitted on this endpoint. The ++ * application should program the PID of the first ++ * packet going to be received or transmitted on this ++ * endpoint , after the endpoint is ++ * activated. Application use the SetD1PID and ++ * SetD0PID fields of this register to program either ++ * D0 or D1 PID. ++ * ++ * The encoding for this field is ++ * - 0: D0 ++ * - 1: D1 ++ */ ++ unsigned dpid : 1; ++ /** USB Active Endpoint */ ++ unsigned usbactep : 1; ++ /** Next Endpoint ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned nextep : 4; ++ /** Maximum Packet Size ++ * IN/OUT EPn ++ * IN/OUT EP0 - 2 bits ++ * 2'b00: 64 Bytes ++ * 2'b01: 32 ++ * 2'b10: 16 ++ * 2'b11: 8 */ ++#define DWC_DEP0CTL_MPS_64 0 ++#define DWC_DEP0CTL_MPS_32 1 ++#define DWC_DEP0CTL_MPS_16 2 ++#define DWC_DEP0CTL_MPS_8 3 ++ unsigned mps : 11; ++ } b; ++} depctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Transfer ++ * Size Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++typedef union deptsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 1; ++ /** Multi Count - Periodic IN endpoints */ ++ unsigned mc : 2; ++ /** Packet Count */ ++ unsigned pktcnt : 10; ++ /** Transfer size */ ++ unsigned xfersize : 19; ++ } b; ++} deptsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP 0 Transfer ++ * Size Register. Read the register into the d32 member then ++ * set/clear the bits using the bit elements. ++ */ ++typedef union deptsiz0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved31 : 1; ++ /**Setup Packet Count (DOEPTSIZ0 Only) */ ++ unsigned supcnt : 2; ++ /** Reserved */ ++ unsigned reserved28_20 : 9; ++ /** Packet Count */ ++ unsigned pktcnt : 1; ++ /** Reserved */ ++ unsigned reserved18_7 : 12; ++ /** Transfer size */ ++ unsigned xfersize : 7; ++ } b; ++} deptsiz0_data_t; ++ ++ ++/** Maximum number of Periodic FIFOs */ ++#define MAX_PERIO_FIFOS 15 ++/** Maximum number of TX FIFOs */ ++#define MAX_TX_FIFOS 15 ++/** Maximum number of Endpoints/HostChannels */ ++#define MAX_EPS_CHANNELS 16 ++//#define MAX_EPS_CHANNELS 4 ++ ++/** ++ * The dwc_otg_dev_if structure contains information needed to manage ++ * the DWC_otg controller acting in device mode. It represents the ++ * programming view of the device-specific aspects of the controller. ++ */ ++typedef struct dwc_otg_dev_if { ++ /** Pointer to device Global registers. ++ * Device Global Registers starting at offset 800h ++ */ ++ dwc_otg_device_global_regs_t *dev_global_regs; ++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 ++ ++ /** ++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh ++ */ ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_IN_EP_REG_OFFSET 0x900 ++#define DWC_EP_REG_OFFSET 0x20 ++ ++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 ++ ++ /* Device configuration information*/ ++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ ++ //uint8_t num_eps; /**< Number of EPs range: 0-16 (includes EP0) */ ++ //uint8_t num_perio_eps; /**< # of Periodic EP range: 0-15 */ ++ /*fscz */ ++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ ++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ ++ ++ /** Size of periodic FIFOs (Bytes) */ ++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++ ++ /** Size of Tx FIFOs (Bytes) */ ++ uint16_t tx_fifo_size[MAX_TX_FIFOS]; ++ ++ /** Thresholding enable flags and length varaiables **/ ++ uint16_t rx_thr_en; ++ uint16_t iso_tx_thr_en; ++ uint16_t non_iso_tx_thr_en; ++ ++ uint16_t rx_thr_length; ++ uint16_t tx_thr_length; ++} dwc_otg_dev_if_t; ++ ++/** ++ * This union represents the bit fields in the Power and Clock Gating Control ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. ++ */ ++typedef union pcgcctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved31_05 : 27; ++ /** PHY Suspended */ ++ unsigned physuspended : 1; ++ /** Reset Power Down Modules */ ++ unsigned rstpdwnmodule : 1; ++ /** Power Clamp */ ++ unsigned pwrclmp : 1; ++ /** Gate Hclk */ ++ unsigned gatehclk : 1; ++ /** Stop Pclk */ ++ unsigned stoppclk : 1; ++ } b; ++} pcgcctl_data_t; ++ ++///////////////////////////////////////////////// ++// Host Mode Register Structures ++// ++/** ++ * The Host Global Registers structure defines the size and relative ++ * field offsets for the Host Mode Global Registers. Host Global ++ * Registers offsets 400h-7FFh. ++*/ ++typedef struct dwc_otg_host_global_regs ++{ ++ /** Host Configuration Register. Offset: 400h */ ++ volatile uint32_t hcfg; ++ /** Host Frame Interval Register. Offset: 404h */ ++ volatile uint32_t hfir; ++ /** Host Frame Number / Frame Remaining Register. Offset: 408h */ ++ volatile uint32_t hfnum; ++ /** Reserved. Offset: 40Ch */ ++ uint32_t reserved40C; ++ /** Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */ ++ volatile uint32_t hptxsts; ++ /** Host All Channels Interrupt Register. Offset: 414h */ ++ volatile uint32_t haint; ++ /** Host All Channels Interrupt Mask Register. Offset: 418h */ ++ volatile uint32_t haintmsk; ++} dwc_otg_host_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Configuration Register. ++ * Read the register into the d32 member then set/clear the bits using ++ * the bit elements. Write the d32 member to the hcfg register. ++ */ ++typedef union hcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ //unsigned reserved31_03 : 29; ++ /** FS/LS Only Support */ ++ unsigned fslssupp : 1; ++ /** FS/LS Phy Clock Select */ ++#define DWC_HCFG_30_60_MHZ 0 ++#define DWC_HCFG_48_MHZ 1 ++#define DWC_HCFG_6_MHZ 2 ++ unsigned fslspclksel : 2; ++ } b; ++} hcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfir_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned frint : 16; ++ } b; ++} hfir_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfnum_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned frrem : 16; ++#define DWC_HFNUM_MAX_FRNUM 0x3FFF ++ unsigned frnum : 16; ++ } b; ++} hfnum_data_t; ++ ++typedef union hptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Top of the Periodic Transmit Request Queue ++ * - bit 24 - Terminate (last entry for the selected channel) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - Zero length ++ * - 2'b01 - Ping ++ * - 2'b10 - Disable ++ * - bits 30:27 - Channel Number ++ * - bit 31 - Odd/even microframe ++ */ ++ unsigned ptxqtop_odd : 1; ++ unsigned ptxqtop_chnum : 4; ++ unsigned ptxqtop_token : 2; ++ unsigned ptxqtop_terminate : 1; ++ unsigned ptxqspcavail : 8; ++ unsigned ptxfspcavail : 16; ++ } b; ++} hptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Port Control and Status ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hprt0 register. ++ */ ++typedef union hprt0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved19_31 : 13; ++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 ++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 ++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 ++ unsigned prtspd : 2; ++ unsigned prttstctl : 4; ++ unsigned prtpwr : 1; ++ unsigned prtlnsts : 2; ++ unsigned reserved9 : 1; ++ unsigned prtrst : 1; ++ unsigned prtsusp : 1; ++ unsigned prtres : 1; ++ unsigned prtovrcurrchng : 1; ++ unsigned prtovrcurract : 1; ++ unsigned prtenchng : 1; ++ unsigned prtena : 1; ++ unsigned prtconndet : 1; ++ unsigned prtconnsts : 1; ++ } b; ++} hprt0_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned ch15 : 1; ++ unsigned ch14 : 1; ++ unsigned ch13 : 1; ++ unsigned ch12 : 1; ++ unsigned ch11 : 1; ++ unsigned ch10 : 1; ++ unsigned ch9 : 1; ++ unsigned ch8 : 1; ++ unsigned ch7 : 1; ++ unsigned ch6 : 1; ++ unsigned ch5 : 1; ++ unsigned ch4 : 1; ++ unsigned ch3 : 1; ++ unsigned ch2 : 1; ++ unsigned ch1 : 1; ++ unsigned ch0 : 1; ++ } b; ++ struct { ++ unsigned reserved : 16; ++ unsigned chint : 16; ++ } b2; ++} haint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ unsigned reserved : 16; ++ unsigned ch15 : 1; ++ unsigned ch14 : 1; ++ unsigned ch13 : 1; ++ unsigned ch12 : 1; ++ unsigned ch11 : 1; ++ unsigned ch10 : 1; ++ unsigned ch9 : 1; ++ unsigned ch8 : 1; ++ unsigned ch7 : 1; ++ unsigned ch6 : 1; ++ unsigned ch5 : 1; ++ unsigned ch4 : 1; ++ unsigned ch3 : 1; ++ unsigned ch2 : 1; ++ unsigned ch1 : 1; ++ unsigned ch0 : 1; ++ } b; ++ struct { ++ unsigned reserved : 16; ++ unsigned chint : 16; ++ } b2; ++} haintmsk_data_t; ++ ++/** ++ * Host Channel Specific Registers. 500h-5FCh ++ */ ++typedef struct dwc_otg_hc_regs ++{ ++ /** Host Channel 0 Characteristic Register. Offset: 500h + (chan_num * 20h) + 00h */ ++ volatile uint32_t hcchar; ++ /** Host Channel 0 Split Control Register. Offset: 500h + (chan_num * 20h) + 04h */ ++ volatile uint32_t hcsplt; ++ /** Host Channel 0 Interrupt Register. Offset: 500h + (chan_num * 20h) + 08h */ ++ volatile uint32_t hcint; ++ /** Host Channel 0 Interrupt Mask Register. Offset: 500h + (chan_num * 20h) + 0Ch */ ++ volatile uint32_t hcintmsk; ++ /** Host Channel 0 Transfer Size Register. Offset: 500h + (chan_num * 20h) + 10h */ ++ volatile uint32_t hctsiz; ++ /** Host Channel 0 DMA Address Register. Offset: 500h + (chan_num * 20h) + 14h */ ++ volatile uint32_t hcdma; ++ /** Reserved. Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch */ ++ uint32_t reserved[2]; ++} dwc_otg_hc_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Characteristics ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcchar register. ++ */ ++typedef union hcchar_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Channel enable */ ++ unsigned chen : 1; ++ /** Channel disable */ ++ unsigned chdis : 1; ++ /** ++ * Frame to transmit periodic transaction. ++ * 0: even, 1: odd ++ */ ++ unsigned oddfrm : 1; ++ /** Device address */ ++ unsigned devaddr : 7; ++ /** Packets per frame for periodic transfers. 0 is reserved. */ ++ unsigned multicnt : 2; ++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ ++ unsigned eptype : 2; ++ /** 0: Full/high speed device, 1: Low speed device */ ++ unsigned lspddev : 1; ++ unsigned reserved : 1; ++ /** 0: OUT, 1: IN */ ++ unsigned epdir : 1; ++ /** Endpoint number */ ++ unsigned epnum : 4; ++ /** Maximum packet size in bytes */ ++ unsigned mps : 11; ++ } b; ++} hcchar_data_t; ++ ++typedef union hcsplt_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Split Enble */ ++ unsigned spltena : 1; ++ /** Reserved */ ++ unsigned reserved : 14; ++ /** Do Complete Split */ ++ unsigned compsplt : 1; ++ /** Transaction Position */ ++#define DWC_HCSPLIT_XACTPOS_MID 0 ++#define DWC_HCSPLIT_XACTPOS_END 1 ++#define DWC_HCSPLIT_XACTPOS_BEGIN 2 ++#define DWC_HCSPLIT_XACTPOS_ALL 3 ++ unsigned xactpos : 2; ++ /** Hub Address */ ++ unsigned hubaddr : 7; ++ /** Port Address */ ++ unsigned prtaddr : 7; ++ } b; ++} hcsplt_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union hcint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Reserved */ ++ unsigned reserved : 21; ++ /** Data Toggle Error */ ++ unsigned datatglerr : 1; ++ /** Frame Overrun */ ++ unsigned frmovrun : 1; ++ /** Babble Error */ ++ unsigned bblerr : 1; ++ /** Transaction Err */ ++ unsigned xacterr : 1; ++ /** NYET Response Received */ ++ unsigned nyet : 1; ++ /** ACK Response Received */ ++ unsigned ack : 1; ++ /** NAK Response Received */ ++ unsigned nak : 1; ++ /** STALL Response Received */ ++ unsigned stall : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Channel Halted */ ++ unsigned chhltd : 1; ++ /** Transfer Complete */ ++ unsigned xfercomp : 1; ++ } b; ++} hcint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Transfer Size ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcchar register. ++ */ ++typedef union hctsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ /** Do PING protocol when 1 */ ++ unsigned dopng : 1; ++ /** ++ * Packet ID for next data packet ++ * 0: DATA0 ++ * 1: DATA2 ++ * 2: DATA1 ++ * 3: MDATA (non-Control), SETUP (Control) ++ */ ++#define DWC_HCTSIZ_DATA0 0 ++#define DWC_HCTSIZ_DATA1 2 ++#define DWC_HCTSIZ_DATA2 1 ++#define DWC_HCTSIZ_MDATA 3 ++#define DWC_HCTSIZ_SETUP 3 ++ unsigned pid : 2; ++ /** Data packets to transfer */ ++ unsigned pktcnt : 10; ++ /** Total transfer size in bytes */ ++ unsigned xfersize : 19; ++ } b; ++} hctsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Interrupt Mask ++ * Register. Read the register into the d32 member then set/clear the ++ * bits using the bit elements. Write the d32 member to the ++ * hcintmsk register. ++ */ ++typedef union hcintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct { ++ unsigned reserved : 21; ++ unsigned datatglerr : 1; ++ unsigned frmovrun : 1; ++ unsigned bblerr : 1; ++ unsigned xacterr : 1; ++ unsigned nyet : 1; ++ unsigned ack : 1; ++ unsigned nak : 1; ++ unsigned stall : 1; ++ unsigned ahberr : 1; ++ unsigned chhltd : 1; ++ unsigned xfercompl : 1; ++ } b; ++} hcintmsk_data_t; ++ ++/** OTG Host Interface Structure. ++ * ++ * The OTG Host Interface Structure structure contains information ++ * needed to manage the DWC_otg controller acting in host mode. It ++ * represents the programming view of the host-specific aspects of the ++ * controller. ++ */ ++typedef struct dwc_otg_host_if { ++ /** Host Global Registers starting at offset 400h.*/ ++ dwc_otg_host_global_regs_t *host_global_regs; ++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 ++ ++ /** Host Port 0 Control and Status Register */ ++ volatile uint32_t *hprt0; ++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 ++ ++ ++ /** Host Channel Specific Registers at offsets 500h-5FCh. */ ++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; ++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 ++#define DWC_OTG_CHAN_REGS_OFFSET 0x20 ++ ++ ++ /* Host configuration information */ ++ /** Number of Host Channels (range: 1-16) */ ++ uint8_t num_host_channels; ++ /** Periodic EPs supported (0: no, 1: yes) */ ++ uint8_t perio_eps_supported; ++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ ++ uint16_t perio_tx_fifo_size; ++ ++} dwc_otg_host_if_t; ++ ++#endif +--- a/arch/mips/lantiq/xway/Makefile ++++ b/arch/mips/lantiq/xway/Makefile +@@ -4,3 +4,4 @@ + obj-$(CONFIG_LANTIQ_MACH_EASY50712) += mach-easy50712.o + obj-$(CONFIG_LANTIQ_MACH_EASY4010) += mach-easy4010.o + obj-$(CONFIG_LANTIQ_MACH_ARV45XX) += mach-arv45xx.o ++onj-y += dev-dwc_otg.o +--- /dev/null ++++ b/arch/mips/lantiq/xway/dev-dwc_otg.c +@@ -0,0 +1,64 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++#include ++ ++#include ++#include ++#include ++ ++static struct resource resources[] = ++{ ++ [0] = { ++ .name = "dwc_otg_membase", ++ .start = IFX_USB_IOMEM_BASE, ++ .end = IFX_USB_IOMEM_BASE + IFX_USB_IOMEM_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .name = "dwc_otg_irq", ++ .start = IFX_USB_IRQ, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 dwc_dmamask = (u32)0x1fffffff; ++ ++static struct platform_device platform_dev = { ++ .name = "dwc_otg", ++ .dev = { ++ .dma_mask = &dwc_dmamask, ++ }, ++ .resource = resources, ++ .num_resources = ARRAY_SIZE(resources), ++}; ++ ++int __init ++xway_register_dwc(int pin) ++{ ++ lq_enable_irq(resources[1].start); ++ return platform_device_register(&platform_dev); ++} +--- /dev/null ++++ b/arch/mips/lantiq/xway/dev-dwc_otg.h +@@ -0,0 +1,17 @@ ++/* ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * Copyright (C) 2010 John Crispin ++ */ ++ ++#ifndef _LQ_DEV_DWC_H__ ++#define _LQ_DEV_DWC_H__ ++ ++#include ++ ++extern void __init xway_register_dwc(int pin); ++ ++#endif +--- a/arch/mips/lantiq/xway/mach-arv45xx.c ++++ b/arch/mips/lantiq/xway/mach-arv45xx.c +@@ -24,6 +24,7 @@ + #include + + #include "devices.h" ++#include "dev-dwc_otg.h" + + #define ARV452_LATCH_SWITCH (1 << 10) + +@@ -133,6 +134,7 @@ + lq_register_pci(&lq_pci_data); + lq_register_wdt(); + arv45xx_register_ethernet(); ++ xway_register_dwc(14); + } + + MIPS_MACHINE(LANTIQ_MACH_ARV4518, +@@ -152,6 +154,7 @@ + lq_register_pci(&lq_pci_data); + lq_register_wdt(); + arv45xx_register_ethernet(); ++ xway_register_dwc(28); + } + + MIPS_MACHINE(LANTIQ_MACH_ARV452, diff --git a/target/linux/lantiq/patches/809-mt-vpe.patch b/target/linux/lantiq/patches/809-mt-vpe.patch new file mode 100644 index 0000000000..07312c7747 --- /dev/null +++ b/target/linux/lantiq/patches/809-mt-vpe.patch @@ -0,0 +1,1173 @@ +--- a/arch/mips/Kconfig ++++ b/arch/mips/Kconfig +@@ -1669,6 +1669,28 @@ config MIPS_VPE_LOADER + Includes a loader for loading an elf relocatable object + onto another VPE and running it. + ++config IFX_VPE_EXT ++ bool "IFX APRP Extensions" ++ depends on MIPS_VPE_LOADER ++ default y ++ help ++ IFX included extensions in APRP ++ ++config PERFCTRS ++ bool "34K Performance counters" ++ depends on MIPS_MT && PROC_FS ++ default n ++ help ++ 34K Performance counter through /proc ++ ++config MTSCHED ++ bool "Support mtsched priority configuration for TCs" ++ depends on MIPS_MT && PROC_FS ++ default y ++ help ++ Support for mtsched priority configuration for TCs through ++ /proc/mips/mtsched ++ + config MIPS_MT_SMTC_IM_BACKSTOP + bool "Use per-TC register bits as backstop for inhibited IM bits" + depends on MIPS_MT_SMTC +--- a/arch/mips/include/asm/mipsmtregs.h ++++ b/arch/mips/include/asm/mipsmtregs.h +@@ -28,14 +28,34 @@ + #define read_c0_vpeconf0() __read_32bit_c0_register($1, 2) + #define write_c0_vpeconf0(val) __write_32bit_c0_register($1, 2, val) + ++#define read_c0_vpeconf1() __read_32bit_c0_register($1, 3) ++#define write_c0_vpeconf1(val) __write_32bit_c0_register($1, 3, val) ++ ++#define read_c0_vpeschedule() __read_32bit_c0_register($1, 5) ++#define write_c0_vpeschedule(val) __write_32bit_c0_register($1, 5, val) ++ ++#define read_c0_vpeschefback() __read_32bit_c0_register($1, 6) ++#define write_c0_vpeschefback(val) __write_32bit_c0_register($1, 6, val) ++ ++#define read_c0_vpeopt() __read_32bit_c0_register($1, 7) ++#define write_c0_vpeopt(val) __write_32bit_c0_register($1, 7, val) ++ + #define read_c0_tcstatus() __read_32bit_c0_register($2, 1) + #define write_c0_tcstatus(val) __write_32bit_c0_register($2, 1, val) + + #define read_c0_tcbind() __read_32bit_c0_register($2, 2) ++#define write_c0_tcbind(val) __write_32bit_c0_register($2, 2, val) + + #define read_c0_tccontext() __read_32bit_c0_register($2, 5) + #define write_c0_tccontext(val) __write_32bit_c0_register($2, 5, val) + ++#define read_c0_tcschedule() __read_32bit_c0_register($2, 6) ++#define write_c0_tcschedule(val) __write_32bit_c0_register($2, 6, val) ++ ++#define read_c0_tcschefback() __read_32bit_c0_register($2, 7) ++#define write_c0_tcschefback(val) __write_32bit_c0_register($2, 7, val) ++ ++ + #else /* Assembly */ + /* + * Macros for use in assembly language code +@@ -74,6 +94,8 @@ + #define MVPCONTROL_STLB_SHIFT 2 + #define MVPCONTROL_STLB (_ULCAST_(1) << MVPCONTROL_STLB_SHIFT) + ++#define MVPCONTROL_CPA_SHIFT 3 ++#define MVPCONTROL_CPA (_ULCAST_(1) << MVPCONTROL_CPA_SHIFT) + + /* MVPConf0 fields */ + #define MVPCONF0_PTC_SHIFT 0 +@@ -84,6 +106,8 @@ + #define MVPCONF0_TCA ( _ULCAST_(1) << MVPCONF0_TCA_SHIFT) + #define MVPCONF0_PTLBE_SHIFT 16 + #define MVPCONF0_PTLBE (_ULCAST_(0x3ff) << MVPCONF0_PTLBE_SHIFT) ++#define MVPCONF0_PCP_SHIFT 27 ++#define MVPCONF0_PCP (_ULCAST_(1) << MVPCONF0_PCP_SHIFT) + #define MVPCONF0_TLBS_SHIFT 29 + #define MVPCONF0_TLBS (_ULCAST_(1) << MVPCONF0_TLBS_SHIFT) + #define MVPCONF0_M_SHIFT 31 +@@ -121,9 +145,25 @@ + #define VPECONF0_VPA (_ULCAST_(1) << VPECONF0_VPA_SHIFT) + #define VPECONF0_MVP_SHIFT 1 + #define VPECONF0_MVP (_ULCAST_(1) << VPECONF0_MVP_SHIFT) ++#define VPECONF0_ICS_SHIFT 16 ++#define VPECONF0_ICS (_ULCAST_(1) << VPECONF0_ICS_SHIFT) ++#define VPECONF0_DCS_SHIFT 17 ++#define VPECONF0_DCS (_ULCAST_(1) << VPECONF0_DCS_SHIFT) + #define VPECONF0_XTC_SHIFT 21 + #define VPECONF0_XTC (_ULCAST_(0xff) << VPECONF0_XTC_SHIFT) + ++/* VPEOpt fields */ ++#define VPEOPT_DWX_SHIFT 0 ++#define VPEOPT_IWX_SHIFT 8 ++#define VPEOPT_IWX0 ( _ULCAST_(0x1) << VPEOPT_IWX_SHIFT) ++#define VPEOPT_IWX1 ( _ULCAST_(0x2) << VPEOPT_IWX_SHIFT) ++#define VPEOPT_IWX2 ( _ULCAST_(0x4) << VPEOPT_IWX_SHIFT) ++#define VPEOPT_IWX3 ( _ULCAST_(0x8) << VPEOPT_IWX_SHIFT) ++#define VPEOPT_DWX0 ( _ULCAST_(0x1) << VPEOPT_DWX_SHIFT) ++#define VPEOPT_DWX1 ( _ULCAST_(0x2) << VPEOPT_DWX_SHIFT) ++#define VPEOPT_DWX2 ( _ULCAST_(0x4) << VPEOPT_DWX_SHIFT) ++#define VPEOPT_DWX3 ( _ULCAST_(0x8) << VPEOPT_DWX_SHIFT) ++ + /* TCStatus fields (per TC) */ + #define TCSTATUS_TASID (_ULCAST_(0xff)) + #define TCSTATUS_IXMT_SHIFT 10 +@@ -350,6 +390,14 @@ do { \ + #define write_vpe_c0_vpecontrol(val) mttc0(1, 1, val) + #define read_vpe_c0_vpeconf0() mftc0(1, 2) + #define write_vpe_c0_vpeconf0(val) mttc0(1, 2, val) ++#define read_vpe_c0_vpeschedule() mftc0(1, 5) ++#define write_vpe_c0_vpeschedule(val) mttc0(1, 5, val) ++#define read_vpe_c0_vpeschefback() mftc0(1, 6) ++#define write_vpe_c0_vpeschefback(val) mttc0(1, 6, val) ++#define read_vpe_c0_vpeopt() mftc0(1, 7) ++#define write_vpe_c0_vpeopt(val) mttc0(1, 7, val) ++#define read_vpe_c0_wired() mftc0(6, 0) ++#define write_vpe_c0_wired(val) mttc0(6, 0, val) + #define read_vpe_c0_count() mftc0(9, 0) + #define write_vpe_c0_count(val) mttc0(9, 0, val) + #define read_vpe_c0_status() mftc0(12, 0) +@@ -381,6 +429,12 @@ do { \ + #define write_tc_c0_tchalt(val) mttc0(2, 4, val) + #define read_tc_c0_tccontext() mftc0(2, 5) + #define write_tc_c0_tccontext(val) mttc0(2, 5, val) ++#define read_tc_c0_tcschedule() mftc0(2, 6) ++#define write_tc_c0_tcschedule(val) mttc0(2, 6, val) ++#define read_tc_c0_tcschefback() mftc0(2, 7) ++#define write_tc_c0_tcschefback(val) mttc0(2, 7, val) ++#define read_tc_c0_entryhi() mftc0(10, 0) ++#define write_tc_c0_entryhi(val) mttc0(10, 0, val) + + /* GPR */ + #define read_tc_gpr_sp() mftgpr(29) +--- a/arch/mips/kernel/Makefile ++++ b/arch/mips/kernel/Makefile +@@ -84,7 +84,8 @@ obj-$(CONFIG_MIPS32_O32) += binfmt_elfo3 + + obj-$(CONFIG_KGDB) += kgdb.o + obj-$(CONFIG_PROC_FS) += proc.o +- ++obj-$(CONFIG_MTSCHED) += mtsched_proc.o ++obj-$(CONFIG_PERFCTRS) += perf_proc.o + obj-$(CONFIG_64BIT) += cpu-bugs64.o + + obj-$(CONFIG_I8253) += i8253.o +--- a/arch/mips/kernel/mips-mt.c ++++ b/arch/mips/kernel/mips-mt.c +@@ -21,26 +21,95 @@ + #include + + int vpelimit; +- + static int __init maxvpes(char *str) + { + get_option(&str, &vpelimit); +- + return 1; + } +- + __setup("maxvpes=", maxvpes); + + int tclimit; +- + static int __init maxtcs(char *str) + { + get_option(&str, &tclimit); ++ return 1; ++} ++__setup("maxtcs=", maxtcs); + ++#ifdef CONFIG_IFX_VPE_EXT ++int stlb; ++static int __init istlbshared(char *str) ++{ ++ get_option(&str, &stlb); + return 1; + } ++__setup("vpe_tlb_shared=", istlbshared); + +-__setup("maxtcs=", maxtcs); ++int vpe0_wired; ++static int __init vpe0wired(char *str) ++{ ++ get_option(&str, &vpe0_wired); ++ return 1; ++} ++__setup("vpe0_wired_tlb_entries=", vpe0wired); ++ ++int vpe1_wired; ++static int __init vpe1wired(char *str) ++{ ++ get_option(&str, &vpe1_wired); ++ return 1; ++} ++__setup("vpe1_wired_tlb_entries=", vpe1wired); ++ ++#ifdef CONFIG_MIPS_MT_SMTC ++extern int nostlb; ++#endif ++void configure_tlb(void) ++{ ++ int vpeflags, tcflags, tlbsiz; ++ unsigned int config1val; ++ vpeflags = dvpe(); ++ tcflags = dmt(); ++ write_c0_vpeconf0((read_c0_vpeconf0() | VPECONF0_MVP)); ++ write_c0_mvpcontrol((read_c0_mvpcontrol() | MVPCONTROL_VPC)); ++ mips_ihb(); ++ //printk("stlb = %d, vpe0_wired = %d vpe1_wired=%d\n", stlb,vpe0_wired, vpe1_wired); ++ if (stlb) { ++ if (!(read_c0_mvpconf0() & MVPCONF0_TLBS)) { ++ emt(tcflags); ++ evpe(vpeflags); ++ return; ++ } ++ ++ write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB); ++ write_c0_wired(vpe0_wired + vpe1_wired); ++ if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) { ++ config1val = read_vpe_c0_config1(); ++ tlbsiz = (((config1val >> 25) & 0x3f) + 1); ++ if (tlbsiz > 64) ++ tlbsiz = 64; ++ cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz; ++ } ++ ++ } ++ else { ++ write_c0_mvpcontrol(read_c0_mvpcontrol() & ~MVPCONTROL_STLB); ++ write_c0_wired(vpe0_wired); ++ } ++ ++ ehb(); ++ write_c0_mvpcontrol((read_c0_mvpcontrol() & ~MVPCONTROL_VPC)); ++ ehb(); ++ local_flush_tlb_all(); ++ ++ printk("Wired TLB entries for Linux read_c0_wired() = %d\n", read_c0_wired()); ++#ifdef CONFIG_MIPS_MT_SMTC ++ nostlb = !stlb; ++#endif ++ emt(tcflags); ++ evpe(vpeflags); ++} ++#endif + + /* + * Dump new MIPS MT state for the core. Does not leave TCs halted. +@@ -78,18 +147,18 @@ void mips_mt_regdump(unsigned long mvpct + if ((read_tc_c0_tcbind() & TCBIND_CURVPE) == i) { + printk(" VPE %d\n", i); + printk(" VPEControl : %08lx\n", +- read_vpe_c0_vpecontrol()); ++ read_vpe_c0_vpecontrol()); + printk(" VPEConf0 : %08lx\n", +- read_vpe_c0_vpeconf0()); ++ read_vpe_c0_vpeconf0()); + printk(" VPE%d.Status : %08lx\n", +- i, read_vpe_c0_status()); ++ i, read_vpe_c0_status()); + printk(" VPE%d.EPC : %08lx %pS\n", +- i, read_vpe_c0_epc(), +- (void *) read_vpe_c0_epc()); ++ i, read_vpe_c0_epc(), ++ (void *) read_vpe_c0_epc()); + printk(" VPE%d.Cause : %08lx\n", +- i, read_vpe_c0_cause()); ++ i, read_vpe_c0_cause()); + printk(" VPE%d.Config7 : %08lx\n", +- i, read_vpe_c0_config7()); ++ i, read_vpe_c0_config7()); + break; /* Next VPE */ + } + } +@@ -287,6 +356,9 @@ void mips_mt_set_cpuoptions(void) + printk("Mapped %ld ITC cells starting at 0x%08x\n", + ((itcblkgrn & 0x7fe00000) >> 20), itc_base); + } ++#ifdef CONFIG_IFX_VPE_EXT ++ configure_tlb(); ++#endif + } + + /* +--- a/arch/mips/kernel/proc.c ++++ b/arch/mips/kernel/proc.c +@@ -7,6 +7,7 @@ + #include + #include + #include ++#include + #include + #include + #include +@@ -108,3 +109,19 @@ const struct seq_operations cpuinfo_op = + .stop = c_stop, + .show = show_cpuinfo, + }; ++ ++/* ++ * Support for MIPS/local /proc hooks in /proc/mips/ ++ */ ++ ++static struct proc_dir_entry *mips_proc = NULL; ++ ++struct proc_dir_entry *get_mips_proc_dir(void) ++{ ++ /* ++ * This ought not to be preemptable. ++ */ ++ if(mips_proc == NULL) ++ mips_proc = proc_mkdir("mips", NULL); ++ return(mips_proc); ++} +--- a/arch/mips/kernel/smtc.c ++++ b/arch/mips/kernel/smtc.c +@@ -1335,6 +1335,13 @@ void smtc_get_new_mmu_context(struct mm_ + asid = asid_cache(cpu); + + do { ++#ifdef CONFIG_IFX_VPE_EXT ++ /* If TLB is shared between AP and RP (AP is running SMTC), ++ leave out max ASID i.e., ASID_MASK for RP ++ */ ++ if (!nostlb && ((asid & ASID_MASK) == (ASID_MASK - 1))) ++ asid++; ++#endif + if (!((asid += ASID_INC) & ASID_MASK) ) { + if (cpu_has_vtag_icache) + flush_icache_all(); +--- a/arch/mips/kernel/vpe.c ++++ b/arch/mips/kernel/vpe.c +@@ -77,6 +77,58 @@ static struct kspd_notifications kspd_ev + static int kspd_events_reqd; + #endif + ++#ifdef CONFIG_IFX_VPE_EXT ++static int is_sdepgm; ++extern int stlb; ++extern int vpe0_wired; ++extern int vpe1_wired; ++unsigned int vpe1_load_addr; ++ ++static int __init load_address(char *str) ++{ ++ get_option(&str, &vpe1_load_addr); ++ return 1; ++} ++__setup("vpe1_load_addr=", load_address); ++ ++#include ++#define write_vpe_c0_wired(val) mttc0(6, 0, val) ++ ++#ifndef COMMAND_LINE_SIZE ++# define COMMAND_LINE_SIZE 512 ++#endif ++ ++char command_line[COMMAND_LINE_SIZE * 2]; ++ ++static unsigned int vpe1_mem; ++static int __init vpe1mem(char *str) ++{ ++ vpe1_mem = memparse(str, &str); ++ return 1; ++} ++__setup("vpe1_mem=", vpe1mem); ++ ++uint32_t vpe1_wdog_ctr; ++static int __init wdog_ctr(char *str) ++{ ++ get_option(&str, &vpe1_wdog_ctr); ++ return 1; ++} ++ ++__setup("vpe1_wdog_ctr_addr=", wdog_ctr); ++EXPORT_SYMBOL(vpe1_wdog_ctr); ++ ++uint32_t vpe1_wdog_timeout; ++static int __init wdog_timeout(char *str) ++{ ++ get_option(&str, &vpe1_wdog_timeout); ++ return 1; ++} ++ ++__setup("vpe1_wdog_timeout=", wdog_timeout); ++EXPORT_SYMBOL(vpe1_wdog_timeout); ++ ++#endif + /* grab the likely amount of memory we will need. */ + #ifdef CONFIG_MIPS_VPE_LOADER_TOM + #define P_SIZE (2 * 1024 * 1024) +@@ -269,6 +321,13 @@ static void *alloc_progmem(unsigned long + void *addr; + + #ifdef CONFIG_MIPS_VPE_LOADER_TOM ++#ifdef CONFIG_IFX_VPE_EXT ++ if (vpe1_load_addr) { ++ memset((void *)vpe1_load_addr, 0, len); ++ return (void *)vpe1_load_addr; ++ } ++#endif ++ + /* + * This means you must tell Linux to use less memory than you + * physically have, for example by passing a mem= boot argument. +@@ -747,6 +806,12 @@ static int vpe_run(struct vpe * v) + } + + /* Write the address we want it to start running from in the TCPC register. */ ++#if defined(CONFIG_IFX_VPE_EXT) && 0 ++ if (stlb) ++ write_vpe_c0_wired(vpe0_wired + vpe1_wired); ++ else ++ write_vpe_c0_wired(vpe1_wired); ++#endif + write_tc_c0_tcrestart((unsigned long)v->__start); + write_tc_c0_tccontext((unsigned long)0); + +@@ -760,6 +825,20 @@ static int vpe_run(struct vpe * v) + + write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); + ++#if defined(CONFIG_IFX_VPE_EXT) && 0 ++ /* ++ * $a2 & $a3 are used to pass command line parameters to VPE1. $a2 ++ * points to the start of the command line string and $a3 points to ++ * the end of the string. This convention is identical to the Linux ++ * kernel boot parameter passing mechanism. Please note that $a3 is ++ * used to pass physical memory size or 0 in SDE tool kit. So, if you ++ * are passing comand line parameters through $a2 & $a3 SDE programs ++ * don't work as desired. ++ */ ++ mttgpr(6, command_line); ++ mttgpr(7, (command_line + strlen(command_line))); ++ if (is_sdepgm) ++#endif + /* + * The sde-kit passes 'memsize' to __start in $a3, so set something + * here... Or set $a3 to zero and define DFLT_STACK_SIZE and +@@ -834,6 +913,9 @@ static int find_vpe_symbols(struct vpe * + if ( (v->__start == 0) || (v->shared_ptr == NULL)) + return -1; + ++#ifdef CONFIG_IFX_VPE_EXT ++ is_sdepgm = 1; ++#endif + return 0; + } + +@@ -995,6 +1077,15 @@ static int vpe_elfload(struct vpe * v) + (unsigned long)v->load_addr + v->len); + + if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { ++#ifdef CONFIG_IFX_VPE_EXT ++ if (vpe1_load_addr) { ++ /* Conversion to KSEG1 is required ??? */ ++ v->__start = KSEG1ADDR(vpe1_load_addr); ++ is_sdepgm = 0; ++ return 0; ++ } ++#endif ++ + if (v->__start == 0) { + printk(KERN_WARNING "VPE loader: program does not contain " + "a __start symbol\n"); +@@ -1065,6 +1156,9 @@ static int vpe_open(struct inode *inode, + struct vpe_notifications *not; + struct vpe *v; + int ret; ++#ifdef CONFIG_IFX_VPE_EXT ++ int progsize; ++#endif + + if (minor != iminor(inode)) { + /* assume only 1 device at the moment. */ +@@ -1091,14 +1185,23 @@ static int vpe_open(struct inode *inode, + cleanup_tc(get_tc(tclimit)); + } + ++#ifdef CONFIG_IFX_VPE_EXT ++ progsize = (vpe1_mem != 0) ? vpe1_mem : P_SIZE; ++ //printk("progsize = %x\n", progsize); ++ v->pbuffer = vmalloc(progsize); ++ v->plen = progsize; ++#else + /* this of-course trashes what was there before... */ + v->pbuffer = vmalloc(P_SIZE); + v->plen = P_SIZE; ++#endif + v->load_addr = NULL; + v->len = 0; + ++#if 0 + v->uid = filp->f_cred->fsuid; + v->gid = filp->f_cred->fsgid; ++#endif + + #ifdef CONFIG_MIPS_APSP_KSPD + /* get kspd to tell us when a syscall_exit happens */ +@@ -1351,6 +1454,133 @@ static void kspd_sp_exit( int sp_id) + cleanup_tc(get_tc(sp_id)); + } + #endif ++#ifdef CONFIG_IFX_VPE_EXT ++int32_t vpe1_sw_start(void* sw_start_addr, uint32_t tcmask, uint32_t flags) ++{ ++ enum vpe_state state; ++ struct vpe *v = get_vpe(tclimit); ++ struct vpe_notifications *not; ++ ++ if (tcmask || flags) { ++ printk(KERN_WARNING "Currently tcmask and flags should be 0.\ ++ other values not supported\n"); ++ return -1; ++ } ++ ++ state = xchg(&v->state, VPE_STATE_INUSE); ++ if (state != VPE_STATE_UNUSED) { ++ vpe_stop(v); ++ ++ list_for_each_entry(not, &v->notify, list) { ++ not->stop(tclimit); ++ } ++ } ++ ++ v->__start = (unsigned long)sw_start_addr; ++ is_sdepgm = 0; ++ ++ if (!vpe_run(v)) { ++ printk(KERN_DEBUG "VPE loader: VPE1 running successfully\n"); ++ return 0; ++ } ++ return -1; ++} ++ ++EXPORT_SYMBOL(vpe1_sw_start); ++ ++int32_t vpe1_sw_stop(uint32_t flags) ++{ ++ struct vpe *v = get_vpe(tclimit); ++ ++ if (!vpe_free(v)) { ++ printk(KERN_DEBUG "RP Stopped\n"); ++ return 0; ++ } ++ else ++ return -1; ++} ++ ++EXPORT_SYMBOL(vpe1_sw_stop); ++ ++uint32_t vpe1_get_load_addr (uint32_t flags) ++{ ++ return vpe1_load_addr; ++} ++ ++EXPORT_SYMBOL(vpe1_get_load_addr); ++ ++uint32_t vpe1_get_max_mem (uint32_t flags) ++{ ++ if (!vpe1_mem) ++ return P_SIZE; ++ else ++ return vpe1_mem; ++} ++ ++EXPORT_SYMBOL(vpe1_get_max_mem); ++ ++void* vpe1_get_cmdline_argument(void) ++{ ++ return saved_command_line; ++} ++ ++EXPORT_SYMBOL(vpe1_get_cmdline_argument); ++ ++int32_t vpe1_set_boot_param(char *field, char *value, char flags) ++{ ++ char *ptr, string[64]; ++ int start_off, end_off; ++ if (!field) ++ return -1; ++ strcpy(string, field); ++ if (value) { ++ strcat(string, "="); ++ strcat(string, value); ++ strcat(command_line, " "); ++ strcat(command_line, string); ++ } ++ else { ++ ptr = strstr(command_line, string); ++ if (ptr) { ++ start_off = ptr - command_line; ++ ptr += strlen(string); ++ while ((*ptr != ' ') && (*ptr != '\0')) ++ ptr++; ++ end_off = ptr - command_line; ++ command_line[start_off] = '\0'; ++ strcat (command_line, command_line+end_off); ++ } ++ } ++ return 0; ++} ++ ++EXPORT_SYMBOL(vpe1_set_boot_param); ++ ++int32_t vpe1_get_boot_param(char *field, char **value, char flags) ++{ ++ char *ptr, string[64]; ++ int i = 0; ++ if (!field) ++ return -1; ++ if ((ptr = strstr(command_line, field))) { ++ ptr += strlen(field) + 1; /* including = */ ++ while ((*ptr != ' ') && (*ptr != '\0')) ++ string[i++] = *ptr++; ++ string[i] = '\0'; ++ *value = kmalloc((strlen(string) + 1), GFP_KERNEL); ++ if (*value != NULL) ++ strcpy(*value, string); ++ } ++ else ++ *value = NULL; ++ ++ return 0; ++} ++ ++EXPORT_SYMBOL(vpe1_get_boot_param); ++ ++extern void configure_tlb(void); ++#endif + + static ssize_t store_kill(struct device *dev, struct device_attribute *attr, + const char *buf, size_t len) +@@ -1432,6 +1662,18 @@ static int __init vpe_module_init(void) + printk("VPE loader: not a MIPS MT capable processor\n"); + return -ENODEV; + } ++#ifdef CONFIG_IFX_VPE_EXT ++#ifndef CONFIG_MIPS_MT_SMTC ++ configure_tlb(); ++#endif ++#endif ++ ++#ifndef CONFIG_MIPS_MT_SMTC ++ if (!vpelimit) ++ vpelimit = 1; ++ if (!tclimit) ++ tclimit = 1; ++#endif + + if (vpelimit == 0) { + printk(KERN_WARNING "No VPEs reserved for AP/SP, not " +@@ -1476,10 +1718,12 @@ static int __init vpe_module_init(void) + mtflags = dmt(); + vpflags = dvpe(); + ++ back_to_back_c0_hazard(); ++ + /* Put MVPE's into 'configuration state' */ + set_c0_mvpcontrol(MVPCONTROL_VPC); + +- /* dump_mtregs(); */ ++ dump_mtregs(); + + val = read_c0_mvpconf0(); + hw_tcs = (val & MVPCONF0_PTC) + 1; +@@ -1491,6 +1735,7 @@ static int __init vpe_module_init(void) + * reschedule send IPIs or similar we might hang. + */ + clear_c0_mvpcontrol(MVPCONTROL_VPC); ++ back_to_back_c0_hazard(); + evpe(vpflags); + emt(mtflags); + local_irq_restore(flags); +@@ -1516,6 +1761,7 @@ static int __init vpe_module_init(void) + } + + v->ntcs = hw_tcs - tclimit; ++ write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | 1); + + /* add the tc to the list of this vpe's tc's. */ + list_add(&t->tc, &v->tc); +@@ -1584,6 +1830,7 @@ static int __init vpe_module_init(void) + out_reenable: + /* release config state */ + clear_c0_mvpcontrol(MVPCONTROL_VPC); ++ back_to_back_c0_hazard(); + + evpe(vpflags); + emt(mtflags); +--- /dev/null ++++ b/arch/mips/kernel/mtsched_proc.c +@@ -0,0 +1,279 @@ ++/* ++ * /proc hooks for MIPS MT scheduling policy management for 34K cores ++ * ++ * This program is free software; you can distribute it and/or modify it ++ * under the terms of the GNU General Public License (Version 2) as ++ * published by the Free Software Foundation. ++ * ++ * This program is distributed in the hope it will be useful, but WITHOUT ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++ * for more details. ++ * ++ * You should have received a copy of the GNU General Public License along ++ * with this program; if not, write to the Free Software Foundation, Inc., ++ * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. ++ * ++ * Copyright (C) 2006 Mips Technologies, Inc ++ */ ++ ++#include ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static struct proc_dir_entry *mtsched_proc; ++ ++#ifndef CONFIG_MIPS_MT_SMTC ++#define NTCS 2 ++#else ++#define NTCS NR_CPUS ++#endif ++#define NVPES 2 ++ ++int lastvpe = 1; ++int lasttc = 8; ++ ++static int proc_read_mtsched(char *page, char **start, off_t off, ++ int count, int *eof, void *data) ++{ ++ int totalen = 0; ++ int len; ++ ++ int i; ++ int vpe; ++ int mytc; ++ unsigned long flags; ++ unsigned int mtflags; ++ unsigned int haltstate; ++ unsigned int vpes_checked[NVPES]; ++ unsigned int vpeschedule[NVPES]; ++ unsigned int vpeschefback[NVPES]; ++ unsigned int tcschedule[NTCS]; ++ unsigned int tcschefback[NTCS]; ++ ++ /* Dump the state of the MIPS MT scheduling policy manager */ ++ /* Inititalize control state */ ++ for(i = 0; i < NVPES; i++) { ++ vpes_checked[i] = 0; ++ vpeschedule[i] = 0; ++ vpeschefback[i] = 0; ++ } ++ for(i = 0; i < NTCS; i++) { ++ tcschedule[i] = 0; ++ tcschefback[i] = 0; ++ } ++ ++ /* Disable interrupts and multithreaded issue */ ++ local_irq_save(flags); ++ mtflags = dvpe(); ++ ++ /* Then go through the TCs, halt 'em, and extract the values */ ++ mytc = (read_c0_tcbind() & TCBIND_CURTC) >> TCBIND_CURTC_SHIFT; ++ for(i = 0; i < NTCS; i++) { ++ if(i == mytc) { ++ /* No need to halt ourselves! */ ++ tcschedule[i] = read_c0_tcschedule(); ++ tcschefback[i] = read_c0_tcschefback(); ++ /* If VPE bound to TC hasn't been checked, do it */ ++ vpe = read_c0_tcbind() & TCBIND_CURVPE; ++ if(!vpes_checked[vpe]) { ++ vpeschedule[vpe] = read_c0_vpeschedule(); ++ vpeschefback[vpe] = read_c0_vpeschefback(); ++ vpes_checked[vpe] = 1; ++ } ++ } else { ++ settc(i); ++ haltstate = read_tc_c0_tchalt(); ++ write_tc_c0_tchalt(TCHALT_H); ++ mips_ihb(); ++ tcschedule[i] = read_tc_c0_tcschedule(); ++ tcschefback[i] = read_tc_c0_tcschefback(); ++ /* If VPE bound to TC hasn't been checked, do it */ ++ vpe = read_tc_c0_tcbind() & TCBIND_CURVPE; ++ if(!vpes_checked[vpe]) { ++ vpeschedule[vpe] = read_vpe_c0_vpeschedule(); ++ vpeschefback[vpe] = read_vpe_c0_vpeschefback(); ++ vpes_checked[vpe] = 1; ++ } ++ if(!haltstate) write_tc_c0_tchalt(0); ++ } ++ } ++ /* Re-enable MT and interrupts */ ++ evpe(mtflags); ++ local_irq_restore(flags); ++ ++ for(vpe=0; vpe < NVPES; vpe++) { ++ len = sprintf(page, "VPE[%d].VPEschedule = 0x%08x\n", ++ vpe, vpeschedule[vpe]); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "VPE[%d].VPEschefback = 0x%08x\n", ++ vpe, vpeschefback[vpe]); ++ totalen += len; ++ page += len; ++ } ++ for(i=0; i < NTCS; i++) { ++ len = sprintf(page, "TC[%d].TCschedule = 0x%08x\n", ++ i, tcschedule[i]); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "TC[%d].TCschefback = 0x%08x\n", ++ i, tcschefback[i]); ++ totalen += len; ++ page += len; ++ } ++ return totalen; ++} ++ ++/* ++ * Write to perf counter registers based on text input ++ */ ++ ++#define TXTBUFSZ 1024 ++ ++static int proc_write_mtsched(struct file *file, const char *buffer, ++ unsigned long count, void *data) ++{ ++ int len = 0; ++ char mybuf[TXTBUFSZ]; ++ /* At most, we will set up 9 TCs and 2 VPEs, 11 entries in all */ ++ char entity[1]; //, entity1[1]; ++ int number[1]; ++ unsigned long value[1]; ++ int nparsed = 0 , index = 0; ++ unsigned long flags; ++ unsigned int mtflags; ++ unsigned int haltstate; ++ unsigned int tcbindval; ++ ++ if(count >= TXTBUFSZ) len = TXTBUFSZ-1; ++ else len = count; ++ memset(mybuf,0,TXTBUFSZ); ++ if(copy_from_user(mybuf, buffer, len)) return -EFAULT; ++ ++ nparsed = sscanf(mybuf, "%c%d %lx", ++ &entity[0] ,&number[0], &value[0]); ++ ++ /* ++ * Having acquired the inputs, which might have ++ * generated exceptions and preemptions, ++ * program the registers. ++ */ ++ /* Disable interrupts and multithreaded issue */ ++ local_irq_save(flags); ++ mtflags = dvpe(); ++ ++ if(entity[index] == 't' ) { ++ /* Set TCSchedule or TCScheFBack of specified TC */ ++ if(number[index] > NTCS) goto skip; ++ /* If it's our own TC, do it direct */ ++ if(number[index] == ++ ((read_c0_tcbind() & TCBIND_CURTC) ++ >> TCBIND_CURTC_SHIFT)) { ++ if(entity[index] == 't') ++ write_c0_tcschedule(value[index]); ++ else ++ write_c0_tcschefback(value[index]); ++ } else { ++ /* Otherwise, we do it via MTTR */ ++ settc(number[index]); ++ haltstate = read_tc_c0_tchalt(); ++ write_tc_c0_tchalt(TCHALT_H); ++ mips_ihb(); ++ if(entity[index] == 't') ++ write_tc_c0_tcschedule(value[index]); ++ else ++ write_tc_c0_tcschefback(value[index]); ++ mips_ihb(); ++ if(!haltstate) write_tc_c0_tchalt(0); ++ } ++ } else if(entity[index] == 'v') { ++ /* Set VPESchedule of specified VPE */ ++ if(number[index] > NVPES) goto skip; ++ tcbindval = read_c0_tcbind(); ++ /* Are we doing this to our current VPE? */ ++ if((tcbindval & TCBIND_CURVPE) == number[index]) { ++ /* Then life is simple */ ++ write_c0_vpeschedule(value[index]); ++ } else { ++ /* ++ * Bind ourselves to the other VPE long enough ++ * to program the bind value. ++ */ ++ write_c0_tcbind((tcbindval & ~TCBIND_CURVPE) ++ | number[index]); ++ mips_ihb(); ++ write_c0_vpeschedule(value[index]); ++ mips_ihb(); ++ /* Restore previous binding */ ++ write_c0_tcbind(tcbindval); ++ mips_ihb(); ++ } ++ } ++ ++ else if(entity[index] == 'r') { ++ unsigned int vpes_checked[2], vpe ,i , mytc; ++ vpes_checked[0] = vpes_checked[1] = 0; ++ ++ /* Then go through the TCs, halt 'em, and extract the values */ ++ mytc = (read_c0_tcbind() & TCBIND_CURTC) >> TCBIND_CURTC_SHIFT; ++ ++ for(i = 0; i < NTCS; i++) { ++ if(i == mytc) { ++ /* No need to halt ourselves! */ ++ write_c0_vpeschefback(0); ++ write_c0_tcschefback(0); ++ } else { ++ settc(i); ++ haltstate = read_tc_c0_tchalt(); ++ write_tc_c0_tchalt(TCHALT_H); ++ mips_ihb(); ++ write_tc_c0_tcschefback(0); ++ /* If VPE bound to TC hasn't been checked, do it */ ++ vpe = read_tc_c0_tcbind() & TCBIND_CURVPE; ++ if(!vpes_checked[vpe]) { ++ write_vpe_c0_vpeschefback(0); ++ vpes_checked[vpe] = 1; ++ } ++ if(!haltstate) write_tc_c0_tchalt(0); ++ } ++ } ++ } ++ else { ++ printk ("\n Usage : <0/1> \n Example : t0 0x01\n"); ++ } ++ ++skip: ++ /* Re-enable MT and interrupts */ ++ evpe(mtflags); ++ local_irq_restore(flags); ++ return (len); ++} ++ ++static int __init init_mtsched_proc(void) ++{ ++ extern struct proc_dir_entry *get_mips_proc_dir(void); ++ struct proc_dir_entry *mips_proc_dir; ++ ++ if (!cpu_has_mipsmt) { ++ printk("mtsched: not a MIPS MT capable processor\n"); ++ return -ENODEV; ++ } ++ ++ mips_proc_dir = get_mips_proc_dir(); ++ ++ mtsched_proc = create_proc_entry("mtsched", 0644, mips_proc_dir); ++ mtsched_proc->read_proc = proc_read_mtsched; ++ mtsched_proc->write_proc = proc_write_mtsched; ++ ++ return 0; ++} ++ ++/* Automagically create the entry */ ++module_init(init_mtsched_proc); +--- /dev/null ++++ b/arch/mips/kernel/perf_proc.c +@@ -0,0 +1,191 @@ ++/* ++ * /proc hooks for CPU performance counter support for SMTC kernel ++ * (and ultimately others) ++ * Copyright (C) 2006 Mips Technologies, Inc ++ */ ++ ++#include ++ ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* ++ * /proc diagnostic and statistics hooks ++ */ ++ ++ ++/* Internal software-extended event counters */ ++ ++static unsigned long long extencount[4] = {0,0,0,0}; ++ ++static struct proc_dir_entry *perf_proc; ++ ++static int proc_read_perf(char *page, char **start, off_t off, ++ int count, int *eof, void *data) ++{ ++ int totalen = 0; ++ int len; ++ ++ len = sprintf(page, "PerfCnt[0].Ctl : 0x%08x\n", read_c0_perfctrl0()); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[0].Cnt : %Lu\n", ++ extencount[0] + (unsigned long long)((unsigned)read_c0_perfcntr0())); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[1].Ctl : 0x%08x\n", read_c0_perfctrl1()); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[1].Cnt : %Lu\n", ++ extencount[1] + (unsigned long long)((unsigned)read_c0_perfcntr1())); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[2].Ctl : 0x%08x\n", read_c0_perfctrl2()); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[2].Cnt : %Lu\n", ++ extencount[2] + (unsigned long long)((unsigned)read_c0_perfcntr2())); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[3].Ctl : 0x%08x\n", read_c0_perfctrl3()); ++ totalen += len; ++ page += len; ++ len = sprintf(page, "PerfCnt[3].Cnt : %Lu\n", ++ extencount[3] + (unsigned long long)((unsigned)read_c0_perfcntr3())); ++ totalen += len; ++ page += len; ++ ++ return totalen; ++} ++ ++/* ++ * Write to perf counter registers based on text input ++ */ ++ ++#define TXTBUFSZ 1024 ++ ++static int proc_write_perf(struct file *file, const char *buffer, ++ unsigned long count, void *data) ++{ ++ int len; ++ int nparsed; ++ int index; ++ char mybuf[TXTBUFSZ]; ++ ++ int which[4]; ++ unsigned long control[4]; ++ long long ctrdata[4]; ++ ++ if(count >= TXTBUFSZ) len = TXTBUFSZ-1; ++ else len = count; ++ memset(mybuf,0,TXTBUFSZ); ++ if(copy_from_user(mybuf, buffer, len)) return -EFAULT; ++ ++ nparsed = sscanf(mybuf, ++ "%d %lx %Ld %d %lx %Ld %d %lx %Ld %d %lx %Ld", ++ &which[0], &control[0], &ctrdata[0], ++ &which[1], &control[1], &ctrdata[1], ++ &which[2], &control[2], &ctrdata[2], ++ &which[3], &control[3], &ctrdata[3]); ++ ++ for(index = 0; nparsed >= 3; index++) { ++ switch (which[index]) { ++ case 0: ++ write_c0_perfctrl0(control[index]); ++ if(ctrdata[index] != -1) { ++ extencount[0] = (unsigned long long)ctrdata[index]; ++ write_c0_perfcntr0((unsigned long)0); ++ } ++ break; ++ case 1: ++ write_c0_perfctrl1(control[index]); ++ if(ctrdata[index] != -1) { ++ extencount[1] = (unsigned long long)ctrdata[index]; ++ write_c0_perfcntr1((unsigned long)0); ++ } ++ break; ++ case 2: ++ write_c0_perfctrl2(control[index]); ++ if(ctrdata[index] != -1) { ++ extencount[2] = (unsigned long long)ctrdata[index]; ++ write_c0_perfcntr2((unsigned long)0); ++ } ++ break; ++ case 3: ++ write_c0_perfctrl3(control[index]); ++ if(ctrdata[index] != -1) { ++ extencount[3] = (unsigned long long)ctrdata[index]; ++ write_c0_perfcntr3((unsigned long)0); ++ } ++ break; ++ } ++ nparsed -= 3; ++ } ++ return (len); ++} ++ ++extern int (*perf_irq)(void); ++ ++/* ++ * Invoked when timer interrupt vector picks up a perf counter overflow ++ */ ++ ++static int perf_proc_irq(void) ++{ ++ unsigned long snapshot; ++ ++ /* ++ * It would be nice to do this as a loop, but we don't have ++ * indirect access to CP0 registers. ++ */ ++ snapshot = read_c0_perfcntr0(); ++ if ((long)snapshot < 0) { ++ extencount[0] += ++ (unsigned long long)((unsigned)read_c0_perfcntr0()); ++ write_c0_perfcntr0(0); ++ } ++ snapshot = read_c0_perfcntr1(); ++ if ((long)snapshot < 0) { ++ extencount[1] += ++ (unsigned long long)((unsigned)read_c0_perfcntr1()); ++ write_c0_perfcntr1(0); ++ } ++ snapshot = read_c0_perfcntr2(); ++ if ((long)snapshot < 0) { ++ extencount[2] += ++ (unsigned long long)((unsigned)read_c0_perfcntr2()); ++ write_c0_perfcntr2(0); ++ } ++ snapshot = read_c0_perfcntr3(); ++ if ((long)snapshot < 0) { ++ extencount[3] += ++ (unsigned long long)((unsigned)read_c0_perfcntr3()); ++ write_c0_perfcntr3(0); ++ } ++ return 0; ++} ++ ++static int __init init_perf_proc(void) ++{ ++ extern struct proc_dir_entry *get_mips_proc_dir(void); ++ ++ struct proc_dir_entry *mips_proc_dir = get_mips_proc_dir(); ++ ++ write_c0_perfcntr0(0); ++ write_c0_perfcntr1(0); ++ write_c0_perfcntr2(0); ++ write_c0_perfcntr3(0); ++ perf_proc = create_proc_entry("perf", 0644, mips_proc_dir); ++ perf_proc->read_proc = proc_read_perf; ++ perf_proc->write_proc = proc_write_perf; ++ perf_irq = perf_proc_irq; ++ ++ return 0; ++} ++ ++/* Automagically create the entry */ ++module_init(init_perf_proc); diff --git a/target/linux/lantiq/patches/810-ar9-cache-split.patch b/target/linux/lantiq/patches/810-ar9-cache-split.patch new file mode 100644 index 0000000000..9487f6ce43 --- /dev/null +++ b/target/linux/lantiq/patches/810-ar9-cache-split.patch @@ -0,0 +1,301 @@ +--- a/arch/mips/Kconfig ++++ b/arch/mips/Kconfig +@@ -1706,6 +1706,28 @@ + help + IFX included extensions in APRP + ++config IFX_VPE_CACHE_SPLIT ++ bool "IFX Cache Split Ways" ++ depends on IFX_VPE_EXT ++ help ++ IFX extension for reserving (splitting) cache ways among VPEs. You must ++ give kernel command line arguments vpe_icache_shared=0 or ++ vpe_dcache_shared=0 to enable splitting of icache or dcache ++ respectively. Then you can specify which cache ways should be ++ assigned to which VPE. There are total 8 cache ways, 4 each ++ for dcache and icache: dcache_way0, dcache_way1,dcache_way2, ++ dcache_way3 and icache_way0,icache_way1, icache_way2,icache_way3. ++ ++ For example, if you specify vpe_icache_shared=0 and icache_way2=1, ++ then the 3rd icache way will be assigned to VPE0 and denied in VPE1. ++ ++ For icache, software is required to make at least one cache way available ++ for a VPE at all times i.e., one can't assign all the icache ways to one ++ VPE. ++ ++ By default, vpe_dcache_shared and vpe_icache_shared are set to 1 ++ (i.e., both icache and dcache are shared among VPEs) ++ + config PERFCTRS + bool "34K Performance counters" + depends on MIPS_MT && PROC_FS +--- a/arch/mips/kernel/vpe.c ++++ b/arch/mips/kernel/vpe.c +@@ -128,6 +128,13 @@ + EXPORT_SYMBOL(vpe1_wdog_timeout); + + #endif ++ ++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT /* Code for splitting the cache ways among VPEs. */ ++extern int vpe_icache_shared,vpe_dcache_shared; ++extern int icache_way0,icache_way1,icache_way2,icache_way3; ++extern int dcache_way0,dcache_way1,dcache_way2,dcache_way3; ++#endif ++ + /* grab the likely amount of memory we will need. */ + #ifdef CONFIG_MIPS_VPE_LOADER_TOM + #define P_SIZE (2 * 1024 * 1024) +@@ -866,6 +873,65 @@ + /* enable this VPE */ + write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); + ++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT ++ if ( (!vpe_icache_shared) || (!vpe_dcache_shared) ) { ++ ++ /* PCP bit must be 1 to split the cache */ ++ if(read_c0_mvpconf0() & MVPCONF0_PCP) { ++ ++ if ( !vpe_icache_shared ){ ++ write_vpe_c0_vpeconf0((read_vpe_c0_vpeconf0()) & ~VPECONF0_ICS); ++ ++ /* ++ * If any cache way is 1, then that way is denied ++ * in VPE1. Otherwise assign that way to VPE1. ++ */ ++ if (!icache_way0) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX0 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX0 ); ++ if (!icache_way1) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX1 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX1 ); ++ if (!icache_way2) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX2 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX2 ); ++ if (!icache_way3) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_IWX3 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_IWX3 ); ++ } ++ ++ if ( !vpe_dcache_shared ) { ++ write_vpe_c0_vpeconf0((read_vpe_c0_vpeconf0()) & ~VPECONF0_DCS); ++ ++ /* ++ * If any cache way is 1, then that way is denied ++ * in VPE1. Otherwise assign that way to VPE1. ++ */ ++ if (!dcache_way0) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX0 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX0 ); ++ if (!dcache_way1) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX1 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX1 ); ++ if (!dcache_way2) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX2 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX2 ); ++ if (!dcache_way3) ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() | VPEOPT_DWX3 ); ++ else ++ write_vpe_c0_vpeopt(read_vpe_c0_vpeopt() & ~VPEOPT_DWX3 ); ++ } ++ } ++ } ++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */ ++ + /* clear out any left overs from a previous program */ + write_vpe_c0_status(0); + write_vpe_c0_cause(0); +--- a/arch/mips/mm/c-r4k.c ++++ b/arch/mips/mm/c-r4k.c +@@ -1348,6 +1348,106 @@ + __setup("coherentio", setcoherentio); + #endif + ++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT /* Code for splitting the cache ways among VPEs. */ ++ ++#include ++ ++/* ++ * By default, vpe_icache_shared and vpe_dcache_shared ++ * values are 1 i.e., both icache and dcache are shared ++ * among the VPEs. ++ */ ++ ++int vpe_icache_shared = 1; ++static int __init vpe_icache_shared_val(char *str) ++{ ++ get_option(&str, &vpe_icache_shared); ++ return 1; ++} ++__setup("vpe_icache_shared=", vpe_icache_shared_val); ++EXPORT_SYMBOL(vpe_icache_shared); ++ ++int vpe_dcache_shared = 1; ++static int __init vpe_dcache_shared_val(char *str) ++{ ++ get_option(&str, &vpe_dcache_shared); ++ return 1; ++} ++__setup("vpe_dcache_shared=", vpe_dcache_shared_val); ++EXPORT_SYMBOL(vpe_dcache_shared); ++ ++/* ++ * Software is required to make atleast one icache ++ * way available for a VPE at all times i.e., one ++ * can't assign all the icache ways to one VPE. ++ */ ++ ++int icache_way0 = 0; ++static int __init icache_way0_val(char *str) ++{ ++ get_option(&str, &icache_way0); ++ return 1; ++} ++__setup("icache_way0=", icache_way0_val); ++ ++int icache_way1 = 0; ++static int __init icache_way1_val(char *str) ++{ ++ get_option(&str, &icache_way1); ++ return 1; ++} ++__setup("icache_way1=", icache_way1_val); ++ ++int icache_way2 = 0; ++static int __init icache_way2_val(char *str) ++{ ++ get_option(&str, &icache_way2); ++ return 1; ++} ++__setup("icache_way2=", icache_way2_val); ++ ++int icache_way3 = 0; ++static int __init icache_way3_val(char *str) ++{ ++ get_option(&str, &icache_way3); ++ return 1; ++} ++__setup("icache_way3=", icache_way3_val); ++ ++int dcache_way0 = 0; ++static int __init dcache_way0_val(char *str) ++{ ++ get_option(&str, &dcache_way0); ++ return 1; ++} ++__setup("dcache_way0=", dcache_way0_val); ++ ++int dcache_way1 = 0; ++static int __init dcache_way1_val(char *str) ++{ ++ get_option(&str, &dcache_way1); ++ return 1; ++} ++__setup("dcache_way1=", dcache_way1_val); ++ ++int dcache_way2 = 0; ++static int __init dcache_way2_val(char *str) ++{ ++ get_option(&str, &dcache_way2); ++ return 1; ++} ++__setup("dcache_way2=", dcache_way2_val); ++ ++int dcache_way3 = 0; ++static int __init dcache_way3_val(char *str) ++{ ++ get_option(&str, &dcache_way3); ++ return 1; ++} ++__setup("dcache_way3=", dcache_way3_val); ++ ++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */ ++ + void __cpuinit r4k_cache_init(void) + { + extern void build_clear_page(void); +@@ -1367,6 +1467,78 @@ + break; + } + ++#ifdef CONFIG_IFX_VPE_CACHE_SPLIT ++ /* ++ * We split the cache ways appropriately among the VPEs ++ * based on cache ways values we received as command line ++ * arguments ++ */ ++ if ( (!vpe_icache_shared) || (!vpe_dcache_shared) ){ ++ ++ /* PCP bit must be 1 to split the cache */ ++ if(read_c0_mvpconf0() & MVPCONF0_PCP) { ++ ++ /* Set CPA bit which enables us to modify VPEOpt register */ ++ write_c0_mvpcontrol((read_c0_mvpcontrol()) | MVPCONTROL_CPA); ++ ++ if ( !vpe_icache_shared ){ ++ write_c0_vpeconf0((read_c0_vpeconf0()) & ~VPECONF0_ICS); ++ /* ++ * If any cache way is 1, then that way is denied ++ * in VPE0. Otherwise assign that way to VPE0. ++ */ ++ printk(KERN_DEBUG "icache is split\n"); ++ printk(KERN_DEBUG "icache_way0=%d icache_way1=%d icache_way2=%d icache_way3=%d\n", ++ icache_way0, icache_way1,icache_way2, icache_way3); ++ if (icache_way0) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX0 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX0 ); ++ if (icache_way1) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX1 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX1 ); ++ if (icache_way2) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX2 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX2 ); ++ if (icache_way3) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_IWX3 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_IWX3 ); ++ } ++ ++ if ( !vpe_dcache_shared ) { ++ /* ++ * If any cache way is 1, then that way is denied ++ * in VPE0. Otherwise assign that way to VPE0. ++ */ ++ printk(KERN_DEBUG "dcache is split\n"); ++ printk(KERN_DEBUG "dcache_way0=%d dcache_way1=%d dcache_way2=%d dcache_way3=%d\n", ++ dcache_way0, dcache_way1, dcache_way2, dcache_way3); ++ write_c0_vpeconf0((read_c0_vpeconf0()) & ~VPECONF0_DCS); ++ if (dcache_way0) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX0 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX0 ); ++ if (dcache_way1) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX1 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX1 ); ++ if (dcache_way2) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX2 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX2 ); ++ if (dcache_way3) ++ write_c0_vpeopt(read_c0_vpeopt() | VPEOPT_DWX3 ); ++ else ++ write_c0_vpeopt(read_c0_vpeopt() & ~VPEOPT_DWX3 ); ++ } ++ } ++ } ++ ++#endif /* endif CONFIG_IFX_VPE_CACHE_SPLIT */ ++ + probe_pcache(); + setup_scache(); + diff --git a/target/linux/lantiq/patches/900-pci_ath5k_hook.patch b/target/linux/lantiq/patches/900-pci_ath5k_hook.patch new file mode 100644 index 0000000000..f01cadc85e --- /dev/null +++ b/target/linux/lantiq/patches/900-pci_ath5k_hook.patch @@ -0,0 +1,40 @@ +--- /dev/null ++++ b/arch/mips/include/asm/mach-lantiq/pci.h +@@ -0,0 +1,14 @@ ++/* ++ * lantiq SoCs specific PCI definitions ++ * ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published ++ * by the Free Software Foundation. ++ */ ++ ++#ifndef __ASM_MACH_LANTIQ_PCI_H ++#define __ASM_MACH_LANTIQ_PCI_H ++ ++extern int (*ifxmips_pci_plat_dev_init)(struct pci_dev *dev); ++ ++#endif +--- a/arch/mips/pci/pci-lantiq.c ++++ b/arch/mips/pci/pci-lantiq.c +@@ -68,6 +68,8 @@ + + u32 lq_pci_mapped_cfg; + ++int (*lqpci_plat_dev_init)(struct pci_dev *dev) = NULL; ++ + /* Since the PCI REQ pins can be reused for other functionality, make it possible + to exclude those from interpretation by the PCI controller */ + static int lq_pci_req_mask = 0xf; +@@ -126,6 +128,10 @@ + printk ("WARNING: invalid interrupt pin %d\n", pin); + return 1; + } ++ ++ if (lqpci_plat_dev_init) ++ return lqpci_plat_dev_init(dev); ++ + return 0; + } + + diff --git a/target/linux/lantiq/xway/config-default b/target/linux/lantiq/xway/config-default new file mode 100644 index 0000000000..46cd6e778b --- /dev/null +++ b/target/linux/lantiq/xway/config-default @@ -0,0 +1,21 @@ +# CONFIG_ARCH_PHYS_ADDR_T_64BIT is not set +# CONFIG_CRYPTO_HW is not set +CONFIG_HAVE_IDE=y +CONFIG_HW_HAS_PCI=y +CONFIG_IMAGE_CMDLINE_HACK=y +CONFIG_LANTIQ_ETOP=y +CONFIG_LANTIQ_MACH_ARV45XX=y +CONFIG_LANTIQ_MACH_EASY4010=y +CONFIG_LANTIQ_MACH_EASY50712=y +CONFIG_LANTIQ_MACH_EASY50812=y +# CONFIG_LANTIQ_PROM_ASC0 is not set +CONFIG_LANTIQ_PROM_ASC1=y +CONFIG_LANTIQ_WDT=y +CONFIG_LEDS_GPIO=y +# CONFIG_LOONGSON_MC146818 is not set +CONFIG_LOONGSON_UART_BASE=y +CONFIG_NEED_DMA_MAP_STATE=y +CONFIG_SCSI_MOD=y +CONFIG_SOC_LANTIQ=y +CONFIG_SOC_LANTIQ_XWAY=y +CONFIG_USB_SUPPORT=y diff --git a/target/linux/lantiq/xway/target.mk b/target/linux/lantiq/xway/target.mk new file mode 100644 index 0000000000..e2e2a6f12b --- /dev/null +++ b/target/linux/lantiq/xway/target.mk @@ -0,0 +1,11 @@ +ARCH:=mips +SUBTARGET:=xway +BOARDNAME:=Xway +FEATURES:=squashfs jffs2 atm + +DEFAULT_PACKAGES+=uboot-lantiq-easy50712 kmod-pppoa ppp-mod-pppoa linux-atm atm-tools br2684ctl ifxmips-dsl-api ifxmips-dsl-control ifx-tapidemo + +define Target/Description + Lantiq XWAY (danube/twinpass/ar9) +endef + -- cgit v1.2.3

Parameter NameMeaning
otg_capSpecifies the OTG capabilities. The driver will automatically detect the ++ value for this parameter if none is specified. ++ - 0: HNP and SRP capable (default, if available) ++ - 1: SRP Only capable ++ - 2: No HNP/SRP capable ++
dma_enableSpecifies whether to use slave or DMA mode for accessing the data FIFOs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Slave ++ - 1: DMA (default, if available) ++
dma_burst_sizeThe DMA Burst size (applicable only for External DMA Mode). ++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++
speedSpecifies the maximum speed of operation in host and device mode. The ++ actual speed depends on the speed of the attached device and the value of ++ phy_type. ++ - 0: High Speed (default) ++ - 1: Full Speed ++
host_support_fs_ls_low_powerSpecifies whether low power mode is supported when attached to a Full ++ Speed or Low Speed device in host mode. ++ - 0: Don't support low power mode (default) ++ - 1: Support low power mode ++
host_ls_low_power_phy_clkSpecifies the PHY clock rate in low power mode when connected to a Low ++ Speed device in host mode. This parameter is applicable only if ++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled. ++ - 0: 48 MHz (default) ++ - 1: 6 MHz ++
enable_dynamic_fifo Specifies whether FIFOs may be resized by the driver software. ++ - 0: Use cC FIFO size parameters ++ - 1: Allow dynamic FIFO sizing (default) ++
data_fifo_sizeTotal number of 4-byte words in the data FIFO memory. This memory ++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs. ++ - Values: 32 to 32768 (default 8192) ++ ++ Note: The total FIFO memory depth in the FPGA configuration is 8192. ++
dev_rx_fifo_sizeNumber of 4-byte words in the Rx FIFO in device mode when dynamic ++ FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1064) ++
dev_nperio_tx_fifo_sizeNumber of 4-byte words in the non-periodic Tx FIFO in device mode when ++ dynamic FIFO sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++
dev_perio_tx_fifo_size_n (n = 1 to 15)Number of 4-byte words in each of the periodic Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++
host_rx_fifo_sizeNumber of 4-byte words in the Rx FIFO in host mode when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++
host_nperio_tx_fifo_sizeNumber of 4-byte words in the non-periodic Tx FIFO in host mode when ++ dynamic FIFO sizing is enabled in the core. ++ - Values: 16 to 32768 (default 1024) ++
host_perio_tx_fifo_sizeNumber of 4-byte words in the host periodic Tx FIFO when dynamic FIFO ++ sizing is enabled. ++ - Values: 16 to 32768 (default 1024) ++
max_transfer_sizeThe maximum transfer size supported in bytes. ++ - Values: 2047 to 65,535 (default 65,535) ++
max_packet_countThe maximum number of packets in a transfer. ++ - Values: 15 to 511 (default 511) ++
host_channelsThe number of host channel registers to use. ++ - Values: 1 to 16 (default 12) ++ ++ Note: The FPGA configuration supports a maximum of 12 host channels. ++
dev_endpointsThe number of endpoints in addition to EP0 available for device mode ++ operations. ++ - Values: 1 to 15 (default 6 IN and OUT) ++ ++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in ++ addition to EP0. ++
phy_typeSpecifies the type of PHY interface to use. By default, the driver will ++ automatically detect the phy_type. ++ - 0: Full Speed ++ - 1: UTMI+ (default, if available) ++ - 2: ULPI ++
phy_utmi_widthSpecifies the UTMI+ Data Width. This parameter is applicable for a ++ phy_type of UTMI+. Also, this parameter is applicable only if the ++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the ++ core has been configured to work at either data path width. ++ - Values: 8 or 16 bits (default 16) ++
phy_ulpi_ddrSpecifies whether the ULPI operates at double or single data rate. This ++ parameter is only applicable if phy_type is ULPI. ++ - 0: single data rate ULPI interface with 8 bit wide data bus (default) ++ - 1: double data rate ULPI interface with 4 bit wide data bus ++
i2c_enableSpecifies whether to use the I2C interface for full speed PHY. This ++ parameter is only applicable if PHY_TYPE is FS. ++ - 0: Disabled (default) ++ - 1: Enabled ++
otg_en_multiple_tx_fifoSpecifies whether dedicatedto tx fifos are enabled for non periodic IN EPs. ++ The driver will automatically detect the value for this parameter if none is ++ specified. ++ - 0: Disabled ++ - 1: Enabled (default, if available) ++
dev_tx_fifo_size_n (n = 1 to 15)Number of 4-byte words in each of the Tx FIFOs in device mode ++ when dynamic FIFO sizing is enabled. ++ - Values: 4 to 768 (default 256) ++