X-Git-Url: https://git.enpas.org/?a=blobdiff_plain;f=presentation.tex;h=2184ae49c31d3e0d65748257619744bf7538f3c5;hb=HEAD;hp=f3381bc273d653487bdebbfccb6fd9ca20852406;hpb=ebdf439a201d6fda0780284fc7f49b1f8deb88ab;p=bitonic-mengthesis.git diff --git a/presentation.tex b/presentation.tex index f3381bc..2184ae4 100644 --- a/presentation.tex +++ b/presentation.tex @@ -10,6 +10,16 @@ \AtBeginSubsubsection{\frame{\subsubsectionpage}} \beamertemplatenavigationsymbolsempty +\usepackage{centernot} +\usepackage{cancel} +\usepackage{tikz} +\usetikzlibrary{shapes,arrows,positioning} +\usetikzlibrary{intersections} +\pgfdeclarelayer{background} +\pgfdeclarelayer{foreground} +\pgfsetlayers{background,main,foreground} + + \setlength{\parindent}{0pt} \setlength{\parskip}{6pt plus 2pt minus 1pt} \setlength{\emergencystretch}{3em} % prevent overfull lines @@ -39,7 +49,7 @@ \newcommand{\myb}[1]{\AgdaBound{$#1$}} \newcommand{\myfield}{\AgdaField} \newcommand{\myind}{\AgdaIndent} -\newcommand{\mykant}{\textmd{\textsc{Bertus}}} +\newcommand{\mykant}{{\rmfamily\scshape Bertus}} \newcommand{\mysynel}[1]{#1} \newcommand{\myse}{\mysynel} \newcommand{\mytmsyn}{\langle t \rangle} @@ -204,10 +214,12 @@ \newcommand{\mytermi}[1]{\text{\texttt{#1}}} \newcommand{\mysee}[1]{\langle\myse{#1}\rangle} \newcommand{\mycomp}{\mathbin{\myfun{$\circ$}}} -\newcommand{\mylist}[1]{\mathopen{\mytyc{$[$}} #1 \mathclose{\mytyc{$]$}}} +\newcommand{\mylist}[1]{\mytyc{List}\myappsp #1} \newcommand{\mylistt}[1]{\mathopen{\mydc{$[$}} #1 \mathclose{\mydc{$]$}}} \newcommand{\myplus}{\mathbin{\myfun{$+$}}} \newcommand{\mytimes}{\mathbin{\myfun{$*$}}} +\newcommand{\mysuc}{\mydc{suc}} +\newcommand{\myzero}{\mydc{zero}} \renewcommand{\[}{\begin{equation*}} \renewcommand{\]}{\end{equation*}} @@ -220,6 +232,19 @@ \begin{document} \frame{\titlepage} +\begin{frame} + \frametitle{\mykant?} + + \mykant\ is an \emph{interactive theorem prover}/\emph{functional + programming language}, implemented in Haskell. + + It is in the tradition of Agda and Epigram (and to a lesser extent + Coq), but with a more powerful notion of \emph{equality}. + + We have figured out theory of \mykant, and have a near-complete + implementation. +\end{frame} + \begin{frame} \frametitle{Theorem provers are short-sighted} @@ -253,254 +278,230 @@ \end{frame} \begin{frame} - \frametitle{Observational equality and \mykant} + \frametitle{\mykant\ and observational equality} + + \emph{Observational} equality solves this and other annoyances. - \emph{Observational equality} is a solution to this and other equality - annoyances. + \mykant\ is a system aiming at making observational equality more + usable. +\end{frame} - \mykant\ is a system making observational equality more usable. +\begin{frame} + \frametitle{Theorem provers, dependent types} + \begin{center} + \Huge + types $\leftrightarrow$ propositions - The theory of \mykant\ is complete, the practice, not quite. + programs $\leftrightarrow$ proofs + \end{center} \end{frame} \begin{frame} - \frametitle{Theorem provers, dependent types} First class types: we - can return them, have them as arguments, etc. + \frametitle{Theorem provers, dependent types} \[ - \begin{array}{@{}l@{\ }l@{\ \ \ }l} - \mysyn{data}\ \myempty & & \text{No members.} \\ - \mysyn{data}\ \myunit & = \mytt & \text{One member.} \\ - \mysyn{data}\ \mynat & = \mydc{zero} \mydcsep \mydc{suc}\myappsp\mynat & \text{Natural numbers.} + \begin{array}{@{}l@{\ \ \ }l} + \mysyn{data}\ \myempty & \text{No members.} \\ + \mysyn{data}\ \myunit \mapsto \mytt & \text{One member.} \end{array} \] - $\myempty : \mytyp$, $\myunit : \mytyp$, $\mynat : \mytyp$. $\myunit$ is trivially inhabitable: it corresponds to $\top$ in logic. - + \[ + \mytt : \myunit + \] $\myempty$ is \emph{not} inhabitable: it corresponds to $\bot$. + \[ + \myfun{absurd} : \myempty \myarr \myb{A} + \] + First class types: we can return them, have them as arguments, etc: + $\myempty : \mytyp$, $\myunit : \mytyp$. \end{frame} \begin{frame} \frametitle{Theorem provers, dependent types} - - We can express relations: + \[ \mysyn{data}\ \mylist{\myb{A}} \mapsto \mynil \mydcsep \myb{A} \mycons \mylist{\myb{A}} \] + We want to express a `non-emptiness' property for lists: \[ \begin{array}{@{}l} - (\myfun{${>}$}) : \mynat \myarr \mynat \myarr \mytyp \\ - \begin{array}{@{}c@{\,}c@{\,}c@{\ }l} - \mydc{zero} & \mathrel{\myfun{$>$}} & \myb{m} & = \myempty \\ - \myb{n} & \mathrel{\myfun{$>$}} & \mydc{zero} & = \myunit \\ - (\mydc{suc} \myappsp \myb{n}) & \mathrel{\myfun{$>$}} & (\mydc{suc} \myappsp \myb{m}) & = \myb{n} \mathrel{\myfun{$>$}} \myb{m} + \myfun{non-empty} : \mylist{\myb{A}} \myarr \mytyp \\ + \begin{array}{@{}l@{\myappsp}c@{\ }l} + \myfun{non-empty} & \mynil & \mapsto \myempty \\ + \myfun{non-empty} & (\myb{x} \mycons \myb{l}) & \mapsto \myunit \end{array} \end{array} \] - A term of type $\myb{m} \mathrel{\myfun{$>$}} \myb{n}$ represents a - \emph{proof} that $\myb{n}$ is indeed greater than $\myb{n}$. + A term of type $\myfun{non-empty} \myappsp \myb{l}$ represents a + \emph{proof} that $\myb{l}$ is indeed not empty. \[ - \begin{array}{@{}l} - 3 \mathrel{\myfun{$>$}} 1 \myred \myunit \\ - 2 \mathrel{\myfun{$>$}} 2 \myred \myempty \\ - 0 \mathrel{\myfun{$>$}} \myb{m} \myred \myempty + \begin{array}{@{}l@{\ \ \ }l} + \text{Can't prove} & \myfun{non-empty}\myappsp \mynil \myred \myempty \\ + \text{Trivial to prove} & \myfun{non-empty}\myappsp(2 \mycons \mynil) \myred \myunit \end{array} \] - - Thus, proving that $2 \mathrel{\myfun{$>$}} 2$ corresponds to proving - falsity, while $3 \mathrel{\myfun{$>$}} 1$ is fine. \end{frame} \begin{frame} \frametitle{Example: safe $\myfun{head}$ function} - + \only<3>{We can eliminate the `empty list' case:} \[ \begin{array}{@{}l} - \mysyn{data}\ \mylistt{\myb{A}} = \mynil \mydcsep \myb{A} \mycons \mylistt{\myb{A}} \\ - \ \\ - \myfun{length} : \mylistt{\myb{A}} \myarr \mynat \\ - \begin{array}{@{}l@{\myappsp}c@{\ }c@{\ }l} - \myfun{length} & \mynil & = & \mydc{zero} \\ - \myfun{length} & (\myb{x} \mycons \myb{xs}) & = & \mydc{suc} \myappsp (\myfun{length} \myappsp \myb{xs}) - \end{array} \\ - \ \\ - \myfun{head} : \myfora{\myb{l}}{\mytyc{List}\myappsp\myb{A}}{ \myfun{length}\myappsp\myb{l} \mathrel{\myfun{$>$}} 0 \myarr \myb{A}} \\ + \myfun{head} : \myfora{\myb{l}}{\mytyc{List}\myappsp\myb{A}}{ \myfun{non-empty}\myappsp\myb{l} \myarr \myb{A}} \\ \begin{array}{@{}l@{\myappsp}c@{\myappsp}c@{\ }c@{\ }l} - \myfun{head} & \mynil & \myb{p} & = & \myhole{?} \\ - \myfun{head} & (\myb{x} \mycons \myb{xs}) & \myb{p} & = & \myb{x} + \myfun{head} & \mynil & \myb{p} & \mapsto & \only<1,2>{\myhole{?}}\only<3>{\myabsurd\myappsp\myb{p}} \\ + \myfun{head} & (\myb{x} \mycons \myb{xs}) & \myb{p} & \mapsto & \myb{x} \end{array} \end{array} \] + \only<1>{ + The logic equivalent would be + \[ + \forall \myb{l} {:} \mylist{\myb{A}}.\ \myfun{non-empty}\myappsp\myb{l} \myarr \myb{A} + \] + `For all non-empty lists of type $\myb{A}$, we can get an element of $\myb{A}$.' + } + \only<2>{ The type of $\myb{p}$ in the $\myhole{?}$ is $\myempty$, since - \[\myfun{length} \myappsp \mynil \mathrel{\myfun{$>$}} 0 \myred 0 \mathrel{\myfun{$>$}} 0 \myred \myempty \] -\end{frame} - - -\begin{frame} - \frametitle{Example: safe $\myfun{head}$ function} - - \[ - \begin{array}{@{}l} - \mysyn{data}\ \mylistt{\myb{A}} = \mynil \mydcsep \myb{A} \mycons \mylistt{\myb{A}} \\ - \ \\ - \myfun{length} : \mytyc{List}\myappsp\myb{A} \myarr \mynat \\ - \begin{array}{@{}l@{\myappsp}c@{\ }c@{\ }l} - \myfun{length} & \mynil & = & \mydc{zero} \\ - \myfun{length} & (\myb{x} \mycons \myb{xs}) & = & \mydc{suc} \myappsp (\myfun{length} \myappsp \myb{xs}) - \end{array} \\ - \ \\ - \myfun{head} : \myfora{\myb{l}}{\mytyc{List}\myappsp\myb{A}}{ \myfun{length}\myappsp\myb{l} \mathrel{\myfun{$>$}} 0 \myarr \myb{A}} \\ - \begin{array}{@{}l@{\myappsp}c@{\myappsp}c@{\ }c@{\ }l} - \myfun{head} & \mynil & \myb{p} & = & \myabsurd \myappsp \myb{p} \\ - \myfun{head} & (\myb{x} \mycons \myb{xs}) & \myb{p} & = & \myb{x} - \end{array} - \end{array} - \] - - Where $\myfun{absurd}$ corresponds to the logical \emph{ex falso - quodlibet}---given $\myempty$, we can get anything: - \[ - \myfun{absurd} : \myempty \myarr \myb{A} - \] + \[\myfun{non-empty}\myappsp\mynil \myred \myempty \]} + \only<3>{ + Remember: + \[ \myfun{absurd} : \myempty \myarr \myb{A} \] + } \end{frame} \begin{frame} \frametitle{How do we type check this thing?} + \[\text{Is\ } \myfun{non-empty}\myappsp(3 \mycons \mynil) \text{\ the same as\ } \myunit\text{?}\] + Or in other words, is + \[ \mytt : \myunit \] + A valid argument to \[ - \myfun{head} \myappsp \mylistt{3} : \myfun{length} \myappsp \mylistt{3} \mathrel{\myfun{$>$}} 0 \myarr \mynat + \myfun{head} \myappsp (3 \mycons \mynil) : \myfun{non-empty}\myappsp(3 \mycons \mynil) \myarr \mynat \] - Will $\mytt : \myunit$ do as an argument? In other words, when type - checking, do we have that - \[ - \begin{array}{@{}c@{\ }c@{\ }c} - \myunit & \mydefeq & \myfun{length} \myappsp \mylistt{3} \mathrel{\myfun{$>$}} 0 \\ - \myfun{length} \myappsp \mynil \mathrel{\myfun{$>$}} 0 & \mydefeq & \myempty \\ - (\myabs{\myb{x}\, \myb{y}}{\myb{y}}) \myappsp \myunit \myappsp \myappsp \mynat & \mydefeq & (\myabs{\myb{x}\, \myb{y}}{\myb{x}}) \myappsp \mynat \myappsp \myunit \\ - & \vdots & - \end{array} - \] - ? -\end{frame} - -\begin{frame} - \frametitle{Definitional equality} - - The type checker needs a notion of equality between types. - - We reduce terms `as far as possible' (to their \emph{normal form}) and - then compare them syntactically: + Yes: to typecheck, we reduce terms fully (to their \emph{normal form}) + before comparing: \[ \begin{array}{@{}r@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }l} - \myunit & \myredd & \myunit & \mydefeq & \myunit & \myreddd & \myfun{length} \myappsp \mylistt{3} \mathrel{\myfun{$>$}} 0 \\ - \myfun{length} \myappsp \mynil \mathrel{\myfun{$>$}} 0 & \myredd & \myempty & \mydefeq & \myempty & \myreddd & \myempty \\ + \myunit & \myredd & \myunit & \mydefeq & \myunit & \myreddd & \myfun{non-empty}\myappsp(3 \mycons \mynil) \\ (\myabs{\myb{x}\, \myb{y}}{\myb{y}}) \myappsp \myunit \myappsp \myappsp \mynat & \myredd & \mynat & \mydefeq & \mynat & \myreddd & (\myabs{\myb{x}\, \myb{y}}{\myb{x}}) \myappsp \mynat \myappsp \myunit \\ & & & \vdots & & & \end{array} \] - - This equality, $\mydefeq$, takes the name of \emph{definitional} equality. + \[ + \mydefeq\ \text{takes the name of \textbf{definitional equality}.} + \] \end{frame} \begin{frame} \frametitle{Propositional equality} Using definitional equality, we can give the user a type-level notion of term equality. \[ - (\myeq) : \myb{A} \myarr \myb{A} \myarr \mytyp + (\myeq) : \myb{A} \myarr \myb{A} \myarr \mytyp\ \ \ \text{internalises equality \textbf{as a type}} \] - We introduce members of $\myeq$ by reflexivity: + We introduce members of $\myeq$ by reflexivity, for example \[ - \myrefl\myappsp\mytmt : \mytmt \myeq \mytmt + \myrefl\myappsp5 : 5 \myeq 5 \] - So that $\myrefl$ will relate definitionally equal terms: + But also \[ - \myrefl\myappsp 5 : (3 + 2) \myeq (1 + 4)\ \text{since}\ (3 + 2) \myeq (1 + 4) \myredd 5 \myeq 5 + \begin{array}{@{}l} + \myrefl\myappsp 5 : (3 + 2) \myeq (1 + 4)\text{, since}\\ + (3 + 2) \myeq (1 + 4) \myredd 5 \myeq 5 + \end{array} \] Then we can use a substitution law to derive other laws---transitivity, congruence, etc. + \[ \myeq\ \text{takes the name of \textbf{propositional equality}} \] \end{frame} \begin{frame} \frametitle{The problem with prop. equality} Going back to $\myfun{map}$, we can prove that -\[ \forall \myb{f} {:} (\myb{b} \myarr \myb{c}), \myb{g} {:} (\myb{a} \myarr \myb{b}), \myb{l} {:} \mylist{\myb{a}}. (\myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g}) \myappsp \myb{l} \myeq \myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) \myappsp \myb{l} \] -Because we can prove, by induction on $\myb{l}$, that we will always get definitionally equal lists. +\[ \forall \myb{f} {:} (\myb{b} \myarr \myb{c}), \myb{g} {:} (\myb{a} \myarr \myb{b}), \myb{l} {:} \mylist{\myb{a}}.\ (\myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g}) \myappsp \myb{l} \myeq \myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) \myappsp \myb{l} \] +Because +\[ +(\myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g})\myappsp \myb{l} \mydefeq \myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) \myappsp \myb{l} +\] +By induction on $\myb{l}$. -But without the $\myb{l}$, we cannot compute, so we are stuck with +Without the $\myb{l}$ we cannot compute, so we are stuck with \[ \myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g} \not\mydefeq \myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) \] \end{frame} \begin{frame} - \frametitle{The solution} + \frametitle{Observational equality} - \emph{Observational} equality, instead of basing its equality on - definitional equality, looks at the structure of the type to decide: + Instead of basing its equality on definitional equality, look at the + structure of the type to decide. + + For functions this will mean that proving \[ - \begin{array}{@{}l} - (\myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g} : \mylistt{\myb{A_1}} \myarr \mylistt{\myb{C_1}}) \myeq (\myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) : \mylistt{\myb{A_2}} \myarr \mylistt{\myb{C_2}}) \myred \\ - \myind{2} (\myb{l_1} : \myb{A_1}) \myarr (\myb{l_2} : \myb{A_2}) \myarr (\myb{l_1} : \myb{A_1}) \myeq (\myb{l_2} : \myb{A_2}) \myarr \\ - \myind{2} ((\myfun{map}\myappsp \myb{f} \mycomp \myfun{map}\myappsp \myb{g}) \myappsp \myb{l} : \mylistt{\myb{C_1}}) \myeq (\myfun{map}\myappsp (\myb{f} \mycomp \myb{g}) \myappsp \myb{l} : \mylistt{\myb{C_2}}) - \end{array} + \myfun{map}\myappsp \myse{f} \mycomp \myfun{map}\myappsp \myse{g} \myeq \myfun{map}\myappsp (\myse{f} \mycomp \myse{g}) + \] + Will reduce to proving that + \[ + (\myb{l} : \mylist{\myb{A}}) \myarr + (\myfun{map}\myappsp \myse{f} \mycomp \myfun{map}\myappsp \myse{g})\myappsp\myb{l} \myeq \myfun{map}\myappsp (\myse{f} \mycomp \myse{g})\myappsp \myb{l} \] - This extends to other structures (tuples, inductive types, \dots). - Moreover, if we can deem two \emph{types} equal, we can \emph{coerce} - values from one to the other. + Which is what we want. The interesting part is how to make the system + compute nicely. \end{frame} \begin{frame} - \frametitle{\mykant} - - Observational equality was described in a very restricted theory. - - \mykant\ aims to incorporate it in a more `practical' environment, - where we have: - \begin{itemize} - \item User defined data types (inductive data and records). - \item A type hierarchy. - \item Partial type inference (bidirectional type checking). - \item Type holes. - \end{itemize} + \begin{center} + {\huge \mykant' features} + \end{center} \end{frame} \begin{frame} \frametitle{Inductive data} - Good old Haskell data types: \[ - \mysyn{data}\ \mytyc{List}\myappsp \myb{A} = \mynil \mydcsep \myb{A} \mycons \mytyc{List}\myappsp\myb{A} + \mysyn{data}\ \mytyc{List}\myappsp (\myb{A} : \mytyp) \mapsto \mynil \mydcsep \myb{A} \mycons \mytyc{List}\myappsp\myb{A} \] - But instead of general recursion and pattern matching, we have - structural induction: + Each with an induction principle: \[ \begin{array}{@{}l@{\ }l} - \mytyc{List}.\myfun{elim} : & (\myb{P} : \mytyc{List}\myappsp\myb{A} \myarr \mytyp) \myarr \\ + \mytyc{List}.\myfun{elim} : & \AgdaComment{-{}- The property that we want to prove:} \\ + & (\myb{P} : \mytyc{List}\myappsp\myb{A} \myarr \mytyp) \myarr \\ + & \AgdaComment{-{}- If it holds for the base case:} \\ & \myb{P} \myappsp \mynil \myarr \\ + & \AgdaComment{-{}- And for the inductive step:} \\ & ((\myb{x} : \myb{A}) \myarr (\myb{l} : \mytyc{List}\myappsp \myb{A}) \myarr \myb{P} \myappsp \myb{l} \myarr \myb{P} \myappsp (\myb{x} \mycons \myb{l})) \myarr \\ + & \AgdaComment{-{}- Then it holds for every list:} \\ & (\myb{l} : \mytyc{List}\myappsp\myb{A}) \myarr \myb{P} \myappsp \myb{l} \end{array} \] - Reduction: + Induction is also computation, via structural recursion: \[ \begin{array}{@{}l@{\ }l} \mytyc{List}.\myfun{elim} \myappsp \myse{P} \myappsp \myse{pn} \myappsp \myse{pc} \myappsp \mynil & \myred \myse{pn} \\ - \mytyc{List}.\myfun{elim} \myappsp \myse{P} \myappsp \myse{pn} \myappsp \myse{pc} \myappsp (\mytmm \mycons \mytmn) & \myred \myse{pc} \myappsp \mytmm \myappsp \mytmn \myappsp (\mytyc{List}.\myfun{elim} \myappsp \myse{P} \myappsp \myse{pn} \myappsp \myse{ps} \myappsp \mytmt ) + \mytyc{List}.\myfun{elim} \myappsp \myse{P} \myappsp \myse{pn} \myappsp \myse{pc} \myappsp (\mytmm \mycons \mytmn) & \myred \myse{pc} \myappsp \mytmm \myappsp \mytmn \myappsp (\mytyc{List}.\myfun{elim} \myappsp \myse{P} \myappsp \myse{pn} \myappsp \myse{ps} \myappsp \mytmn ) \end{array} \] \end{frame} \begin{frame} - \frametitle{Records} - But also records: + \frametitle{Dependent defined types} \emph{Unlike} Haskell, we can + have fields of a data constructor to depend on earlier fields: \[ - \mysyn{record}\ \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B} = \mydc{tuple}\ \{ \myfun{fst} : \myb{A}, \myfun{snd} : \myb{B} \} + \begin{array}{@{}l} + \mysyn{record}\ \mytyc{Tuple}\myappsp(\myb{A} : \mytyp)\myappsp\myhole{$(\myb{B} : \myb{A} \myarr \mytyp)$} \mapsto \\ + \myind{2}\mydc{tuple}\ \{ \myfun{fst} : \myb{A}, \myfun{snd} : \myb{B}\myappsp\myb{fst} \} + \end{array} \] - Where each field defines a projection from instances of the record: + + The \emph{type} of the second element depends on the \emph{value} of + the first: \[ - \begin{array}{@{}l@{\ }c@{\ }l} - \myfun{fst} & : & \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B} \myarr \myb{A} \\ - \myfun{snd} & : & \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B} \myarr \myb{B} + \begin{array}{@{}l@{\ }l} + \myfun{fst} & : \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B} \myarr \myb{A} \\ + \myfun{snd} & : (\myb{x} : \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B}) \myarr \myb{B} \myappsp (\myfun{fst} \myappsp \myb{x}) \end{array} \] Where the projection's reduction rules are predictably @@ -513,39 +514,36 @@ But without the $\myb{l}$, we cannot compute, so we are stuck with \end{frame} \begin{frame} - \frametitle{Dependend defined types} \emph{Unlike} Haskell, we can - have fields of a data constructor to depend on earlier fields: + \frametitle{Example: the type of even numbers} + For example we can define the type of even numbers: + % TODO fix \[ \begin{array}{@{}l} - \mysyn{record}\ \mytyc{Tuple}\myappsp(\myb{A} : \mytyp)\myappsp(\myb{B} : \myb{A} \myarr \mytyp) = \\ - \myind{2}\mydc{tuple}\ \{ \myfun{fst} : \myb{A}, \myfun{snd} : \myb{B}\myappsp\myb{fst} \} - \end{array} - \] - $\mytyc{Tuple}$ takes a $\mytyp$, $\myb{A}$, and a predicate from - elements of $\myb{A}$ to types, $\myb{B}$. - - This way, the \emph{type} of the second element depends on the - \emph{value} of the first: - \[ - \begin{array}{@{}l@{\ }l} - \myfun{fst} & : \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B} \myarr \myb{A} \\ - \myfun{snd} & : (\myb{x} : \mytyc{Tuple}\myappsp\myb{A}\myappsp\myb{B}) \myarr \myb{B} \myappsp (\myfun{fst} \myappsp \myb{x}) + \mysyn{data}\ \mynat \mapsto \mydc{zero} \mydcsep \mydc{suc}\myappsp\mynat \\ + \ \\ + \myfun{even} : \mynat \myarr \mytyp \\ + \begin{array}{@{}l@{\myappsp}c@{\ }l} + \myfun{even} & \myzero & \mapsto \myunit \\ + \myfun{even} & (\mysuc \myappsp \myzero) & \mapsto \myempty \\ + \myfun{even} & (\mysuc \myappsp (\mysuc \myappsp \myb{n})) & \mapsto \myfun{even} \myappsp \myb{n} + \end{array} \\ + \ \\ + \mytyc{Even} : \mytyp \\ + \mytyc{Even} \mapsto \mytyc{Tuple}\ \mynat\ \myfun{even} \end{array} \] \end{frame} \begin{frame} \frametitle{Type hierarchy} - Up to now, we have thrown $\mytyp$ around, as `the type of types'. - - But what is the type of $\mytyp$ itself? The simple way out is + \[\{\mynat, \mybool, \mytyc{List}\myappsp\mynat, \cdots\} : \mytyp\] + What is the type of $\mytyp$? \[ - \mytyp : \mytyp + \cancel{\mytyp : \mytyp}\ \ \ \text{\textbf{inconsistent}} \] - This solution is not only simple, but inconsistent, for the same - reason that the notion of a `powerset' in na{\"i}ve set theory is. + Similar to Russel's paradox in na{\"i}ve set theory. - Instead, following Russell, we shall have + Instead, we have a hierarchy: \[ \{\mynat, \mybool, \mytyc{List}\myappsp\mynat, \cdots\} : \mytyp_0 : \mytyp_1 : \cdots \] @@ -554,9 +552,142 @@ But without the $\myb{l}$, we cannot compute, so we are stuck with \begin{frame} \frametitle{Cumulativity and typical ambiguity} - Is it OK to take - \[ \mytyp_0 : \mytyp_2 \] - ? + Instead of: + \[ \mytyp_0 : \mytyp_1 \ \ \ \text{but}\ \ \ \mytyp_0 \centernot{:} \mytyp_2\] + We have a cumulative hierarchy, so that + \[ \mytyp_n : \mytyp_m \ \ \ \text{iff}\ \ \ n < m \] + For example + \[ \mynat : \mytyp_0\ \ \ \text{and}\ \ \ \mynat : \mytyp_1\ \ \ \text{and}\ \ \ \mynat : \mytyp_{50} \] + + But in \mykant, you can forget about levels: the consistency is + checked automatically---a mechanised version of what Russell called + \emph{typical ambiguity}. + + \begin{center} + \begin{tikzpicture}[remember picture, node distance=1.5cm] + \begin{pgfonlayer}{foreground} + % Place nodes + \node (x) {$x$}; + \node [right of=x] (y) {$y$}; + \node [right of=y] (z) {$z$}; + \node [below of=z] (k) {$k$}; + \node [left of=k] (j) {$j$}; + %% Lines + \path[->] + (x) edge node [above] {$<$} (y) + (y) edge node [above] {$\le$} (z) + (z) edge node [right] {$<$} (k) + (k) edge node [below] {$\le$} (j) + (j) edge node [left ] {$\le$} (y); + \end{pgfonlayer}{foreground} + \end{tikzpicture} + \begin{tikzpicture}[remember picture, overlay] + \begin{pgfonlayer}{background} + \fill [red, opacity=0.3, rounded corners] + (-2.7,2.6) rectangle (-0.2,0.05) + (-4.1,2.4) rectangle (-3.3,1.6); + \end{pgfonlayer}{background} + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame} + \frametitle{Bidirectional type checking} + \[ + \mysyn{data}\ \mytyc{List}\myappsp (\myb{A} : \mytyp) \mapsto \mydc{nil} \mydcsep \mydc{cons} \myappsp \myb{A}\myappsp (\mytyc{List}\myappsp\myb{A}) + \] + + With no type inference, we have explicit types for the constructors: + \[ + \begin{array}{@{}l@{\ }l} + \mydc{nil} & : (\myb{A} : \mytyp) \myarr \mytyc{List}\myappsp\myb{A} \\ + \mydc{cons} &: (\myb{A} : \mytyp) \myarr \myb{A} \myarr \mytyc{List}\myappsp\myb{A} \myarr \mytyc{List}\myappsp\myb{A}\\ + \end{array} + \] + ...ugh: + \[ + \mydc{cons}\myappsp \mynat\myappsp 1 \myappsp (\mydc{cons}\myappsp \mynat \myappsp 2 \myappsp (\mydc{cons}\myappsp \mynat \myappsp 3 \myappsp (\mydc{nil}\myappsp \mynat))) + \] + Instead, annotate terms and propagate the type: + \[ + \mydc{cons}\myappsp 1 \myappsp (\mydc{cons}\myappsp 2 \myappsp (\mydc{cons} \myappsp 3 \myappsp \mydc{nil})) : \mytyc{List}\myappsp\mynat + \] + Conversely, when we use eliminators the type can be inferred. +\end{frame} + +\begin{frame} + \frametitle{OTT + user defined types} + + For each type, we need to: + \begin{itemize} + \item Describe when two types formed by the defined type constructors + are equal; + \[ \mylist{\mytya_1} \myeq \mylist{\mytya_2} \] + \item Describe when two values of the defined type are equal; + \[ + \begin{array}{@{}c@{\ \ \ \ \ \ }c} + \mynil \myeq \mynil & \mynil \myeq \mytmm \mycons \mytmn \\ + \mytmm \mycons \mytmn \myeq \mynil & \mytmm_1 \mycons \mytmn_1 \myeq \mytmm_2 \mycons \mytmn_2 + \end{array} + \] + \item Describe how to transport values of the defined type. + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{OTT + hierarchy} + + Since equalities reduce to functions abstracting over various things, + we need to make sure that the hierarchy is respected. + + For example we have that + \[ + \begin{array}{@{}l} + \myjm{(\myb{x_1} {:} \mytya_1) \myarr \mytyb_1}{\mytyp}{(\myb{x_2} {:} \mytya_2) \myarr \mytyb_2}{\mytyp} \myred \\ + \myind{2} \myjm{\mytya_1}{\mytyp}{\mytya_2}{\mytyp} \myand \\ + \myind{2} ((\myb{x_1} : \mytya_1) \myarr (\myb{x_2} : \mytya_2) \myarr \myjm{\myb{x_1}}{\mytya_1}{\myb{x_2}}{\mytya_2} \myarr \mytyb_1[\myb{x_1}] \myeq \mytyb_2[\myb{x_2}]) + \end{array} + \] + + Subtle point---I discovered a problem in the theory after + submitting... but I have a fix. +\end{frame} + +\begin{frame} + \frametitle{Bonus! WebSocket prompt} + \url{http://bertus.mazzo.li}, go DDOS it! + + \includegraphics[width=\textwidth]{web-prompt.png} +\end{frame} + +\begin{frame} +\begin{center} +{\Huge Demo} +\end{center} +\end{frame} + +\begin{frame} + \frametitle{What have we done?} + + \begin{itemize} + \item A small theorem prover for intuitionistic logic, featuring: + \item Inductive data and record types; + \item A cumulative, implicit type hierarchy; + \item Partial type inference---bidirectional type checking; + \item Type holes; + \item Observational equality---coming soon to the implementation. + \end{itemize} +\end{frame} + +\begin{frame} + \frametitle{Further work} + + \begin{itemize} + \item Pattern matching and explicit recursion + \item More expressive data types + \item Inference via unification + \item Codata + \end{itemize} \end{frame} \begin{frame}